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We have designed and synthesized a novel calix[4]arene derivative bearing four choline appendages as recognition targeting

ligands and one amino-nitrobenzofurazan as a fluorescent labelling unit at the opposite sides of the calixarene molecular scaffold.

Due to its amphiphilic character, this compound is well soluble in water, forming supramolecular assemblies that are ca. 170 nm in

diameter. The nanoassembly selectively targets cancer cells that overexpress the choline transporters, and it can be visualized

thanks to the fluorescent tag. The fluorogenic unit also acts as a green light harvesting center, making the nanoassembly a photo-

nanoreactor able to encapsulate a hydrophobic nitric oxide (NO) photodonor, otherwise activatable with blue light, and encour-

aging the NO release with the more biocompatible green light probably by an intra-cage photoinduced electron transfer.

Introduction

Calix[n]arenes are a family of polyphenolic macrocycles, char-
acterized by the presence of a cavity with remarkable hosting
properties and synthetic versatility [1-5]. Water soluble calix-
arenes can be obtained by the introduction of appropriate hydro-

philic moieties in the calixarene molecular scaffold, leading to a

good biocompatibility and low immunogenicity and paving the
way for a variety of applications in the biomedical field [1,6-9].
Due to their amphiphilic character, calix[n]arene derivatives can
self-assemble in water medium, leading to nanoaggregates ex-

hibiting much better hosting performances than the single
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monomers [10]. Aggregates of an amphiphilic calix[n]arene
covalently integrating specific targeting ligands showed im-
proved cell targeting capability [11]. Besides, nanoassemblies
of calix[4]arene derivatives proved to be also very suited host
supramolecular nanoreactors to amplify the photochemical
performances of otherwise poorly active unconventional
photoactivatable drug molecules [12-14] as well as efficient
cages to inhibit undesired photodegradation of photosensitive

conventional drugs [15].

Nitric oxide (NO) is one of the most extensively studied mole-
cules in the fascinating realm of biomedical sciences. This
interest is due to its crucial role as a gaseous signaling mole-
cule in the human body [16-21] and its great potential as an
unconventional therapeutic to fight important diseases, includ-
ing cancer, bacterial infections, and cardiovascular and
neurodegenerative disorders [22-36]. The strict dependence of
the NO effects on site and doses [37] has made NO generation
accurately controlled by light stimuli through suitable NO
photodonors (NOPDs) a hot topic in the emerging area of
photopharmacology [38,39]. Many molecular systems, supra-
molecular nanoconstructs, and nanomaterials photoreleasing
NO have been developed as potential nanomedicines over the
last decades [40-50]. In this regard, generating NO with highly
biocompatible long wavelength green or red light is highly
desirable over blue or even UV light, not only for its intrinsic

low toxicity but also for its deeper tissue penetration.
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Our recent work reported a supramolecular approach to trigger
the NO release from a blue-light-activatable nitroso-derivative
NOPD through red light [51,52]. This was achieved by a bimol-
ecular photochemical reaction between suitable photosensi-
tizers and the NOPD co-encapsulated within different types of
biocompatible host systems. Inspired by this work, we thought
that a calixarene covalently integrating specific cell-targeting
ligands and a suitable chromo-fluorogenic unit can impose the
whole structure targeting ability combined with a photorespon-
sive character. The chromo-fluorogenic component can be
exploited for cell tracking and as a suitable low energy light-
harvesting antenna to activate photoinduced bimolecular pro-
cesses with an otherwise blue-light-activatable NOPD encapsu-
lated therein. For this purpose, we report the design and synthe-
sis of the cationic calix[4]arene 1 and its supramolecular
nanoassembly with the blue-light-activatable nitroso-derivative
NOPD 2 (Scheme 1). We show that (i) 1 self-assembles in
water medium into nanoaggregates able to internalize into
cancer cells selectively and that (ii) the nanoaggregates of 1 are
able to effectively encapsulate the water-insoluble NOPD 2 and
trigger the NO release with much more biocompatible green
light through a photosensitization process, leading to an
improvement of more than 100 nm in terms of excitation wave-
length. Nanoassemblies of 1 specifically target cancer cells
overexpressing choline transporters and, after encapsulation of
the NOPD 2, stimulate NO release through a green-light-trig-

gered photosensitization process.

