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Abstract
Metal oxide nanoparticles (MONPs) are widely used in medicine and environmental remediation because of their unique properties.
However, their size, surface area, and reactivity can cause toxicity, potentially leading to oxidative stress, inflammation, and cellu-
lar or DNA damage. In this study, a nano-quantitative structure–toxicity relationship (nano-QSTR) model was initially developed to
assess zebrafish toxicity for 24 MONPs. Previously established 23 first- and second-generation periodic table descriptors, along
with five newly proposed third-generation descriptors derived from the periodic table, were employed. Subsequently, to enhance
the quality and predictive capability of the nano-QSTR model, a nano-quantitative read across structure–toxicity relationship (nano-
qRASTR) model was created. This model integrated read-across descriptors with modeled descriptors from the nano-QSTR ap-
proach. The nano-qRASTR model, featuring three attributes, outperformed the previously reported simple QSTR model, despite
having one less MONP. This study highlights the effective utilization of the nano-qRASTR algorithm in situations with limited data
for modeling, demonstrating superior goodness-of-fit, robustness, and predictability (R2 = 0.81, Q2

LOO = 0.70, Q2
F1/R2

PRED =
0.76) compared to simple QSTR models. Finally, the developed nano-qRASTR model was applied to predict toxicity data for an
external dataset comprising 35 MONPs, addressing gaps in zebrafish toxicity assessment.

1142

Introduction
Nanomaterials, which are defined as materials that fall in the
range of 1–100 nanometers two-dimensionally, are commonly
used in the fields of biomedicine, catalysis, and electricity

because of their stable and unique performance, small size, and
large surface area [1]. Nanomaterials encompass a range of
substances that can be categorized as carbon-based, metal
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oxides, semiconductors, polymers, clays, emulsions, or metals
[2]. Metal oxide nanoparticles (MONPs) are metallic oxides
that exist within the nanoscale range and can be intentionally
created or occur naturally [3]. Under the rapid development of
nanotechnology, more and more MONPs including zinc, iron,
titanium, and copper are being explored in therapeutic applica-
tions such as drug delivery, bioimaging, biosensing, bioelec-
tronics, and tissue engineering applications [4-6]. Simultaneous-
ly, many of these particles also presented strong antibacterial,
antifungal, antidiabetic, antioxidant, anticancer, and photocata-
lytic activities [7-9]. Besides the medical field, they are also
commonly used in commercial products such as fuel cells and
plastics, and environmental applications such as analysis,
sensing, remediation, and amendments. However, it is concern-
ing that the environment is affected because of the enormous
production and inadvertent use of nanomaterials.

Nanoparticles have been identified in wastewater streams,
drinking water sources, and tap water in amounts ranging from
nanograms to micrograms per liter [10]. Also, it was reported
that MONPs have been found in human tissues such as brain,
heart, and liver [11] and that occupational exposure to metal
oxide nanomaterials increased oxidative stress biomarkers,
suggesting potential DNA oxidative damage and lipid peroxida-
tion [12]. Given the limited data available from human studies,
researchers have turned to zebrafish and their embryos for toxi-
cological investigations. Zebrafish embryos are commonly used
to identify environmental heavy metal pollution [13]. As a
multicellular organism, zebrafish can offer more comprehen-
sive insights into nanomaterials’ kinetics, migration, and trans-
formation than in vitro cell culture assays [14]. Meanwhile, it is
considered an equivalent model for investigating develop-
mental toxicity and genotoxicity because around 85% of its
genes are comparable to those found in humans [15].

The potential harm to human health posed by newly created
MONPs, particularly those used in biomedical applications,
necessitates the implementation of safety-by-design strategies
for these materials. The potential to lower development time-
frames, costs associated with experiments, and late-stage attri-
tion, in addition to ethical, societal, and regulatory pressures to
minimize animal testing, make it worthwhile to create computa-
tional models that can accurately predict the toxic hazard of
novel MONPs before experimental testing and, ideally, before
synthesis, based on the intrinsic, synthesis-controlled properties
of the MONPs [16-18]. Over the years, QSAR/QSPR/QSTR
techniques have been employed to establish correlations be-
tween various characteristics of nanomaterials and their toxici-
ty [19-23]. Nano-quantitative read-across structure–toxicity
relationship (nano-qRASTR) models are an advanced approach
that builds upon the principles of nano-quantitative

structure–toxicity relationship (nano-QSTR) models. These
models integrate read-across techniques with traditional quanti-
tative structure–activity relationship (QSAR) methods to en-
hance the predictive capabilities, particularly in datasets with
limited data points [19].

