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Abstract
A key step in building regulatory acceptance of alternative or non-animal test methods has long been the use of interlaboratory
comparisons or round-robins (RRs), in which a common test material and standard operating procedure is provided to all partici-
pants, who measure the specific endpoint and return their data for statistical comparison to demonstrate the reproducibility of the
method. While there is currently no standard approach for the comparison of modelling approaches, consensus modelling is
emerging as a “modelling equivalent” of a RR. We demonstrate here a novel approach to evaluate the performance of different
models for the same endpoint (nanomaterials’ zeta potential) trained using a common dataset, through generation of a consensus
model, leading to increased confidence in the model predictions and underlying models. Using a publicly available dataset, four
research groups (NovaMechanics Ltd. (NovaM)-Cyprus, National Technical University of Athens (NTUA)-Greece, QSAR Lab
Ltd.-Poland, and DTC Lab-India) built five distinct machine learning (ML) models for the in silico prediction of the zeta potential
of metal and metal oxide-nanomaterials (NMs) in aqueous media. The individual models were integrated into a consensus model-
ling scheme, enhancing their predictive accuracy and reducing their biases. The consensus models outperform the individual
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models, resulting in more reliable predictions. We propose this approach as a valuable method for increasing the validity of nanoin-
formatics models and driving regulatory acceptance of in silico new approach methodologies for the use within an “Integrated Ap-
proach to Testing and Assessment” (IATA) for risk assessment of NMs.
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Introduction
Nanotechnology, defined as the ability to manipulate matter at
the nanoscale, has opened an array of possibilities for multiple
applications that take advantage of the unique properties of
nanomaterials (NMs). From targeted drug delivery to environ-
mental sensing, the versatility of NMs makes them ideal candi-
dates for a broad range of innovative applications [1]. However,
the complexity and unique properties of these materials also
present significant challenges, especially when it comes to the
assessment of their potential adverse effects. The integration of
in silico new approach methodologies (NAMs) within the area
of nanotechnology has created a plethora of possibilities for the
assessment of NM properties and toxicity to support and/or
substitute traditional experimental methodologies [2,3].

The field of nanoinformatics covers a broad range of computa-
tional and data-driven methodologies for the exposure, hazard,
and risk assessment of NMs, such as quantitative structure–ac-
tivity relationship models adapted to the specificities of NMs
(nanoQSAR) and grouping/read-across models, specifically de-
veloped to accurately predict NMs’ properties when small
datasets are available [4-6]. These in silico methodologies can
be used in the early steps of the “safe-and-sustainable by
design” framework and in the development of novel NMs to
filter out unpromising candidates and prioritize NMs with
desired properties. The rational use of in silico methods allows
for the identification of potential hazardous effects caused by
NMs’ interactions with biological systems with a simultaneous
decrease of workload, cost, research duration, and use of labora-
tory animals. Several computational approaches [7-9] and
predictive models [10-12] have been presented recently for
predicting various NM properties and toxicity effects.

The combination of multiple NAMs, both experimental and
computational, within an “Integrated Approaches to Testing and
Assessment” (IATA) framework will further improve the entire
risk evaluation of NMs and accelerate regulatory decision-
making procedures [2,5,13]. An IATA scheme for the predic-
tion of the short-term regional lung-deposited dose of inhaled
inorganic NMs in humans following acute exposure and the
longer-term NM biodistribution after inhalation, has already
been presented [14]. Another example of an IATA is the combi-
nation of predictions from two or more individual models under
a consensus framework. Consensus models combine outputs
from several individual models built upon different sets of
descriptors and/or machine learning (ML) algorithms, leading to

more trustworthy results and enhancing stakeholders’ confi-
dence. In detail, as each individual model covers a specific area
of the descriptor/property space, by combining them it is
possible to capture a wider range of factors that influence the
relationship between the NMs’ independent variables and the
endpoint [15,16] and, thus, to approach the problem from differ-
ent perspectives. Furthermore, by combining different models,
it is possible to address the limitations of each model and to
achieve more precise predictions (e.g., by avoiding the overfit-
ting phenomenon when small training datasets are involved)
[15,16]. Prediction combination can be performed in a regres-
sion problem through an arithmetic average or via a weighted
average scheme [17]. It has been demonstrated that consensus
QSAR models exhibit lower variability than individual models,
resulting in more reliable and accurate predictions [18,19]. In
the area of nanoinformatics, various consensus approaches have
been proposed over the past years for the prediction of different
NM endpoints, such as NMs’ cellular uptake [20], zeta poten-
tial (ZP) [16], and electrophoretic mobility [21].

The complexity of predictive models requires the development
of standardized protocols to ensure their accuracy and robust-
ness. Just as laboratory experiments rely on repeatability and
reproducibility to validate results, computational methods
require similar validation processes. Special emphasis is given
to the predictive accuracy of models. For this purpose, it is
sought that nanoinformatics models comply with a set of prede-
fined criteria, often supplemented by statistical methods recom-
mended by the Organisation for Economic Co-operation and
Development (OECD) [22] and the European Chemicals
Agency (ECHA) [23]. In addition, there is a growing effort
from various groups to enhance the transparency and, conse-
quently, the reproducibility of their results by delivering stan-
dardized reports along with their models (e.g., QSAR model
reporting format (QMRF) [24] and modelling data (MODA)
[14,25] reports). By documenting computational steps through
the standardized reports, it is possible to deliver reproducible
models within and between computational groups, and over
time, and to conduct interlaboratory comparisons (ILC) or
round-robin (RR) tests on the models and their outputs, like
those performed in laboratory settings to validate a new test
method or protocol [26,27].

