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Abstract
Quantitative structure–activity relationship (QSAR) models are routinely used to predict the properties and biological activity of
chemicals to direct synthetic advances, perform massive screenings, and even to register new substances according to international
regulations. Currently, nanoscale QSAR (nano-QSAR) models, adapting this methodology to predict the intrinsic features of nano-
materials (NMs) and quantitatively assess their risks, are blooming. One of the challenges is the characterization of the NMs. This
cannot be done with a simple SMILES representation, as for organic molecules, because their chemical structure is complex, in-
cluding several layers and many inorganic materials, and their size and geometry are key features. In this review, we survey the lit-
erature for existing predictive models for NMs and discuss the variety of calculated and experimental features used to define and
describe NMs. In the light of this research, we propose a classification of the descriptors including those that directly describe a
component of the nanoform (core, surface, or structure) and also experimental features (related to the nanomaterial’s behavior,
preparation, or test conditions) that indirectly reflect its structure.
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Introduction
Computational techniques of statistical nature such as quantita-
tive structure–activity relationships (QSARs) can help to under-
stand the intrinsic features of nanomaterials (NMs) and quanti-
tatively assess their potential risks for human health and the
environment [1]. QSARs consist in the construction of mathe-

matical models relating the structure of a series of molecules to
a biological/physicochemical property or activity, mostly
through the use of statistical tools. Once a model has been
constructed, it can be used to predict the property or biological
effect of new structures quickly and at a very low cost in com-
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parison to experimental approaches. Furthermore, when they
are developed complying strictly with the rules established by
the Organization for Economic Co-operation and Development
(OECD) for their scientific validation, QSARs are accepted for
regulatory purposes, thus ensuring their applicability at the
regulatory level by international bodies such as the European
Chemicals Agency (ECHA) [2,3].

Unlike QSAR models for discrete organic molecules, QSARs
for NMs are still at an early stage, mainly because of the lack of
data available regarding their generation [4], but also because of
the intrinsic difficulty to characterize the structure of NMs
[5-7]. The first described nano-QSAR model is from 2009 [8],
but the number of relevant nano-QSAR models is growing sig-
nificantly because new nanoscale descriptors are found [6], and
more information on NMs is progressively generated, opening
new ways of improving nano-QSARs. This is an active field
and, recently, a comprehensive review about this topic and the
future perspectives was published [7]. Scientific, industrial, and
national institutions should harmonize their efforts for the de-
velopment and application of nano-QSARs at the regulatory
level [9].

From a regulatory point of view, ECHA recognizes the com-
plexity of NMs and the fact that the same chemicals could lead
to different nanostructured substances, which, despite sharing
the chemical composition, should be considered different mate-
rials in terms of their activity and properties. ECHA uses the
term “nanoform” to specify a particular substance in the NM
field for questions such as their registration and risk evaluation.
A nanoform is defined by having particles with a specific com-
position and with structural properties (such as size and shape)
in a defined range. In this way, it differs from more general
labels used for NMs (e.g., “Au nanoparticles”) to refer to a
family of materials combining different sizes and/or coating
materials that can have different properties. Hence, ECHA
defined a set of relevant physicochemical parameters to iden-
tify and register nanoforms, including six compulsory require-
ments, namely, composition, impurities, surface treatment func-
tionalization, size, shape, and surface area [10].

One of the challenges in nano-QSAR modelling, and in the
modelling of NMs in general, is the definition and the identifi-
cation of what a single NM is. Discrete organic molecules can
be fully identified and characterized by their chemical structure,
often represented by a SMILES code [11]. This approach is
insufficient for NMs, as a key component of their definition is
their size. NMs are defined as materials with at least one of the
dimensions (including internal features) on the nanoscale
(1–100 nm). Figure 1 shows some types of NMs according to
their dimensions [12].

Figure 1: NMs with different kinds of shape. The number of dimen-
sions next to the names refers to those that exceed the nanoscale.

Several studies show that the nanoscopic structure of the nano-
particles or their aggregates affects the behavior of NMs, and
more particularly their toxicity. The influence of the size and
the structure of nanoparticles or their aggregates on their toxici-
ty has been recently reviewed [13]. From now, we will use the
label “nanostructure” to refer to these properties, in comparison
with the term “structure” referring to the chemical composition.
The nanostructural differences among nanoparticles can be
defined by different means: (i) direct measurements of their
structure (e.g., their size), (ii) comparison of their physical
properties that depend on size/nanostructure, and (iii) considera-
tion of differences in their preparation.