Using quantum chemical descriptors, researchers have created
several models to evaluate the toxicity of MONPs to different
species covering multiple endpoints, and their work has pro-
duced significant and trustworthy findings [24-27]. However,
significant computational resources and time are needed for the
usage of quantum descriptors for modeling purposes. Not only
that, but the reproducibility of quantum descriptors is also an
issue because of the usage of different quantum methods and
basis sets [28,29]. In contrast, periodic table descriptors were
derived or directly obtained from the periodic table. They were
able to produce models that were comparable to, or even better
than, those of quantum-based descriptors in many cases [30-32],
which in turn helped to reduce the amount of time needed for
computation followed by without using any computational
resources.

However, the periodic descriptors of the previous first and
second generations have their limitation such as being unable to
deal with the influential observations that exist in the present
dataset. In this study, we have proposed five third-generation
periodic table descriptors along with the application on
modeling enzyme inhibition of the zebrafish hatching enzyme
ZHE1 with the nano-qRASTR approach to improve the model
quality, predictability, and reliability significantly.

Materials and Methods
Dataset
The percentage decrease in enzymatic activity expressed in the
form of enzyme inhibition to zebrafish in % (%EIzebrafish) of the
zebrafish hatching enzyme (ZHE1) of 24 MONPs is utilized for
the modeling study [33]. The experimental data (%EIzebrafish)
ranged from −1.04 (Co3O4) to 44.72 (Cr2O3).

Descriptor calculation
Models were developed based on the fundamental properties of
these metal oxides that can be obtained from the periodic table.
A total of 28 periodic table descriptors were utilized for nano-
QSTR followed by nano-qRASTR modeling. The list of all
derived descriptors along with their meaning and symbol is
given in Table 1. Periodic table descriptors offer the advantage
of rapid acquisition without the need for extensive calculations
or software utilization, unlike quantum chemical descriptors. In
our earlier work, we have proposed seven and sixteen descrip-
tors, which were classified as first- and second-generation peri-
odic table descriptors, respectively [31,34]. In this study, we
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Table 1: List of periodic table descriptors used for model development.

No. Generation Mathematical expression Description

1 first generation MW molecular weight of the metal oxide
2 Nmetal number of metal atoms per molecule
3 Noxy number of oxygen atoms per molecule
4 χ metal electronegativity
5 ∑χ total metal electronegativity in the specific metal oxide
6 ∑χ/nO total metal electronegativity in the specific metal oxide relative to the

number of oxygen atoms
7 χox oxidation number of the metal

8 second generation Zmetal atomic number of the metal
9 Zv

metal number of valence electrons of the metal
10 PNmetal period number of the metal
11 λ = (Zmetal − Zv

metal)/Zv
metal core environment of the metal, defined by the ratio of the number of

core electrons to the number of valence electrons
12 μ = 1/(PNmetal − 1) —
13 Vmetal valence of the metal
14 αmetal = λ·μ —
15 ∑αmetal = αmetal·Nmetal —
16 ∑αoxy = Noxy·0.33 —
17 ∑α = ∑αmetal + ∑αoxy core count, gives a measure of the molecular bulk
18 εmetal = −αmetal + (0.3·Zv

metal) electronegativity count of the metal
19 εoxy = −αoxy + (0.3·Zv

oxy) electronegativity count of oxygen
20 ∑ε = εmetal·Nmetal + εoxy·Noxy total electronegativity count of the metal oxide
21 ∑ε/N summation of epsilon relative to the number of atoms in the molecule
22 (∑α)2 square of summation of alpha, gives a measure of molecular bulk
23 (∑ε/N)2 summation of epsilon divided by the number of atoms squared