The computational prediction of the ZP of NMs (Figure 1) has
been of high interest in the area of nanoinformatics during the
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Figure 1: Schematic representation of a negatively charged uncoated spherical NM. The ZP corresponds to the electric charge at the slipping plane.

last decade, given the role of surface charge in determining
NMs interactions with membranes and in driving toxicity,
whereby positively charged particles are generally more toxic
than negatively charged particles of similar composition [28-
30]. In fact, several in silico models for the ZP have been de-
veloped based on different theoretical and experimental descrip-
tors employing a range of approaches, that is, quantitative struc-
ture–property/feature relationship (QSPR/QSFR) modelling,
read-across, and deep learning models. Mikolajczyk et al. [16]
implemented a consensus nano-QSPR scheme for the predic-
tion of the ZP of metal oxide nanoparticles (NPs) based on the
size and a quantum mechanical descriptor encoding the energy
of the highest occupied molecular orbital per metal atom of
15 metal oxide NPs. Toropov et al. [31] developed, for a set of
15 metal and metal oxide NPs, a QFPR model considering both
the NPs’ molecular structure and the experimental conditions,
encoded in quasi-SMILES. Furthermore, research has explored
the computational assessment of the ZP in media besides water.
Wyrzykowska et al. [32] proposed a nano-QSPR model for the
prediction of the ZP of 15 NPs in a low-concentration KCl solu-
tion considering the NPs’ ZP in water and the periodic number
of the NPs metal.

Read-across approaches presented to date include a k-nearest
neighbours (kNN) model developed by Varsou et al. [33] to
predict the ZP of 37 metal and metal oxide NPs based on their
core type and the NPs main elongation (image descriptor

derived from microscopy images). Papadiamantis et al. [34] de-
veloped a kNN/read-across model for the estimation of the ZP
of 69 pristine and aged NPs, considering the size, coating,
absolute electronegativity, and periodic table descriptors.
Finally, advances of artificial intelligence (AI) have been also
considered in the computational assessment of the ZP. Yan et
al. [35] employed deep learning techniques and developed a
convolutional neural network to predict the ZP of 119 NPs
based on their nanostructure images. The abovementioned
studies are indicative examples of models that have been used
for the computational assessment of NPs ZP. As research
progresses, such models are expected to become increasingly
sophisticated and accurate, contributing to a deeper under-
standing of NP behaviour in diverse environments.

The diversity of datasets and endpoints measured is chal-
lenging when comparing or combining results between differ-
ent studies, making it crucial to ensure that data are compatible
in terms of metadata (e.g., used experimental protocol). Simi-
larly, models developed using different sets of descriptors need
to have a basis for comparison in order to drive regulatory
acceptance of models. To address this challenge, under the
NanoSolveIT EU project (https://nanosolveit.eu/) the first RR
approach in nanoinformatics was implemented, to computation-
ally assess the ZP of NPs. The RR exercise involved four
groups (NovaM, NTUA, QSARLab and DTC Lab), from both
academia and industry, from four countries (Cyprus, Greece,
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Poland, and India) who were asked to develop individual
models for the prediction of the ZP based on a common dataset
of metal and metal oxide-cored NPs. In this way, different
descriptors were employed, and various modelling approaches
were applied, including QSAR type and read-across models.
The developed models were later integrated into a consensus
modelling scheme by combining the predictions of the indi-
vidual models through average and weighted average, to
acquire more robust and stable results. While the dataset’s
extent and, consequently, the generated models’ applicability
domain are rather limited, this initiative underscores the poten-
tial of synergistic approaches in the nanoinformatics field.
By leveraging the collective knowledge of diverse teams
and perspectives, these approaches can effectively assess
the properties and toxicity of NPs and democratize decision-
making processes in the assessment of NMs’ exposure, hazard,
and risk.

Materials and Methods
Data overview
A dataset of 71 pristine engineered NMs was explored in silico
in order to predict their ZP based on physicochemical and mo-
lecular descriptors. The physicochemical characterization of the
NMs was performed under the EU-FP7 NanoMILE project
(https://cordis.europa.eu/project/id/310451) [36]. From the
available descriptors/properties [36], the following four were
included in this study because of the completeness of the data
(absence of data gaps): the NMs’ core chemistry, coating, mor-
phology, and hydrodynamic diameter measured using dynamic
light scattering (DLS). The ZP of the NMs was measured in
water (pH 6.5–8.5). To enrich the library of the NMs’ physico-
chemical properties and increase the amount of available infor-
mation, the corresponding sphere diameter (the diameter of the
sphere with a surface area equal to the area of the NM) was
calculated, as well as three molecular descriptors commonly
used in nanoinformatics studies [37]. These descriptors were
chemical formula-related descriptors, specifically the numbers
of metal and oxygen atoms present in the core’s chemical
formula and the molecular weight of the core compound.

Finally, the Hamaker constants [38] of the NMs were calcu-
lated in vacuum and in water using the NanoSolveIT Hamaker
tool (https://hamaker.cloud.nanosolveit.eu/). The Hamaker con-
stant is a material-specific value that quantifies the strength of
van der Waals interactions between NPs, depending on the ma-
terials and the surrounding medium. A higher (positive)
Hamaker constant indicates stronger attractive forces, while a
negative value suggests repulsive interactions between the NPs,
preventing aggregation or agglomeration. These calculations
were performed considering spherical and uncoated NMs. The
balance between the Hamaker constants (expressing van der

Waals attraction between particles) and the ZP values of
particles (expressing their electrostatic repulsion) controls
the stability of colloidal dispersions according to the
Derjaguin–Landau–Verwey–Overbeek (DLVO) theory [39].
For the computational analysis, the TIP3P force field was em-
ployed for water, while the DREIDING force field was used for
the NMs. In the case of Zr-doped CeO2 NMs (CexZryO2), the
same density as for pure CeO2 NMs was considered to main-
tain consistency. It should be noted that the different working
groups were free to enrich or transform the above-described
dataset, as it is explained in the next sections, to cover a wider
feature space with each individual model. All the information
about the available descriptors is summarised in Table 1. The
entire dataset used in the models can be found in the Support-
ing Information File 1 of this publication.

