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Abstract
The Gauss neuron is a nonlinear signal converter, whose transfer function (TF) is described by the derivative of some sigmoidal de-
pendence. A superconducting Gauss neuron can be implemented as a two-junction interferometer shunted symmetrically by an ad-
ditional inductance. This work analyzes three cases of asymmetry that can occur in the experimental samples of Gauss neurons, that
is, unequal critical currents of the interferometer’s Josephson junctions, asymmetric inductive shunting, and asymmetry of the input
signal supply. We illustrate the modifications in equations and the shape of the TF compared to the symmetric case. The analysis
performed provides an explanation for the key features observed in a previously conducted experiment.
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Introduction
Over the past decade, artificial neural networks have demon-
strated their effectiveness and versatility in tasks related to pro-
cessing large volumes of data, prediction, pattern recognition,
and image and video generation. The increasing number of
tasks and the growing volume of processed information high-
light the relevance of using superconducting elements, which
offer the advantages of high clock frequency and energy effi-
ciency [1,2]. Studies [3-6] describe neuromorphic elements

based on superconducting interferometers that emulate the
signal response of biological neurons in various real-world
scenarios. In [1,7-15], adiabatic neuromorphic interferometers
were presented, whose energy consumption can be reduced to
the fundamental limit of kT·ln 2 [16]. These devices contain one
or two Josephson junctions (JJs) enclosed in a superconducting
loop with three inductive elements. Such devices’ design is
much simpler than that of a neuromorphic CMOS element, that
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contains about 20 transistors per cell [7,8], which also speaks in
favor of superconducting neuromorphic devices.

The subject of this study is the Gauss neuron [1,7-9,11,12,14],
schematically depicted in Figure 1. It consists of three arms
connected at a common point O and grounded to a shared elec-
trode (Gnd). Two arms (“Josephson” or “input” ones) each
contain a Josephson junction JJA,B and an inductance LA,B,
which is also used for receiving input signal. It is assumed that
the input arms of the neuron are identical, including equal sensi-
tivity to the input signal. These arms form the two-junction
interferometer, and each of them is shunted by the third (output)
arm. The latter consists of an inductive element Lout, which
generates a magnetic flux Φout = LoutIout when a current Iout
flows through it (currents in the input arms are denoted as IA,B
in Figure 1). The input signal of the neuron is the magnetic flux
Φin, created using a control line (CL, shown as a dashed line in
Figure 1), an external solenoid, or another method. An addition-
al magnetic flux Φb is also introduced into the neuron, influ-
encing the shape of the neuron’s transfer function (TF)
[1,12,14].

Figure 1: Schematic representation of a Gauss neuron, adapted from
[14] (see details in the text).

When developing experimental superconducting neurons
[17,18], it is essential to understand how the TF transforms
when certain basic assumptions are violated. This can be impor-
tant for improving device design and diagnosing potential
faults. In this work, we consider three possible violations of the
equivalence principle (“symmetry”) of the input arms of the
Gauss neuron. The most expected violation is the imbalance of
the critical currents of the JJs, i.e., IcA ≠ IcB. Indeed, during the
fabrication of Josephson devices, variations in critical currents
of around 5% are observed, even among leading manufacturers
[19]. We will refer to this violation as Josephson asymmetry (it

can also be called critical current asymmetry or Josephson
inductance asymmetry). Another possible violation involves
asymmetry in the input arm inductances with LA ≠ LB. This
asymmetry may be referred to as “inductive” or “geometric” as
it arises from differences in the shape of the input arms due to,
for example, defects in the thin-film structure. The third type of
asymmetry may be associated with unequal signal supply into
the input arms of the neuron. Below, we analyze the transfor-
mation of the TF in each of these cases and compare it with ex-
perimental results [18].

