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We study theoretically the local density of states (DOS) in a topological Josephson junction. We show that the well-known 4x

Josephson effect originates from the interference effect between two Majorana fermions (MFs) that are localized at the Josephson

junction. In addition, the DOS for electrons (holes) shows the 4 interference information along each parity conserved energy spec-

trum. The DOS displays a 27 period oscillation when two trivial states interfere with each other. This means that the DOS informa-

tion may be used to distinguish the MFs from trivial localized states. We suggest that the interference effect and the DOS can be

detected by using two STM leads or two normal leads. A single side lead can only detect the Andreev reflection tunneling process

in the junction, which cannot reveal information about the interference effect in general. However, using two side leads, we can

reveal information about the interference effect of the MFs as well as the DOS by combining Andreev reflection with the electron

transmission process.

Introduction

After Kitaev reported that Majorana fermions (MFs) can appear
as quasi-particle states at the ends of a one-dimensional (1D)
p-wave superconductor [1], the generation of MFs became a
popular goal in condensed matter physics [2]. Several methods
were suggested to fabricate and detect MFs in effective 1D
p-wave superconductor systems [3-11]. The use of a semicon-
ductor wire with Rashba spin—orbit coupling and proximity-in-
duced superconductivity appear to be the most promising

method [4]. Indeed, a semiconductor—superconductor nanowire

was manufactured to confirm the prediction of the theory [12-
14]. The second topological superconducting system that was
realized experimentally is related to ferromagnetic atomic
chains, which are put on a trivial superconductor [15]. It is
believed that MFs can generate a zero-bias conductance peak
(ZBP) in the conductance spectrum [16-19], and indeed the
signature of ZBPs has been observed in both systems in tunnel-
ing experiments. These advances accelerate the development of

nanotechnology [20-27]. Recently, a breakthrough was
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achieved in research groups led by Kouwenhoven and Marcus.
Both groups observed the integer ZBPs in a nanowire system
[28]. These are the most persuading results so far. However, all
these achievements relied on the observation of ZBPs, which
means that many other unique properties of MFs still require
further verification and investigation.

Apart from the ZBP, another significant feature of MFs is the
4m Josephson current. When two topological superconducting
wires are combined to form a topological Josephson junction
(Top-1J), the period of the supercurrent is 4x if MFs exist at the
ends of both wires. This is different from the trivial case with-
out MFs. In the trivial case in which only Cooper pairs can
tunnel, the period is 2x. Since MFs have only half a degree of
usual fermions, half a degree of Cooper pairs can tunnel in the
Top-JJ when the two MFs combine. In this situation, the period
is doubled. Because the 4w Josephson effect is a unique trans-
port property of MFs, many groups attempt to observe it.
Indeed, Kouwenhoven’s and Marcus’ groups fabricated such a
junction and obtained some preliminary results. However, the
expected 4 period was not observed [23-25]. The 4rn Josephson
effect needs a stringent condition that is known as the parity
conservation [29]. The evolution of the states is expected to
follow one fixed branch of the energy spectrum. It is particular-
ly susceptible at the degenerate point when the even and the odd
parity states intersect at zero energy for ¢ = (2n + 1)x. The state
then changes from one parity to another because of quasipar-
ticle poisoning, the background and the thermal effect [30-34].
In this case, the 4z period will return to the conventional 2.
Thus, to reveal the 4z nature of the MFs, it may be necessary to
observe more than just a supercurrent. Interestingly, several
groups have studied superconductor-topological insula-
tor—superconductor junctions that also display a 4w Josephson
current. However, the behavior of the 47 Josephson current is
not consistent with the theoretical prediction [35-41]. To distin-
guish the 4n information of MFs, it is necessary to reveal addi-
tional characteristic properties of such a Josephson junction.

In this paper, we study a Top-JJ composed of two topological
superconductors as shown in Figure 1a. Unlike previous studies,
we focus on the density of states (DOS) for both the electron
part and the hole part. The essential property of the MFs is that
the wave function of the electron part must be conjugated with
the wave function of the hole part, which is known as the self-
Hermitian property of the MFs. More specifically, the self-
Hermitian property of the MFs can be demonstrated directly
from the DOS of the electron and of the hole part, which is a
basic assumption used in this paper. Since the DOS only shows
the steady information of the whole energy spectrum, it does
not relate to the parity-conserving problem, which is a problem

of dynamic evolution. Therefore, compared to the supercurrent,
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Figure 1: (a) Schematic setup of an experiment in which two STM
leads or normal leads are connected to a Top-JJ that supports the
MFs. (b) Energy spectrum of the Top-JJ with chemical potential

u = —2t, which lies in the topological region. The two MFs, which are
localized at the junction, interfere with each other and display a 41
oscillation. (c) DOS for electron part of the coupled MFs in the Top-JJ.
Both even parity state and odd parity state show a parity-correlated 41
oscillation. (d) Energy spectrum of the Top-JJ with chemical potential

u = -2t + 5.7A, which lies in the trivial region, and the disorder strength
w = 0.13t. In this case, there does not exist any MF that is localized at
the junction. However, the trivial Andreev bound states occasionally
touch with each other in the presence of disorder. In such situation, the
trivial Andreev bound states behave like the Andreev bound states
formed by the two MFs in panel (b). (€) DOS of the trivial Andreev
bound states for the electron part. It is totally different from the DOS of
the nontrivial Andreev bound states in panel (c). The period of the
trivial state is 2.

