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Abstract

Upconversion nanoparticles (UCNPs) are well-known for their high efficiency, photostability, near-infrared excitation, and ability
to estimate temperature through ratiometric imaging of two thermally coupled fluorescence bands. This work demonstrates the
feasibility of volumetric temperature mapping in internal biological systems using light-sheet fluorescence microscopy and lipid-
coated UCNPs as nanothermometry markers. This approach enables real-time thermal mapping with both high spatial and temporal
resolution at the cellular and subcellular levels. To validate the method, we performed 3D temperature imaging on fixed
Caenorhabditis elegans (C. elegans) after UCNP ingestion. The proposed technique represents a cutting-edge method for accurate
3D analysis of temperature-driven biological processes. It holds significant potential for applications in living organisms, offering a

non-invasive tool to monitor intracellular and organ-specific temperature dynamics.
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Introduction

Biological processes involving energy exchange often manifest
as temperature fluctuations. Materials sought to measure such
changes should exhibit high sensitivity, accuracy, high
spatiotemporal resolution, good biocompatibility, low cytotox-
icity, and stable optical and chemical properties. Additionally,
given the conditions commonly presented in biological samples,
these materials should also remain unaffected by changes in pH,
concentration, ionic strength, and viscosity [1]. Traditional ther-
mometers are macroscopic devices with several disadvantages,
including limited sensitivity and low accuracy, and are general-
ly restricted to contact surface measurements [2]. Beyond
fundamental processes, temperature also serves as a key bio-
marker for pathological conditions such as cancer. Localized
hyperthermia often arises from dysregulated metabolism (i.e.,
the Warburg effect) [3,4] and chaotic vasculature that impairs
heat dissipation [5,6]. These factors can create thermal gradi-
ents of 0.5-2.0 °C between tumors and healthy tissue, with even
greater differences at the subcellular level [7-9]. Consequently,
the ability to map temperature with high spatial resolution is a
critical tool for probing disease mechanisms, potentially aiding
in diagnostics and therapeutic evaluation. To address these limi-
tations, luminescent nanomaterial-based thermometers (LNTSs)
have emerged as promising alternatives for biological and non-
biological applications. LNTs rely on the emission properties of
a fluorophore and its thermal dependence to measure tempera-
ture changes, which can be measured as variations in the emis-
sion intensity [10-13] and lifetime [8,14-16], spectral shift [17],
as well as intensity ratios [18-29] and polarization anisotropy
[30,31].

In biological applications involving fluorescent nanothermom-

etry, light-tissue interactions must be carefully considered for
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an accurate temperature measurement. To address this, a wide
range of luminescent materials have been developed, including
nanodiamonds [32], quantum dots [17,28], nanodots [11,13,33],
fluorescent-based molecular systems [1,8,34], and lanthanide
(Ln3+)—doped materials [10,35-37]. Among all these alterna-
tives, lanthanide-doped materials offer a distinct advantage:
upconversion (UC) fluorescence, enabling the conversion of
low-energy excitation (longer wavelengths) into high-energy
emission (shorter wavelengths). This is particularly advanta-
geous for biomedical applications, as it eliminates the need for
ultraviolet or visible excitation, which can cause photo-
bleaching and phototoxicity [38]. The ladder-like energy level

3* jons enable efficient photon UC of near-infra-

structure of Ln
red (NIR) light, even with moderate excitation intensities
(1-103 W-cm™2) attainable with gas-based lamps or continuous

wave lasers [39].

Temperature measurements using Ln3*-doped nanomaterials
have mainly focused on using UC nanoparticles (UCNPs),
which are inorganic crystalline structures, typically composed
of sodium yttrium fluoride (NaYF,4) co-doped with rare-earth
(RE) ions like ytterbium (Yb3*), erbium (Er3*), and gadolinium
(Gd3*). These RE ions act as sensitizers and emitters, allowing
for photonic UC of multiple NIR photons into visible lumines-
cence [38]. As an example, in the NaYF4:Er3*/Yb3* composite
(such as that used in this work), the NaYF, crystal matrix is
co-doped with Yb3* acting as the sensitizer to enhance the NIR
absorption cross section, whereas the Er3* ion acts as the
emitter, as depicted in Figure 1.