1 OH

2
Green light harvesting kL
uy  antenna and emitter n-NO ’X
N /
CF3
0. NO,

Photosensitization

Green
Emission

Scheme 1: Molecular structures of the multifunctional calix[4]arene 1 and the NOPD 2.
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Results and Discussion
Design and synthesis

Calix[4]arene 1 integrates four choline moieties at the upper rim
of the macrocycle scaffold and the 4-amino-7-nitrobenzofu-
razan (ABF) fluorophore at the lower rim (Scheme 1). The role
of these two components in both cases is twofold. The cationic
choline groups have been introduced as specific targeting
ligands for cancer cells overexpressing the choline transporters
[53,54] and to make the final compound amphiphilic, encour-
aging its aggregation in water medium. The ABF fluorophore is
extensively used as fluorogenic labelling unit in biology [55-
59]. Besides its role as fluorescent component for cell tracking,
it has been selected as green-light-harvesting antenna to trigger
the NO release from the hydrophobic NOPD 2.

Compound 1 was prepared by a two-step synthesis according to
Scheme 2 (see Supporting Information File 1 for details)
starting from the known calix[4]arene derivative 1a [60]. In
brief, compound 1a treated with chloroacetic acid provided
compound 1b, in which four terminal chloromethyl groups are
tethered to the calixarene upper rim by amide bonds. The subse-
quent treatment with N,N-dimethylethanolamine in THF as a
solvent, produced compound 1 bearing choline-like moieties.
Compound 1 and its precursor 1b were characterized by 1D and
2D NMR spectra that confirmed the exhaustive functionaliza-
tion of the calixarene upper rim (Figures S1-S7, Supporting

Information File 1).

The NOPD 2 contains the same chromophoric motif as our
recently reported NOPD [59], differing only by having a C4
alkyl chain instead of a C8. This choice was motivated to

encourage a better fit of this NOPD into the calixarene
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nanocontainer without affecting the already known photochemi-
cal NO release properties [61]. Compound 2 was prepared by a
two-step synthesis according to Scheme 3 (see Supporting
Information File 1 for details). Briefly, the direct coupling of
commercially available butylamine with 5-fluoro-2-nitroben-
zotrifluoride 2a in acetonitrile at room temperature gave com-
pound 2b. Subsequently, nitrosation with sodium nitrite under
acid conditions yielded the nitroso derivative 2. All operations
were carried out under a low-intensity level of visible light.
Compound 2 and its non-nitrosated precursor 2b were charac-
terized by 1D NMR (Figures S8,S9, Supporting Information
File 1).

NO
F NH N~
a b
—_— —_—
CF, CF; CF;
NO, NO, NO,
2a 2b 2

Scheme 3: (a) Butylamine, KoCOg, CH3CN, r.t., 24 h; (b) NaNO»,
THF/CH3COOH 2:1, 0 °C - r.t., overnight.

Self-assembling and spectroscopic

properties of 1

Due to the polycationic structure, compound 1 showed good
water solubility as evidenced by its absorption spectrum domi-
nated by the typical features of the ABF chromophore [55-
59,62-64] with a maximum at ca. 480 nm (Figure 1A). Howev-

NO,

NO,

NO,

Scheme 2: (a) Chloroacetic acid, EtsN, CHoCly, r.t., 1 h; (b) N,N-dimethylethanolamine, THF, reflux, 24 h.
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Figure 1: (A) Absorption spectrum of 1 (50 uM) in water. The inset shows the size distribution of the same solution of 1 obtained by DLS. (B) Fluores-
cence emission spectrum, Agyc = 467 nm, of 1 as in (A). The inset shows the fluorescence decay and the related fitting of the same solutions re-

corded at Agyc = 455 nm and Agry = 550 nm. T =25 °C.

er, dynamic light scattering (DLS) measurements evidenced
that, in line with its amphiphilic character, compound 1 is not
present in the monomeric form but as nanoaggregates ca.
180 nm in diameter with a polydispersity index (PI) of ca. 0.4
(inset Figure 1A). This means the sample has a moderate range
of particle sizes, however suitable for drug delivery applica-
tions.

