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Abstract
Magnetization reversal processes in a vortex system with different potentials of vortex–vortex interaction were studied using the
Monte Carlo method within the framework of a two-dimensional model of a layered high-temperature superconductor. Interaction
potentials close to the potential applicable in superconductors with the Ginzburg–Landau parameter κ = 1/2 (intertype superconduc-
tors) and in ferromagnetic superconductors have been analyzed. Clustering of the vortex system is demonstrated. The melting of a
vortex lattice with increasing temperature has been studied.
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Introduction
Type-II superconductors, as shown by numerous studies, have a
complex phase diagram in a magnetic field. In fields greater
than the first critical field Hc1 and less than the second critical
field Hc2, at temperatures below the critical temperature the
superconductor is in a mixed state, in which the magnetic field
penetrates the superconductor in the form of Abrikosov vortices
[1]. In high-temperature superconductors (HTSCs), such as Y-
and Bi-based cuprates, the vortex lattice is further complicated
since these compounds have a layered structure [2-6]. The
vortex filament in these superconductors can be represented as a
stack of pancakes, that is, flat vortices located in the CuO
planes and connected by Josephson interaction through inter-
planar gaps. The vortex structure in layered HTSCs is still a

subject of research. In [7], it was shown that Pb doping in-
creases the two-dimensional ordering of the pancakes, which
also enhances the pinning of vortices on defects. In [8], the
vortex system in a HgBa2CuO4+δ monocrystal was studied. The
measurements were performed in a wide range of temperatures
and magnetic fields, and the phase diagram of the vortex system
was obtained as a result of the measurements. The vortex
system was studied by measuring the magnetization of the sam-
ple. The relaxation rate of the magnetization caused by the
process of thermally activated creep of the magnetic flux was
also measured. In this case, the phenomenon of collective creep
of vortex bundles was discovered. Indications were also ob-
tained that the second peak on the magnetization curve (second
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magnetization peak) at low temperature (less than 0.55Tc) coin-
cides with the transition between the regimes of the flow of the
vortex lattice. The measurements were also performed in a mag-
netic field inclined with respect to the superconducting planes.

The phase diagram of the vortex system becomes even more
complex in an inclined magnetic field. As studies [9-11] have
shown, the structure of the vortex lattice depends on the
anisotropy parameter of the superconductor in the form of the
Josephson length λJ = γs, where s is the distance between the
superconducting planes, γ is the anisotropy parameter, and λ is
the London penetration depth of the magnetic field. When the
ratio λ/λJ < 0.46, crossed lattices of Abrikosov and Josephson
vortices (vortex chains) are observed; at λ/λJ > 0.46, the
Josephson vortices disappear, and a regular lattice of inclined
Abrikosov vortices remains. In the first case, Josephson vortices
can impart a zigzag shape to Abrikosov vortices; this shape, as
shown in [9-11], leads to effective attraction of vortex fila-
ments. At close distances (less than λ), short-range repulsion is
still preserved, and the repulsion is also preserved at large dis-
tances (5–10λ) between vortex centers. As a result, the poten-
tial takes a shape characterized by one minimum and one fairly
flat maximum [12-14]. The vortex lattice in an inclined magnet-
ic field has also been studied in [15-17].

The vortex–vortex interaction potential, different from the clas-
sical one typical in type-II superconductors K0(r/λ) (r is the dis-
tance between the vortex centers) [18], is also observed in
superconductors characterized by the Ginzburg–Landau param-
eter . A vortex structure is also observed in such a
superconductor; however, the interaction of the vortices is char-
acterized by short-range attraction and long-range repulsion
[19-21]. This form of the potential is characterized by the for-
mation of clusters containing several vortices up to several
dozen vortices. In [19], a molecular dynamics simulation of a
vortex system in a superconductor with  was per-
formed, and a phase B–T diagram was obtained (B is the mag-
netic field and T is the temperature of the vortex system), which
contains regions of a hexagonal vortex lattice, a striped struc-
ture, and a lattice of vortex clusters.