When UCNPs of this composite are irradiated with 980 nm NIR

light, they emit two thermally coupled green fluorescence bands

IR light
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Figure 1: Characteristic UC fluorescent emission spectra of NaYF4:Er3*/Yb3* in the green region when irradiated with 980 nm laser light. Insets: UC
process scheme (right). Schematic representation of the energy transfer between Yb3+ and Er3+ ions and the UC emission in an upconversion nano-

particle UCNP (left).
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at 525 and 550 nm. These bands arise from the 2H; 1/2—>4II5/2
(blue) and 4S5/, —%1;5/2 (purple) transitions of Er3* ions, re-
spectively [39-41]. Thermally coupled bands, defined as bands
separated by less than 2000 cm™! (<0.248 eV), favor a higher-
level population with an increase in thermal energy, thereby
enabling temperature-sensitive fluorescence emission [42]. For
the NaYE4:Er3*/Yb3* composite, the energy bands (2H,/, and
4S4)5) are separated by approximately 866 cm™!; they are thus
thermally coupled, and the ratio of their intensities provides a
reliable means for temperature monitoring. This approach is
known as the fluorescence intensity ratio (FIR), described math-
ematically as:

FIR = —1525 = Cexp(—_AEj, D

where I555 and I55q are the integrated intensities of the two fluo-
rescence bands centered at 525 and 550 nm, respectively; AE is
the energy difference between the Hy, s, and 4S4/2 levels, k is
Boltzmann’s constant (0.695 cm™'-K™!), T is the absolute tem-
perature in Kelvin (K), and C is a constant associated with the
host material and determined by the degeneracy of the coupled
energy levels, emission frequencies, and spontaneous radiation
transition rates [43].

The FIR-based technique has been widely used for optical ther-
mometry given its inherent advantages, including noise cancel-
lation capabilities, real-time temperature sensing, and high
sensitivity [44]. These features make FIR-based thermometry
appealing for remote optical measurements in biological appli-
cations. Indeed, upon imaging the thermally coupled fluores-
cent bands emitted by UCNPs with microscopy techniques,
precise temperature measurements within biological systems
can be readily obtained. For instance, Vetrone et al. [36] used
UCNP@PEI as nanothermometers for two-dimensional (2D)
temperature mapping inside Hella cells. Similarly, Pifiol and
co-workers [20] used the FIR of Ln3* (Sm, Eu)-bearing poly-
meric micelles to achieve real-time 2D temperature maps of
breast metastatic adenocarcinoma cells. Di et al. [45] used func-
tionalized UCNPs to monitor mitochondrial thermal dynamics
in HeLa cells, and Wang et al. [37] used core—shell UCNPs to
monitor temperature and imaging inside and outside onion cells
simultaneously. These studies underscore the versatility and
potential of UCNP-based thermometry for non-invasive, precise

temperature measurements and cell imaging.

Despite these advancements, most approaches rely on 2D
imaging or point-scanning spectroscopic methods to generate
temperature maps, which are limited in axial resolution and

acquisition speed when applied to thick or heterogeneous bio-
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logical samples. Earlier studies using luminescent nanother-
mometers have demonstrated spatially resolved, yet essentially
planar, temperature mapping in transparent or thin systems
[24,25]. More recently, efforts in luminescence-based 3D ther-
mometry at the cellular scale [46,47] have explored volumetric
temperature sensing through fluorescence-lifetime or UC
nanothermometry. However, these approaches remain limited
by point-by-point scanning, shallow penetration depth, and
narrow fields of view (typically below 100 um), restricting their
applicability to intact organisms. Beyond these demonstrations,
recent reviews [48,49] emphasize that achieving true 3D lumi-
nescence thermometry remains a major challenge as most
implementations rely on complex instrumentation and confined
imaging volumes. Therefore, extending nanothermometry
toward fast, high-resolution volumetric mapping represents an
essential step for advancing non-invasive thermal imaging in

living biological systems.