Figure 1B shows the fluorescence emission spectra of a water
solution of 1. Similar to the absorption, the spectrum is also in
line with the typical emission of the ABF fluorophore, with a
maximum of ca. 550 nm [62-64]. Despite this spectral simi-
larity, the fluorescence quantum yield of 1 was lower than that
reported for the isolated ABF [55-59,62-64] chromophore,
being ®¢ = 0.02. Besides, the fluorescence lifetime was shorter
than that of the ABF chromophore, showing a dominant compo-
nent (relative amplitude ca. 93%) with T ca. 0.8 ns (inset
Figure 1B). These emission features account for some self-
quenching phenomena due to the aggregation of 1. The aggre-
gates of 1 were quite stable at room temperature for at least
48 h, as evidenced by the unaltered values of the hydrodynamic
diameter and the unchanged absorption and emission features

over this time window.

Cytotoxicity and cell targeting properties of 1

The effects of the nanoassembly of 1 on cell viability were eval-
uated on healthy HuDe cells, a primary dermal human cell line,
and on tumor MCF?7 cells, a breast adenocarcinoma cell line, by
MTS assay. Dose-response experiments were performed. Cells
were incubated with increasing concentrations of 1 (0.25, 0.5,
1.0, 3.1, and 6.2 uM) for 24 h. As shown in Figure 2A,B, no
cytotoxic effect was observed for any of the tested concentra-

tions up to 6.2 pM.

The four choline ligands of 1 are arranged on the same side with
respect to the mean molecular plane. Their cationic nature is ex-
pected to reduce their steric hindrance, avoiding self-encapsula-
tion in the calixarene cavity and keeping them inclined to bind
specific choline transporter-positive cells overexpressed in
tumoral cells [53,65].

To verify if the choline motifs confer to 1 the capability to
penetrate selectively choline-positive cells, cellular uptake ex-
periments were performed on tumoral MCF-7 cells and non-
malignant dermal HuDe cells, whose different transporter
expression level was confirmed by Wester blotting assay
(Figure S10, Supporting Information File 1). Based on the cyto-
toxicity results, the cells were treated with a non-toxic amount
of compound 1 (0.5 pM) for 1 h at 37 °C (see Experimental
section). As shown in Figure 2C,D, no fluorescence was
detected in HuDe cells, while in MCF7 cells we observed an
evident, intense diffuse fluorescence at the cytoplasmatic level.
The uptake only in tumor cells suggests the nanoassembly of 1
as a potential new agent for selective tumor cell imaging and
nanocarrier for tumor cell-targeted drug delivery while sparing
normal cells, an essential requirement for a more effective, safe,
and precise medicine.

Host—guest supramolecular complex and NO
photorelease

The NOPD 2 is totally insoluble in water. For sake of clarity,
Figure 3A shows its absorption spectrum in methanol/water
(1:1) and, for comparison, that of its non-nitrosated derivative
2b. Both compounds exhibit similar molar absorptivity, but the
absorption maximum of 2 is by almost 100 nm blue-shifted due
to the loss of the push—pull character of the nitroaniline

chromophore. Irradiation of 2 with blue light at Aexe = 420 nm
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Figure 2: Cell viability effects and cellular uptake of the nanoassembly of 1 (0.5 pM) in HuDe cells (A, C) and MCF7 cells (B, D). Green:

nanoassembly of 1; blue: DAPI stain to visualize nuclei. Scale bar = 50 pm.
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Figure 3: (A) Absorption spectra of NOPD 2 (a) and the non-nitrosated analogue 2b (b) in water. (B) Absorption spectral changes observed upon
exposure of an air-equilibrated NOPD 2 (100 pM) solution at Agxc = 420 nm after 0, 6, 11, 20, 30, 40, 60, 80, 100, 130, and 160 min.

leads to the bleaching of the main absorption band at 290 nm
and the formation of a new absorption at ca. 400 nm accompa-
nied by the formation of clear isosbestic points (Figure 3B).
This photobehaviour accounts well for the loss of NO and the
formation of the non-nitrosated 2b as stable photoproduct (inset
Figure 3B), in according to what we have recently reported for
an NOPD based on the same chromophoric motif [61]. The
quantum yield related to the NO photorelease process was
calculated to be ®np = 4.5 x 1073, identical to that recently re-

ported for a similar compound bearing a C8 alkyl chain instead

of a C4 under the same experimental conditions [61].