24 third generation a0 atomic radius of the metal (pm)
25 rion crystal ionic radius of the metal (pm)
26 dmetal density of the metal (g/cm3)
27 Ea electron affinity (eV)
28 I1 first ionization energy of the metal (eV)

have proposed five more periodic table descriptors, termed
third-generation periodic table descriptors. These are atomic
radius, crystal ionic radii, density of the metal, electron affinity,
and ionization energy. The atomic radius is a fundamental prop-
erty that influences many physical and chemical characteristics
of an element. In the context of nanoparticles, the size of the
metal atoms directly affects the overall size and surface area of
the nanoparticles, which are critical factors in their reactivity
and interaction with other materials. The ionic radius is essen-
tial for understanding the metal’s behavior in different oxida-
tion states. This is particularly relevant in nanoparticle chem-
istry, where redox reactions are common. The density of a metal
is a macroscopic property that influences the mass and volume
of nanoparticles. Electron affinity measures the energy change
when an electron is added to a neutral atom, reflecting the ten-
dency of the metal to gain electrons. The first ionization energy

is the energy required to remove the outermost electron from a
neutral atom, which is a critical factor in determining the
metal’s reactivity and stability. For the present study, descrip-
tors of all three generations are computed and employed for
modeling. All descriptor values can be found in Supporting
Information File 1. Also, an example calculation of all descrip-
tors for Al2O3 is given in Supporting Information File 1.

Splitting of the dataset
The selection of training and test sets was based on the prin-
cipal component analysis score with guaranteed uniform distri-
bution, as we previously reported [34]. In this study, we used
the same dataset-splitting method. In our previous study, we re-
moved compound CoO because of outlier behavior that signifi-
cantly impacted our model quality. However, as we have pro-
posed five new third-generation periodic table descriptors for
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modeling, in the present study we have included CoO to check
the modeling, as well as the prediction capability, of the newly
introduced descriptors along with the existing ones. The details
of training and test sets can be found in Supporting Information
File 1.

nano-QSTR model development
The best subset selection (BSS) approach was used to identify
the optimal combination of descriptors. The BSS tool can be
accessed at https://teqip.jdvu.ac.in/QSAR_Tools/. It systemati-
cally evaluates all possible subsets of descriptors to determine
the best combination based on a specified criterion, providing a
comprehensive search for the most predictive model. This
method was preferred over stepwise regression analysis through
backward elimination because BSS ensures that the chosen
subset is truly optimal by considering all possible models,
whereas stepwise regression may overlook some combinations
because of its iterative nature. Afterward, the selected descrip-
tors were employed to develop the final model using a multiple
linear regression (MLR) statistical tool, which can be accessed
at https://teqip.jdvu.ac.in/QSAR_Tools/ [35]. Pearson correla-
tion among descriptors was also checked, which aimed to create
a more dependable model and reduce the possibility of intercor-
relation among the descriptors.

Calculation of RASTR descriptors and development
of nano-qRASTR model
RASTR is a method that integrates the ideas of read-across and
QSTR for q-RASTR analysis (here we are modeling nanoma-
terials, hence the term nano-qRASTR) [36]. This method calcu-
lates similarity and error-based RASTR descriptors for training
and test sets. The RASAR-Desc-Calc-v2.0 tool employs three
similarity-based techniques to produce 15 descriptors, namely,
SD_Activity, SE, CVact, MaxPos, MaxNeg, Abs Diff,
Avg. Sim, SD_Similarity, CVsim, gm (Banerjee-Roy coeffi-
cient), gmAvg. Sim, gmSD_Similarity, Pos.Avg.Sim, and
Neg.Avg.Sim. These descriptors are essential for identifying
structural similarities and predicting biological activity. The
tool’s algorithm uses the weighted standard deviation of pre-
dicted values, the coefficient of variation of computed predic-
tions, the average similarity level of close training compounds
for each query molecule, and other advanced metrics to ensure
accurate predictions. Further details about the tool and its fea-
tures can be found at https://sites.google.com/jadavpuruniver-
sity.in/dtc-lab-software/home [37].