Modelling techniques
kNN/read-across model
The kNN/read-across model employs the k-nearest neighbours
approach, an instance-based method that predicts the endpoint
of a sample based on its k nearest neighbours in the data space.
The proximity between samples is measured using Euclidean
distance, which is adjusted slightly for categorical descriptor
values using a binary value (0 in the case of same class data
points or otherwise 1) [40,41]. The endpoint prediction, in this
case the ZP value, is the weighted average of the endpoint
values of the k closest neighbours, with each neighbour’s
weighting factor inversely proportional to its distance from the
evaluated sample [33,40].

The kNN algorithm can be incorporated into the general NMs
read-across framework because it relies on the similarity of
neighbouring NMs to estimate the endpoint of interest. Specifi-
cally, by identifying and analysing the resulting groupings, it is
possible to map the prediction space into distinct clusters of k
neighbours that can subsequently be explored to identify
patterns and similarities within the neighbourhood space, in
accordance with the ECHA’s read-across framework. The
EnaloskNN functionality offers the advantage of not only deliv-
ering predictive results but also identifying the specific neigh-
bours and their Euclidean distances, as well as enabling visuali-
zation of the overall prediction space [33,34].

Random forest regression model
Random forest regressor is an ensemble learning, tree-based
method. It combines multiple decision tree predictors to create a
more robust and accurate prediction, which individual trees
cannot always provide. This algorithm constructs a forest of in-
dependent trees. Each tree is being trained on a random subset
of data and features. The regressor’s output is calculated based
on the average predictions from all individual trees. Some bene-
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Table 1: Available descriptors in the dataset used to build the individual ZP models (five models from four labs).

Descriptor Symbol Unit

chemical formula CF —
equivalent sphere diameter Dsph nm
shape group Shape —
coating CT —
hydrodynamic diameter measured by DLS DLS nm
molecular weight MW g/mol
Hamaker constant of NMs in vacuum A11 × 10−20 J
Hamaker constant of NMs in water A132 × 10−20 J
number of metal atoms Nmetal —
number of oxygen atoms Noxygen —
sum of ionization potential energy of metals Metals_SumIP kJ/mol
a read-across-derived composite function that encodes chemical information from all the selected
structural and physicochemical features

RA function

coefficient of variation of the similarity values of the close source compounds for a particular query
compound

CVsim

total number of atoms in a molecule Tot num atoms
weighted standard error of the observed response values of the close source compounds for a
particular query compound

SE

weighted standard deviation of the observed response values of the close source compounds for a
particular query compound

SD Activity

standard deviation of the similarity values of the close source compounds for a particular query
compound

SD Similarity

average similarity values of the positive close source compounds for a particular query compound Pos.Avg.Sim
average similarity values of the negative close source compounds for a particular query compound Neg.Avg.Sim
the log-transformed hydrodynamic diameter measured by DLS LOG_DLS
similarity value of the closest positive source compound MaxPos

Banerjee–Roy similarity coefficient 1

Banerjee–Roy similarity coefficient 2

fits of this algorithm besides its robustness include resistance to
overfitting and the ability to process datasets with numerous
variables without the need of feature scaling [42]. This algo-
rithm was implemented in Python, using scikit-learn package, a
widely used library for ML models.

Adaboost regression model
The development of the ZP QSPR model involved the utiliza-
tion of the Adaptive Boosting (AdaBoost) ML methodology,
implemented through Python 3.8.8 and the scikit-learn library
(version 0.24.1). AdaBoost represents an early instance of
leveraging boosting algorithms to address complex problem
types within the domain of ML [43]. Like its counterpart, the
random forest algorithm, AdaBoost employs a multitude of
elementary classifiers to enhance the model’s predictive ability.
In brief, the AdaBoost model comprises an ensemble of
multiple “weak” estimators, such as decision trees, each
possessing modest individual predictive prowess. However,
when integrated into an ensemble, they collectively augment the

predictive efficiency of the model. A notable distinction be-
tween the random forest algorithm and AdaBoost lies in their
operational frameworks. In the random forest, individual esti-
mators function independently of each other, operating in
parallel. In contrast, in AdaBoost, the prediction process within
the ensemble unfolds sequentially, with each subsequent esti-
mator’s outcome influenced by its predecessor.

Stacked PLS and MLP q-RASPR models
The q-RASPR approach, combining read-across and QSPR, has
been recently introduced and applied to the prediction of NM
cytotoxicity [44], power conversion efficiency of organic dyes
in dye-sensitized solar cells [45,46], detonation heat for
nitrogen containing compounds [47], and to the prediction of
surface area of perovskite materials [48]. Both the QSPR and
read-across approaches are extensively used for data gap filling
(predicting activity/property/toxicity values of compounds
devoid of experimentally derived endpoint values). Recently,
Luechtefeld et al. [49] introduced the concept of classification-
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based read-across structure–activity relationship (RASAR) by
combining the concepts of read-across and QSAR using ML
algorithms. Banerjee and Roy [50] merged chemical read-across
and regression-based QSAR into quantitative RASAR
(q-RASAR). Several ML models can be applied including
partial least squares (PLS), linear support vector regression
(LSVR), random forest regression, Adaboost, multiple layer
perceptron (MLP) regression, and kNN regression. This study
reports the first application of q-RASPR in a stacked modelling
framework.