Symmetric Gauss Neuron
For clarity and systematic exposition, let us first consider the
case of a symmetric Gauss neuron [8,12,14]. The equations of
state consist of Kirchhoff’s law in the node O (Equation 1) and
two phase balance equations in the partial loops of the neuron:

(1)

(2)

(3)

Here, φA,B is the phase difference across the junctions JJA,B,
IcA,B are the critical currents, and Φ0 is the magnetic flux quan-
tum. Equation 2 is written for the left input loop, consisting of
the left input and output arms (see Figure 1); Equation 3 is for
the loop consisting of the right input and output arms (right
input loop). The positive directions of currents (indicated by
arrows in Figure 1) and the directions of loop traversal (counter-
clockwise and clockwise for the left and right loops, respective-
ly) are chosen according to [14]. The phase balance equation for
the full input loop, consisting of both input arms, is obtained by
subtracting Equation 2–Equation 3. The symmetric case
assumes LA = LB = L and IcA = IcB = Ic.

The next step is to adopt dimensionless units: the magnetic flux
is normalized by Φ0/2π, the current is normalized by the criti-
cal current Ic, and the inductance is normalized by the
Josephson inductance LJ = Φ0/2πIc. Thus,

(4)

(5)

The normalized system of equations takes the form [14]:

(6)
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(7)

(8)

By solving this system for the input and output fluxes, we
obtain the TF of the Gauss neuron ϕout(ϕin), which can be
written as a two-parameter dependence:

(9)

(10)

(11)

Equation 10 and Equation 9 are derived as the sum and the
difference of Equation 7 and Equation 8, respectively.
Equation 11 is obtained by substituting Equation 10 into Equa-
tion 6 to eliminate the output signal ϕout. By using the common
method of introducing half-sum and half-difference of phases
[1,8,9,12,14], φ+ = (φA + φB)/2, φ− = (φB − φA)/2, the system of
Equation 10 and Equation 11 can be represented as:

(12)

(13)

(14)

where, for brevity, we have introduced the notation g± =
sinφ±cosφ∓. Equation 12 and Equation 13 determine the depen-
dence of the input and output fluxes on the parameters φ±, while
Equation 14 links these parameters. One may also note the
linear relationship between the output signal and the mean
phase φ+ according to Equation 13.

The TF (Equation 12–Equation 14) is obviously periodic with
respect to ϕin. Within the first period, the TF of the Gauss
neuron represents a symmetric bell-shaped curve that “rests” on
a horizontal line (Figure 2a). The symmetry of the TF allows for
the use of such neurons in radial basis function networks [20],
with the position of the baseline being taken as the zero value of
the TF when designing neural networks based on this element.
This value can be determined from the system of
Equation 12–Equation 14 as the value of ϕout at zero ϕin. By

Figure 2: (a) Transfer function of the symmetric Gauss neuron accord-
ing to Equation 12–Equation 14 for l = 0.29, lout = 0.48, and
ϕb = 0.155π. The calculation parameters correspond to the experimen-
tal work [18]. (b) Dependence of the baseline ϕout(0) on the bias flux
ϕb for the same sample (solid black line). The red dashed line shows
the linear approximation of the central part of the dependence (see
discussions in Sections Symmetric Gauss Neuron and Results (C)).
The black dashed line shows the secondary solution that does not
provide a bell-shaped response.

symmetry, we obtain φ− = 0 according to Equation 12 and

(15)

according to Equation 13 and Equation 14. The solution of this
transcendental equation can be represented as a parameterized
integral [8]:

(16)

where θ(x) is the Heaviside step function. The numerical solu-
tion of Equation 15 is shown in Figure 2b. The solution is
2π-periodic, and the dashed black line depicts the secondary
branch of the solution that does not allow for a bell-shaped TF
and cannot be obtained from Equation 16. Such a solution
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appears for sufficiently large ϕb when (l + 2lout) > 1. The calcu-
lation parameters correspond to the experimental sample inves-
tigated in our previous work [18]. It can be seen that in a suffi-
ciently wide range, the graph is close to linear: deviations from
the linear approximation are observed only for sufficiently large

.