After computing the RASTR descriptors for both the training
and test sets, these descriptors were merged with existing
periodic table descriptors. Feature selection was then per-
formed using the BestSubsetSelection_v2.1 tool, which can be
found at https://teqip.jdvu.ac.in/QSAR_Tools/. This tool

produces a comprehensive set of model combinations for a
user-specified number of descriptors while ensuring that the
intercorrelation does not exceed a certain threshold. The MLR-
based nano-qRASTR model was evaluated using the MLRPlus-
Validation 1.3 software package, which can be found at https://
teqip.jdvu.ac.in/QSAR_Tools/.

Validation, applicability domain, and
Y-randomization
The nano-QSTR model and the nano-qRASTR model were
validated through measurements of the goodness-of-fit and the
internal validation tool of leave-one-out cross-validation (Q2).
The goodness-of-fit of the models was measured using the coef-
ficient of determination (R2), which indicates how well the
model’s predictions match the actual data. Internal validation
was performed using the leave-one-out cross-validation (LOO-
CV) method:

This technique involves removing one data point at a time from
the dataset, building the model on the remaining data, and then
predicting the excluded data point. The process is repeated for
each data point, and the Q2 metric is calculated to assess the
model’s predictive accuracy. Details of the validation metrics
can be found in our previous works [17,19,23,36].

We also examined the applicability domain (AD) using the
leverage technique to generate the Williams plot [38]. A
Y-randomization study was also performed to determine if the
produced model was generated by chance or not, which entailed
performing the model’s calculations 100 times by rearranging
the dependent variables while maintaining the original indepen-
dent variables constant [39]. A Y-randomization study has been
performed employing “MLR Y-Randomization Test 1.2”, avail-
able at https://teqip.jdvu.ac.in/QSAR_Tools/. Following the
Y-randomization procedure, the study calculated the mean
values of R2 and Q2 for the 100 randomly generated models.

External dataset for data gap filling and prediction
reliability
Our prepared external dataset consists of 35 MONPs that were
used to predict toxicity for zebrafish. External prediction quality
is also checked through the “Prediction Reliability Tool” that
employs the AD to our external prediction that is evaluated by
three criteria: (1) The mean absolute error is calculated for
leave-one-out predictions using the ten most similar training
compounds for each query molecule. (2) The standardization
approach determines the applicability domain based on simi-

https://teqip.jdvu.ac.in/QSAR_Tools/
https://teqip.jdvu.ac.in/QSAR_Tools/
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https://teqip.jdvu.ac.in/QSAR_Tools/
https://teqip.jdvu.ac.in/QSAR_Tools/
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larity. (3) The proximity of the predicted value of the query
compound to the experimental mean training response is evalu-
ated [40].

Results and Discussion nano-QSTR toxicity model
Equation 1 has been developed employing the BSS-MLR ap-
proach for the inhibition of ZHE1 hatching enzyme activity:

(1)

The first descriptor  represents the total metal electronega-
tivity in a specific metal oxide and shows a negative correlation
to the inhibition of the ZHE 1 hatching enzyme. In this case, an
increase in electronegativity will result in a decrease in toxicity.
For instance, SnO2 has a %EI of 7.12 while having a total metal
electronegativity of 3.56. In contrast, the total metal electroneg-
ativity of WO3 is 1.65, and its observed %EIzebrafish is 42.72.
The descriptor  gives a measure of the molecular bulk,
which has a positive correlation to the enzyme’s activity. CeO2
has an  value of 12.50 while it has a %EI value of 2.56;
in contrast, TiO2 has a  value of 143.76 and a %EI value
of 13.28. The last descriptor in our nano-QSTR model is the
atomic radius, ao. The model presents a negative coefficient for
the atomic radius (−0.439), suggesting that nanomaterials
composed of atoms with larger radii are associated with a de-
crease in %EIzebrafish. A larger atomic radius might indicate
weaker bonding and less effective interaction with the enzyme
or its substrate, leading to less enzyme inhibition. This could be
due to the diffuse nature of the outer electrons in larger atoms,
which might reduce the efficiency of electronic interactions
essential for binding or catalytic activity.