the DOS are easier to detect. We show that the two Andreev
bound states formed by the MFs exhibit a 4x period due to the
interference effect between the two MFs. Furthermore, the DOS
of both the electron and the hole part can also reveal the 4x
period. The electron (hole) DOS of the two Andreev bound
states are related: One is destructive, while the other is
constructive. However, the DOS of the trivial Andreev bound
states contains different information. In general, the interfer-
ence effects in the trivial Andreev bound states are unrelated,
and their period is 2. Thus, it may be a way to distinguish them
using information contained in the DOS. We suggest that the
interference effect can be detected using two STM leads or two
normal leads. We show that a single side lead can only detect
the Andreev reflection tunneling process in the junction, which
cannot reveal information about the interference effect in
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general. However, using the two side leads, we can display
information about the interference effect of the MFs by combin-

ing Andreev reflection and the electron-transmission process.

Model Hamiltonian and formula

A typical Top-JJ is composed of two topological supercon-
ducting wires that have different superconducting phases. Ac-
cording to [9,18], the tight-binding model of a superconducting

wire is:

Hyqip =i qa (\de WVia +he. ) ] o Wi g
_zi,d,a,BiURWi+d,a2 (Gxd)og wip

+Zi7(x,|3 \Via [(chx )OLB imp (i )SQBJWI B (D
2 aAeid)s Wiawi—a

H Z ( C\VLN] WRl,iy,OL +h.C.).

+h.c.

Here, H, 4;p is the Hamiltonian of the left (right) wire with
s = L (R). The only difference between the two wires is the
phase of the superconducting order Ae'ts (here we set ¢; = ¢
and ¢p = 0). Furthermore, i denotes the lattice site, and d
denotes the two unit vectors dy and dy, which connect the

nearest neighbor sites in the x and y directions, respectively.

Moreover, a, B are the spin indices, ¢ is the hopping amplitude,
u is the chemical potential, Uy is the Rashba coupling strength,

and V), is the Zeeman energy caused by magnetic field along the
wire direction. A is the superconducting pairing amplitude and
Vimp() is the Gaussian impurity. H, describes the coupling be-

tween the left and the right topological superconducting wires.

To obtain the tunneling coefficient at the junction, we use the
recursive Green function method. We can then calculate the
scattering matrix of the system. The scattering matrix is related
to the Green functions via

siP =5, ;5

Tea 1/2 - B 1/2
" aﬁ-i-l[l"i} G -[FJ E)

Here, Sg."ﬁ is an element of the scattering matrix that denotes
the scattering amplitude of a B particle from the j-th lead to an a
particle in the i-th lead. Furthermore, i,j = 1 or 2, where 1 and 2
denote, respectively, the first and the second normal lead as
shown in Figure la. o,f € {e,4} denote the electron (e) or hole
(h) channels. In addition,

-1
.
G = |:E_HL,q1D —Hp gp—H, —Zi,a(z?) }

Beilstein J. Nanotechnol. 2018, 9, 520-529.

is the retarded Green function of the Josephson junction, and
Y =i(=ZH)" —(Z7)“] is the linewidth function of an o particle
in the i-th lead, where (Zlq)r(a) is the retarded (advanced) self-
energy of the a particle for the i-th lead. In the following calcu-
lation we set 'Y =0.1A through wide-band approximation. The
physical meaning of the scattering matrix is: S[‘;’h means the
Andreev reflection coefficient 7 in the i-th lead, and S;°
means the electron transmission coefficient 7, from the i-th lead
to the j-th lead.

To match the experiment in [12], the parameters in the
tight-binding model were chosen as follows: A = 250 peV,
t =25A, Up = 2A, and the superconductor coherence length is
& = t/Aa = 500 nm with @ being the lattice constant. In addition,
we set V, = 2A such that the superconducting wire can support

the MF end states by tuning the chemical potential.

Results and Discussion

The following section is divided into three subsections. In the
first subsection, the 47 oscillation of the DOS is shown. In the
second subsection, the same oscillation information in a ring
structure is shown and in the third subsection, we discuss how
the information about the DOS is detected.