Apart from the supplied structural and physicochemical infor-
mation of the engineered NMs, we have computed descriptors
based on the periodic table using the tool Elemental Descriptor
Calculator (https://sites.google.com/jadavpuruniversity.in/dtc-
lab-software/other-dtc-lab-tools). The complete descriptor pool
underwent feature selection using stepwise selection and a
genetic algorithm to obtain a reduced descriptor pool consisting
of 72 descriptors. A grid search/best subset selection was
applied to this reduced descriptor pool to obtain a combination
of ten different QSPR descriptors. Additionally, log-trans-
formed hydrodynamic diameter (LOG_DLS) was taken as an
additional descriptor. These eleven QSPR descriptors were used
to define similarity among the source and query compounds,
which is an integral part of the computation of the RASPR
descriptors using the tool RASAR-Desc-Calc-v3.0.2 available
from https://sites.google.com/jadavpuruniversity.in/dtc-lab-soft-
ware/home. This tool uses three different algorithms for
computing similarity, that is, Euclidean distance-based,
Gaussian kernel similarity-based and Laplacian kernel simi-
larity-based. The selection of the best similarity measure
and the optimization of the associated hyperparameters were
performed by dividing the training set into calibration and
validation sets, which were supplied as inputs for the
tool Auto_RA_Optimizer-v1.0 available from https://
sites.google.com/jadavpuruniversity.in/dtc-lab-software/home.
The combination of hyperparameters that generated the
best predictions for the validation set was selected as the
optimized hyperparameter setting and used to compute the
RASPR descriptors for the training and test sets. Clubbing
of the initially selected eleven QSPR descriptors with the
RASPR descriptors was performed, a process known as data
fusion [51]. This complete data pool underwent feature
selection to generate four different MLR q-RASPR models.
The predictions from these models were generated for
both the training and test sets since these predictive values will
serve as descriptors for the final stacking regressors. Finally,
PLS and MLP modelling algorithms were employed as the final
stacking regressors, where the optimized settings of the hyper-
parameters were obtained by grid search on the cross-valida-
tion statistics.

Consensus modelling
The meta-modelling approach allows one to use the output of
one modelling approach as an input to another or the use of a
few models/algorithms in parallel or in sequence, allowing for
the strengths of individual models to be combined and their lim-
itations to be circumvented [15,52]. Consensus modelling is
based on the parallel approach where multiple ML algorithms
are used to investigate the available dataset and to find relation-
ships between the considered NMs’ features and the physico-
chemical descriptors or biological activity of interest. Each ML
algorithm has its strengths and weaknesses; thus, there is no
universal solution for modelling regression or classification
cases. The choice of the adequate ML method depends on the
problem to be solved and the available data, and in some cases
multiple methods are employed to decide which one works best
for each case [53,54]. Depending on the amount of available
data, different methods may be applied. In general, support
vector machines, decision trees, random forests, and neural
networks are methods good in generalisation of trends or behav-
iours and can lead to accurate predictions. However, in cases of
small datasets, the same ML methods may lead to the overfit-
ting and low predictivity of the model for untested samples. The
idea of consensus modelling by combining a set of diverse algo-
rithms for the prediction endpoint of interest is an efficacious
manner to achieve reliable results of data-driven analysis. How-
ever, this approach is also open to criticism that it is even more
“black box” than the individual models; thus, even more care
needs to be taken to fully document the predictive models with
their QMRFs reports and to fully describe the underpinning
datasets.

Here, a consensus strategy was employed in addition to the
individually developed models, based on the combination of the
predictions from the initial models generated by the four groups
NovaM, NTUA, QSARLab, and DTC Lab. Two techniques
were used to derive consensus predictions, namely, the simple
average of the predictions of the individual models and the
weighted average of the original predictions. Simple averaging
combines the predictions of all individual models equally, while
weighted averaging assigns more weight to models with higher
individual performance. This combination aims to leverage
the strengths of each model, reducing individual biases and
enhancing overall prediction accuracy.

Validation
In line with the OECD QSAR model validation principles
[22,55], all models presented in this work were validated exter-
nally using the exact same training and test sets, which were
produced by randomly dividing the original dataset using a ratio
of 0.75:0.25. The training subset was used each time to calcu-
late and adjust the model parameters, whereas the test subset
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was not involved in model development, and it was used as an
external validation set to assess the model’s generalization on
new (previously unseen) data, which is crucial for its practical
application in regulatory settings.

According to the OECD’s fourth principle [22], statistical
model validation is indispensable for assessing a model’s per-
formance. To quantify the model’s accuracy, appropriate
“fitness” metrics were employed, ensuring that the models’
predictions closely align with their actual values. This valida-
tion process helped to prevent underfitting and overfitting phe-
nomena. Upon training, the models generated endpoint predic-
tions for both the training and test subsets. The training subset
predictions served to evaluate each model’s goodness-of-fit,
while predictions on the test subset assessed the model’s
predictability, for example, its ability to generalize well to new
data [22]. The statistical criteria used to evaluate model perfor-
mance are outlined below. These metrics collectively provide a
comprehensive assessment of model accuracy and reliability.

The mean absolute error (MAE, Equation 1) and the root mean
squared error (RMSE, Equation 2) were used to evaluate the
accuracy of the models applied on both train and test sets. MAE
measures the average magnitude of errors in predictions, while
RMSE provides a quadratic scoring rule that gives higher
weight to larger errors. When these indexes are used simulta-
neously, they permit a complete and thorough validation of
prediction accuracy, regardless of the training and test endpoint
values’ distribution level. MAE and RMSE values closer to 0,
correspond to more reliable models.

(1)

(2)

where N is the number of samples, and yi and  are the actual
and predicted endpoint values of the i-th sample, respectively.

The quality-of-fit between the predicted and experimental
values of the training and test sets was expressed by the coeffi-
cient of determination (R2, Equation 3), which indicates the
proportion of variance in the dependent variable that is
predictable from the independent variables. R2 values closer to
1, correspond to models that fit the dataset better.

(3)

where N is the number of samples, yi and  are the actual and
predicted endpoint values of the i-th sample, respectively, and

 is the average value of the experimental endpoint values.

To quantify the credibility of predictions on new data (includ-
ing the test set), the external explained variance [22] is used
(  or , Equation 4), which compares the predictions for
the test set samples with their actual endpoint values. 
values closer to 1, correspond to models with higher predictive
power.

(4)

where N is the number of test samples, yi and  are the actual
and predicted endpoint values of the i-th test sample, respective-
ly, and , is the averaged value of the experimental endpoints
of the training set.

Another variant of the external explained variance is 
(Equation 5) which uses the averaged value of the experimental
endpoints of the test set ( ).