Results
A. Josephson asymmetry
Now, let us assume that, for whatever reason, the critical
currents of the neuron’s JJs have become unequal, IcA ≠ IcB.
First of all, a difficulty arises when introducing dimensionless
parameters in the system of Equation 1–Equation 3 as it is
unclear which value of IcA,B should be used for normalization
in Equation 5. We begin by normalizing the magnetic flux and
dividing Equation 2 and Equation 3 (which have the corre-
sponding dimensions) by the quantity Φ0/2π. They will immedi-
ately take the normalized form (similar to Equation 7 and Equa-
tion 8) if we define

(17)

Thus, it can be said that in the case of Josephson asymmetry,
the system of Equation 1–Equation 3 allows for the normaliza-
tion of the inductances of the input arms to individual
Josephson inductances . Note that the quantities lA,B can
also be introduced in Equation 1. To do this, we multiply it by
the inductance L and notice that LIcA,BsinφA,B are the magnetic
fluxes created by the Josephson currents in the elements LA,B.
Therefore, the resulting equation should also be divided by the
unit of magnetic flux Φ0/2π. The normalized system of equa-
tions thus takes the form

(18)

(19)

(20)

where . By performing transformations similar to
those in Section Symmetric Gauss Neuron, we obtain

(21)

(22)

(23)

The transition to the half-sum and half-difference of phases in
Equation 21–Equation 23 naturally exposes the “asymmetry
angle” α according to

(24)

The normalized inductances of the arms are expressed through
the asymmetry angle as follows:

(25)

Thus, the parameter  characterizes the effective induc-
tance of the input circuit, and tanα represents the imbalance of
the critical currents. Introducing (φ+, φ−) and performing some
simple trigonometric transformations, we obtain the two-param-
eter solution in the form:

(26)

(27)

(28)

Here, for brevity, we introduce the notation .
In general, the system of Equation 26–Equation 28 resembles
the form of the solution in Equation 12–Equation 14 with the
exception of the terms containing . Equation 27 coincides
with Equation 13. This is possible because in Equation 22 and
Equation 23, the coefficients before the sine terms in the paren-
theses are the same. Josephson asymmetry leads to the replace-
ment of g+ and g− in Equation 12–Equation 14 with linear com-
binations of the g± terms, as indicated in the square brackets in
Equation 26–Equation 28. The functions of Equation 12–Equa-
tion 14 and Equation 26–Equation 28 coincide when α = π/4,
which occurs in the symmetric case IcA = IcB. The range of
variation for the parameter  is ±π/4 when, for example, IcA
changes within 0 ≤ IcA < ∞. Exceeding these limits is possible
if one of the Josephson junctions is a π-junction with a negative
sign of the current–phase relation (see, for example, [21,22]).
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The use of π-junctions in the context of developing adiabatic
Josephson logic is discussed, for example, in [23,24].

Figure 3 shows the calculated TF for different cases of
Josephson asymmetry. The calculation parameters ( , lB, ϕb)
were chosen according to the experimental work in [18]. It is
assumed that the parameter IcA changes while IcB remains con-
stant. It can be seen that as tanα increases, the curve becomes
asymmetric, that is, the left part becomes flatter, and the right
one steeper (Figure 3a). For sufficiently large asymmetry
(  for the parameters in Figure 3a), the transfer func-
tion becomes multivalued, and hysteresis should be observed
during the experiment. In the case of reverse asymmetry
(tanα < 1), the right wing of the transfer function becomes
flatter (Figure 3b). The baseline remains horizontal (ϕout(0) =
ϕout(2π)), but it may intersect the distorted transfer function.
Note that a significant distortion of the bell-shaped transfer
function is observed when the critical currents diverge by a
factor of 1.3 or more, while an asymmetry of the order of 1.05
is unlikely to be noticeable to the naked eye. The difference be-
tween Figure 3a and Figure 3b is due to the different meaning
of zero and infinite tanα limits: the first one corresponds to the
break of the junction JJA, while the second corresponds to
shorting of the junction JJA. In the first case, the inductance lA
turns to infinity and the neuron becomes a single-junction
SQUID, whose multistability condition is . The
screening current circulates mainly in the JJB–L–Lout partial
loop. In the case of infinite tanα, the Gauss neuron becomes a
shunted single-junction interferometer (in fact, a Sigma neuron
[7]), whose multistabitity condition can be expressed as
(L + LLout/(L + Lout)) < LJ (see [13,17]). In that case, the
screening current circulates mainly in the JJA–L–Lout circuit,
which defines the side the TF is tilted to.