Another particularity of NMs is their chemical composition, as
they could exhibit complex compositions (Figure 2) formed by
different parts such as (i) the core (the inner part of the NM and
most of its weight), (ii) the shell (the composition of the sur-
face that interacts with the solvent and biological molecules),
(iii) impurities or dopants (minor components deposited on the
surface or distributed among the material that affect the proper-
ties), and (iv) ligands or coating (organic molecules linked to
the external part of the particle that contribute to its formation,
solubility, or function).

Moreover, different experimental factors during the life of a
NM (i.e., the conditions during its preparation and handling)
will lead to different structural configurations and to different
properties. Thus, the reported experimental conditions are sig-
nificant, and they often need to be included in a predictive
model.

Finally, the quality of data is a key component in the develop-
ment of QSAR models. Consistency of the data is a key aspect
in the preparation of a database for a QSAR study as different
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Figure 3: Classification of nano-QSAR descriptors.

Figure 2: Schematic depiction of the parts of a complex nanoparticle.

changes in the conditions of the test could lead to a dispersion
of the results [4]. This should be considered carefully when
collecting data from different sources. It becomes a harder prob-
lem in nano-QSAR as not only differences that can arise on the
evaluation of the endpoint must be considered, but also those
regarding preparation of the NMs and the way they are identi-
fied. In addition, the inclusion of experimental values as
descriptors further reduces the availability of data on NMs that
have been tested for both the adequate characterization results
and the prediction endpoint.

Therefore, the development of QSAR models requires the codi-
fication of information on nanoforms beyond classical molecu-
lar descriptors. NMs have some particularities in comparison
with discrete substances, which are (i) the importance of the
size and shape, (ii) the complex composition, and (iii) the
consequences of the preparation of the NM on their features.
All these particularities need to be codified somehow as NM

descriptors (nanostructural features) that are the basis of the de-
velopment of nano-QSAR models (in a similar way that molec-
ular descriptors are fundamental for QSAR models). However,
the challenge goes further than describing numerically the struc-
ture. These aspects also have to be considered in the recording
and identification of the NMs. A recent approach to this issue
from Lynch et al. is the development of InChI codes for NMs,
which expand the InChI codes used to identify chemicals [14].

In the present work, we have collected and analyzed the
existing models in the literature and how different authors
address the codification of NMs. Moreover, in an attempt to
harmonize NM modelling, we propose a new classification of
NM descriptors.

Review
Available nano-QSAR models
We have surveyed the literature to compile the existing models
and to analyze the variety of calculated and experimental fea-
tures used to define and describe NMs. A total of 77 different
publications including NM-focused prediction models have
been found, and the information is collected in Table S1 (Sup-
porting Information File 1). This review is not restricted to self-
considered nano-QSAR models, but it includes also other
predictive models (such as Bayesian networks or mapping
strategies) that use calculated and/or experimental features that
could potentially be used as descriptors in a nano-QSAR model.
For the literature analysis below, all descriptors with a potential
use in nano-QSAR are discussed.

Descriptors for NMs
One of the conclusions of the analysis of available models is the
heterogeneity of the criteria used by different authors to charac-
terize the NMs [7]. Taking these models as starting point, and in
order to harmonize the characterization of the nanoforms, we
propose a classification of the descriptors as follows (Figure 3):



Beilstein J. Nanotechnol. 2024, 15, 854–866.

857

Figure 4: Classes of NMs by chemical composition.

(i) Descriptors that directly describe the nanoform, that is, its
chemical composition or its physical structure. Descriptors
based on the chemical composition are similar to those used in
QSAR models of discrete molecules. Nevertheless, in nano-
QSAR, the descriptors should differentiate between those
describing the main component of the nanoform (the core, (a) in
Figure 3), those related to the external part (shell or surface)
and/or the substituents or ligands attached to it ((b) in Figure 3),
and those that directly reflect the nanostructure of the nanoform
(including factors such as size, aspect ratio, or surface area,
(c) in Figure 3). (ii) Descriptors that codify experimental infor-
mation on the NMs and do not directly describe the composi-
tion or structure of the NM, but can be used to model them
because they imply nanostructural features and composition.
We assign different groups to these experimental measure-
ments, depending on whether they describe properties that are
consequence of the structure of the nanoform (e.g., wavelength
or zeta potential, (d) in Figure 3) or whether they represent
experimental conditions that contribute to the formation of
nanoforms and are the cause of their structure (such as the
synthesis medium or the time span between preparation and
testing, (e) in Figure 3). (iii) Descriptors related to the experi-
mental conditions of the determination of the endpoint. It is
possible that some of those conditions also affect the structure
of the nanoform in experimental media; however, these descrip-
tors are not focused on the nanoform itself but on the measured
endpoint (such as the target or exposure time, (f) in Figure 3.

