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Abstract
We demonstrate the validity of using closed-loop z(V) conductance scanning tunneling spectroscopy (STS) measurements for the

determination of the effective tunneling barrier by comparing them to more conventional open-loop I(z) measurements. Through the

development of a numerical model, the individual contributions to the effective tunneling barrier present in these experiments, such

as the work function and the presence of an image charge, are determined quantitatively. This opens up the possibility of deter-

mining tunneling barriers of both vacuum and molecular systems in an alternative and more detailed manner.
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Introduction
Although the scanning tunneling microscope (STM) has been

used for the topographical imaging of conductive samples since

the early 1980s [1], recent times have seen an increasing

interest in the possibilities of (semi-)quantitative analysis

offered by scanning tunneling spectroscopy (STS). STS

measurements are typically performed in a X(Y) format, where

variable Y is actively driven and the response of variable X is

measured, with all other system variables being kept constant.

Numerous types of STS techniques can be and have been

performed on a wide variety of samples, with each different

type of measurement yielding information on distinct prop-

erties of the probed sample [2].

The local density of states of a sample (LDOS) provides insight

into the electronic and chemical properties of a sample. By

making a spatial map of the LDOS, standing wave patterns and

local electron distributions can be visualized, enabling further

understanding of the exact local quantum behavior of features

on the surface [3,4]. LDOS information is typically extracted

through open-loop I(V) measurements, although recent studies

have reported on the possibility of obtaining LDOS informa-

tion by using closed-loop z(V) measurements [5-8].

Another field of interest is the determination of the work func-

tion of materials, through the use of either STS or mechanical
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break junction (MBJ) measurements. In the case of STS

measurements, perhaps the most simple method of determining

the work function is performing I(z) spectroscopy and plotting

the natural logarithm of the measured tunneling conductance G

as function of the tip–sample distance. The slope of the

obtained line is equal to the inverse decay length κ which, for

low bias voltages, is proportional to the square root of the work

function. Several papers have also been written on the validity

of applying this same method to z(V) spectroscopy measure-

ments [9-11], although no direct comparison between z(V) and

I(z) measurements was performed. Another method relies on the

observation of so-called Gundlach oscillations [12-14]. These

oscillations can be observed in I(V) and z(V) measurements, but

require the use of bias voltages that exceed the work function of

the probed sample, often necessitating bias voltages in excess of

4 V. In order to get around this restriction, recent studies have

focussed on the application of transition voltage spectroscopy

(TVS) [15-17]. By determining the bias voltage at which tradi-

tional tunneling is replaced by Fowler–Nordheim transport as a

function of the tip–sample distance, the work function can be

determined at relatively low bias voltages of about 2 V.

A potential source of error when determining the work function

in a vacuum system is the presence of image charges [18,19].

These image charges are induced by tunneling electrons and

have an attractive interaction with them, lowering the measured

effective barrier height. If one simply assumes that the effec-

tive barrier height is equal to the work function, the presence of

image charges will lead to values for  that are significantly

lower than one would expect.

Determining the tunnel behavior in molecular junctions can

give an indication of the properties of the molecule under

consideration, and extensive research has been performed on

numerous different systems [20-24]. In 2004, Engelkes et al.

determined the resistance of a molecular junction as a function

of the length of the used molecule [25]. Additionally, the effec-

tive mass of electrons has also been determined through the use

of tunneling measurements [26]. Another active area of research

deals with the interfaces between the molecule and the metal

contacts making up the junction [27].

In this article, the effective tunneling barrier height is deter-

mined through the use of conductance measurements performed

in I(z) and z(V) spectroscopy mode. The equivalence of both

methods is demonstrated by comparing the obtained results and

plotting them in a single graph. Additionally, an alternative

numerical method of determining the work function of a sample

through I(z) and z(V) spectroscopy is presented. Using the

proposed method enables one to decouple the contributions of

the work function  and the image charge to the effective

potential barrier . Furthermore, there is no need for the

elevated bias voltages associated with Gundlach oscillations

and TVS measurements. Finally, the fact that the method can be

applied by using z(V) spectroscopy means that it can also be

used with STM devices that can only measure in closed-loop

mode.