We recently demonstrated the feasibility of combining light-
sheet fluorescence microscopy (LSFM) with UC micro- and
nanocomposites for volumetric temperature mapping across
scales ranging from tens of micrometers to millimeters [40].
LSFM decouples excitation and detection, illuminating only the
focal plane and thereby minimizing photobleaching and
photothermal effects while enabling rapid volumetric acquisi-
tion. The present work aims to extend this technique to larger
biological specimens, specifically C. elegans, an optically trans-
parent model organism ideally suited for LSFM due to its
simple “tube-within-a-tube” anatomy and clearly defined
internal organs. When the nematode is fed with lipid-coated
UCNPs, the nanoparticles localize within its digestive tract,
acting as thermosensitive markers and enabling voxel-resolved,
real-time 3D thermal mapping with exceptional spatial and
temporal resolution [45,50,51], revealing internal temperature
gradients inaccessible with 2D imaging. The results reported
herein highlight the potential of LSFM and FIR-based ther-
mometry as a non-invasive method for precise temperature

mapping in living organisms.

Materials and Methods

Lipid-wrapped UCNPs

Due to their highly hydrophobic nature, commercial
NaYF,:Yb3*/Er3* UCNPs (Sigma-Aldrich, No. 900556 1 ML)
were coated with lipids to enhance their water dispersibility.
This lipid coating (UCNPs@lipids) was applied using a modi-
fied thin-film hydration method based on Rojas-Gutierrez’s pro-
cedure [52]. Based on the size distribution and concentration of
the nanoparticles (10 mg-mL™'), a lipid layer was formed with
DOPS, cholesterol, and DMPC at a molar ratio of 64:29:7. The
three lipids were dispersed in chloroform and mixed with
100 pL of UCNPs in a round-bottomed flask. The resulting
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mixture was then evaporated under a constant flow of N; gas
while stirring in a circular motion for 30 min. After solvent
evaporation, 2 mL of Milli-Q water were added to the flask for
rehydration overnight at 4 °C. The resulting water-dispersible
UCNPs@lipids solution had a UCNP concentration of
1 mg-mL~! and was stored at room temperature for subsequent
use and characterization. Evidence of obtaining such a water-
dispersible solution was previously reported in [40]. Figure 2
compares the as-purchased nanoparticles dispersed in toluene
with the lipid-functionalized UCNPs (inset), revealing a size
distribution of approximately 15-20 nm. Because the lipid shell
is an ultrathin organic layer (2-3 nm) with low electron
contrast, no distinct morphological differences are expected be-
tween coated and uncoated nanoparticles in TEM images; how-
ever, the success of the coating is confirmed by the stable
dispersion of UCNPs in water, which prevents aggregation.

C. elegans culture and maintenance

The nematodes used in our experiments, N2 wild-type C.
elegans, were cultivated on nematode growth medium (NGM)
plates previously seeded with E. coli OP50. Nematode transfer
was performed every two days, moving a chunk of agar from a
three-to-five-day-old plate to a new NGM plate seeded with
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E. coli. The nematodes were cultivated at room temperature
(=23 °C).

C. elegans feeding with UCNPs

To feed the nematodes with UCNPs, ten to twelve nematodes,
each approximately 1 mm in length, were selected and individu-
ally transferred from a three-day-old cultivation plate to a fresh
small NGM plate (35 mm in diameter) that was not seeded with
E. coli OP50. The nematodes transfer was gently conducted
using a stereomicroscope (ZEISS, Stemi 2000) equipped with a
transmitted light source and thin tweezers. After the transfer,
50 pL of the UCNPs@lipids solution was carefully dropped
onto the plate and spread to cover most of the plate. Before
imaging, the nematodes were left in contact with the
UCNPs@lipids solutions for approximately 17 h.