(5)

The produced models were validated internally by employing
leave-one-out (LOO) cross-validation on the training set, to
ensure that the model is robust and no single data point is actu-
ally responsible for the enhanced quality of fit. The perfor-
mance in LOO cross-validation was assessed by calculating

 (leave-one-out Q2), a form of cross-validated R2 of the
predictions (Equation 6) [56].

(6)

where N is the number of training samples, yi and , are the
actual and predicted from LOO cross-validation endpoint values
of the i-th sample, respectively, and  is the average value of
the experimental training endpoint values.
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Finally, the quality-of-fit and the predictive ability of the
models is assessed using the statistical metrics proposed by
Golbraikh and Tropsha [57,58] (Equations 7–11, including

, Equation 6) on the test set. According to Golbraikh and
Tropsha [57,59,60] a regression model is considered predictive
if all of the conditions presented in Table 2 are satisfied.

(7)

(8)

(9)

(10)

(11)

where N is the number of samples, yi and  are the actual and
predicted endpoint values of the i-th sample, respectively, and

 and  are the average endpoint values of the experimental
and predicted values, respectively.

Table 2: Model acceptability criteria as defined by Golbraikh and
Tropsha [57,59,60].

Statistic Rule

r2 >0.6

>0.5

<0.1

k or k’ ∈[0.85,1.15]

<0.3

Applicability domain
To ensure the robustness and reliability of predictive models,
particularly adhering to the OECD guidelines, defining the ap-
plicability domain (AD) is crucial. The AD refers to the specif-
ic subset of the overall data space where a model can make reli-
able predictions through interpolation. When the model encoun-
ters data points beyond this designated domain, those predic-
tions should be flagged as unreliable because of their extrapola-
tion-based nature, which inherently carries more uncertainty
than interpolation [22].

In the present study, the leverage method [61] was employed to
assess the prediction reliability. This was done to empower
users to apply the models with greater confidence to external
datasets and real-world scenarios while having, at the same,
time a clear understanding of their optimal operating parame-
ters. The leverage method measures the similarity between the
query samples and the training set using the leverage values, h,
which are essentially the diagonal elements of the Hat matrix
[61,62] (Equation 12). These values quantify the distance of
each query sample from the centroid of the training set [61],
taking into account the descriptor values employed in model de-
velopment. The AD boundaries are determined by a predeter-
mined threshold leverage value h* (Equation 13). A test predic-
tion is deemed reliable if its corresponding leverage value falls
below this threshold (h < h*).

(12)

(13)

where X is the table containing the descriptor matrix, p is the
number of descriptors used in the model [60,61], and N is the
number of samples in the training dataset.

Results and Discussion
In the next paragraphs the five developed individual models are
briefly described. To ensure fair comparison, all models were
trained and tested on identical subsets of the data. More infor-
mation can be found in the respective QMRF reports, provided
as Supporting Information Files 2–5 to this publication.

kNN/read-across model
Data preprocessing
Initially, the z-score normalisation method was employed to
standardise the descriptors in the training set (53 NMs), en-
suring their equal contribution to the model. Each descriptor
was adjusted to have a mean of zero and a standard deviation of
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one [24]. Next, the identical normalisation parameters were
applied to the descriptors in the test set (18 NMs). To identify
the most relevant parameters, eliminate noise, and avoid overfit-
ting, the BestFirst method with the CfsSubset evaluator were
employed [40]. Four descriptors were selected to use in the
model (see below Table 15), that is, the NMs’ coating, their
equivalent sphere diameter, their hydrodynamic diameter, and
the number of oxygen atoms present in the core’s chemical
formula. To enhance the model’s performance and inter-
pretability, the Hamaker constant of the NMs calculated in
water and the shape group were added to the subset of the
selected descriptors. All analysis steps were performed in Isalos
Analytics Platform [63].

Model development and validation
The kNN algorithm with a value of k = 7 was selected to
perform a read-across assessment of the dataset. Similarly to the
preprocessing steps, modelling was implemented in Isalos
Analytics Platform using the Enalos+ tools and especially the
EnaloskNN function [24]. This function identifies the neigh-
bouring training samples for each test NM alongside the pre-
dicted values, facilitating a deeper understanding of the results
in terms of NM grouping and providing insights into the overall
samples space. The model was validated following the OECD
principles [22] to ensure robust and reliable predictive model-
ling. The key statistical metrics of internal (training set) and
external (test set) validation are presented in Table 3. The
Y-randomization test [24] was also performed ten times, giving
RMSE values on the test set in the range of 23.1–43.4,
confirming that the predictions were not a coincidental
outcome. In Table 4 the results of the Golbraikh and Tropsha
[57,59,60] test for the kNN/read-cross model are presented.

Table 3: Internal (training set) and external (test set) validation statis-
tics of the kNN/read-across model.

Training set Test set

MAE 0.29 7.81
RMSE 0.54 9.71
R2 0.99 0.88

0.62 —

— 0.88

Applicability domain
The area of reliable predictions for this model was defined
using the leverage method. The leverage threshold was calcu-
lated based on the training NMs subset and set to 0.226 (Equa-
tion 13). The test NM samples had values within the range of
0.031 to 0.191, indicating that their predictions were reliable

Table 4: Golbraikh and Tropsha [57,59,60] test results for the kNN/
read-cross model.

Criterion Assessment Result

r2 > 0.6 pass 0.894

pass 0.622

pass 0.001

pass 0.002

pass 0.001

0.85 < k < 1.15 pass 0.883
0.85 < k′ < 1.16 pass 1.012

except the one NM sample whose leverage value was equal to
0.859.