417 oscillation of the density of states

In this subsection, we consider the origin of the 4 Josephson
effect. Then, we show that the DOS for the electron (hole) part
can also exhibit the 4x interference effect. The well-known 4x
Josephson effect is directly related to the fractional nature of the
MFs. Because a single MF has only half a degree of a conven-
tional fermion, we can define a conventional fermion using
W = (Y2j—1 + iv2)). For the Top-JJ in Figure la, there are two
pairs of the MFs, which are localized at the ends of the
superconductor. We assume that the length of the wire is suffi-
cient so that y; and y, (y3 and v4) are not coupled to each other.
In this case, only v, and y3 can couple to each other at the junc-
tion, which is described in Equation 1. Because the phase of the
left wire is ¢ and the phase of the right wire is 0, the Hamil-
tonian of the left wire can be transformed into the right one
using a unitary transformation U =diag(e_i¢/2,ei¢/2). The
phase difference between y, and y3 is ¢/2. These two MFs will
interfere with each other and form two Andreev bound
states because of this phase difference. The effective Hamil-
tonian can be obtained by projecting the coupling of Equation 1

—i¢/2

onto the subspace of the MFs using iy.o —ie v, and

YRLiy,o0 =73 [6]. Then, the low-energy effective Hamiltonian
is
Her = ~Tegr c08(9/2)iv573
= —Tegr cos(9/2)(N -1/2).
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Here, N = yy is the number operator and y = y3 + iy,. Then,
the occupation number has two values: N, = 0,1, with N, =0
corresponding to the even parity state, and N,, = 1 correspond-
ing to the odd parity state. The Josephson current mediated by
the MFs can be given by 7; =0E($)/ 0 (—I)NV sin(¢p/2),
which displays the 4n oscillation. This is very different from the
case without the MFs. In such case, only Cooper pairs can

tunnel from one superconductor to another, and the period is 2.

We show that the fractional Josephson effect can be attributed
to the interference effect between the two MFs. Next, we show
that the DOS of the electron and the hole part of the Andreev
bound states, which are formed by the MFs, also display the 4n
period. The MF is a particle that is its own antiparticle. For such
a particle, the wave function of the electron part must be conju-
gated with the wave function of the hole part, which is the self-
Hermitian property of the MF. Thus, the general wave function
of the MFs should be [42]:
. . T
7y =Le ™25 (), 2 ()]

Here, \(x) is the wave function of the electron part, when the
phase of the superconducting order parameter is 0. In the Top-JJ
shown in Figure 1(a),

. . AT
T2 = (e 2000, ()

and

iy = (10, -" ()

These two degenerate MFs will couple with each other to form
an Andreev bound state via y = (y3 + iy;), and the excited wave
function should be combined using the same rule:
—ih/2 ~
v (a2 i) (e
Vi =73 +i(=1)""y, = RN )
AFeY )y () \V+

From Equation 4 we can see that the DOS for the electron
part is |uy |20c1icos(¢/2), while the DOS for the hole is
[vy |2oc 1¥ cos(¢/2). There are several unique properties of the
DOS for the Andreev bound states formed by the MFs: First,
the period along each energy spectrum is 47. Second, it is parity
correlated. The DOS is 1+ cos(¢/2) for the even parity state,
and the DOS is 1—cos(¢/2) for the odd parity state. Third, the
DOS of the hole part for the even parity state is the same as that
of the electron part for the odd parity state due to the self-
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Hermitian property of the MFs. Because of these unique proper-
ties of the DOS, we may differentiate the 4 information using
the DOS of the electron (hole) part, which should provide
clearer distinctions than the trivial states.

Our numerical results provide direct evidence for this conclu-
sion. We use the tight-binding model in Equation 1. The length
of each wire is Nya = 4um and 7, = 0.4¢. Figure 1b shows the
energy spectrum as a function of the flux ¢ with the chemical
potential p = —2¢, which lies in the topological region. The red
solid line is the energy spectrum for the odd parity state, while
the blue solid line is the energy spectrum for the even parity
state. We can see that both of them oscillate with a period of 4x.
Next, we study the information of the DOS more closely.
Figure 1(c) shows the information of the local DOS for the elec-
tron part |5 |2 along the fixed even parity state (blue solid
line) and the odd parity state (red solid line). Here, w5 is the
electron part wave-function localized at the junction, which can
be extracted through diagonalization of the lattice Hamiltonian
in Equation 1. The DOS of the electron oscillates with a period
of 4r and the interference pattern is correlated with the parity.
Furthermore, this relation is still valid in the presence of moder-
ate disorder. Figure 1b and Figure 1c¢ are calculated for the
Gaussian disorder of w = 0.067. We can see that the relation still
holds.