Our nano-QSTR model suggests that the enzymatic activity of
ZHE1 in zebrafish is influenced negatively by the total electro-
negativity of metals and the atomic radius of the nanomaterial
components but positively by the molecular bulk of the nano-
materials. Electronegativity and atomic size determine the reac-
tivity and contact strength of nanomaterials with biological
systems, whereas the molecule bulk affects the mechanism of
inhibition through steric effects.

nano-qRASTR toxicity model
To improve the statistical quality of the nano-QSTR models, we
have employed read-across descriptors employing modeled
descriptors. Later, all descriptors are merged together and em-

ployed for modeling using the BSS-MLR approach. Equation 2
presents the developed nano-qRASTR model:

(2)

Like the nano-QSTR model, the nano-qRASTR model also has
the  descriptor with a positive contribution to the toxici-
ty. Also, there are two new descriptors from RASTR, namely,
SE(LK) and CVsim(LK). “SE” stands for standard uncertainty
in the observed response values for the chosen proximate source
compounds related to each reference compound. It has a posi-
tive contribution to our model with a coefficient of +5.10. The
effect of SE(LK) can also be observed in our training set. ZnO
has the highest %EI value (42.72) in our training set, while it
also has the highest SE(LK) value of 11.47. Conversely, In2O3
has a SE(LK) value of 2.21, and the experimental %EI value is
only 7.12. CVsim(LK), which stands for the coefficient of vari-
ation of the similarity values, has a negative contribution to the
model. In our dataset, CVsim(LK) did not show a large varia-
tion in the values. However, we can observe that Al2O3 has a
relatively large CVsim(LK) value (1.25), while Mn2O3 has a
relatively small CVsim(LK) value of 1.06; their corresponding
%EI values are 3.44 and 17.2, respectively.

Quality of the nano-qRASTR model
The quality of the nano-qRASTR model was also checked ac-
cording to the criterion by Golbraikh and Tropsha, with all the
metrics falling within the stipulated threshold [41] as follows:

The Y-randomization test was also performed to validate if the
model was generated by chance. After shuffling all descriptor
values, 100 random models were generated. As a result, the av-
erage R2 value is 0.20, while the average Q2 value is −0.60,
which cannot qualify the threshold of 0.5 for both parameters,
suggesting that our original model was not developed by chance
(details in Supporting Information File 1).

The scatter plot (Figure 1a) suggests that all MONPs are very
close to the best-fit line concerning the experimental toxicity
and predicted toxicity values, which further supports the
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Figure 2: SHAP plot for the nano-qRASTR model.

Figure 1: Scatter plot (a) and Williams plot (b) for the nano-qRASTR
model. The red dashed line indicates the highest Hat or leverage
value, that is, the h* cut-off line.

validity of the model. A Williams plot (Figure 1b) was used to
verify the prediction reliability by carrying out the applicability
domain analysis using the leverage approach. Our result indi-

cates that one training compound (Fe3O4) is above the leverage
critical value. It will be considered as influential X outlier.
There is also a test date that has a higher value than h* and will
be considered as outside of the AD.

The SHAP plot (Figure 2) indicates that  has a predomi-
nantly positive effect on the predictions of the model, as the
SHAP value increases with increased values of . The
descriptor SE(LK) shows a more pronounced positive influence
on the predicted values. This is consistent with the positive
coefficient in our regression equation, and the slight trend from
blue to red dots suggests a correlation between feature values
and impact. Conversely, CVsim(LK) predominantly affects the
model predictions negatively, as evidenced by its SHAP values
being mainly on the left side.

Mechanisms of ZHE1 enzyme inhibition
The incorporation of third-generation descriptors significantly
improves the predictive power of the nano-qRASTR model.
MONPs with higher metal electronegativity may interfere more
strongly with cellular functions of zebrafish, but this does not
invariably heighten toxicity; in some instances, it may mitigate
oxidative stress and membrane disruption, thereby diminishing
toxic effects. Conversely, MONPs with larger atomic radii and
crystal ionic radii tend to exhibit a lower surface area-to-volume
ratio, which can reduce their cellular interactions and uptake.
This reduction in uptake can lead to less cellular dysfunction
and toxicity. Larger atomic radii may result in MONPs that are
less likely to penetrate cell membranes, thereby decreasing their
potential to cause cellular damage and toxicity. However,
MONPs with increased molecular bulk can enhance toxicity via
several mechanisms. They can physically damage cell mem-
branes, potentially causing cell death. Their size may lead to al-
ternative, more detrimental cellular uptake pathways or provoke
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Figure 3: Mechanism of zebrafish hatching enzyme inhibition by MONPs according to the developed models. The figure is “Created with
BioRender.com” (https://biorender.com/) with a purchased academic license. This content is not subject to CC BY 4.0.