Characterizing the Josephson asymmetry through the ratio of
critical currents or the angle α is not the only possible approach.
Using the definitions in Equation 24 and Equation 25, we get:

(29)

where l± are defined as:

(30)

Using these definitions (and also the definition of the coeffi-
cient ), the transfer function of the Gauss neuron with
Josephson asymmetry takes the form:

Figure 3: Transfer function of the Gauss neuron according to Equa-
tion 26–Equation 28 at different values of the Josephson asymmetry
parameter tanα = IcA/IcB for tanα ≥ 1 (panel a) and tanα ≤ 1 (panel b).
The parameters are , lB = 0.29, and ϕb = 0.155π.

(31)

(32)

(33)

The form of Equation 31–Equation 33 is closest to
Equation 12–Equation 14 (the matching terms are highlighted in
square brackets). The parameter l+ characterizes the effective
inductance of the input circuit, while l− represents the imbal-
ance in the normalized inductances of the Josephson circuits.
Note the complete coincidence of Equation 13 and Equation 32,
which define the linear relationship between the output signal
and the sum phase. The influence of Josephson asymmetry
reduces to the appearance of conjugate terms of the form l−g± in
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Figure 4: Transfer function of the Gauss neuron with different inductance ratios for the receiving arms (given in the legend) at a constant value of lB in
case of increasing (panel a) or decreasing (panel b) lA.

Equation 12 and Equation 14. The transition to the symmetric
case occurs when lA = lB = l+, l− = 0.

B. Inductive asymmetry
Now let us consider the case of asymmetry in the self-induc-
tances LA ≠ LB (“inductive asymmetry”). We will assume that
the Josephson inductances are the same: . This
allows us to apply the standard normalization of the induc-
tances of the Gauss neuron elements described in Section Sym-
metric Gauss Neuron. The normalized equations of the states
described in Equation 1–Equation 3 take the form

(34)

(35)

(36)

It differs from the “symmetric” system (Equation 6–Equation 8)
only by the different values of inductances lA and lB in Equa-
tion 35 and Equation 36. By adding and subtracting Equation 35
and Equation 36, we obtain the system of equations in the
following form:

(37)

(38)

(39)

A transition to phases φ+ and φ− is hindered by the fact that the
coefficients in front of the Josephson currents sinφA,B in Equa-
tion 39 differ from the coefficients in Equation 37 and Equa-
tion 38 (unlike in the system of Equation 21–Equation 23). In
this case, using the asymmetry angle appears unreasonable. By
introducing the quantities l± according to the definition in Equa-
tion 30, we obtain the following system after simple transfor-
mations:

(40)

(41)

(42)

The terms inside square brackets are those present in the “sym-
metric” system (Equation 12–Equation 14). Note that in the
case of inductive asymmetry, the linear relationship between
ϕout and φ+ is not preserved (unlike in the Josephson asym-
metry case). The condition relating the parameters of the phase
differences φ± is also different (compared to the system of
Equation 31–Equation 33). The symmetric case is obtained
when lA = lB = l+, and l− = 0.