Interestingly, when the two trivial fermion states interfere with
each other, the situation is very different. Though an analytic
result cannot be obtained, our numerical simulation suggest that
the general formula for the DOS for the electron (hole) part
should be a + bcos(9), with a and b being real constants. This
can be understood as follows: For the trivial case, only Cooper
pairs can tunnel through the junction. Thus, the DOS must be a
function of cos(¢) instead of cos(¢/2). From our numerical
results, we know there are several differences to the nontrivial
case. First, the period is 27. Second, there is no corresponding
parity-correlated interference effect for the trivial case. Third,
the maximum (minimum) value of the DOS is at ¢ = (2n + D)x
for the trivial case and at 2nm for the nontrivial case. In
Figure 1d, we show the energy spectrum as a function of the
flux under strong disorder, w = 0.13¢ with p = —2¢ + 5.7A. It is
typical that the two trivial Andreev bound states are acciden-
tally in contact with each other for the strong disorder. From
Figure 1b and Figure 1d, we can see that the energy spectra are
very similar between the trivial case without the MFs and the
nontrivial case with the MFs. In this situation, it is difficult to
distinguish the trivial Andreev bound states from the Andreev
bound states formed by the MFs. Even though the period of the
Josephson current is still 2z, it may be changed into 4w via a
Landau—Zener transition [43]. Thus, the Josephson current

cannot distinguish the trivial Andreev bound states and the
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nontrivial Andreev bound states formed by the MFs. Figure le
displays the information of the DOS for the electron part for the
two trivial Andreev bound states. We can see that the DOS is
described by a + bcos(¢), which is distinct from the nontrivial
case shown in Figure 1(c). Therefore, the DOS are clearly
distinct.

Interference effect in a ring structure

Another typical Josephson junction is the ring structure shown
in Figure 2a. In such a ring structure, when a magnetic flux
threads the ring, the two MFs interfere with each other due to
the phase difference. In Figure 2b, we show the energy spec-
trum as a function of the flux. The Andreev bound states formed
by the two MFs show the same behavior as for the Top-JJ
shown in Figure 2b. Furthermore, the DOS of the electron part
in Figure 2c¢ also contains the same interference information as
the one shown in Figure 2¢. They are parity correlated with a 47
period. Thus, we can see that the fractional Josephson effect
originates from the interference effect between the two MFs.

aU

0 2
o/m

Figure 2: Interference effect in a typical Top-JJ of a ring structure.

(a) Schematic setup of the experiment. (b) Energy spectrum of the
Top-JJ with the chemical potential y = -2t which lies at the topological
region. The two MFs which are localized at the junction interfere with
each other and display the 41t oscillation. (c) DOS for the electron part
of the coupled MFs in the Top-JJ. Both the even parity and the odd
parity states show parity correlated 41 oscillation.

Although the two different structures show the same informa-
tion for the interference effect, we can say that they are qualita-
tively different. The parity in the ring structure will not be de-
stroyed when the parity of the whole system is conserved. How-
ever, the parity in the junction, as shown in Figure 1a, will be
destroyed even if the total parity is conserved. This is attributed
to the fact that there are two pairs of MFs in the system of
Figure 1a, while there is only one pair of MFs in the ring struc-
ture shown in Figure 2a. If there are two pairs of MFs, the effect
from the other MFs must be considered. For example, in the

Josephson junction shown in Figure 1a, y; will couple with vy,
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Figure 3: (a) For the Top-JJ shown in Figure 1a, when we consider
the energy splitting induced by the finite length of the wire, the parity
will be destroyed. The dashed line shows the energy spectrum versus
the phase difference with L1 = L, =100a. A small gap dE) can be ob-
served due to the finite-length effect. (b) Energy spectrum as a func-
tion of the flux in the ring structure with p = -2t + 0.4A and N, = 50a.
Here, Ej; = 0.05A and I'egr = 0.1A. We can see that the gap is not
opened and the 41 period persists. (c) Energy spectrum as a function
of the flux in the ring structure with y = -2t + 0.8A and N, = 50a. Here,
Ep=-0.12A > I We can see that the two states of different parity
are separated in energy space. (d) An energy spectrum that is beyond
the superconducting gap in the ring structure and also oscillates with
the 41 period. (e) Flux-dependent DOS of the electron part (red solid
line) and the hole part (blue solid line) along the odd parity state
energy spectrum in panel (c). They are correlated with each other.

(f) Flux-dependent DOS of the electron part (red solid line) and the
hole part (blue solid line) along the energy spectrum in panel (d). They
are not correlated with each other.

and y3 will couple with y4. The effective coupling Hamiltonian
should be Hys = Eppiiy1y2 + Emivsys, where Ejyp ) represents
the energy splitting between the two MFs in the left (right)
superconducting wire. Ejs;.2) decreases exponentially with the
length L) of the left (right) wire: Epicay < exp(=Lyz) / &)
with & being the coherence length of the superconducting wire
[42,44,45]. When effective coupling is considered in the Hamil-
tonian in Equation 3, the Andreev bound states would not inter-
sect at ¢ = 7. In Figure 3a the red (blue) solid line shows the
energy spectrum for the even (odd) parity state of the Andreev
bound states formed by the MFs. Here, the wire length is infi-
nite. Therefore, y; and y4 will not destroy the parity of the
Andreev bound states. When the wire length is finite (e.g.,
Ly =L, =100a), we can see from the dashed line that a band
gap 0E) exists at ¢ = . Thus, the parity is destroyed, and the
Josephson current has a 2w period. There is no 4n fractional