The NOPD 2 can be entrapped in the nanoassemblies of 1 in
water by a simple and reproducible protocol (see Experimental
section) to give a clear colloidal solution. This was confirmed
by the appearance of the typical, intense absorption of 2 in the
region below 350 nm (Figure 4A). The amount of 2 loaded was

ca. 40 pM, corresponding to an encapsulation efficiency of
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Figure 4: (A) Absorption spectrum of the supramolecular complex 1-2 in water; [1] = 50 uM; [2] = 40 uM. The inset shows the size distribution of the
same solution of 1-2 obtained by DLS. (B) Fluorescence emission spectrum, Agxc = 467 nm, of 1-2 as in (A). The inset shows the fluorescence decay
and the related fitting of the same solution recorded at Agyc = 455 nm and A g, = 550 nm. T =25 °C.

ca. 93%. Note that the encapsulation process does not signifi-
cantly change the hydrodynamic diameter of the supramolecu-
lar nanoassembly, which resulted in ca. 150 nm with a PI of ca.
0.3 (inset Figure 4A). The supramolecular construct 1:2 was
stable for days, and its formation and stability can be reason-
ably attributed to both hydrophobic and stacking interactions
between the aliphatic chains and the aromatic regions of the
host and guest components. Encapsulation of 2 within the
calixarene network did not change the shape and position of the
emission spectrum arising from the ABF chromophore
(Figure 4B), but significantly reduced the values of the @ and
T, being ca. 0.004 and ca. 0.4 ns (relative amplitude ca. 90%)
(inset Figure 4B), respectively.

The NOPD 2 does not absorb green light (see Figure 3A) and,
therefore, is unreactive to this excitation wavelength. However,
irradiation of the 1:2 supramolecular complex leads to a photo-
chemical transformation characterized by the increase of the
typical absorption of the non-nitrosated derivative 2b
(Figure 5A). In parallel, a restoration of the fluorescence emis-
sion reaching a value of @y similar to that observed in the
absence of 2, was noted upon photolysis (Figure 5B). These
findings account well for the photorelease of NO stimulated by
green light. This was unambiguously confirmed by the direct
amperometric detection of this radical species through an ultra-
sensitive NO electrode while alternating cycles of light/dark.
Figure 5C shows that the NO generation is achieved exclusive-
ly upon green light excitation of the nanoassembly and stops
once the irradiation source is switched off. The quantum yield
related to the NO photorelease processes was calculated to be
®no ~ 4 x 1073 which is basically the same value observed by

direct excitation of 2 with blue light (see above).

Since the ABF chromophore is the only antenna absorbing
green light, these results account for a photosensitization
process involving this chromophore and the encapsulated 2. As
far as the mechanism of this process is concerned, both
singlet—singlet and triplet—triplet energy transfers are ruled out
based on the following. Based on the absorption spectra of the
ABF and 2, the lowest singlet state of ABF can be estimated to
be several kcal-mol™! lower than that of 2. This makes, of
course, a potential singlet—singlet energy transfer highly endoer-
gonic. In contrast, the triplet state of the ABF chromophore is
well known to not be populated unless in cyclohexane [66],
making any triplet—triplet energy transfer impossible. Accord-
ing to what was already proposed for the same chromophoric
motif of 2 covalently linked to visible light-absorbing antennas
[67-69] and other nitroso-derivatives encapsulated within supra-
molecular reactors [51,52], we believe that the photosensitiza-
tion process might involve a photoinduced electron transfer.
Either reductive or oxidative pathways usually lead to NO loss
and the concomitant formation of an anlinyl radical intermedi-
ate, which evolves to the stable photoproduct 2b after H
transfer. In our case, such a process involves mainly the lowest
singlet state of ABF. This hypothesis is supported well by the
reduction of the values of ®¢ and T as a result of the photosensi-
tization process competitive with the fluorescence emission.

Conclusion

In summary, we have designed and synthesized a multifunc-
tional calix[4]arene, which self-assembles into nanoaggregates
in water medium, which are able to selectively internalize in
cancer cells due to the specific choline ligands and can be
tracked therein thanks to the green light emitter component.