Samples used for temperature mapping

Two types of samples were prepared in our experiments, one
for FIR-temperature calibration and the other for internal tem-
perature mapping in nematodes. The first sample, S1, was an
agarose phantom with lipid-coated UCNPs, as reported in [40].
It consisted of a mixture of 250 pL of UCNPs@lipids solution
and 250 pL of 2% low-melting agarose gel. A few microliters

Figure 2: TEM micrograph of as-bought UCNPs dispersed in toluene. Inset: functionalized UCNPs@lipids dispersed in Milli-Q water. Scale bar:

50 nm.
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of the liquid mixture were drawn into a fluorinated ethylene
propylene (FEP) tube and solidified 30 min before imaging. The
second sample, S2, consisted of a single UC-fed C. elegans
immersed in agarose mixed with UCNPs@lipids. After feeding
with UCNPs@lipids, live nematodes were placed into a drop of
2% low-melting agarose gel containing UCNPs@lipids and
then fixed with 4% paraformaldehyde (PFA). The nematodes
were oriented with their mouth and tail positioned at the ends of
the FEP tube and left to solidify for 30 min before imaging. The
FEP tubes were inserted into a capillary tube for structural
support to mount the samples. Using a metal plunger, the sam-
ples were drawn into the exposed end of the FEP tube, as illus-
trated in Figure 3.

Light sheet microscopy

The LSFM setup is described in [40]. Here, the NIR excitation
at 980 nm was provided by a fiber Bragg grating-stabilized laser
(JDSU, 2900 Series), with collimated light focused onto the
back focal plane of a 4x/0.13 NA excitation objective (Nikon,
PlanFluor) using a 250 mm cylindrical lens (Thorlabs,
LJ1267RM-A). The excitation objective generated the light
sheet in the sample’s xy-plane, with a capillary glass mounted
on an xyz-motorized stage (Thorlabs, 3-axis NanoMax) for
depth imaging. Images were captured using a CMOS camera
(Hamamatsu, ORCA-Flash4.0) with a 10x/0.3 NA water
immersion objective (Nikon, PlanFluor) and tube lens,
achieving a 1.3 x 1.3 mm? FOV and ~1.3 um axial resolution.
Two interferometric filters (Thorlabs, MF510-40, and MF559-
34) isolated the 525 and 550 nm UC fluorescence bands, while
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a bandpass filter (Thorlabs, FESH-0650) blocked the excitation
light.

To heat the immersed sample, a custom-made immersion
chamber was used to house the capillary tube. The chamber
featured a temperature-controlled water recirculation system
consisting of a peristaltic pump (KF Technology, NE-9000), a
solution heater (Warner Instruments, Hamden), and a tempera-
ture controller (Warner Instruments, TC-324C). This setup
enabled precise control from 25 to 50 °C with 0.2 °C accuracy.

Results and Discussion
Three-dimensional calibration curves

To accurately quantify temperature variations, a precise calibra-
tion curve must be established. Two UCNPs@lipids samples
(S1) were prepared for FIR calibration, with concentrations of
0.5 and 2.5 mg-mL~!. Figure 4a presents the three-dimensional
reconstruction of the UC fluorescence signal at 550 nm for the
higher concentration (2.5 mg-mL~!) sample. The image reveals
the characteristic aggregation of lipid-coated UCNPs, forming
macroliposomes of approximately 30 pm diameter within the
agarose gel. A corresponding volumetric image was also
acquired at the 525 nm band (not shown) to compute the FIR.
Pairs of these images were taken at different temperatures to
establish the temperature-dependent FIR calibration. For each

sample, approximately 25 macroliposomes were analyzed.