Descriptors that define the nanoform
Core composition (a): The first family of descriptors are those
that describe the core composition of the nanoform. This kind
of descriptors can be applied depending on the type of nanoma-

terials, which can be classified according to their chemical com-
position in inorganic, carbon-based, organic, and composite
NMs (Figure 4). In organic molecules, a wide range of descrip-
tors are obtained from the topology of the molecule, arising
from the rich variety of structural motifs that can be found and
the relevance of their distribution along the molecule. However,
the core of the NMs is typically composed by chemicals with a
simpler and repetitive chemical structure. Most inorganic mate-
rials are composed of single elements (e.g., Au or Ag) or binary
compounds (e.g., Fe2O3, CdSe, or SiO2). The most abundant
families among the carbon-based NMs are nanotubes and fuller-
enes; they are also considered inorganic and have a simple
chemical composition (mostly carbon). Hence, classical organic
molecular descriptors are not commonly found in the core com-
position, although they are potentially applicable to structures
involving organic polymeric substances (such as nanoplastics
and dendrimers) or lipids (such as liposomes).

Because of the simpler chemical structure of the components
typically found in NMs, the chemical descriptors tend to be also
simpler than those of organic molecules. Furthermore, it is
common to find nano-QSAR models focused on groups of
nanoforms that have different activity but are chemically homo-
geneous in their core, that is, which include NMs with the same
or similar core composition (e.g., only nanotubes and fullerenes,
or only metal oxides). One example is the use of the count of
metal and oxygen atoms as descriptors in metal oxide models
[15,16].

It is also common to find single-element descriptors based on
the physicochemical properties of pure elements. The use of
single-element descriptors is trivial in single-metal nanoforms,
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such as silver or gold nanoparticles [17]. In other cases, a
weighted-average can be used to transform the element-based
descriptors to the current composition of compounds [18,19].
Most of the descriptors are based on the empirical formula (i.e.,
the proportion of elements in the substance), such as the molec-
ular weight, which is calculated from a symbolic formula
[15,20,21], or descriptors calculated from element-based values
transformed to the empirical formula [20]. However, because of
the common presence of oxygen, several descriptors of metal
oxide models do not take into account the oxygen atoms and
depend only on the identity of the metal, such as metal mass
[15], electronegativity [16,20,22], or position in the periodic ta-
ble (group and period) [15,16].

Despite the fact that, generally, such element-based descriptors
are independent of the compound, in some cases they are
related to the particular composition of the material, such as ox-
idation state, formal charge [8,16,20,23], softness [22], ioniza-
tion potential [22], and weight percentage of the metal [23].
Furthermore, to include information regarding the particular
nanoform, the crystal structure can be included as a categorical
descriptor [24] or by using coordination numbers [24]. Alterna-
tively, Kotzabasaki et al. also codified the composition of iron
oxide nanoparticles with a single categorical descriptor that
encodes the crystal structure of the main component (in this
case as maghemite or magnetite) [25].

Alternatively, some descriptors are focused on the complexity
of inorganic materials and, in place of structural features, focus
on electronic features. In this regard, several descriptors were
obtained from quantum mechanics (QM) calculations of small
clusters or periodic models [26-30]. Although cluster-calcu-
lated QM descriptors are inherently size-dependent, they are
calculated using smaller, single-size model clusters, which are
not related to the size of the nanoparticles; thus, they should be
considered size-independent. Cluster-related values include
standard heat of formation, total energy, electronic energy,
core–core repulsion energy, area and volume of the cluster,
energies of HOMO and LUMO orbitals and the gap between
them, and lattice energies [22,26]. The energy levels of conduc-
tion and valence bands, which are found commonly among the
most important parameters, can be calculated from QM models
or derived from other simple reference parameters by empirical
formulas [31]. Additionally, QM calculations can be performed
in very simplified models that only describe a part of the mate-
rial, such as single metal atom, to calculate the enthalpy of for-
mation of the cation [26]. However, there is an alternative,
simplified way of incorporating the electronic structure in the
model, that is, by using the electron configuration of the ele-
ments (e.g., by using electron configuration fingerprints) [32].
In this way, the atomic orbitals can be easily represented and

used to estimate the molecular/crystal orbitals in the NM with-
out requiring an electronic calculation.