Josephson Effect in the junction shown in Figure la.
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While there are only two MFs, the parity of states will not be
destroyed even if we consider the effective coupling induced by
the finite length of the wire. In this case, the total low-energy
effective Hamiltonian can be described as follows:

Hregr = [reff cos(¢/2)+ Ey ]i“m’z- Q)

Here, T'fr is the effective coupling between the two MFs at the
junction and E) is the energy splitting between the two MFs
due to the finite length of the ring shown in Figure 2a. We can
see that £ only shifts the energy of the even (odd) parity state
but does not destroy the parity. In Figure 3b, we show the
energy spectrum for a varying flux with p = —2¢ + 0.4A and
t. = 0.4t. Here, Ej; = 0.05A and T'egr = 0.1A. The two energy
spectra cross over without destroying the parity of the Andreev
bound states. When we consider the case of Ej; > [efp, the two
states are separated. The energy spectra of the Andreev bound
states shown in Figure 3c are separated and show the 4z oscilla-
tion for the ground state. In this case, we can ignore the parity
conservation problem. Here, E£j; = —0.12A when the parameters
are L =50a, t. = 0.4t and p = —2¢ + 0.8A. The analysis above in-
dicates there are qualitative differences between one pair of
MFs and two pairs of MFs. If there are two pairs of MFs, the
parity of the Andreev bound states formed by the two MFs can
be affected by coupling with the other MFs. However, if there is
only one pair of MFs, coupling only affects the effective cou-
pling between the two MFs but it does not destroy the parity of
states. In fact, coupling induced by the finite-length effect can
cause the same interference effect as in the Top-JJ of the ring
structure. Both of them originate from the interference effect
between the MFs.

We have shown that the 47 Josephson Effect can appear in the
mesoscopic ring structure without the need to consider the
parity-conserving problem. However, in this case, an unex-
pected coherent single electron tunneling process would occur
in the mesoscopic ring structure, which is similar to the persis-
tent current in the mesoscopic ring. It will occur in the conduc-
tion band, which lies above the superconducting gap. Figure 3d
shows the energy spectrum that lies above the superconducting
gap. It also oscillates with a 4xn period. It is difficult to derive
these two cases from the period. Here, we show that the DOS
can distinguish the two different cases. The DOS caused by the
MFs is parity related and has a 4n period, whereas the DOS
caused by the coherent tunneling does not exhibit a parity-
related oscillation. Figure 3e shows the DOS of the electron part
(red solid line) and the hole part (blue solid line) of the odd
parity state, respectively. We can see that they show the parity

related interference pattern, where one is constructive and the
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other is destructive. Although the total DOS is not conserved
due to the splitting of the MFs, it is qualitatively different from
the DOS of the energy spectrum above the superconducting gap
(Figure 3f). The DOS in Figure 3f is not parity related and
shows very different oscillation behavior between the DOS of
the electron part and the hole part. Thus, they can be well distin-
guished by considering the DOS.

Detecting the 41 oscillation through two STM

leads

In the last section, we have shown that the main features of the
DOS for the nontrivial Andreev bound states are parity-corre-
lated with a 4z period, which is very different from the trivial
case. Next, we describe how the parity-correlated 4n period of
the DOS can be detected. The intuitive approach would be to
put a STM lead (normal lead) to detect the local DOS. Howev-
er, this does not work. In our previous paper [46], we studied
the conductance at the junction with a single STM lead. A
butterfly-pattern conductance caused by nontrivial Andreev
bound states would be observed as we vary the flux, which is
distinct from the conductance of a single impurity state local-
ized at the junction. Hence, the butterfly pattern can be regarded
as a unique property of the nontrivial Andreev bound states.
Figure 4a shows the same butterfly-pattern conductance. How-
ever, the peak value of the butterfly for each parity-conserved
energy spectrum has a 2m period instead of a 4x period. The
reason for this is that a single STM lead can only read the infor-
mation of the local DOS via Andreev reflection. Although the
numerical results in Figure 4 and Figure 5 are calculated using
recursive Greens function methods, the relation between
Andreev reflection and DOS can be obtained using a simplified
effective model. These two methods are consistent with each
other. The calculation of the Andreev reflection coefficient
through the effective model can be found in the appendix or in
[47], and can be expressed simply as

| e

(0-Ep )+ (Teett + Thetr )2

TA:

