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We present a comprehensive microscopic study of the intermediate mixed state in superconductors of the intertype (IT) regime

separating types I and II. Using fully self-consistent Bogoliubov—de Gennes calculations for a lattice model, we analyze few-vortex

configurations across the entire temperature range 0 < 7' < T.. Our results demonstrate the key features of IT superconductivity,

namely, nonmonotonic vortex interactions and formation of vortex clusters. Using results of the calculations, we construct a “tem-

perature—coupling” phase diagram that delineates distinct superconducting regimes and shows their convergence at a single Bogo-

molnyi point, consistent with earlier predictions of extended Ginzburg—Landau theory. Additionally, we identify a deep IT region of

irregular vortex configurations apparently dominated by many-body vortex effects. The results establish a fully microscopic foun-

dation for the IT superconductivity and extend its description beyond the vicinity of the critical temperature.

Introduction

The magnetic response of superconductors has long served as a
fundamental criterion for their classification into distinct types.
Traditionally, two types are recognized, namely, type I, in
which magnetic fields are completely expelled from the materi-
al (the Meissner state), and type II, with magnetic flux penetra-
tion in the form of quantized vortices forming a mixed state
[1-3]. Within the Ginzburg-Landau (GL) framework, the
boundary between these regimes is determined by the GL pa-
rameter K = Ap/EgL, where Ay is the magnetic London penetra-

tion depth and &g is Ginsburg-Landau coherence length, with

the critical value k=1 /N2 separating type-I (k < k) and
type-1I (x > ko) behavior [4].

However, experimental studies have shown that this traditional
dichotomy is incomplete even for superconductors with a single
gap function (single-band superconductors). In materials with
kgL close to kg, the magnetic flux penetrates the sample in com-
plex, irregular patterns that cannot be attributed to type-I or
type-1I behavior [5-16]. These patterns are referred to as inter-

mediate mixed state (IMS) and are characterized by the coexis-
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tence of Meissner domains and vortex clusters, chains, or frag-
mented lattices.

Initially referred to as type II/1 superconductivity [14], this
regime has since been understood as a manifestation of a more
general intertype (IT) superconductivity [17-20], which funda-
mentally extends the conventional classification. The physics of
IT superconductivity is closely related to the infinite degen-
eracy of the superconducting state at the so-called Bogomolnyi
(AB) point (xq, T.) with T, being the critical temperature [21,22].
At this point, the surface energy between the superconducting
and normal phases vanishes, allowing for a continuum of
flux—condensate configurations with equal energy. Deviations
from the 9B point lift this degeneracy, creating a finite IT
domain in the (x, 7) phase diagram [17,23,24]. Within this
domain, the system supports a variety of states with close ener-
gies that feature nonuniform flux distributions and complex
vortex arrangements.

Based on the perturbation expansion of the BCS theory, also re-
ferred to as the extended Ginzburg-Landau (EGL) formalism
[23-25], it has been demonstrated that the emergence of IT be-
havior is a universal phenomenon and occurs in both single- and
multiband superconductors [17]. One of its key features is
nonmonotonic vortex—vortex interactions, which are attractive
at long and repulsive at short ranges [14]. The long-range
attraction destabilizes the regular Abrikosov lattice, promoting
the formation of vortex clusters. Subsequent studies have also
highlighted the important role of many-vortex effects, which
extend beyond simple pairwise interactions and decisively
shape IMS vortex configurations [26,27].

Despite the long-standing experimental evidence and theoreti-
cal efforts, IT superconductivity remains insufficiently
explored. This gap arises from the limitations of perturbative
approaches, which are strictly valid only in the vicinity of %
close to T.. Although higher-order expansions of the BCS
theory beyond the GL level successfully describe certain fea-
tures of the IMS, a fully microscopic description applicable
across the entire temperature range has been lacking until now.
Recent zero-temperature calculations within the Bogoliubov—de
Gennes (BdG) framework [1] have demonstrated IT behavior
by studying few-vortex configurations, revealing the coexis-
tence of repulsion and attraction that leads to vortex clustering
[28].

In this work, we extend these microscopic BdG calculations to
the entire temperature range 0 < 7 < T, and investigate the
evolution of few-vortex states as the system changes between
type-1 and type-II regimes. Our results show that the key quali-

tative features of the IT superconductivity persist throughout
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this range; however, the IT domain gradually narrows as the
temperature increases, shrinking to a single point at 7. Based
on these findings, we construct a phase diagram of the IT
regime, which appears qualitatively consistent with that ob-
tained earlier from perturbation theory for the conventional
BCS model with a spherical Fermi surface.

Results and Discussion
Model and method

The vortex configurations are analyzed within a microscopic
lattice model of a superconductor described by the attractive
Hubbard Hamiltonian:

~ 4 o
H= 2 1ol io =82 iy, (1)
(.o i

where C;g (ch) are the annihilation (creation) operator for an
electron with spin o at site i, 7,5 = ELE[G is the electron number
operator, £;; = —1 is the nearest-neighbor hopping amplitude, and
g > 0 denotes the onsite attraction strength. An external mag-
netic field is incorporated via the Peierls substitution in the
hopping matrix elements as

T
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where A(r) is the vector potential associated with the magnetic
field B =V x A.