Also, experimental physical properties of the compound, ob-
tained from classical databases or literature sources, could be
used. However, because these measures correspond to the bulk
material and do not characterize the nanoform, we classify them
as composition-related descriptors and not as experimentally
measured physical descriptors of the investigated nanoform. Ex-
amples of this are the atomization energy of the bulk MOx
structure obtained from literature sources, used by Liu and
coworkers [15], and the formation energies used by Banerjee
and coworkers [33]. Nano-QSAR models based on the CORAL
software [34] use descriptors that are optimized from the dataset
by using an identifier text string called “quasi-SMILES”, an
extension of the SMILES incorporating in a single string the
composition of the core and additional information related to
the nanostructure or the conditions [35-37]. However, both data
are not always combined; the first model by Toropov et al.
restricts its textual descriptor to a simple SMILES representa-
tion of the molecular formula of the metal oxide [38], and there
are quasi-SMILES descriptors without any composition data
[39]. Nevertheless, the nanoform identification of certain mate-
rials, such as pristine carbon nanoforms, does not really
describe the composition (pure carbon) but the nanostructure
(shape and composition of nanotubes or fullerenes) [40].

Otherwise, the single-formula representation of the chemical
composition of a nanoparticle discussed until now can be
simplistic. NMs are often found to include different chemical
components because they are mixtures or complex chemical
structures, including impurities or even different crystal phases.
Hence, the primary chemical composition of the nanoparticle,
excluding ligands or external substituents, can be categorized
into two parts, the core and the shell compositions. This ap-
proach was employed in a study of quantum dots [30], which
does not use numerical descriptors for the composition, but
directly uses a Bayesian network with categorical descriptions
of both the core and the shell. These are determined by empir-
ical formulas of either a single inorganic salt or a mixture. Ad-
ditionally, a distinct category has been designated for quantum
dots lacking a specific shell composition, labeled as “non-
coated” [41].

Substituents and modifiers (b): The consideration of substitu-
ents or modifiers on the surface of a NM is essential to identify
and describe the nanoform as they may influence its properties.
The characterization of these substituents or modifiers becomes
even more relevant when the core composition among different
NMs is the same (e.g., silver), but the substituents differ (e.g.,
different organic ligands). The substituents can be organic
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chemicals as, for example, in the model developed from the
database by Weissleder et al. [42] for several same-core super-
paramagnetic nanoparticles functionalized with different
organic molecules. The authors used SMILES-based descrip-
tors, common in QSAR models of discrete molecules, to char-
acterize the substituents, and they constitute the only identifier
of each datapoint [43-46].

In datasets with substituents that are mainly transition metals
(deposited in the nanoparticle or present in the solution), prop-
erties such as the ionization potential, the electron affinity, the
absolute electronegativity and the absolute hardness, as well as
the adsorption energy of the metal have been used (using litera-
ture values or QM calculations) [47-50]. In those cases, the
descriptors were obtained for a single component, and the final
value of the mixture was calculated as a linear combination
weighted by the molar fraction. In other cases, the molar com-
position of the metallic substituent was also directly used as
descriptor [51]. The idea of considering a NM as a mixture and
developing QSAR models for the toxicity of nanoscale mix-
tures formed by a NM and discrete molecules or ions, which
could potentially work by attachment to the surface, has been
reviewed by Trinh and Kim [52].

Similarly, carbon-based nanoforms are constituted of a common
carbon core, but they can have different side groups attached to
the surface. In the case of C60 fullerene structures (with the
same exact fullerene composition), the datapoints were identi-
fied merely based on these side groups only. The correspond-
ing molecular descriptors comprised 3D QM-calculated descrip-
tors (which include the constant fullerene) and descriptors only
based on the structure of the functionalization group [53,54].
Coating descriptors are not only found in common-core models.
For example, Kleandrova et al. included descriptors based in the
bond adjacency matrix for the organic coating if present (a zero
was used for uncoated nanoforms) [18].