Figure 4 shows the family of transfer functions for different
values of lA/lB. The calculation parameters (lB, lout, ϕb) corre-
spond to the sample studied experimentally in [18]. It is
assumed that LA changes while LB remains constant. As in the
previous section, inductive asymmetry causes a tilt of the
transfer function, bending one wing of the transfer function and
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widening the other. As lA/lB increases, the distortion of the
transfer function increases (Figure 4a), which leads to its multi-
valuedness (and hence to hysteresis). This is related to the
increase in the inductance of the overall receiving circuit 2l+ as
lA increases. The opposite change (reducing lA while keeping lB
constant) weakly affects the shape of the transfer function,
mainly leading to a slight distortion of the right half of the
graph (Figure 4b). The difference between Figure 4a and
Figure 4b can be understood by analogy with Josephson asym-
metry. Note that all the distortions in Figure 3 and Figure 4
have slightly different shapes, which allows them to be distin-
guished during the initial analysis of experimental data.

In recent years, a number of superconducting devices have been
proposed based on very thin superconducting films whose
kinetic inductance may be comparable to the magnetic one
[11,25,26]. Indeed, the inductance of a superconducting film
carrying an electric current consists of two components,
namely, the magnetic inductance (originating from the magnet-
ic field energy) and the kinetic inductance (originating from the
kinetic energy of the superconducting electrons). Should one
want to account for the kinetic inductance, the initial
Equation 1–Equation 3 remain unchanged, as it is the total
inductance value that determines the phase balance conditions
in Equation 2 and Equation 3. However, the value of ϕout in
Equation 13 has then the meaning of the phase difference across
the output arm, which cannot be directly measured in an experi-
ment. The measurable output signal is defined only by the com-
ponent of ϕout that originates from the magnetic flux generated
by the output current Iout. To account for this, one can simply
rescale ϕout in Equation 2 and Equation 3 by the factor

, where  is the magnetic part of total inductance
Lout. Therefore, the use of ultrathin superconducting films is not
a promising approach for implementing a superconducting
Gauss neuron.

C. Input asymmetry
One more possible type of asymmetry is related to the unequal
input signal supply to the neuron’s receiving arms. To parame-
terize this asymmetry, we introduce the parameter t, such that
the magnetic fluxes in the left and right partial loops of the
neuron are (1 ± t)Φin. Then the total flux in the neuron is 2Φin
(as in previous sections), and  is simply the half-sum
of the input fluxes in the partial loops. The imbalance (half-
difference) of the input fluxes is the asymmetry term

. In a practical situation, the magnetic flux is
supplied into the neuron via a CL, inductively coupled to the
receiving elements in some manner. Therefore, input asym-
metry effectively means that the mutual inductances  be-
tween the CL and the Josephson arms of the neuron are differ-
ent. In this case, we can express the coefficient t through these

inductances. Writing the input fluxes in the partial loops as
 (where ICL is the current in the CL), we get

(43)

Let us assume that the arms of the neuron are symmetric,
meaning that there is no inductive or Josephson asymmetry.
Then, the system of equations of state for the Gauss neuron in
the standard normalization can be written as

(44)

(45)

(46)

Upon transformations analogous to those made in Section Sym-
metric Gauss Neuron, the first equation of the new system
(compare with the system of Equation 12–Equation 14) remains
unchanged. The other two acquire new terms proportional to the
asymmetry term tϕin:

(47)

(48)

(49)

One may note the mixing of the asymmetry term to the output
flux according to Equation 47–Equation 49. If t = 0, the system
of Equation 47–Equation 49 transforms into Equation 12–Equa-
tion 14.

The TF plots for different values of the asymmetry parameter t
are shown in Figure 5. The calculation parameters (l, lout, ϕb)
correspond to the sample studied experimentally in [18]. For
t = 0, the TF is a (blue) bell on a horizontal baseline, as demon-
strated in Section Symmetric Gauss Neuron. However, for non-
zero t, the baseline becomes slanted and the transfer function
essentially acquires a “linear component”. This behavior can be
understood by noticing that the input signal is essentially
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Figure 5: Transfer function of the neuron according to Equation 47–Equation 49 with different imbalance coefficients of the input signal t (positive on
panel a and negative on panel b). Dashed lines represent the asymptotic baselines.