A potential different from the classical one is observed for inter-
vortex interaction and in the so-called ferromagnetic supercon-
ductors [22]. The polarization of the magnetic moments of the
crystal lattice induced by vortices leads to an interaction poten-
tial that has a minimum and a maximum (at distances greater
than 10λ, repulsion is observed). In this work, the formation of
vortex clusters and their motion under the action of the Lorentz
force were investigated. Since their interaction potential is simi-
lar to intertype, our results are applicable to them. A descrip-
tion of the mechanism of the emergence of ferromagnetic and

superconducting subsystems, as well as experimental confirma-
tion of clustering can be found in [23]

Vortices in type-II superconductors can form clusters under
certain conditions, which affects the phase diagram of the
superconductor and, consequently, its magnetic and transport
properties. Therefore, it is of interest to study the magnetization
reversal processes in a sample under conditions that allow for
vortex clustering. Additionally, the process becomes more
complicated in the presence of pinning centers. An effective
method for research is the Monte Carlo method for a vortex
system. The aim of this work is to study the magnetization and
vortex configurations in a vortex system with different inter-
vortex interaction potentials. Magnetization curves have been
calculated, vortex configurations in a sample have been ob-
tained and analyzed, the intervortex interaction potential of
which is identical in shape to the interaction potential in
ferromagnetic superconductors. The modeling results can also
be useful for analyzing vortex configurations in a layered
anisotropic HTSC in an inclined magnetic field.

Methods
Calculations were performed using the Monte Carlo method
within the framework of a two-dimensional model of a layered
HTSC [24-26]. Most of the HTSCs applicable in practice are
strongly anisotropic substances characterized by the anisotropy
parameter γ > 10. Examples of such HTSCs are YBa2Cu3O7−δ
(γ ≈ 10) and Bi2Sr2CaCu2O8−δ (γ ≈ 200) [1]. Such supercon-
ductors have a layered structure and can be modeled as a stack
of superconducting planes separated by an insulating gap. The
Abrikosov vortex in such a structure can be represented as a
stack of flat layered vortices, the so-called pancakes, connected
by an interplanar bond. In samples that do not have artificial
pinning centers, or in samples with columnar defects perpendic-
ular to the superconducting planes, the average deviation of
pancakes from the axis of the vortex filament due to thermal
motion is much less than λ, that is, the London penetration
depth of the magnetic field into the superconductor [27]. There-
fore, vortex filaments are approximately straight, and only one
HTSC layer can be considered for modeling. A vortex system at
a temperature not too close to the critical temperature can be
modeled as an ensemble of particles interacting with a long-
range potential. Then the energy of the vortex system can be
represented as follows:

(1)

The first term corresponds to the pairwise interaction of
pancake vortices belonging to one HTSC layer. For Abrikosov
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vortices in a superconductor with κ ≫ 1, the interaction poten-
tial between vortices has the form

where

Here, δ is the thickness of the superconducting layer, K0 is the
zeroth-order Macdonald function, , where the sign is
chosen depending on the sign of the field that generated the
vortex, and Φ0 is the magnetic flux quantum. The second term
corresponds to the total self-energy of the vortices in the HTSC
layer. The indices i and j number the pancakes in the layer
under consideration,

is the vortex self-energy per superconducting layer with

The simulation is performed for a vortex lattice in a sample
whose size in the plane of the superconducting layer is
5 × 5 μm. To eliminate the influence of the boundary, the simu-
lation region has periodic boundary conditions along both coor-
dinate axes. Under the conditions of this geometry, the third
term in Equation 1, corresponding to the additional vortex
energy associated with the external magnetic field, has the form

The calculation also takes into account the temperature depen-
dence of the London magnetic field penetration depth and the
coherence length [28]. In this paper, the following forms of this
dependence are used:

and

These relations fairly accurately reflect the temperature depen-
dence of the characteristic lengths in bismuth HTSC [29].

In this work, in addition to the classical potential that describes
the interaction of Abrikosov vortices, two more types of poten-
tial were analyzed. The first model interaction potential corre-
sponds to superconductors with the Ginzburg–Landau parame-
ter  and can be written as [14]

(2)

A typical form of this potential is shown in Figure 1.