Bilal et al. did not use numerical descriptors to describe the
composition, but categorical descriptors that included empirical
formulas for the core and the shell, as well as different cate-
gories (one group and one specific name) for each of the ligands
and surface modifications in a Bayesian network [41]. Simi-
larly, categories for the ligands are used in a quasi-SMILES-
related model for single core–shell quantum dots [55]. Alterna-
tively, other authors combined all components in a single
fingerprint without differentiating the composition of core and
coating [32].

Size and nanoshape (c): The most direct and common ap-
proach to describe the nanostructure of a NM is to include
values that provide a physical description of the particle. Parti-

cle size is the most common feature in nano-QSAR models.
However, despite the established understanding that size plays a
crucial role in the activity and toxicity of NMs, its significance
in the performance of QSAR models seems debatable. For ex-
ample, the original nano-QSAR models of Puzyn et al. [26] and
Gazewicz et al. [30] used only core-related descriptors, and they
argued that the size does not significantly affect the property in-
vestigated for NMs in a predetermined size range (15–90 nm).
Thus, even though subsequent studies on similar datasets
considered the size of the nanoforms as a descriptor, because of
the limited size range in the training database, it is common for
size not to be among the most relevant descriptors in the models
[56,57]. At the other extreme, there are studies where the only
difference among the nanoforms used (without considering
endpoint-related descriptors such as dose or time) is the size
[58,59].

The size of nanoparticles is commonly measured by transmis-
sion electron microscopy (TEM). TEM images can provide
several descriptors that reflect the nanoform’s shape and size,
such as its area, volume, surface, diameter, volume/mass ratio,
volume/surface ratio, aspect ratio, porosity, sphericity, and
circularity [30]. However, the most common approach is to
provide a single size parameter and assume that the nanoparti-
cles are approximately spherical [23,35,56,60]. In some cases,
the length in a second direction is also reported or, more often, a
ratio between two dimensions is included to encode the shape of
the nanoparticle or to categorize it [60]. Alternative size param-
eters are volume and mass [61].

Dynamic light scattering (DLS) is another technique that can be
used to describe the hydrodynamic size or the aggregation of
the nanoforms in larger nanostructures, depending on the medi-
um and other conditions. In some cases, the size values re-
ported in the papers are not measured on purpose, but are the
nominal values found in the vendor's documentation. Some
authors have reported the TEM diameter as primary size, but
included also values for the hydrodynamic diameter measured
by DLS [23,62,63], even in some cases in different media such
as ultrapure water and a different medium (i.e. buffered [64] or
bacterial [56] media).

Additionally, categorical variables describing the kind of struc-
ture can be used to reflect the shape. For example, a shape com-
ponent in mixed carbon-based nanoparticles is encoded by this
type of categorical variables, such as fullerene vs carbon nano-
tubes or different carbon nanotubes [40,65]. Alternatively,
Trinh and collaborators directly encoded the size of multi-
walled nanotubes by both their diameter and length. They also
included the surface area as a structural descriptor, by using a
hierarchical clustering method to classify the values in ten cate-
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gories [66]. The categorization of the size and other physico-
chemical parameters was required in the quasi-SMILES
descriptors used in those cases [51] as they are converted to a
string, even when the effect is reduced by dividing the dataset in
two categories only with a single size threshold [60]. However,
in more modern approaches, quasi-SMILES allow for numeri-
cal values for the size and similar experimental values [36].

A different approach to describe the shape and size is provided
by the use of the calculated molecular weight for discrete car-
bon nanoparticles, as well as their calculated surface area
(overall and specific) and volume [67]. However, this requires
to have the full atomistic description of the nanoform, which is
not available for most experimental datasets. Some authors
propose additional topological descriptors that are specific for
carbon nanoshapes with known topology, such as carbon nano-
tubes, graphene, and fullerenes. For example, the sum of
degrees around the carbon atoms at the surface can be used for
all pristine carbon nanoforms [67].

Theoretical calculations of the surface area are more common
[68], but it can also be obtained experimentally from gas
adsorption data, using the Brunauer–Emmett–Teller (BET)
theory [33,51], or directly from the vendor [61]. The surface
area can be expressed as total surface area (by nanoparticle),
specific surface area (by weight), or both [24].

Finally, the existent size-dependent descriptors should be
included in this section. These descriptors are calculated, nu-
merical factors derived from the size of the molecule and other
physicochemical properties of its components. For example, a
series of size-dependent descriptors, such as the ratio of surface
molecules, which involves both the nanoform size and the
aggregation size, can be calculated using a liquid drop model
approximation [69,70]. This model defines the forces between
molecules assuming that they behave like particles in a liquid
drop. It uses the estimated Wigner–Seitz radius to calculate the
average distance between particles, used as descriptor by some
authors [71]. Similarly, the size-dependent electron configura-
tion fingerprints describe mainly electron population, but they
also consider the size of the NM and the distribution of the dif-
ferent components to yield an overall single fingerprint of the
NM [32].