“mixed” into the bias flux: to obtain Equation 47–Equation 49
from Equation 12–Equation 14, one should make a substitution
ϕb→ϕb − tϕin. This can be seen in Equation 44–Equation 46 by
moving the asymmetry terms to the right-hand side. In other
words, when ϕin is swept in the positive direction, the effective
bias flux  (which determines the imbalance of the
magnetic flux in the receiving loops ofthe Gauss neuron)
decreases for t > 0. The decrease in , in turn, leads to a shift
in the TF’s baseline value linearly with  (Figure 2b) for suffi-
ciently small . Linearity requires correspondingly small t
(  for Figure 5) since within one period of the input
signal, the shift of ϕb reaches 2πt.

The increase in the slope of the baseline as t grows (in absolute
value) makes the left branch of the transfer function (ϕin ≤ 0.5)
flatter, and the right branch (ϕin ≥ 0.5) steeper. As t increases,
the right branch becomes vertical, and at t ≈ 0.13, the transfer
function becomes hysteretic (see the red curve in Figure 5a).
The slope of the linear component is inverted when the sign of t
is changed (Figure 5b).

Discussion
All the asymmetry types considered are “independent”,
meaning they cannot be reduced to one another through alge-
braic transformations. This statement is evident for input asym-
metry, which leads to a slope of the baseline, unlike the other
two cases. As for Josephson and inductive asymmetries, the
corresponding equations of state (Equation 18–Equation 20 and
Equation 34–Equation 36) differ only in the form of the first
equation in the system (which originates from Kirchhoff’s law)
and can be reduced to a common form only in the case lA = lB
(that is, for a symmetric Gauss neuron). Moreover, the three
types of symmetry breaking for the Gauss neuron presented

here exhaust the list of possible asymmetries of its arms.
Indeed, each receiving arm of the Gauss neuron (Figure 6) is
formed by two elements (a JJ and an inductance) and is charac-
terized by three quantities, namely, its own (geometric) induc-
tance, the critical current of the JJ (Josephson inductance), and
the sensitivity to the input signal (i.e., mutual inductance with
the CL). The fluxes ϕout and ϕb cannot be a direct source of
asymmetry in our model, since they are generated through a
single element Lout, common to both receiving loops. Neverthe-
less, Lout can lead to an effective asymmetry of the input signal
supply, as will be shown below.

Let us try to apply the results obtained above to the experimen-
tal data presented in our work [18]. The experimental curve (see
Figure 6a) represents a flat bell over a slanted baseline, which
indicates the presence of input asymmetry. This is surprising
because both receiving areas of the Gauss neuron are identical
in shape (Figure 6b). However, the effective input asymmetry
may arise due to direct interaction of the input and readout ele-
ments (which does not involve the neuron as a non-linear
converter) as was shown in [27]. Despite the use of a supercon-
ducting screen in experiments [17,18], such an interaction can
occur due to the finite size of the screen. The interaction is
mediated by circulating currents in the screen, which may be
non-zero even at a significant distance from the CL [17,28].

To take this effect into consideration, one should consider the
method of measuring the output flux Φout by stabilizing the
magnetic flux Φsq via the measuring SQUID. The latter consists
of an inductive element Lsq, closed onto a superconducting
screen through JJs JJI,II (an asymmetric two-junction SQUID,
Figure 6b). The output signal is the current in the feedback loop
of the SQUID Ifb that compensates the change in the output flux
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Figure 6: (a) Experimental transfer function of the superconducting Gauss neuron prototype according to [18]. The dashed lines show the baseline
(see discussion in Sections Symmetric Gauss Neuron and Results (C)). The inset shows the calculated TF with t = 0.2 and ϕb = 0.3π. The dashed
lines show the baseline (see discussion in Sections Symmetric Gauss Neuron and Results (C)). (b) Schematic of the structure of the studied sample.
LA,B denote receiving arms, Lout is the output arm, JJA,B are the JJs of the neuron, JJI,II are the JJs of the measuring element (i.e.,SQUID), and Lsq is
the loop of the measuring element. Different colors represent elements in different layers of the multilayer structure. Hatching indicates the areas of
inductive coupling with the input and readout elements. The boundaries of the drawing coincide with the boundaries of the superconducting screen,
shown in gray.