This unit also acts as a suitable green-light-harvesting antenna
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Figure 5: (A) Absorption spectral changes observed upon exposure of
a solution of the supramolecular complex 1-2 in water at Agyc = 532 nm
for time intervals from 0 to 300 min; [1] = 50 uM; [2] = 40 uM. The
arrows indicate the course of the spectral profile with the illumination
time. The inset shows the difference absorbance changes at A =

390 nm. (B) Evolution of the fluorescence emission spectra corre-
sponding to the sample as in (A) and recorded at Agyc = 467 nm (isos-
bestic point). The inset shows the fluorescence emission intensity
monitored at 560 nm. (C) NO release profiles observed for air-equili-
brated solutions of the supramolecular complex 1-2 (a) and the host 1
alone (b) upon alternate cycles of green light irradiation at Agyc =

532 nm. [1] = 50 pM; [2] =40 pM. T = 25 °C.

encouraging the NO release from a supramolecularly encapsu-
lated water insoluble NOPD, otherwise activatable by blue

light, through a photosensitization process leading to an

Beilstein J. Nanotechnol. 2025, 16, 1003-1013.

improvement of more than 100 nm towards biocompatible exci-
tation wavelengths. Studies on the biological effects of the

photoreleased NO are currently in progress.

Experimental

Chemicals
All chemicals were purchased from Sigma-Aldrich and used as
received. Organic solvents were removed under reduced pres-
sure at 35 °C. Synthetic-purity solvents were used. All solvents
used for the spectrophotometric studies were spectrophoto-
metric grade.

Sample preparation

Stock solutions of the NOPD 2 in MeOH were utilized, and the
solvent was evaporated under reduced pressure at 35 °C. The
resulting film was rehydrated with an aqueous solution of 1
(50 uM) by stirring overnight at room temperature. The final
solution was left to equilibrate and filtered. Encapsulation effi-
ciency (EE %) was calculated using the formula

EE % = (W /W; )-100,

where Wiy is the amount of guest in the nanoassembly and W; is
the total amount of guest added initially during preparation.

Instrumentation

1D and 2D NMR spectra were recorded on Varian UNITY
Inova at 500 MHz and Bruker 400™ spectrometers. Chemical
shifts (d) are given in parts per million (ppm), and the coupling
constants (J) are given in Hz. The following abbreviations are
used to designate peak multiplicity: s = singlet, bs = broad
singlet, d = doublet, dd = doublet of doublets, t = triplet, q =
quartet, quint = quintuplet, and m = multiplet.

Flash column chromatography was performed on silica gel
(Merck Kieselgel 60, 230—400 mesh ASTM). The progress of
the reactions was followed by thin layer chromatography (TLC)

on 5 X 20 cm plates with a layer thickness of 0.2 mm.

UV-vis spectra were recorded with a Jasco V-560 spectropho-
tometer using quartz cuvettes with an optical path length of
1 cm. Fluorescence emission spectra were recorded with a Spex
Fluorolog-2 (mod. F-111) spectrofluorimeter using quartz

cuvettes with an optical path length of 1 cm.

Fluorescence lifetimes were recorded with the same fluorimeter
equipped with a TCSPC Triple Illuminator. The samples were
irradiated by a pulsed diode excitation source Nanoled at
455 nm. The kinetics were monitored at 550 nm, and each solu-

tion itself was used to register the prompt at 455 nm. The
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system allowed for measurements of fluorescence lifetimes
from 200 ps. The multiexponential fit of the fluorescence decay

was obtained using the following equation:
1(t)=> o exp(~t/1;).

Dynamic light scattering measurements were performed on a
ZetaSizer NanoZS90 (Malvern Instrument, UK), equipped with
a 633 nm laser, at a scattering angle of 90° and at 25 °C.

In a manner analogous to [70], photolysis experiments were
performed by irradiating the samples in solution in a ther-
mostated quartz cell (1 cm pathlength, 3 mL capacity) under
gentle stirring, by using a blue-light-emitting diode (Aexe =
415-420 nm) having an irradiance on the samples of ca.
60 mW-cm™! or with a green laser (Aexe = 532 nm, 200 mW).
Direct monitoring of NO release in solution was performed by
amperometric detection with a World Precision Instrument,
ISO-NO meter, equipped with a data acquisition system, and
based on direct amperometric detection of NO with a short
response time (<5 s) and sensitivity range from 1 nM to 20 mM.
The analog signal was digitalized with a four-channel recording
system and transferred to a computer. The sensor was accu-
rately calibrated by mixing standard solutions of NaNO, with
0.1 M H,SO4 and 0.1 M KI according to the reaction:

4H" +2I" +2NO; — 2H,0+2NO+1,.