Another potential of vortex–vortex interaction investigated in
the work corresponds to the interaction of vortices in a ferro-
magnetic superconductor [22]. This potential can be written as a
linear combination of the potentials Ur(r) and Ua(r), responsi-
ble for long-range repulsion and short-range attraction, respec-
tively:

(3)

where Λ = 2λecoth(δ/λe) is the modified Pearl length,

is the magnetic field penetration depth after renormalization,
and χ0 is the magnetic susceptibility of the material. The higher
the magnetic susceptibility, the greater the difference between
the model potential and the potential from Equation 1 and the
more pronounced is the tendency of vortices to form clusters
(Figure 2).

Both considered model potentials have one distinctive mini-
mum and a weakly defined maximum. The energy minimum for
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Figure 1: Model potential from Equation 2.

Figure 2: Potential from Equation 3 at different values of magnetic
susceptibility.

the potential from Equation 2 corresponds to a distance of less
than λ between the vortex centers. As further calculations show,
this leads to the formation of clusters, the number of vortices in

which can reach 100. The shape of the potential from
Equation 3 depends significantly on the value of the magnetic
susceptibility of the superconductor, χ0. With an increase in χ0,
the depth of the minimum increases; starting from a certain
value, the minimum disappears. For such a potential, the num-
ber of vortices in a cluster turns out to be up to several dozens.
At large distances, both potentials monotonically tend to 0. The
numerical coefficients in the potentials from Equation 2 and
Equation 3 are selected in such a way that the numerical values
of the potential at large distances approximately correspond to
the potential from Equation 1.

In the calculations it was assumed that λ(0) = 180 nm and ξ(0) =
2 nm. The critical temperature was taken to be 84 K. The first
critical field with this choice of parameters is Hc1 = 290 G.
These values correspond to the experimental values for yttrium-
and bismuth-based cuprates [1]. With these parameters and in
magnetic fields not exceeding 1000 G, no more than 1000
vortices are generated in the sample. For the specified values of
the superconductor parameters, a model problem was solved:
The vortex lattice structure was calculated under the conditions
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Figure 3: Magnetization curves at the interaction potentials from Equation 1 and Equation 2.

of the intervortex interaction potential being different from
Equation 1. When changing the values of ξ, λ, and Tc, the calcu-
lation results will change quantitatively, but the observed
effects are qualitatively preserved. The obtained results can be
useful for designing superconducting devices of micrometer and
submicrometer size. For the potential from Equation 2, vortex
lattice melting with increasing temperature was studied. For the
potential from Equation 3, the formation of a vortex lattice was
investigated for different values of magnetic susceptibility χ0.

In Monte Carlo(MC) simulations, the thermalization of the
system occurs quite quickly, with the energy plateauing after
about 10,000 MC steps. However, subsequent calculations typi-
cally used 200,000 steps of the algorithm; statistics were
collected based on the last 100,000 steps. Vortex configura-
tions were calculated after the energy graph reached a plateau.

Results and Discussion
In most known type-II superconductors (e.g., in cuprates), in
magnetic fields much lower than Hc2, the interaction between

vortices is described by the expression in Equation 1. The
vortex structure under these conditions is a hexagonal lattice.
Figure 3 shows the magnetization curves of a superconducting
sample calculated under the assumption that the vortices
interact via the potential from Equation 1 (dashed curve) and
via the potential from Equation 2 (solid curve). The magnetic
field increased from 0 to 1000 G. In both cases, the magnitude
of the first critical field Hc1 is the same. After the first critical
field, the magnetization curve for the potential from Equation 2
is higher than for the potential from Equation 1. This effect can
be easily explained using Figure 1. The interaction energy cor-
responding to the model potential at distances between vortices
greater than 5λ exceeds the interaction energy corresponding to
the classical potential from Equation 1, which leads, according-
ly, to a stronger repulsion of the vortices.

It is of interest to analyze the vortex configurations arising
during magnetization in a sample, the interaction between
vortices in which is described by the model potentials from
Equation 1 and Equation 2. Figure 4 shows the vortex configu-
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Figure 4: Magnetic field distribution in the sample at T = 1 K. Vortex configurations arising along the magnetization curve are shown.

rations (magnetic field distribution in the sample) arising along
the magnetization curve (Figure 3). Since the potential from
Equation 2 has an energy minimum at a distance of approxi-
mately λ/4 between the vortex centers, the formation of vortex
clusters should be expected. Indeed, Figure 4shows regularly
shaped clusters consisting of several dozen vortices. Because of
long-range repulsion, individual clusters form a hexagonal
lattice. At a temperature of 1 K, the clusters have the shape of
rhombuses. The peculiarity of the calculated vortex configura-
tions is easily seen from Figure 4. As the magnetic field in-
creases, the number of clusters in the sample remains un-
changed, and new vortices generated in the sample join the
existing clusters. The number of vortices in a cluster changes
from 17–20 at H = 400 to 80 at H = 1000 G.