Here, I, ¢fr is the effective self-energy of the electron part of the
leads, I'j, of is the effective self-energy of the hole part of the
leads, and Ej; is the coupling energy of the two MFs.
Lo e ol s * = 1+ cos(¢/2) is proportional to the DOS of the
electron part, and I'j, o¢r oc| L4 \2 = 1Fcos(¢/2) is proportional
to the DOS of the hole part. Thus, the Andreev reflection
reveals the combined DOS of the electron and the hole parts,
which is a 2z period. It cannot reveal the DOS of the electron
(hole) part separately. In addition, we can see that if the two
MFs are decoupled from each other, |ux|? = Ju? and T4 shows

the well-known resonant Andreev reflection caused by the MFs.
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Figure 4: Two STM leads (or weak coupled normal leads) localized at
the junction can read the putative 41 period through the differential
conductance. (a) Contour plot of the Andreev reflection coefficient T4
of a STM lead as a function of the flux ¢ and the incident energy E.
(b) Contour plot of the electron tunneling coefficient T, from the STM
lead 1 to the STM lead 2 as function of the flux ¢ and the incident
energy E. (c) The ratio between the peak value of T, and the peak
value of T, here T = (Tg + T4)/2. They show similar information of the
DOS (see Figure 1c). The DOS of one energy spectrum exhibits a 41
period. However, when both spectra are considered, the period returns
to 2m. In this situation, we can distinguish by the even—odd cross point
as indicated by dashed circle. The parameters are Ny = 200a, y = —21,
and V, = 2A.

To detect the local DOS of the electron part or the hole part, we
need additional information beyond the Andreev reflection
process. Thus, it is necessary to add another STM lead to detect
the electron transmission or the crossed Andreev reflection be-
tween the two leads [47,48]. This can directly reveal the infor-
mation of the DOS. During this process, the electron tunneling
coefficient between the two leads is

U e ctt ] Rejett

(0—Ey )2 +(Treetr +Tinett + T rectr + T et )2

T =

e

Here, T'y gy cft | s \2 = lxcos(¢/2) is the effective elec-
tron part self-energy of the STM lead L(R), which is propor-
tional to the local DOS for the electron part. In Figure 4b, we
show the contour plot of 7, as a function of the flux ¢ and the
incident energy £. We can see that the peak value of the tunnel-
ing coefficient 7, is proportional to (1—cos(¢/2))?, i.e., the
square of the DOS of the electron part. In addition, there is a
sharp peak located at ¢ = (2n + 1)n. The peak appears due to
the overlap between the two energy spectra at the position

¢ = (2n + 1)x. This is a main feature of nontrivial Andreev
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Figure 5: The case for two accidentally touching Andreev bound
states. (a) Contour plot of the Andreev Reflection coefficient T4 as a
function of flux ¢ and the incident energy E. (b) Contour plot of the
electron tunneling coefficient T, from the STM lead 1 to the STM lead
2 as a funciton of the flux ¢ and the incident energy E. For both cases,
the period is 21r. (c) The ratio between the peak value of T, and the
peak value of T, here T = (Tg + Tp)/2. They yield similar information as
the DOS for the trivial states. The obvious characteristic is that they
will intersect an even number of times or not at all in a 21 period as in-
dicated by dashed circles. The parameters are N, = 200a,
p=-2t+5.7A, and V, = 2A.

bound states: The two energy spectra intersect with each other.
A better way to distinguish the information of DOS is to com-
bine both the Andreev reflection and the electron transmission.
In Figure 4c, we plot the ratio between the peak value of 7, and
the peak value of 7. Here T'= (T, + T4)/2 is the average tunnel-
ing coefficient of the Andreev reflection and electron transmis-
sion. We can see that this ratio is very similar to the DOS. One
spectrum is proportional to 1+ cos(¢ / 2), while the other one is
proportional to 1-cos(¢/2). Thus, combining the electron
transmission and the Andreev reflection process can reveal the
parity-correlated 4z oscillation of the DOS.

The tunneling coefficients show a very different behavior when
we use two normal leads to detect the trivial Andreev bound
states. Figure 5a shows the Andreev reflection coefficient as a
function of the flux ¢, while Figure 5b displays the evolution of
the electron transmission coefficient with varying ¢. The
obvious 27 period can be easily distinguished using the tunnel-
ing coefficient of electron transmission. However, the trivial
Andreev bound states are susceptible to the external circum-
stance. When the two leads are attached to the junction, the two
accidently touched trivial states will not overlap. In addition,
the DOS will also be affected by the lead contact. The DOS will
show a small variance when the coupling strength of the leads
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changes. As shown in Figure Sc, the ratio 7,/7T changes a little
compared to the DOS of trivial Andreev bound states. However,
two properties are preserved: First, the period is still 2 and can
be described as a + bcos(¢); second, both electron DOS and
hole DOS are generally unrelated, which strongly indicates that
the two Andreev bound states are not clearly correlated with
each other. Thus, the nontrivial Andreev bound states can be
distinguished from the trivial Andreev bound states by combin-
ing both the electron transmission process and the Andreev
reflection process.