Model
An often used expression for the tunneling current was intro-

duced by Simmons in 1963 [18] and is given as

(1)

Here I is the tunneling current, ρ = ρ(V) is the energy-depen-

dent combined density of states of the tip and the sample, V is

the applied tip–sample bias voltage, z is the tip–sample dis-

tance,  is the tunneling barrier and , with m the

rest mass of the electron. The product  is sometimes

referred to as the inverse decay length

(2)

and provides a measure of the change in tunneling current for a

given decrease or increase of the tip–sample separation.

Assuming a symmetrical, rectangular barrier, the term  is

simply equal to the square root of the combined vacuum work

function of the tip–sample system, i.e.,

(3)

However, applying a bias voltage between the tip and sample

causes the barrier to lower in an asymmetrical fashion:

(4)

Any charge travelling between the tip and the sample will in-

duce an image charge of equal magnitude but opposite polarity.

In addition to lowering the barrier, the presence of an image

charge effect will also narrow it. This effect can be included in

the Simmons model by replacing the tip–sample separation z

with the effective barrier width s:

(5)
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where the effective barrier width s is given by [18,28]:

(6)

Here, a is given by

(7)

with ε0 the electric permittivity of the vacuum and ζ a constant

between 0 (two point charges) or 1 (two infinite parallel plates)

determining the strength of the image charge effect.

The lowering effect of the image charge can be included in the

effective barrier expression as follows [18]:

(8)

Note that for small values of V and ζ = 0, Equation 8 reduces to

Equation 3 and Equation 5 reduces to Equation 1.

Current–distance spectroscopy
An often used and reasonably accurate way of determining 

from I(z) measurements consists of plotting the natural loga-

rithm of the conductance G of the tunneling barrier as a func-

tion of z. The conductance is equal to the measured tunneling

current divided by the tip–sample bias, i.e., G = (I/V). The linear

slope of the obtained line is then approximately equal to κ, as

can be deduced from Equation 1 and Equation 2. In the absence

of image charge effects, the work function  can then be

obtained through Equation 4.

The same method can be used when including the effect of

image charges, although the inverse decay length will take a

slightly different form:

(9)

It is directly apparent that a significant image charge effect will

have a bending effect on the ln(G)-vs-z curve. However, a quan-

titative analysis is made difficult by the non-straightforward

dependence of κ* on ζ.

In order to make a quantitative analysis possible, a numerical

method will have to be developed. As a starting point,

Equation 5 will have to be rewritten to eliminate as many

unknown parameters as possible. By taking the the derivative

dI/dz, the density of states ρ can be eliminated from the equa-

tion as follows:

(10)

Substituting Equation 5 then gives

(11)

Working through all the partial derivatives (see Supporting

Information File 1 for a full derivation) eventually yields

(12)

with

(13)

This resulting equation can be used to determine the work func-

tion  and image charge constant ζ from a standard, open-loop

I(z) measurement, as they are the only unknown variables

remaining. These two unknowns can be extracted from

measured data by fitting Equation 12 to the measured I(z) data

in a least-squares fashion.

Constant-current spectroscopy
When it is not possible, or not desirable, to perform experi-

ments in open-loop mode, the effective barrier can also be

determined from closed-loop z(V) experiments. As is the case

for I(z) measurements, plotting the natural logarithm of the

conductance as a function of tip–sample separation yields a

good first approximation of the inverse decay length [10,11].

However, quantitatively decoupling the contributions of  and
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ζ once again requires the use of a derivative numerical method.

Taking into account that I does not vary as a function of V

during closed-loop experiments, Equation 5 can be rewritten as:

(14)

Substituting Equation 5 into this expression and dividing by I

gives:

(15)

Following the derivation given in Supporting Information

File 1, this leads to the full expression

(16)

with M given by Equation 13.

By using a least-squares fitting routine with parameters  and

ζ, one can fit Equation 16 to the dz/dV data obtained from the

experiment and, as such, determine the work function and

image charge constant of the system.

An important limitation to the use of z(V) measurements for the

determination of the effective barrier height arises due to the

density of states (DOS) of the studied sample. For samples with

a featureless or weakly varying DOS, measured at limited bias

voltages, the (dρ/dV)(s/ρ) term in Equation 16 can be neglected.