A different approach is to include the information on the nano-
structure not directly as a descriptor, but as a different part of
the model framework that contributes to the prediction. For ex-
ample, the multi-task QSAR model of Ambure et al. [72]
mainly uses descriptors based on the core chemical structure,
but also a different kind of categorical parameters, labelled as
conditions, which modify the descriptors used in the prediction.

These are mainly endpoint-related values, but the nanoparticle
size is also included as a condition that modifies three of the
descriptors using a Box–Jenkins approach [73]. Halder et al.
also included the size as one of the perturbation parameters
[19]. Other authors included structural features in perturbation
QSAR toxicology models, both as one of the descriptors (the
size) and as a perturbation criterion (the shape) [18,74,75].
Interestingly, they also included among the perturbation criteria
the experimental conditions of the size measurement, which
was applied both to the size itself but also to the electronegativi-
ty [74,75].

Indirect descriptors of the nanoform properties
Experimental measurements (d): Because of the complex
structures of NMs, it is challenging to understand how the nano-
structure affects their chemical and biological activities. How-
ever, it is possible to use direct experimental measurements that
describe the behavior of the nanoparticle, for example, their
electric or chemical properties, in place of their structural fea-
tures. The rationale behind this usage is that the experiments
measure properties that are involved in the activity modelled or
that have a structural origin related to the activity mechanism.

A very common property included in several models
[23,44,60,68,76] is the zeta potential (a measurement of the
charge at the surface of the NMs). The zeta potential value used
as a descriptor can be measured in a test medium or in different
media, such as water at a specific pH or purity level [15,64,77].
A further step, proposed as an example of combining preex-
isting structure–activity predictive models in networks, is the
prediction of the zeta potential in the relevant medium using a
model that uses the measurement in pure water (first layer) and
another one that allows for estimating the value of the zeta
potential in the ionized medium (second layer) using the output
of the first layer [78]. Although the zeta potential is most often
included as a numerical value, it can be also used to group the
data into categories [60]. Related measures are the isoelectric
point, which corresponds to the pH at which a nanoparticle
suspension has zero zeta potential [15,17], the surface charge
[31,36,63], the conductivity [77], and the electrophoretic
mobility [77].

Magnetic properties are also found to be used as NM descrip-
tors, such as the relaxivities R1 and R2 obtained from magnetic
resonance studies [44]. Related to magnetism, Kotzabasaki et
al. used the magnetic field strength, but also a single categor-
ical descriptor describing the magnetic core composition of the
nanoparticles [25]. Additionally, focusing on the role of the NM
as contrast agent in magnetic resonance imaging, the authors
added the specific property of cellular internalization of iron,
measured as the amount of iron inside the cells [25].
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Zhang et al. [79] created a predictive model that uses regres-
sion trees to predict the toxicity of metal oxides using two pa-
rameters, namely, the experimentally measured concentration of
the metal (expressed as a percentage) and the conduction band
energy, which was calculated from different physicochemical
constants and also from experimental measurements of zeta
potential and diffuse reflectance UV–vis spectra). Alternative
formulations for valence and conduction band energies, based
only on pre-known physicochemical constants and values from
reference handbooks, have been reported as well [79,80].

Furthermore, the electric characteristics of the nanoparticle sur-
face can be reported by its interaction with other substances, as
for example using the maximum salt concentration in the medi-
um with no significant coagulation or the rate constant of its ox-
idation by hydrogen peroxide [68].

It should be noted that the use of experimental descriptors can
be exclusive, and there are models such as those of Liu et al.
[76] and Fourches et al. [44] that describe a series of NMs with
different compositions, including different iron oxides and
quantum dots, only on the basis of their size, magnetic values,
and zeta potential, without any direct consideration of the com-
position (i.e., no descriptor of the category “a” or “b” in our
classification). Kudrinskiy et al. also modelled silver nanoparti-
cles with different coatings without introducing directly the
capping agent in the model, but only by observing the differ-
ences in size, reactivity, and electric behavior of the nanoforms
with different capping agents [68].