Within the mean-field approximation, the superconducting state

is determined by solving the BdG equations [1,29]:

Z[tij +(Ui _M)Si]} u; +A;v; = Eu;,
J

J

3

where u; and v; are the particle and hole components of the
quasiparticle wave function, and p is the chemical potential.
The superconducting gap A; and Hartree—Fock potential U; are

obtained self-consistently from
E
A; = U™y tanh | =1 |,
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where 7 labels the BdG eigenstates, and f(E) is the Fermi—Dirac
distribution function. The electron density

-

2
N0

(n)

J(En)+

10|

is kept constant at n, = 0.25 throughout all calculations by
adjusting the chemical potential p. Notice that the system is
well away from the resonance at n, = 1 and, at the chosen value,
the electronic dispersion is well approximated by a quadratic

dependence.

The BdG equations are coupled self-consistently to the magnet-
ic field through the Ampere—Maxwell law, expressed in the

Biot—Savart form for the induced vector potential Aj,q4:

md

J'J(r A) 3y

||r r|| ©)

The total vector potential is A = Ay + Aj,q, Where A corre-
sponds to the uniform external field. The current density j,
defined on the links between neighboring sites i and j, is given
by

MG

]}j ©

where the Peierls phase in #;; ensures coupling to the magnetic
field. The coupled system of Equation 3—Equation 6 is solved
self-consistently using an iterative algorithm developed in
[28,30].

The calculations are performed for a 3D slab geometry, finite in
the xy-plane with size N X N and infinite along the z-axis. The
magnetic field B = (0,0,B) is applied along the z-axis, rendering
the problem effectively 2D, except for the Biot—Savart equation

(Equation 5), where the integral remains 3D.

In the calculations we set u,v = 0 at the boundaries of the system
often referred to as “open boundary conditions”. We consider a
sample with the relatively small linear size of N = 31 due to the
high computational cost of achieving convergence with respect
to both the superconducting gap and the magnetic field. Howev-
er, this length exceeds the characteristic superconducting coher-
ence length, which limits the influence of the finite-size effects.
The electron density along z is absorbed into the parameters of
the BAG and Biot—Savart equations. All energies are expressed
in units of the hopping amplitude ¢, and lengths are measured in

units of the lattice constant a.
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To identify the superconductivity type, we analyze vortex con-
figurations obtained from self-consistent microscopic calcula-
tions. We focus on configurations containing three vortices,
which is sufficient to capture both vortex clustering and multi-
vortex (many-body) interaction effects while remaining compu-
tationally feasible.

Vortex configurations

The results of these calculations are presented in Figure 1 and
Figure 2, which display the minimal-energy three-vortex con-
figurations for representative values of the pairing constant g
and temperature 7. The variation of g and T modifies both the
coherence length € and the magnetic penetration depth A, and
hence their ratio k = A/E, which determines the superconduc-
tivity type. Within the GL theory, € and A share the same tem-

perature dependence, &\ o (1 — T/T,)~"/?

, making the supercon-
ductivity type temperature-independent. In contrast, micro-
scopic theory allows for distinct temperature dependencies of
these characteristic lengths, so the type of superconductivity
may vary with T. This effect is clearly visible in both Figure 1

and Figure 2.
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Figure 1: Spatial profile of the magnetic field inside the sample for the
IT/2 regime, showing three-vortex configurations computed for pairing
constants g = 3.2, 3.6, and 4.0 at temperatures T/T; = 0.1, 0.7, and
0.9, respectively. The external magnetic field is defined as H = 3d¢/N?
where @ denotes the superconducting flux quantum.

At strong coupling (g = 4.0) and high temperature (T = 0.9T,),
vortices form an equilateral triangle with maximal inter-vortex
separation, which is typical for type-II superconductivity. As
the temperature decreases to 7 = 0.17, the triangular arrange-
ment persists, but the inter-vortex distance shrinks, indicating
the appearance of a minimum in the vortex—vortex interaction

potential. This behavior indicates the coexistence of long-range
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Figure 2: Spatial profile of the magnetic field inside the sample for the
IT/1 regime, showing three-vortex configurations computed for pairing
constants g = 2.0, 2.4, and 2.8 at temperatures T/T; = 0.1, 0.5, and
0.9, respectively. The external magnetic field is defined as H = 3dg/N2,
where ®g denotes the superconducting flux quantum.

attraction with short-range repulsion, which is characteristic of
the IT superconductivity regime.

At weaker coupling (g = 3.2), the system exhibits type-I behav-
ior at high temperature: The three vortices merge into a single
giant vortex at T = 0.97.. As T decreases, this giant vortex
splits, eventually forming a compact cluster of three vortices at
T =0.1T, signaling a crossover from type-I to IT superconduc-
tivity. Notably, at T = 0.17, the vortices again arrange into an
equilateral triangle.