However, for non-featureless densities of states, the LDOS of

the tip and sample will have to be known in order to fully eval-

uate Equation 16. This necessitates additional or consecutive

measurements in order to obtain the system LDOS [5-8,29].

Results and Discussion
To determine the effect of ζ on , three different sets of fit

parameters were used: no image charge (ζ = 0), maximum

image charge (ζ = 1) and variable image charge. The dI/dz

signal determined from the measurement and the traces that

were reconstructed from the fitted parameters can be seen in

Figure 1.

Figure 1: Measured and reconstructed dI/dz data obtained from I(z)
measurements using three sets of fit parameters. The results for the
“free” fit and the fit in absence of an image charge strongly resemble
one another, indicating a masking interaction between  and ζ.

The most obvious conclusion that can be drawn from the

obtained values of  and ζ is that the two are coupled, with an

increase in one leading to an increase in the other. While there

is a difference of 0.5 eV between  for the optimal fit and 

in absence of an image charge, this seems to have little to no

effect on the reconstructed signal. This shows that it is quite

difficult to discriminate between the contributions of the effec-

tive work function and the image charge, as a change in one

variable can be readily masked by a change in the other. The

reconstructed trace for ζ = 1, however, shows that there is a

limit to this masking effect. For higher values of ζ,  becomes

more strongly dependent on z, which manifests itself in a

change in curvature for the dI/dz signal.

Figure 2 shows the current signals reconstructed from the fit

parameters shown in Figure 1 alongside the measured I(z)

curve. All curves have been normalized to have the same

starting point of roughly 2.2 nA at z0 = 0.6 nm. This value for z0

was estimated based on previous STM measurements [17] and

will be used for all following analysis. While there is always a

certain margin of error in estimating z0, changing this value by a

few angstroms does not significantly impact the results of the

analysis, as can be seen in Supporting Information File 1.

Figure 2 further emphasizes the difficulty in discriminating

between the measured signal, the optimal fit reconstruction, and

the reconstruction that does not incorporate image charge

effects. The image also shows the decrease in curvature for the

ζ = 1 trace, although the difference between this trace and the

measured signal is still rather small.

In order to further elucidate the effect of the image charge on

the tunneling current, the logarithm of the measured conduc-
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Figure 2: Measured and reconstructed I(z) data. The reconstructed
traces were based on the fit parameters from Figure 1. All curves have
been normalized to have a starting point of 2.2 nA at z0 = 0.6 nm.

tance and the conductance reconstructed from the fitted parame-

ters has been plotted in Figure 3 as a function of z. As

mentioned in the Model section, the slope of these traces is

equal to the inverse decay length κ*. Figure 3 clearly shows the

effect of including the image charge when reconstructing the

tunneling current. While the effect is negligible for small

tip–sample separations, the inclusion of an image charge term

introduces a clear deviation from the linear trend observed for

the reconstructed non-image charge current at larger separa-

tions. This same non-linearity is observed in the logarithm of

the measured conductance, proving the need for the inclusion of

a z dependent term in .

Figure 3: Logarithmic conductance versus tip-sample distance for
measured and reconstructed I(z) data. The reconstructed traces were
based on the fit parameters from Figure 1. The inclusion of an image
charge term gives the reconstructed trace the curvature needed to
follow the measured data.

Figure 4 shows the measured and reconstructed dz/dV traces.

The reconstructed traces were based on Equation 16 under the

assumption that the LDOS is slowly varying within the probed

bias range. The difference between the optimal fit parameters

and those obtained through the fit excluding image charge

effects is very similar to that observed for the I(z) measure-

ments. In addition, the difference between the reconstructed

traces is practically invisible due to the masking effect of  on

lower values of ζ. Forcing a maximum image charge contribu-

tion leads to an increase of 1.6 eV in , but also decreases the

quality of the fit.

Figure 4: Measured and reconstructed dz/dV traces obtained from
z(V) measurements by using three sets of fit parameters. As is the
case for the I(z) data, the “free” fit and the fit in absence of an image
charge overlap nearly completely.