A different approach to the use of experimental properties are
models that combine composition-based descriptors with exper-
imental information on the toxicity to different species, such as
the interspecies iQSTTR models developed by De et al. [81]
and the nano-QTTR development for aquatic toxicity by Jung
and coworkers [82].

Finally, we can consider a variation of this type of descriptors,
that is, the use of experimental results for specific signaling-
pathway responses in order to assess the overall toxicity and to
group different NMs together [83,84].

Experimental conditions (e): Finally, some descriptors do not
directly describe the nanoform; instead they consider how it
was prepared. In this context, the effects of the preparation
methodology could be assessed without describing the specific
structural features that arise from the preparation. In contrast to
the following group (f), we have reserved this to experimental
conditions of the processes performed prior to the test of the
predicted property. These conditions lead to a specific
nanoform, even if there is no characterization step to identify its

properties, that is used for the test and, potentially, for other in-
dependent tests. Hence, differences in equivalent tests should be
related to underlying differences in the nanostructure.

The wide range of attributes selected by Liu et al. [85] in their
predictive method of toxicity based on a combined index for
zebrafish (EZ metric) included the synthesis precursors. Simi-
larly, Gul et al. compiled a dataset of nanoforms in cell viability
tests to perform an association rule mining analysis in which the
synthesis method was included among the identifiers of the
nanoparticles [86].

In another example, in the read-across models developed by
Varsou et al. [77], the effect of aging the nanoparticle for two
years prior to toxicity testing has been considered. However,
instead of including this as a descriptor, they provided values
for some of the experimental descriptors measured before and
after aging. They also concluded that discriminating aged from
pristine nanoparticles improves the predictive value of the
model.

Descriptors independent on nanoforms
Experimental endpoint conditions (f): This section includes
descriptors that codify information about the experimental
conditions of the test that potentially affect the value of the
measured parameter of the endpoint. The exposure of the NMs
to different conditions could produce structural changes, which
could be responsible for changes in their activity. The NM par-
ticles are known to be significantly affected by the medium
regarding size, aggregation, ligands, and nanostructure. Never-
theless, although the parameters considered here could have
direct impact on the value, their relevance could not be directly
linked to structural differences in the nanoform, in contrast to
the conditions classified above in group (e).

Such descriptors are commonly found in multi-task QSAR
models, where different endpoints are modelled using the
same framework. For example, it is possible to have different
target cell lines (identified by one or more descriptors)
[24,31,36,60,66] or to combine different toxicity assay methods
[24,36,63,66] in the same model.

In some models, binary descriptors are used to indicate the
absence or presence of a certain condition such as centrifuga-
tion, stirring, sonication, dispersion, or presence of additives
[17,39,65,87]. Numerical descriptors used to encode the test
environments include the ionic strength [17], the amount of
organic matter [17], and the pH value. More specific variables
can be found for particular tests, such as the number of daphnia
individuals in an immobilization test [17]. Also, descriptors that
quantify the exposure to the nanoform, such as exposure time
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[17,31,37,60,66] and dose [31,37,63,66] are very common in
nano-QSAR models.

A different approach of multi-task QSAR models to incorpo-
rate the endpoint conditions is to use them as modifying factors
of the descriptors. For such a modification, using a Box–Jenkins
approach, Ambure et al. [72] classified the dataset based on two
endpoints and several experimental protocols, cell line targets,
exposure times, and doses. Other authors use perturbation
QSAR models to incorporate endpoint conditions such as the
specific toxicity measurement [18,74], the biological target
[18,19,74], the exposure time [18,74], and the incubation condi-
tions [19].

Although not directly used as a descriptor, it is worth to note
that Pathakoti et al. [61] included the light exposure as a vari-
able in their toxicity models of metal oxides versus E. coli, ob-
taining two series of toxicity data for the same set of NMs.
Analogously, Basant and collaborators considered toxicity
values measured under different light conditions in E. coli and
in HaCaT cells in a multi-target QSTR model [88].

Conclusion
In this review we have analyzed in depth the descriptors used in
the literature in QSAR and related in silico prediction models
for NMs. Our review highlights that the high degree of vari-
ability in the NM properties is a key challenge in nano-QSAR
models, because it makes it difficult to develop models that are
accurate and generalizable across different NM types. Thus,
most nano-QSAR models are based on data sets limited to very
similar nanoforms, which can lead to overfitting and poor
predictions out of the applicability domain. Regarding the kind
of descriptors used, there is a significant variety of descriptors
including low- and high-level calculations, qualitative classi-
fiers, and experimental features.