Finally, we want to point out that the actual period in Figure 4c
returns to 2w when both parity states are considered. However,
we can still distinguish the trivial Andreev bound states and the
nontrivial Andreev bound states by the DOS. As shown in
Figure 4c, the DOS of nontrivial Andreev bound states is
1—cos(¢/2) for an even parity state and 1+ cos(¢/2) for an
odd parity state. The plots of the DOS for different parity states
would overlap once (see the dashed circle in Figure 4c). While
the DOS of the trivial Andreev bound states is a + bcos(¢), the
plot of the DOS for trivial states would overlap with zero or
even times in a 2z period as indicated by dashed circle in
Figure 5(c). This is decided by the functional properties of
cos(¢) and cos(¢/2). This kind of even—odd crossing would not
be affected by a small variance of the DOS. Thus, in general,
we can still distinguish the trivial states and nontrivial states
through the even—odd crossing of the DOS in a 27 period.

Conclusion

We have studied the interference effect of two MFs in a topo-
logical Josephson junction and a ring structure system. We
show that the 4x Josephson effect originates from the interfer-
ence between the two MFs, and so does the DOS of the
nontrivial Andreev bound states. Thus, detecting the behavior of
the DOS can directly reveal the nature of the fractional
Josephson effect. The trivial states, which behave like the
nontrivial Andreev bound states, are considered in the paper.
Although it is difficult to distinguish the two cases through the
supercurrent and the energy spectrum, it can be well separated
through the DOS. We suggest that the DOS can be detected
using two normal leads, i.e., STM leads. With the two leads, we
can obtain the electron transmission process beyond the
Andreev tunneling process. Then, the information of the DOS

can be derived by combining the two processes.

Appendix
Effective Hamiltonian and effective current

formula
In the main text we calculate the tunneling coefficients using
the recursive Green function method. To better understanding

the numerical results, we obtain the analytical results using the

Beilstein J. Nanotechnol. 2018, 9, 520-529.

effective Hamiltonian and scattering matrices. The effective
Hamiltonian Hepr = Hy + Hyy + Hyp can be formulated as
follows:

+00
Hy =-iv, z I \y:& (x)o,y,, (x)dx,
oeLl/R —x

Hyr =iEyv172,

Hy = Z—i[“/l (fa,ﬂlfl (0)+ la1Va (0)) N

+72 (fa,ze_id)/z\vg (0)+, ¢y, (0))}

Here, Hy is the Hamiltonian of the left and right normal leads;
V(r) denotes a fermion operator of the left (right) normal lead,
and vris the corresponding Fermi velocity of the leads. H), de-
scribes the two coupled MFs, where E); is the coupling strength
between the two MF end states y; and y,. The coupling be-
tween the leads and the MFs is described by Hy, where the cou-
pling strengths are represented by fq,l and fa’z, respectively.

To calculate the scattering matrix of the system, we perform a
transformation first. Considering that a single MF is just half of
an ordinary fermion state, we can change the MF representa-
tion into the fermion representation y; = d + d¥, v, = i(d — d*).
Then, Hys and Hy are changed to:

Hy =Eydtd
ﬁT = Z(fa,ewg (O)d +;a,hWL (O)dT + hc)
(04

with (N
7 [z g —ih/2
tot,e =—1 (t(x,l + lt(x’ze ¢ ),
Z(X,h = _i(fa,l + ifa’26i¢/2 )

Next, we can formulate the scattering matrix in a model-inde-
pendent form,

~ -1
S(E)=1-2miwt (E— iy +inwwt) “w,  ®

with W the matrix that describes the coupling between the scat-
tering region and the leads:
L IRh

tL,e tR,e

W = 't“l 'fl 't“l E’!
—lrh TIRE TIRe TIRe
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In general, we can write the approximation as:

SJ%B =0/ 48up +im/(E—EM +iI").

Here, I'; , is the self-energy of the o part of the lead /, which is
renormalized by the local DOS of the two coupled MFs.
Furthermore, it is proportional to the local DOS of the a part of
the two coupled MFs. Thus, using the scattering matrix we can
find the information of the local DOS. However, only a single
tunneling process cannot provide all information. We need
more tunneling processes, and the two leads are necessary here.
There are three tunneling processes in such a two-lead setup:
the Andreev reflection, the crossed Andreev reflection, and the
electron transmission. We consider a symmetric connection
case and simplify the result. For this condition, the coefficient
of the Andreev reflection is the same as the coefficient of the
crossed Andreev reflection. Then, the current for lead 1 is
L =QTyx Vi +(T4+ T,)(V| — V3))el/h and the current for lead
21is 12 = (*2TA X Vz + (Te - TA)(Vl - V2))e/h. Thus, Te and TA