Irradiation was performed in a thermostated quartz cell (1 cm
path length, 3 mL capacity, 25 °C) by using the above
mentioned green laser (Aexc = 532 nm, 200 mW). NO measure-
ments were carried out under stirring with the electrode posi-
tioned outside the light path to avoid NO signal artifacts due to
photoelectric interference on the ISO-NO electrode.

Fluorescence and photodecomposition
quantum yields

In a manner analogous to [71], fluorescence quantum yields
were determined using optically matched solutions at the excita-
tion wavelength of compounds 1 and its complex with 2, and
fluorescein in acid ethanol (®f = 0.78) [72] as a standard
through the following equation:

P =Py (’”2/ Iy ny )

where @y is the fluorescence quantum yield of the standard, /
and I are the areas of the fluorescence spectra of the com-
pounds and standard, respectively, and n and n) are the refrac-

tion indices of the solvents used for compounds and standard.

Beilstein J. Nanotechnol. 2025, 16, 1003-1013.

Absorbance at the excitation wavelength was less than 0.1 in all

cases.

Photodecomposition quantum yields ®Ng were determined
within the 20% transformation by using the following equation:

® =[NOPD]-¥/r-(1-107)-1,

where [NOPD] is the concentration of phototransformed 2, V is
the volume of the irradiated sample, 7 is the irradiation time, A
is the absorbance of the sample at the excitation wavelength,
and [ is the intensity of the excitation light source. The concen-
tration of the phototransformed 2 was determined spectrophoto-
metrically by taking into account the absorption changes at 290
and 400 nm, and Agygg = 8500 M~l.cm™! and Aeqog =
9600 M~!.cm™, respectively. I was calculated by potassium
ferrioxalate actinometry.

Cell culture

Primary dermal human cell line HuDe cells (BS PRC 41) were
purchased from the Istituto Zooprofilattico Sperimentale of
Lombardy and Emilia Romagna (Brescia, Italy) and maintained
in culture with DMEM medium (Gibco, Life Technologies),
supplemented with heat-inactivated 10% fetal bovine serum
(FBS, Gibco, Life Technologies) and 1% antibiotic (penicillin
100 U/mL, streptomycin sulfate 100 mg/mL, Invitrogen). Cells
of the human breast adenocarcinoma cell line MCF-7 were ob-
tained from ATCC (HTB-22™, Rockville, MD, USA) and were
cultured in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% heat-inactivated FBS (Gibco, Life
Technologies), 2 mM L-glutamine, 100 U/mL penicillin, and
100 pg/mL streptomycin. Cells were grown as a monolayer at
37 °C under a controlled humidified atmosphere containing 5%
CO,.

MTS assay

Cell viability assays (MTS) were performed using the CellTiter
Aqueous OneSolution kit (Promega, Madison, WI, USA) ac-
cording to the manufacturer’s protocol. Cells (10 x 103) were
seeded into 96-well plates and incubated at 37 °C and 5% CO,
for 24 h. Then, cells were treated with increased doses of the
nanoassembly of 1, and after 24 h MTS assays were performed.
Cell viability data are expressed as a percentage of the absor-
bance measured in the control cells, and values expressed as
mean * SD of two separate experiments, each performed in trip-
licate.

Cellular uptake of the nanoassembly of 1

HuDe cells (1 x 10) and MCF7 cells (2 x 10%) were plated in

complete medium on coverslips placed in a 12-well plate. After
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24 h, cells were incubated in complete medium supplied with 1
(0.5 uM). The incubation was carried out at 37 °C for 1 h. Cells
were then washed thrice with PBS, fixed in 4% paraformalde-
hyde, and processed for immunofluorescence analysis. Images
were acquired and collected at 20X magnification using an
Olympus fluorescent microscope (Olimpus Evident iX3) at
selected channels: GFP channel, emission wavelength 508 nm,
excitation wavelength 470 nm and DAPI channel, emission

wavelength 455 nm, excitation wavelength 345 nm.

Supporting Information

Supporting Information File 1

Synthetic procedures and NMR spectra of the synthesized
compounds and Western blotting assay.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-16-75-S1.pdf]
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