Furthermore, it is difficult to find common points such as the
requirement of a particular set of features for each kind of
nanoforms. For example, key features such as the composition
of a NM or its size are not included in all the models. It should
be noted that some nano-QSAR models have been developed
based exclusively on testing conditions (e.g., dose, preincuba-
tion, and sonication) of a single nanoform. In these cases, the
chemical structure and direct structural information are con-
stant and do not need to be included among the descriptors.

The descriptors found throughout 77 publications have been
classified based on the information that they codify (Figure 3).
This classification proposes to consider parameters that directly
describe the nanoform (core, surface, or geometry), those that
provide an indirect description (other properties and prepara-

tion conditions) and descriptors focused not on the nanoform
but on the endpoint measurement.

The variety of descriptors reflects how, in nano-QSAR models,
the identification of a NM as a particular data point is based on
a combination of chemical and physical structures, which could
require using experimental parameters. This differs from
common QSAR models with molecular substances, where only
the chemical structure is used to identify the substance (which
usually can be expressed using the SMILES representation).
From there, a series of calculated molecular descriptors are ob-
tained that correspond to a single data point determined by the
SMILES. However, this is not possible in most nano-QSAR
models, which often utilize experimental descriptors such as
size and shape to define a specific NM and to model its proper-
ties. In this case, those descriptors relate the data point to a par-
ticular nanoform with specific properties. This distinction high-
lights the unique role that experimental descriptors can play in
nano-QSAR models. Experimental values in nano-QSAR
models are often not derivable from the composition, but rather
from “identifying descriptors”, that is, fundamental experimen-
tal features that are necessary for the model and that identify a
nanoform. For example, the size of a nanoparticle is often used
as an “identifying descriptor” because it is a key parameter that
determines the properties of the material. However, most of the
electronic experimental values obtained from bulk materials
discussed above are “derived descriptors”, which are similar to
the calculated values, as they are potentially derivable from
other features or identifiers such as the SMILES.

Other experimental measures, such as zeta potential, may be
used as identifying features and can be considered derived from
nanostructural information (as the value will largely depend on
the composition). In any case, we consider as “identifying”
those features that are required as input data for a prediction and
are necessary to make accurate predictions, regardless of
whether they are physically bound or not.

According to our analysis, despite the existence of a broader
range of options and the need to incorporate structural informa-
tion, composition-based descriptors remain the norm in nano-
QSAR. In spite of the chemical complexity inherent to any ex-
tended system (such as a crystal or polymer), most descriptors
are simpler than those found for organic molecules, focusing on
simplified structural formulas or single elements. In most cases,
the composition of a NM is simplified to its major component,
ignoring impurities, mixtures, and ligands; when those are in-
corporated, their proportion is commonly ignored.

Particle size, commonly the measured or nominal value of the
diameter, is among the most common features in nano-QSAR
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models. However, as discussed above, its statistical signifi-
cance in the predictivity of models is not consistent. This ambi-
guity might stem from the fundamental shift in properties when
transitioning from bulk materials to nanoparticles, making it a
quantum leap in terms of behavior. While having a nanoscale
size is crucial for exhibiting distinct properties, a specific size
within a suitable range might have a less pronounced impact.
Consequently, and also because of the limited size variations
present in the databases used to train QSAR models, size is
often perceived as a parameter of lesser relevance.

In summary, our review discusses and classifies a wide variety
of descriptors used for NM predictive modelling. Our analysis
highlights the significant efforts made to combine the chemical
and structural complexity of the NMs with the objective to
obtain convenient descriptors. Our analysis provides a couple of
trends that could guide future steps in this field, that is, to calcu-
late descriptors using simplified chemical models and to use ex-
perimental properties or conditions as descriptors. Most calcu-
lated descriptors are restricted to one component of the core
and/or ligands (even assuming part of its chemical composition)
and do not include nanostructural information. In contrast, the
use of experimental information captures insights on the real
structure, but unveils another challenge of the nano-QSAR
models, the lack of consistence among the methods and parame-
ters used to characterize and evaluate NMs. In consequence, our
proposal classifies the descriptors (mainly calculated) accord-
ing to the part of the particle that they describe (i.e., the core or
the surface ligands) and also discerns among the descriptors
used to encode the nanostructural information (mainly experi-
mental) from other experimental data used to obtain an overall
description of the NMs, that is, from other properties or the ex-
perimental conditions.
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