It is also of interest to study the behavior of the vortex lattice
with changing temperature. The magnetization curves
(Figure 3) were calculated at T = 1 K. For further analysis, a
vortex configuration in a magnetic field of H = 400 G was
chosen. Figure 5 and Figure 6 show the distributions of the
magnetic field in the sample with increasing temperature. It is
evident that even an increase in temperature to 3 K leads to
noticeable thermal motion of the vortices, blurring the bound-

aries of the clusters (in all figures, the distribution of the mag-
netic field is calculated based on the averaged configuration of
the vortices). It should be noted that the intensity of the thermal
motion of the vortices increases only inside the clusters. Ther-
mal motion of the clusters themselves does not occur in the
temperature range from 1 to 20 K. However, a further increase
in temperature leads to the destruction of the ordered lattice of
clusters (Figure 6, which shows the magnetic field distributions
at 25 and 40 K). We also note the change in the shape of the
clusters when moving from 1 to 3 K (Figure 5).

The vortex configurations for the model potential from Equa-
tion 3 were simulated in a similar manner. The vortex configu-
rations calculated for different values of the magnetic suscepti-
bility are shown in Figure 7. At χ0 = 0.01, the ferromagnetic
part of the potential is small compared to the terms responsible
for the intervortex repulsion, and clusters are not formed. At
low values of the magnetic susceptibility, the vortices form a
hexagonal lattice. As χ0 increases to 0.5, the process of vortex
clustering begins, which can be seen as a darker region in the
middle of the sample in Figure 7. At χ0 = 1, strip-shaped clus-
ters are formed. The vortices inside the clusters still form a hex-
agonal lattice. In Figure 8, vortex configurations arising in the
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Figure 5: Magnetic field distributions in a sample at various values temperature; magnetic field H = 400 G.

Figure 6: Melting of a vortex lattice with increasing temperature; magnetic field H = 400 G.

sample with increasing magnetic field are presented. Increasing
the magnetic field leads to the birth of new vortices, which,
unlike the situation with the potential from Equation 2, are not
added to the existing clusters, but a noticeable restructuring of
the vortex lattice occurs. If at H = 400 G individual clusters in
the form of stripes are visible, then already at H = 750 G the
vortices occupy the entire sample, and the clusters are replaced
by regions with a higher average vortex distribution density. It
should be noted that clusters in the form of stripes were ob-
served in the numerical simulation in [19].

Conclusion
Within the framework of a two-dimensional model of a layered
HTSC, the configurations of the vortex lattice were simulated
under conditions where the intervortex interaction potential
differs from the usual one observed in type-II superconductors.
The shape of the potential corresponds to the potential ob-
served in superconductors with the Ginzburg–Landau parame-
ter  and the interaction potential observed in ferro-
magnetic superconductors. Clustering of vortices was observed
in magnetic fields from 400 to 1000 G. For a vortex system
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Figure 7: Magnetic field distribution for a sample with the vortex–vortex interaction potential from Equation 3 at different values of magnetic suscepti-
bility χ0.

Figure 8: Magnetic field distribution in the potential from Equation 3 at different field values; χ0 = 1.0.
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interacting with a potential characteristic of intertype supercon-
ductors, melting inside vortex clusters was observed with in-
creasing temperature. At temperatures of 1–10 K, a hexagonal
lattice of clusters is observed; upon reaching 20–25 K, the
cluster structure is no longer observed. For the interaction
potential characteristic of ferromagnetic superconductors, pro-
nounced clustering is shown at fields near Hc1. The difference
between the results obtained and those given in the literature is
in the consideration of the magnetization reversal process and
the study of the temperature effect. The calculation results can
be useful in designing various superconducting devices.
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