Although the FIR response follows a Boltzmann-type exponen-
tial temperature dependence (see Equation 1), our previous

...Attached to a xyz-
motorized stage
A

...to CMOS camera

\3

..IR

1 excitation

“a._heating elements

Figure 3: General scheme of the sample mounting holder used for temperature mapping in the light sheet microscopy system. The numbers in the
figure stand for cylindrical optics (1), sample (2), collection objective (3), and optical filter set (4). Figure 3 was adapted from [40] (© 2023 D. Barron-
Ortiz et al., published by MDPI, distributed under the terms of the Creative Commons Attribution 4.0 International License,

https://creativecommons.org/licenses/by/4.0).
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Figure 4: (a) Fluorescence intensity of UCNPs@lipids at 25 °C. (b) 3D temperature dependence from 25 to 33 °C. The black rhombs represent the
mean values for S1, Sp, and the combined selected nanoparticles. The solid line shows the linear fit of the calibration curve, obtained from the mean

values of both UCNPs@lipids concentrations. (c) Absolute sensitivity (Sg).

work demonstrated that within the 25-50 °C interval in
NaYE4:Yb3*/Er3*systems, the FIR behavior of lipid-coated
UCNPs can be well approximated by a linear dependence with a
slope of m ~ 0.003 °C~! [40]. This finding is consistent with
earlier experimental results showing a linear response up to
100 °C [44], confirming the robustness of this relationship
across a broad thermal range. In the present study, the calibra-
tion was restricted to 25-33 °C to match the physiological tem-
perature range of C. elegans and to evaluate the method’s sensi-
tivity in detecting subtle temperature variations relevant to bio-

logical processes.

The resulting temperature-dependent FIR response is illustrated
in Figure 4b, covering the 25-33 °C range, with measurements
taken at 2 °C intervals. This temperature range was chosen
because (i) it remains below the high-stress temperature
threshold of C. elegans (>35 °C) [53] and (ii) it falls within the
linear, high-sensitivity region of the NaYF,4:Yb/Er nanoparticle
thermometric response (20—-100 °C) [44]. The black diamonds
denote the combined mean values of both concentrations. A
linear fit of the calibration curve (solid black line) was obtained
for both UCNPs@lipids concentrations. The results closely

(d) Relative sensitivity (S;). (a, b) where measured from 25 to 33 °C.

align with Barron-Ortiz et al.’s previously reported calibration
curve [40], showing a slope of m = 0.33 °C~!.

The resolution performance of the optical thermometer is
assessed through its absolute (S,) and relative (S;) thermal
sensitivities [35,54]. These are defined as:

OFIR
s =2 >
\ ‘ar @)
S =234 100%. 3
" FIR ° )

The absolute sensitivity (S,) quantifies the FIR response to a
1 °C temperature change, and the relative sensitivity (S;) de-
scribes the FIR rate of change as a percentage of its value.
Notice that the complex nature of the dynamic UC process, par-
ticularly at higher temperatures, can influence the temperature-
sensing properties of UCNPs [37,42]. However, even within the
physiological temperature range (30-50 °C), other UC pro-