The case g = 3.6, shown in the middle row of Figure 1, corre-
sponds to the boundary between the two different IT regimes. In
this case, vortices form an equilateral triangle, revealing the IT
character of the vortex state at all the temperatures considered.
However, the inter-vortex separation is smaller than that for the
type-1II regime (g = 4.0, T = 0.97,), which is consistent with the
crossover behavior. Therefore, the high-temperature results
(T = 0.9T,) clearly demonstrate how decreasing g drives the
system from type-II to type-I superconductivity: Isolated
Abrikosov vortices gradually merge into a giant vortex also re-
ferred to as lamella.

Figure 2 shows results for lower coupling values (g = 2.0-2.8),
where the system approaches the type-I superconductivity
regime. At high temperature (T = 0.97), vortices coalesce into
a giant vortex for all g in this interval. For the weakest coupling
(g = 2.0), the system remains in the type-I regime at all temper-

atures. Increasing g induces a transition from type-I to IT be-
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havior upon cooling, manifested by the splitting of the giant
vortex into single Abrikosov vortices. In this case, however, the
vortex configuration becomes asymmetric: Two vortices are
closer together than the third. Similar asymmetric arrangements
have been previously reported in zero-temperature calculations
[30] and have been attributed to enhanced effects of many-body
interaction.

Phase diagram

The complete set of calculations for all values of g and T is
summarized in the phase diagram shown in Figure 3. The
diagram reveals three distinct regimes, namely, conventional
type-I and type-II superconductivity and the IT regime, where
Abrikosov vortices form nonstandard configurations.

equilibrium line

0.0 02 04 0.6

T/T.

0.8 1.0

Figure 3: Temperature—coupling (T—g) phase diagram of vortex matter
showing the transition from type | to type Il via the IT superconducting
regime. The IT type is subdivided into the IT/2 regime with the pair-
wise vortex interaction and the IT/1 regime with the many-body contri-
bution to the vortex interaction. The thin dashed line separates the
“Deep IT” region characterized by significant many-body interaction of
vortices.

The phase diagram shows that the IT regime occupies a larger
interval of coupling values g at smaller temperatures so that, at
T = 0, this interval is widest. It narrows as temperature in-
creases, disappearing in the limit 7— T, where all three super-
conductivity types, type I, type IL, and IT, meet at a single point.
This critical point has previously been discussed within the
EGL expansion of BCS theory and is called the 9% point, at
which the GL parameter takes the value k = «g. In this work, the
3B point corresponds to g = 3.6, which is indicated as the “equi-
librium” line in Figure 3. For g > 3.6, the system exhibits a
crossover between the type-II and IT regimes, while, for
g < 3.6, the crossover is between the type-I and IT regimes.
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The phase diagram in Figure 3 closely resembles that obtained
within the EGL formalism in the k—7-plane, where the GL
parameter « is related to the coupling strength g. The sequence
of regimes, type I-IT—type II, persists at all temperatures.
Thus, microscopic calculations reproduce the known topol-
ogy of superconductivity-type transitions and also extend it
beyond the near-7, regime to the entire temperature interval
0<T<T,.

We note that, at lower temperatures (7' < 0.97;), the micro-
scopic results reveal a subdivision within the IT regime: Around
g = 2.8, the vortex structure changes from equilateral triangular
arrangements (IT/2 domain) to irregular, asymmetric configura-
tions (IT/1 domain) indicating the increasing role of many-body
interactions. Similar structural changes were also observed in
perturbative analysis, though they become especially apparent
in the microscopic study of three-vortex configurations
presented here.

Conclusion

This work presents a fully microscopic analysis of the interme-
diate mixed state in IT superconductors between the type-I and
type-1I regimes. Using self-consistent Bogoliubov—de Gennes
simulations, we traced the evolution of vortex configurations
throughout the temperature range from zero temperature to criti-

cal temperature 7.

Our results demonstrate that the characteristic features of the IT
regime, such as nonmonotonic vortex—vortex interactions and
the emergence of vortex clusters, are not limited to the vicinity
of T, but persist throughout the entire range of possible temper-
atures. However, the width of the IT interval in terms of the
superconducting coupling strength decreases with increasing
temperature, eventually collapsing to a single point (Bogo-
molnyi point), where type-I and type-II superconductivity
merge.

The phase diagram constructed from the microscopic calcula-
tions provides a unified view of the superconductivity types and
their transitions for any superconducting system, conforming
and extending earlier predictions of the perturbation theory. In
particular, the results confirm the presence of a deep IT region
characterized by complex, non-pairwise vortex interactions that
lead to irregular vortex patterns. This finding emphasizes the
many-body nature of vortex matter in this regime and high-
lights the limitations of simplified models based on pairwise

interaction.

In general, this study establishes a microscopic foundation for
the IT regime in single-band superconductors and clarifies its

persistence and transformation with temperature. These insights
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open a path for future investigations of materials tuned near the
Bogomolnyi point, where unconventional vortex structures and
collective effects may play a decisive role in superconducting
behavior and functionality.
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