Random forest regression model
Data preprocessing
To facilitate data analysis, the unique string feature names of
the chemical formula descriptors were converted into a binary
variable. For this purpose, metal oxides (e.g., CeO2 and CuO)
were represented as 0 and metals (e.g., Ag, Au, and Cu) were
represented as 1. For the shape group descriptor, the string
names “Spherical”, “Square Plates” and “Rod” were one-hot
encoded. Lastly, out of 22 unique coatings, five categories were
created (sodium citrate, ʟ-arginine, PVP, uncoated, and “other”)
and were one-hot-encoded as well. This conversion ensured
consistency and uniformity in data representation, making
it easier to handle and analyse the data effectively. Next,
Pearson’s correlation value was computed for each pair of
descriptors. The two Hamaker constants (in water and in
vacuum) had a correlation value of 0.97, indicating that these
two features were linearly dependent. Thus, to avoid intro-
ducing redundancy and potential issues in the ML model, the
Hamaker constant in vacuum was removed.

Model development and validation
A random forest regressor was trained on the training set using
Jupyter notebook and the scikit-learn ML package. To optimize
the model’s performance, the grid search algorithm was imple-
mented to tune the model using the  metric for internal
validation. To further enhance the predictive power of the
model, recursive feature elimination (RFE) was employed to
identify and eliminate descriptors that contributed minimally to
the model’s prediction accuracy. After this extensive parameter
tuning, the optimal model was identified (128 estimators,
maximum depth of five and random state equal to 42) as well as
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the optimal features (DLS, coating, equivalent sphere diameter,
and MW) achieving  = 0.611 and R2 = 0.957 on the
training set and R2 = 0.941 on the test set. The key model statis-
tics are presented in Table 5, and the results of the Golbraikh
and Tropsha [57,59,60] tests for the random forest regression
model are presented in Table 6.

Table 5: Internal (training set) and external (test set) validation statis-
tics of the random forest regression model.

Training set Test set

MAE 4.43 5.43
RMSE 6.76 6.73
R2 0.96 0.94

0.61 —

— 0.94

Table 6: Golbraikh and Tropsha [57,59,60] test results for the random
forest regression model.

Criterion Assessment Result

r2 > 0.6 pass 0.941

pass 0.611

pass 0.0003

pass 0.0004

pass 0.0002

0.85 < k < 1.15 pass 1.006
0.85 < k’ < 1.16 pass 0.936

Applicability domain
For the applicability domain, leverage was used to see if the
NMs were within the area of reliable predictions. The leverage
threshold, calculated on the training set, was set to h* = 0.509.
In the training set, one compound had h = 0.54, and in the test
set one NM had h = 0.94. Thus, predictions of those two NMs
are not considered reliable.

AdaBoost regression model
Data preprocessing
The initial phase of feature selection involved categorizing
descriptors into those with continuous numerical values (e.g.,
hydrodynamic diameter) and those with qualitative or “descrip-
tive” details (e.g., chemical formula, shape group, and coating).
The collection of descriptors characterised by continuous nu-

merical values was subsequently delineated as the “continuous
set” for clarity purposes.

The transformation of the descriptive category of descriptors
into binary representations was carried out to facilitate the
inclusion of these qualitative descriptors in ML algorithms.
Binary encoding allows for the representation of categorical
variables as binary vectors, where each category variant is
encoded as 0 or 1, respectively. This transformation is essential
because many ML algorithms require input data to be in numer-
ical form. By converting descriptive features into binary format
using the OneHotEncoder from the scikit-learn library, we
ensure compatibility with these algorithms while retaining the
inherent information encoded within the descriptors. This ob-
tained set is denoted as the “binary set” including the “Chemi-
cal formula”, “Shape group”, and “Coating” descriptors. Con-
tinuous descriptors were standardized using z-score normaliza-
tion to ensure equal contribution to the model, using the Stan-
dardScaler module from the scikit-learn library. Next, the two
sets of data, that is, the standardised continuous set and the
binary set, were merged into a unified dataset that enabled us to
explore relationships between different types of descriptors and
their collective influence on the NMs ZP.

During the initial modelling phase, the AdaBoost algorithm,
integrated within the scikit-learn library, was utilized to analyse
the comprehensive dataset comprising all descriptors. The pri-
mary objective of this approach was to identify the descriptors
possessing the highest degree of influence for subsequent
modelling tasks. Additionally, pivotal parameters crucial for
refining the model’s performance, including “n_estimators”,
“random_state”, “learning_rate” were carefully selected during
this stage based on GridSearch algorithm for tuning hyperpara-
meters of the model [64]. Detailed insights into these parame-
ters can be accessed via the documentation provided on the offi-
cial scikit-learn website [65].

After the evaluation of the model’s feature importance, delin-
eated in the preceding stage, five descriptors emerged as the
most significant for the ZP prediction, namely, DLS, Dsph,
A11, MW, and CT [encoded as 0 = coated and 1 = uncoated].
Each descriptor offers crucial insights into different aspects of
the NMs’ composition, structure, and behaviour, thereby
serving as vital predictors for the model’s predictive accuracy
and interpretability.

Model development and validation
The selected descriptors were employed in the training of the
final model, which adhered to the methodological framework
outlined above. This model was instantiated with specific pa-
rameter settings, as elucidated in the previous point, where
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AdaBoost was configured with parameters: n_estimators = 9,
random_state = 786, and learning_rate = 0.997. A number of
estimators (n_estimators) were found to enhance the model’s
predictive power, while the specific random_state ensures
reproducibility of results. Additionally, the learning rate was
carefully tuned to strike a balance between model complexity
and generalization ability, ultimately resulting in a well-per-
forming model for the given task.

The model validation statistics and the results of the Golbraikh
and Tropsha [57,59,60] test are presented in Table 7 and
Table 8, respectively.

Table 7: Internal (training set) and external (test set) validation statis-
tics of the AdaBoost regression model.

Training set Test set

MAE 7.44 8.95
RMSE 9.98 9.91
R2 0.91 0.87

0.54 –

– 0.88

Table 8: Golbraikh and Tropsha [57,59,60] test results for the
AdaBoost regression model.