The conductance plots shown in Figure 5 were obtained in the

same manner as the I(z) conductance plots with the important

difference that the offsets were subtracted to ensure that all

curves start at z0 = 0.6 nm. While the reconstructed I(z) curves

can be scaled to have the same setpoint current, this same

method can not be applied to the z(V) data. Instead, Equation 5

is used to reconstruct the (constant) current by using ρ = 1. This

does not influence the slope of the obtained conductance curves,

but it will introduce different offsets for each curve, which is

why it is necessary to zero them on a common point. The

conductance plot obtained in this manner (Figure 5) reveals a

prominent curvature around z = 0.55 nm for the fitted parame-

ters that is not present in the measurements. Additionally, the

optimal fit and the fit excluding image charges perfectly

overlap, further demonstrating the masking effect of  and ζ.

The overall quality of the fitted traces is lower than that of the

fitted I(z) traces. This could indicate an additional or stronger

dependence of the tunneling current on the applied bias voltage

or tip–sample separation than is present in the used model.



Beilstein J. Nanotechnol. 2015, 6, 1116–1124.

1121

Figure 5: Logarithmic conductance versus tip-sample distance for
measured and reconstructed z(V) data. The reconstructed traces were
based on the fit parameters from Figure 4. The logarithmic offsets
have been subtracted so that ln(G) = 0 at z0 = 0.6 nm.

By plotting the results of both I(z) and z(V) measurements in

one figure, the equivalence of both methods can be demon-

strated. Figure 6 shows the conductance data obtained from the

I(z) and z(V) measurements, alongside a linear fit. The offsets of

both data sets have been removed to ensure their intersection at

z = 0.6 nm. From this figure, it is clear that the different types of

measurements blend together practically seamlessly and that

their slopes match closely. The fitted slope is equal to

−10.4 nm−1; approximately twice as small as the theoretical

value. This leads to an effective barrier of 1 eV; approximately

four to five times as small as the theoretical value [30,31].

Measurements performed with different W tips and/or different

Au(111) samples yielded similar barrier heights.

Despite the fact that the conductance plots of the I(z) and z(V)

measurements demonstrate that both methods are equally viable

for the determination of the effective tunneling barrier, the

obtained values for  and  are lower than they should be

according to theory. Additionally, the fitted parameters for the

z(V) and I(z) measurements are not fully consistent and the fits

themselves are not as accurate as one would hope. Abnormally

low barriers obtained through STS studies have been reported in

the past, with a variety of possible reasons being suggested

[26,32-37].

As early as 1982, Binnig et al. reported work functions below

1 eV for a tungsten–platinum system, which they ascribed to

poor vacuum conditions and contamination [32]. Similarly, the

presence of water layers in the tunneling junction can also lead

to lower apparent barrier heights [35,38]. However, the

measurements presented in this article have been performed

Figure 6: Combined logarithmic conductance versus tip–sample dis-
tance for z(V) and I(z) measurements. Logarithmic offsets for both
types of measurements were zeroed at z0 = 0.6 nm. The linear fit has
a slope of −10.4 nm−1.

under UHV conditions, making it unlikely that (water) contami-

nation is the cause of the low apparent barrier heights extracted

from them.

Erroneous barrier heights can also be caused by misinterpreta-

tion of the tip–sample separation due to relaxation effects

[36,39,40]. According to experimental results and theoretical

calculations, these effects only take place at tip–sample separa-

tions below 500 pm, i.e., in the z(V) regime of Figure 6. As

such, any relaxation effects will be negated by the active feed-

back loop during z(V) measurements. If this were not the case,

the onset of relaxation effects below 500 pm should lead to a

change in the slope of the measurements presented in Figure 6.

Following the same line of reasoning, it is implausible that

short-range electrostatic and exchange-interactions as suggested

by Lang [34] are responsible for the low extracted barrier

values.