harmful responses by accumulating on cell surfaces. Such
MONPs might also elevate oxidative stress by triggering the
production of reactive oxygen species, which damage cellular
components. They can obstruct vital biological processes and,
through aggregation, cause localized toxicity to zebrafish. Addi-
tionally, their size affects biodistribution and clearance, with
larger MONPs tending to accumulate within the zebrafish or-
ganism, further exacerbating toxicity (Figure 3). In zebrafish,
these mechanisms can manifest in several ways, affecting not
only individual cells but also developmental processes. The
implications for zebrafish embryos include potential deformi-
ties, impaired development, and mortality. Employing zebrafish
as a biological model facilitates the evaluation of toxicity,
offering an integrative perspective on the hazards that MONPs
may present in aquatic ecosystems and living organisms.

Comparison with previously published models
Compared to our previous nano-QSTR model (  = 0.68,

 = 0.74, and  = 0.70) [34], the current nano-qRASTR
model demonstrates improvements in these three critical
metrics with enhancements of 0.01, 0.02, and 0.05, respectively.
Although these improvements might seem minimal, it is crucial

to note that in the preceding study, we were able to model 23
MONPs, excluding CoO, which significantly impacted the
quality of the model because of its outlier behavior. In contrast,
the current study successfully models all 24 MONPs without
compromising the model’s quality and predictability, leading to
improved results. This suggests that the nano-qRASTR ap-
proach is a suitable choice for modeling in cases involving
small and complex datasets.

External dataset prediction
Predictions for 27 out of 35 MONPs were within the AD, indi-
cating that the nano-qRASTR model confidently predicts
77.14% of the MONPs (Table 2). However, predictions for
eight MONPs were considered unreliable as they fell outside
the AD. For the MONPs within the AD, the predicted enzyme
inhibition (%EI) in zebrafish ranges from 32.42% to 76.16%.
Within this spectrum, Ta2O3 exhibits the highest toxicity, while
V2O3 shows the least.

Conclusion
We have investigated the toxicity of MONPs against zebrafish
using a nano-qRASTR model with newly introduced third-gen-

https://biorender.com/
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Table 2: Predicted values for an external dataset employing the nano-qRASTR model.

Metal oxide Modeled descriptors Predicted
%EIzebrafish

AD status

(∑α)2 SE(LK) CVsim (LK)

Ag2O 544.29 8.58 0.73 128.34 out
Au2O 994.14 15.14 2.11 225.01 out
Au2O3 1036.20 15.14 2.11 232.33 out
BaO 32.83 9.87 0.58 47.63 in
BeO 1.77 10.01 0.57 43.14 in
Bi2O3 52.27 6.58 0.75 32.45 in
CaO 11.09 9.60 0.54 42.89 in
CdO 36.97 9.85 0.43 49.94 in
Co2O3 86.92 6.49 0.98 35.54 in
Ga2O3 52.02 6.58 0.73 32.63 in
GeO2 8.96 9.97 0.56 44.24 in
HfO2 58.68 9.93 0.68 51.40 in
HgO 66.10 8.65 0.33 49.92 in
IrO2 84.46 9.00 0.43 53.80 in
MgO 8.01 9.59 0.54 42.28 in
MnO2 20.19 9.99 0.54 46.52 iIn
Mo2O3 461.82 9.80 1.05 116.71 out
Nb2O3 440.58 9.22 0.87 112.16 out
OsO2 64.96 9.45 0.46 52.45 in
PbO 17.89 9.09 0.36 43.42 in
PbO2 20.79 9.14 0.35 44.33 in
PdO 0.52 9.58 0.52 41.21 in
PtO 247.43 10.63 1.34 80.54 out
PtO2 257.92 10.63 1.34 82.36 out
ReO2 63.36 8.74 0.28 50.52 in
Rh2O3 528.54 11.23 1.36 132.23 out
RuO2 130.19 8.92 0.85 56.79 in
Sc2O3 53.63 7.62 0.34 42.42 in
SrO 23.33 9.88 0.56 46.21 in
Ta2O3 230.74 9.62 1.00 76.16 in
TcO2 33.47 9.66 0.41 48.52 in
Tl2O 115.13 7.09 0.57 47.95 in
Tl2O3 129.73 7.12 0.51 51.25 in
V2O3 11.49 7.84 0.69 32.42 in
WO2 61.78 8.65 0.54 46.92 in