Criterion Assessment Result

r2 > 0.6 pass 0.906

pass 0.539

pass 0.027

pass 0.028

pass 0

0.85 < k < 1.15 pass 0.906
0.85 < k’ < 1.16 pass 0.974

Stacked PLS and MLP q-RASPR models
Data preprocessing
First- and second-generation periodic table descriptors were
calculated as described by Roy and Roy [66]. Some descriptors
were also calculated using elemental descriptors calculator soft-
ware (https://sites.google.com/jadavpuruniversity.in/dtc-lab-
software/other-dtc-lab-tools?authuser=0). Basic information

about the metals has been taken directly from the periodic table
to calculate descriptors for the reported metal oxide NMs.

Additional information on physicochemical features such as
coating, shape group, DLS (hydrodynamic diameter) [nm],
Hamaker (self/vacuum) A11 [× 10−20 J], Hamaker (self/water)
A132 [× 10−20 J] were also included for modelling purposes.
The selected QSPR descriptors (vide infra) were used to
compute the RASPR descriptors using the tool RASAR-Desc-
Calc-v3.0.2 (https://sites.google.com/jadavpuruniversity.in/dtc-
lab-software/home#h.x3k58bv4frb9) after optimization of the
associated read-across-based hyperparameters [67,68].

Model development and validation
The model development was performed following the basic
steps for the generation of the MLR model using the best subset
selection (BSS) method. The data division was kept identical to
the data partitioning used in the rest of the models to have a
clear comparison of results. Further, Stepwise Selection (using
F-value as the fitness function) and Genetic Algorithm (GA)
(using MAEtrain as the fitness function) were implemented for
feature selection followed by the BSS method to select the best
model based on the quality and prediction performance.

Initially selected QSAR descriptors (obtained by the grid
search algorithm). Ten descriptors (from a total of 72
descriptors) were obtained after Stepwise Selection, GA, and
BSS. These are Hamaker (self/water), amount of Ce, amount
of Zr, rod (shape), coating, the total number of atoms,
tot_metal_alpha, Metals_SumIP, X_ActivM, and Valence elec-
tron potential.

Additionally, we performed a correlation analysis of the
descriptor DLS (hydrodynamic diameter) and found that it had
a significant correlation with the training set response, except
for four data points. This was because, for these compounds, the
values of DLS were significantly higher than the rest of the
training data points, therefore hindering linear correlation. Thus,
we have converted the DLS descriptor to the corresponding log
unit, added this feature to the initially selected ten features, and
considered it for model development. Therefore, we have
proceeded toward further modelling analysis using eleven
QSAR descriptors.

RASPR descriptor computation. Using these selected fea-
tures, the read-across structure–property relationship (RASPR)
descriptors [67] for the training and test sets were computed
using the tool RASAR-Desc-Calc-v3.0.2, freely available from
the DTC Lab tools supplementary site (https://sites.google.com/
jadavpuruniversity.in/dtc-lab-software/home#h.x3k58bv4frb9).
The corresponding hyperparameter (similarity based on

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/other-dtc-lab-tools?authuser=0
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/other-dtc-lab-tools?authuser=0
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.x3k58bv4frb9
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.x3k58bv4frb9
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.x3k58bv4frb9
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.x3k58bv4frb9
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Table 9: Descriptor combination of the MLR q-RASPR models.

Models Desc1 Desc2 Desc3 Desc4 Desc5 Desc6

M1 Metals_SumIP RA function CVsim Pos.Avg.Sim Neg.Avg.Sim sm
1

M2 LOG_DLS SE SD Similarity Pos.Avg.Sim Neg.Avg.Sim sm
2

M3 Tot num atoms LOG_DLS SD Activity MaxPos Neg.Avg.Sim sm
1

M4 LOG_DLS SD Activity MaxPos SD Similarity Neg.Avg.Sim sm
1

Table 10: Internal (training set) and external (test set) validation statistics of the individual MLR q-RASPR models.

Models Training set Test set

MAEtrain MAEtest RMSEP

M1 0.629 14.837 0.972 0.974 0.972 3.671 4.605
M2 0.694 11.937 0.930 0.881 0.873 7.539 9.833
M3 0.661 14.082 0.959 0.955 0.952 4.969 6.068
M4 0.652 13.712 0.942 0.944 0.941 5.276 6.730

Figure 2: Schematic workflow for the development of the stacked PLS and MLP q-RASPR models.

Euclidean distance with the number of close source compounds
equal to 5) settings were obtained from the optimized read-
across-based predictions for the validation set, using the calibra-
tion set as the source set (the calibration and validation sets
were obtained by the division of the training compounds). This
read-across hyperparameter optimization was done using the
tool Auto_RA_Optimizer-v1.0, freely available from the DTC
Lab tools supplementary site (https://sites.google.com/jadavpu-
runiversity.in/dtc-lab-software/home#h.ucbojxjcke1c).

The 18 different RASPR descriptors computed were fused with
the initially selected QSPR descriptors to generate complete
descriptor pools for the training and test sets, a process termed

Data Fusion [51]. This pool was subjected to feature selection
using a grid search algorithm.

From the results of the grid search, four different MLR
q-RASPR models were developed. The corresponding descrip-
tors associated with the four different MLR models have been
tabulated in Table 9, while the internal and external validation
metrics of these individual models have been reported in
Table 10. Their individual predictions were used to perform
stacking using a PLS algorithm (using the optimized number of
latent variables (LVs) based on LOO cross-validation) as the
final regressor (Figure 2), the results of which have been re-
ported in Table 11 and Table 12.

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.ucbojxjcke1c
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.ucbojxjcke1c
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.ucbojxjcke1c
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Table 11: Internal (training set) and external (test set) validation statistics of the stacked PLS q-RASPR regression models.a

Stacked PLS
q-RASPR (training
set statistics)

MARtrain MAELOO–CV RMSEC

0.681 0.657 13.255 13.766 18.417

Stacked PLS
q-RASPR (test set
statistics)

MAEtest RMSEP

0.960 0.951 0.948 4.402 6.320
aThe optimized hyperparameter setting for the Stacked PLS q-RASPR model is LV = 1.