while sweeping Φin. In other words, the current 
represents the difference between the initial and current values
of the current flowing through the loop of the measuring ele-
ment. So, the transfer function of the experimental sample has a
somewhat different (“current”) representation compared to the
earlier proposed (“flux”) one. The relationship between Ifb and
Φout is given by

(50)

where Mout is the mutual inductance between the SQUID and
the output element. The variable Iout can be eliminated from
Equation 50 using the invariance condition for the magnetic
flux in the SQUID [17]:

(51)

After some straightforward transformations, one can obtain:

(52)

where

is the inductance of the output element renormalized due to the
interaction with the reading element [17,18,27].

Equation 52 defines the relation between “flux-type” and “cur-
rent-type” output signals. It is linear but contains three terms.
The first one illustrates a linear type of Ifb(Φout) dependence.
The second one represents a “shift term” that ensures a non-zero
value of the bias flux even if Φb = 0. This can be verified by
substituting Equation 52 into Equation 2 and Equation 3. Note
that no special signal line to provide a bias flux into output
inductance was realized in the experimental work [18], which,
however, did not prevent us from observing a noticeable output
signal. However, the effective bias is hard to control during the
experiment, so it was estimated as a fitting parameter in [18].
Finally, the third term in Equation 52 arises due to the direct
interaction between the input (CL) and readout (SQUID) ele-
ments (Equation 51). Upon substitution into Equation 2–Equa-
tion 3, the third term will cause the appearance of terms charac-
teristic of input asymmetry with t = LoutMsq/MoutMin (with

). Substituting further the values Lout = 7.2
pH, Msq = 0.1 pH, Mout = 2.7 pH, and Min = 2.4 pH given in
[17,18], we get t = 0.2. Calculations based on Equation 52 give
a similar shape of the TF (compared to Figure 6a) at ϕb = 0.3π.
Thus, experimental results correspond to the expected ones, and
a quantitative analysis shall be the subject of our subsequent
publications.

The problem with cross-talk mentioned above (i.e., screen-
mediated interaction) may become more and more severe when
one connects more neurons together. This is why the search for
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the ways to suppress the cross-talk remains one of the main
directions of the neuron’s design optimization. It is worth
noting that the expression for the t-factor implies that it is
possible to change its value by changing Lout. However, the
change of the output arm’s length is not the best way to
suppress the input asymmetry. Indeed, the unlimited decrease in
Lout is impossible at constant values of Mout as its length cannot
be smaller than the overlap region with the SQUID-sensor loop.
Therefore, the t-factor can be just increased with no practical
meaning. The most promising ways to dump the effective input
asymmetry are the increase of input mutual inductance Min and
the suppression of the screen-mediated interaction (a decrease
of the Msq value). Some methods of suppressing this interac-
tion are discussed in [26]. The simplest ones include increasing
the size of the screen and creating a reverse CL that is not
coupled to the neuron (except screen-mediated coupling) and
carries the control current in the opposite direction. Calcula-
tions show that this decreases Msq by about five times. It is also
useful to eliminate sections of the SQUID that are parallel to the
CL. This is the main direction of optimization of the Gauss
neuron design at the present time.

Conclusion
In this work, the changes in the form of the transfer function
(TF) of a Gauss neuron under various violations of the equiva-
lence condition of its receiving loops were investigated. It was
shown that the imbalance of the self or Josephson inductances
of the neuron’s receiving arms leads to a “tilt” in the TF. The
distortion of the TF shape in these cases is somewhat different,
which provides an opportunity for visual diagnostics of experi-
mental sample faults. The imbalance of the input signal results
in the tilting of the baseline, which is not observed in other
cases. Comparison with the experiment indicates the presence
of input imbalance, which can arise even in a symmetric sam-
ple design due to the direct interaction between the input and
readout elements.
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