eration periodic table descriptors along with first- and second-
generation ones. Our results highlight the significance of specif-
ic nanoparticle properties influencing the degree of zebrafish
toxicity (i.e., the degree of enzyme inhibition), including elec-
tronegativity, molecular bulk, and atomic radius of the metal.
The developed nano-qRASTR model provides a robust frame-
work for predicting the toxic effects of MONPs based on these
fundamental characteristics. Additionally, the introduction of
nano-qRASTR model represents a significant methodological
enhancement, offering improved predictive accuracy and relia-
bility over previous approaches.

The adoption of third-generation periodic table descriptors has
demonstrated that even in the absence of complex quantum
chemical calculations, we can achieve high predictive accuracy.
This simplification of the descriptor calculation process not
only makes the approach more accessible. It also significantly
reduces the computational resources required, thus, making it a
viable option for rapid screening of nanoparticle toxicity. Our
study’s ability to accurately predict the toxicity of a broad range
of MONPs to zebrafish highlights its potential as a valuable tool
in the safety assessment of nanomaterials. The prediction of 35
diverse MONPs as external dataset also helped to fill the toxici-
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ty data gap of zebrafish. The model’s capability to identify
compounds with potentially high toxicity offers a pathway to
preemptively address the environmental risk assessment and
health impacts of nanomaterials. However, only a relatively
small number of nanoparticles is included in our training set.
While our model shows promising predictive power, the limited
diversity and quantity of the training data could restrict the
generalizability and robustness of the model. Furthermore, we
have only proposed five new third-generation periodic table
descriptors. Future work can focus on developing more diverse
molecular descriptors with higher effectiveness. Including addi-
tional descriptors that capture other critical physicochemical
properties could provide a more comprehensive understanding
of the mechanisms driving MONP toxicity.

The findings of this study have significant implications for the
use of MONPs in medical applications. Nanoparticles are
increasingly explored regarding drug delivery, imaging, and
therapeutic purposes. Understanding the toxicity mechanisms
and predicting potential adverse effects of MONPs can guide
the design of safer nanomedicines. MONPs are also being
utilized in environmental remediation efforts to remove pollu-
tants from water and soil. The insights gained from this study
can help in selecting nanoparticles that are effective in remedia-
tion without posing significant risks to aquatic life and ecosys-
tems. For example, nanoparticles with lower toxicity profiles, as
predicted by the nano-qRASTR model, can be prioritized for
use in environmental cleanup projects. Additionally, the explo-
ration of MONP toxicity through this advanced modeling aligns
with the broader goals of sustainable nanotechnology. The
nano-qRASTR model aims to reduce the reliance on animal
testing by providing a robust in silico method for toxicity
prediction, aligning with the ethical goal of reducing animal use
in scientific research. By providing a means to predict and miti-
gate the adverse effects of nanomaterials before they are synthe-
sized and used in applications, this study contributes to the real-
ization of safer nanomaterials production. The complete study is
also incorporated into the QSAR model reporting format
(QMRF) proposed by the Organization for Economic Coopera-
tion and Development (OECD), which is provided as Support-
ing Information File 2. The QMRF will offer a standardized
framework of the reported q-RASTR models, ensuring consis-
tency and comparability across studies. With detailed documen-
tation of the model, it promotes transparency, helping others
understand the model’s assumptions and limitations. The provi-
ded QMRF aligns with OECD principles for validation, facili-
tating regulatory acceptance, and use in decision-making. Addi-
tionally, the QMRF will support communication among scien-
tists and regulators, improve model quality by promoting best
practices, and aid in the development of non-animal testing
methods for chemical safety assessments.
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