Table 13: Internal (training set) and external (test set) validation statistics of the stacked MLP q-RASPR regression models.a

Stacked MLP q-RASPR (training set statistics) MAEtrain MAELOO–CV RMSEC

0.695 0.645 12.952 13.957 18.015

Stacked MLP q-RASPR (test set statistics) MAEtest RMSEP

0.961 0.963 0.960 4.038 5.500
aThe optimized hyperparameter settings for the Stacked MLP q-RASPR model are activation = “logistic”, alpha = 1, learning_rate_init = 0.01, max_iter
= 1000, random_state = 0, and solver = “lbfgs”.

Table 12: Golbraikh and Tropsha [57,59,60] test results for the
stacked PLS q-RASPR model.

Criterion Assessment Result

r2 > 0.6 pass 0.960

pass 0.657

pass 0.001

pass 0.001

pass 0

0.85 < k < 1.15 pass 0.902
0.85 < k’ < 1.16 pass 1.063

Apart from PLS, we have also used a MLP model as the final
regressor (Figure 2) after optimization of the hyperparameters
by the GridSearchCV approach. The validation statistics are
presented in Table 13 and Table 14.

Consensus models
The efficacy of the two proposed consensus approaches based
on averaging with equal weights or on weighted calculations

Table 14: Golbraikh and Tropsha [57,59,60] test results for the
stacked MLP q-RASPR model.

Criterion Assessment Result

r2 > 0.6 pass 0.961

pass 0.645

pass 0

pass 0

pass 0

0.85 < k < 1.15 pass 0.991
0.85 < k’ < 1.16 pass 0.970

(Equation 14), was assessed through comparing prediction
results for the test set, where the same training and test sets
were used for the five individual models, but using different
sets of descriptors (Table 15). The consensus predictions using
the averaging scheme were derived using the test set predic-
tions of the five individual models with equal weights in the
calculation of the final predictions. In this manner, averaged
statistical parameters were calculated (Table 16).



Beilstein J. Nanotechnol. 2024, 15, 1536–1553.

1549

Table 15: Selected descriptors per model.

kNN/read-across Random forest
regression

Adaboost regression Stacked PLS –
q-RASPR

Stacked MLP –
q-RASPR

Dsph Dsph Dsph
CT CT [unique integers] CT [binary]
DLS DLS DLS

MW MW
A132

A11
Noxygen
Shape

Ypred(M1)a Ypred(M1)
Ypred(M2)b Ypred(M2)
Ypred(M3)c Ypred(M3)
Ypred(M4)d Ypred(M4)

aPredicted values from the individual q-RASPR model M1. bPredicted values from the individual q-RASPR model M2. cPredicted values from the indi-
vidual q-RASPR model M3. dPredicted values from the individual q-RASPR model M4.

Table 16: Accuracy statistics on the test set for the five independent models and the two consensus models.

Statistic kNN/read-acro
ss

Random
forest
regression

Adaboost
regression

Stacked PLS
– q-RASPR

Stacked MLP
– q-RASPR

Consensus
average

Consensus
weighted
average

R2 0.88 0.94 0.87 0.95 0.96 0.97 0.97

0.88 0.94 0.88 0.95 0.96 0.97 0.97

MAE 7.81 5.43 8.95 4.40 4.04 4.01 4.35
RMSE 9.71 6.73 9.91 6.32 5.50 4.86 5.03

In the weighted average consensus scheme, the weights were
calculated based on the coefficient of determination  values
of the five models on the training set as follows:

(14)

The consensus predictions on the test set were validated for
their reliability using the same statistical metrics and the results
are presented in Table 16. The obtained results for both
consensus approaches are much better than those of the indi-
vidual models, that is, R2 and  are closer to 1, while RMSE
is closer to 0. This confirms the usefulness of integrating
diverse ML approaches for more reliable results. The results of
the RR exercise presented herein (Figure 3) show that the
diverse ML modelling techniques like read-across and QSPR

can be applied, and diverse sets of descriptors can be used, to
calculate key nanomaterials properties. Nevertheless, the best
results can be achieved through the combination of various
solutions via consensus modelling, which is recommended for
enhanced accuracy and reliability of the prediction of the most
important nanomaterials endpoints.

Conclusion
In this collaborative work we have implemented a round-robin
(RR) test focused on the creation of two consensus models for
the prediction of the zeta potential (ZP) of metal and metal
oxide NMs in aqueous environments. Four distinguished nano-
informatics groups participated in this exercise, each devel-
oping their own models based on a shared NMs dataset. The
models developed as part of the RR test included (i) a k-nearest
neighbours algorithm coupled with a read-across approach,
enabling a nuanced exploration of the similarity space among
the materials being studied, (ii) a random forest model, and (iii)
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Figure 3: Schematic representation of the individual and consensus models for the RR exercise. The five models were developed independently by
four different groups and were later combined into a simple average and a weighted average scheme (consensus models). The consensus models
present improved predictive accuracy compared to the individual initial models.

an AdaBoost regression model, both of which stand out for their
speed and computational efficiency. Last, two quantitative read-
across structure-property relationship (q-RASPR) models were
included that combine the advantages of read-across and QSAR
approaches. Each of these individual models has been rigor-
ously tested and validated, adhering to the OECD principles to
ensure their reliability and predictive accuracy, as described
herein.

The key innovation lies in the next step, that is, in the combina-
tion of these individually potent models into a consensus frame-
work. We created two different ensemble models for this
purpose. The first ensemble model was straightforward; it aver-
aged the predictions coming from all four individual models.
This averaging method effectively pooled the strengths of
the individual models to produce a more robust predictive
output. The second ensemble model took a more nuanced ap-
proach, utilising a weighted average scheme. Both consensus
models demonstrated an improvement in predictive accuracy
compared to their individual components. Moreover, by pooling
multiple predictive approaches, these consensus models also
minimised any biases or limitations that could be inherent in
single-algorithm models. The exercise showed that consensus
modelling, especially when involving a diversified set of ML
algorithms, can serve as a powerful tool for enhancing the relia-
bility and accuracy of predictions in the complex field of nano-
technology.
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