cesses such as thermal quenching, shifts in the Boltzmann dis-
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tribution, and cross-relaxation, can also affect temperature
sensing [37,54]. These effects may introduce variations in the
FIR calibration, requiring careful evaluation for accurate ther-
mometry [35,55]. This concern is particularly relevant in Er3*-
based FIR thermometry as its sensitivity strongly depends on
the energy gap between thermally coupled levels [42]. In our
results, these effects are minimized, as the FIR calibration ex-
hibits a consistent and linear temperature dependence over the
25-33 °C range, with no significant deviations from the ex-
pected response. This suggests that our UCNP system provides
reliable temperature measurements, effectively mitigating
potential distortions from UC artifacts. To demonstrate this, we
calculated the thermal sensitivities S, and S; using Equation 2
and 3, based on the calibration obtained from the curve of
Figure 4b. The calculated sensitivities are included in
Figure 4c,d, showing that over the 25 to 33 °C temperature
range, the absolute sensitivity S, varied between 3.35 X 1073
and 8.89 x 1073 °C~! (Figure 4c), while the relative sensitivity
S, ranged from 1.0 to 2.78%-°C~! (Figure 4d). The largest
values, S, = 8.89 x 1073 °C™! and S, = 2.78%-°C!, were ob-
served at 25 °C, with a decreasing trend as the temperature in-
creased. It is important to note that the relative sensitivity
remained above the 0.5%-C~! threshold, a benchmark for high-
performance nanothermometry applications [55]. This confirms
previous studies showing that the temperature-dependent elec-

3. AF b) I525nm
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tronic 4S83/,—2H 5 transitions in Er3* provide optimal sensi-
tivity within the 30-50 °C range, making them highly suitable
for biological applications [42].

C. elegans internal temperature

measurement

After evaluating the 3D temperature sensing capability of
UCNPs@lipids, we applied this technique to measure the
internal temperature within fixed C. elegans nematodes. The
worms were fed with the UCNPs@lipids solution at a
1 mg-mL~! concentration, consistent with imaging and toxicity
studies [56].

Figure 5 illustrates the workflow for obtaining temperature
maps. The process begins with identifying the nematode
through its autofluorescence under 488 nm light-sheet excita-
tion, highlighting key anatomical structures such as the pharynx
and intestinal tract (Figure 5a). A z-stack is then acquired in
steps of 2 um to cover the whole volume of the nematode. Once
the nematode is located, it is irradiated with a 980 nm NIR light
sheet, and two emission filters (Thorlabs, MF510-40, and
MF559-34) are used sequentially to collect the UC fluores-
cence bands centered at 525 and 550 nm. Figure 5b and
Figure 5c show, respectively, the z-projections of the average
fluorescence intensities for these bands. The FIR is then calcu-

o AF+FIR
Mouth «—— &

Pharynx { .
4

Temperature

Figure 5: Temperature map inside of C. elegans. (a) Shows the autofluorescence in cyan, (b, c) Upconversion fluorescence images of the 525 and
550 nm emission bands at 25 °C. (d) FIR map. (e) The temperature map of C. elegans shows the FIR as a red-hot map and autofluorescence in
cyan. The temperature signals are primarily localized within the intestinal lumen. Scale line: 100 um. Temperature scale bar: to the left, FIR from 0 to
1, to the right, temperature, as a reference, 0.333 corresponds at approximately 28.8 °C.
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lated plane-by plane, and the corresponding temperature map is
generated using the calibration curve of Figure 4b. Figure Se
presents the z-axis projection of the FIR as a red-hot tempera-
ture map overlaid with the nematode’s autofluorescence (cyan),
which delineates its morphology across the entire volume. The
C. elegans intestine is a simple, tubular organ composed of 20
epithelial cells arranged into nine rings (int1-int9), spanning
approximately 80% of the worm’s body length.