In order to analyze direct tunneling experiments on large-area

molecular junctions, Akkerman et al. included an additional

exponential scaling factor in the Simmons model, which they

later ascribed to the effective mass of the electrons tunneling

through the molecules [26]. A similar effective mass correction

has also been applied to tunneling junctions consisting of a

single molecule attached to both the STM tip and the sample

and to tip-molecule-vacuum-sample junctions [27,41,42]. While

a non-unity effective mass does indeed lead to lower apparent

barrier heights, the tip–vacuum–sample system described in this

article should not contain any elements that could lead to the

emergence of such an effective mass.
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By introducing an additional scaling factor γ in the Simmons

model, analogous to Akkerman et al. [26], the performance of

the fitting model can be assessed for data values that result in a

barrier height that is closer to theoretical values. Equation 5 is

rewritten in the following form:

(17)

Based on the linear slope extracted from Figure 6, γ was chosen

to be equal to 0.5. As can be seen in Figure 7 and Figure 8, the

introduction of γ has three major consequences. Firstly, the

quality of both fits increases dramatically, especially for the

z(V) data. Secondly, the obtained values for  and ζ are now

consistent between measurements, with only a 0.3 eV differ-

ence in  between the I(z) and z(V) measurements. Finally, the

influence of the different fitted parameters on the shape of the

reconstructed curves has diminished sharply, with all three

curves overlapping for both types of measurements. In other

words, while the mutual masking effect between  and ζ

remains, the effective barrier  is largely unaffected by changes

in these parameters. This is consistent with a theoretical

analysis performed by Coombs et al. [28], which showed that

the effect of an image charge on the apparent tunneling barrier

height is not readily extracted from I(z) data. While the exact

origin of γ is unclear, it is undeniable that its inclusion increases

both the quality of the fits and the accuracy of the obtained

values.

Conclusion
The conductances obtained from I(z) and z(V) spectroscopy can

both be used to get a good indication of the effective tunneling

barrier height  when plotted logarithmically as a function of

the tip–sample separation. This means that the determination of

the (local) work function of a material can be performed purely

in the closed-loop operation mode present in all STM systems.

Numerical analysis reveals a strong masking interaction

between  and ζ, showing that neglecting the presence of an

image charge can lead to one underestimating the value of .

The inclusion of an additional scaling factor γ has a positive

impact on both the quality of the numerical fits as well as the

values obtained from them. The exact physical origin of this

term is, as of yet, unknown.

Experimental
Experiments were performed on an RHK ultra-high vacuum

system at room temperature and a base pressure of 10−10 mbar.

Measurement data was collected on a hydrogen flame-annealed

Au(111) sample by using an electrochemically etched W tip.

Figure 7: Measured and reconstructed dI/dz data obtained from I(z)
measurements for γ = 0.5. The masking effect between and ζ
remains, but changes in these parameters do not significantly impact
the effective barrier, leading to all reconstructed traces overlapping.
The free parameter fit (solid line) leads to the maximum value for ξ
(i.e., ξ = 1), causing the fitted parameters to be identical to those
obtained from the fit with ξ fixed at its maximum value (dashdotted
line).

Figure 8: Measured and reconstructed dz/dV traces obtained from
z(V) measurements for γ=0.5. The masking effect between  and ζ
remains, but changes in these parameters do not significantly impact
the effective barrier, leading to all reconstructed traces overlapping.
The free parameter fit (solid line) leads to the maximum value for ξ
(i.e., ξ = 1), causing the fitted parameters to be identical to those
obtained from the fit with ξ fixed at its maximum value (dashdotted
line).

The sample and tip had both been exposed to ultra-high vacuum

conditions for several weeks prior to measuring. Spectroscopy

traces were acquired by using an RHK IVP-200 preamplifier at

a fixed gain of 108 V·A−1 and were performed within a short

timeframe to minimize the effects of drift and possible changes

to the tip or sample.
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Experimental parameters were chosen to prevent changes in

tip–sample distance between experiments. As such, z(V)

measurements were performed at a setpoint current of 2 nA

over a range of 1 to 0.05 V. Subsequently, I(z) measurements

were performed at a current setpoint of 2 nA and a bias setpoint

of 1 V. The I(z) and z(V) measurements presented in this article

are based on an average of 200 traces per measurement. A

topography image of the sample can be found in Supporting

Information File 1.

Supporting Information
Supporting Information File 1
Additional experimental data.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-6-113-S1.pdf]
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