The lumen, located centrally within these rings, is lined
with microvilli that facilitate nutrient uptake and particle
retention [57]. Figure Sb—d shows the fluorescence emission
throughout the intestinal structure post-ingestion, indicating
UCNP accumulation within the lumen. This localization is
strongly influenced by surface chemistry. The anionic character
of our DOPS-rich lipid coating likely leads to electrostatic
repulsion with the negatively charged glycocalyx of the
intestinal cell membranes, thereby hindering endocytosis [58].
This contrasts with cationic coatings like polyethyleneimine
(PEI), which promote endocytosis and lead to UCNP internal-
ization into intestinal cells [59]. This observation is consistent
with Chen et al. [50], who reported internalization of PEI-
capped UCNPs into both the gut cavity and intestinal cells.
They attributed UCNP uptake within the gut cavity to the favor-
able nanoparticle dispersibility and cellular internalization to
endocytosis, facilitated by electrostatic interactions between the
cationic PEI coating and negatively charged cell surfaces. The
positive charge of PEI can be enhanced at lower pH levels, such
as those found in parts of the C. elegans digestive tract [60],
potentially promoting further endocytosis. In contrast, the
UCNPs@lipids nanoparticles are negatively charged (due to
abundant DOPS) and were observed in the intestine but not
clearly within the intestinal cells. This suggests that endo-
cytosis of these nanoparticles is sensitive to the specific capping
ligand. Consequently, we attribute the recorded temperature dis-
tributions mainly to the luminal environment rather than intra-
cellular regions, indicating that surface chemistry governs not
only nanoparticle uptake but also the spatial interpretation of
the thermal maps. This distinction is crucial, as it means our
thermal maps report on the temperature within the digestive
tract lumen, which may be influenced by ingested material and
microbial activity, rather than the metabolic heat production of
the intestinal cells themselves. To probe intracellular tempera-
tures, a surface coating engineered for active cellular uptake

would be required.

Conclusion

We successfully demonstrated volumetric temperature measure-
ments in C. elegans by combining LSFM with lipid-coated
NaYF4:Yb3*/Er3* upconversion nanoparticles. The lipid

coating strategy proved crucial, enhancing biocompatibility
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and colloidal stability while enabling precise localization of
the thermal probes within the nematode's digestive tract.
Our calibration achieved excellent thermal sensitivity (up to
8.9 x 1073 °C~! absolute and 2.8%-°C~! relative), well above
the benchmark for high-performance nanothermometry.

While our experiments focused on fixed biological specimens,
the 980 nm wavelength excitation and millisecond-scale slice
acquisition inherent to LSFM make real-time thermometry in
living organisms entirely feasible. This capability would enable
monitoring metabolic or stress-induced temperature fluctua-
tions at the single-organ level and evaluating thermal side
effects of optogenetic, photothermal, or pharmacological treat-
ments. Although our experiments used fixed C. elegans, the
present study was conceived as a proof of concept to demon-
strate the feasibility of volumetric FIR thermometry in biologi-
cal systems using LSFM. In this context, PFA fixation is
applied externally and primarily affects the nematode’s outer
tissues. Aldehyde fixatives act at the organism’s surface with-
out significantly altering the internal optical environment where
the UC nanoparticles are located. Because upconversion lumi-
nescence arises from lanthanide ions shielded within the nano-
particle matrix, its emission is largely insensitive to minor
dielectric or chemical variations in the surrounding medium
[61]. Therefore, the overall influence of fixation on the re-

corded fluorescence and thermal response is negligible [62].

Extending this method to live imaging presents additional chal-
lenges related to the simultaneous acquisition of the thermally
coupled emission bands. Sequential filter exchange limits the
frame rate when using a single detector, whereas dual-camera
configurations require precise spatial registration to avoid pixel
mismatches and artifacts in the FIR calculation. To mitigate
these limitations, we are currently developing an alternative ap-
proach based on color CMOS detection, which retrieves the
spectral intensity from a single RGB image and eliminates the
need for mechanical filter switching. This strategy, though
beyond the scope of the present work, is expected to enable true
real-time 3D nanothermometry in vivo. Future work will also
focus on engineering UCNP coatings for specific subcellular
targeting to further expand the biological applicability of this
technique.

The readily transferable nature of both the lipid-coating ap-
proach and the optical setup establishes a practical foundation
for extending this technique to other small model organisms,
organoids, or individual mammalian cells. In summary, LSFM-
enabled upconversion nanothermometry emerges as a powerful,
non-invasive platform for probing spatiotemporal temperature
dynamics across diverse biomedical applications, from cellular

metabolism to organ-specific stress responses.
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