can be obtained using the current relation.
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We present an implementation of spin—orbit coupling (SOC) for density functional theory band structure calculations that makes

use of Gaussian basis sets. It is based on the explicit evaluation of SOC matrix elements, both the radial and angular parts. For all-

electron basis sets, where the full nodal structure is present in the basis elements, the results are in good agreement with well-estab-

lished implementations such as VASP. For more practical pseudopotential basis sets, which lack nodal structure, an ad-hoc increase

of the effective nuclear potential helps to capture all relevant band structure variations induced by SOC. In this work, the non-rela-

tivistic or scalar-relativistic Kohn—Sham Hamiltonian is obtained from the CRYSTAL code and the SOC term is added a posteriori.

As an example, we apply this method to the Bi(111) monolayer, a paradigmatic 2D topological insulator, and to mono- and multi-

layer Sb(111) (also known as antimonene), the former being a trivial semiconductor and the latter a topological semimetal featuring

topologically protected surface states.

Introduction

The topological character of topological materials (mostly insu-
lators but also non-insulators) in most relevant cases originates
from relativistic corrections that cannot be neglected in the

Hamiltonian of heavy elements, more specifically from

spin—orbit coupling (SOC). Such materials are usually charac-

terized by non-zero topological invariants that can be either
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computed simply from the parity of the Bloch wave functions in
centrosymmetric crystals or from other more involved imple-
mentations in non-centrosymmetric systems [1-6]. Topological
materials typically feature a band inversion. In a gedanken ex-
periment, one can imagine tuning the SOC at will. As the SOC
is increased from zero towards its nominal value, it pushes up
the valence band while bringing down the conduction band of
the imaginary SOC-free material. In this process, the gap closes
and reopens again, giving rise to the non-zero topological

invariant.

The essential features of the band structure of topological mate-
rials (at least the elemental ones) can be obtained from the tight-
binding (TB) model where the Hamiltonian is built through a
Slater—Koster [7] atomic parametrization. These models, how-
ever, are usually restricted to the description of valence elec-
trons, implicitly by assuming a minimal basis set of spd orbitals.
The SOC is included by adding the matrix elements of the
AL-S operator where A is taken as an atomic parameter [8]. Al-
though the simplicity of TB modeling is appealing, this method
is obviously restricted to a limited set of problems. TB parame-
ters are available for most elemental materials [9], but not in
general for all compound materials (which is the case of most
topological insulators). The versatility of this model is also
limited by the sensitivity of the TB parameters to the specific

structural variations which also needs to be parametrized [10].

On the opposite side of sophistication, the electronic structure
of topological materials can be evaluated through density func-
tional theory (DFT). According to the type of basis sets, DFT
codes fall into two broad categories: those making use of plane-
waves and those using localized orbitals. Arguably, the most
reliable implementations of SOC can be found in the code
FLEUR [11] and also in codes such as Vienna Ab initio Simula-
tion Package [12] (VASP) or QuantumEspresso [13,14] (QE),
all of them employing plane-waves for the interstitial or valence
electrons, while approaching the core electrons differently.
Since localized orbitals are convenient for a number of reasons,
for instance for quantum transport calculations [15,16], a
Kohn—Sham Hamiltonian obtained from plane-wave DFT codes
may be transformed into a TB-like Hamiltonian by changing to
a basis of Wannier functions [17,18]. While the results of this
transformation can be accurate, they are not straightforward to
carry out. On the other hand, self-consistent implementations of
SOC for codes using localized orbitals for valence electrons are,
however, much less common [19,20].

In most currently available implementations, including those
using localized orbitals basis sets, the SOC is effectively intro-
duced through pseudopotentials [19,20]. Here, we propose a
different route, employing the actual shape of the basis func-
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tions. In particular we present an implementation of SOC for
DFT calculations based on Gaussian-type localized basis sets,
attempting to bridge the gap between the simplicity of TB
Hamiltonians with their one-parameter implementation of SOC
and the accuracy and transferability of a DFT-level description
of the band structure. We make use of the non-relativistic (or
scalar relativistic) Kohn—Sham Hamiltonian, here obtained
using the CRYSTAL code [21-23], to which we add the SOC a
posteriori. The matrix elements are explicitly evaluated for both
radial and angular parts of the basis elements, by using the
screened nuclear potential. For the radial part, we rely on the
actual analytical expressions of the Gaussian-type basis ele-
ments, as employed in codes such as CRYSTAL, Gaussian [24],
Nwchem [25], etc. Among the available basis sets, all-electron
(AE) basis sets [26], featuring the full nodal structure of the
orbitals and able to properly capture SOC effects, might not be
well designed for band structure calculation of solids in general
or appear inefficient due to their computational cost. Here we
show that when AE basis sets work properly at the band struc-
ture level in calculations without SOC, accurate results can be
obtained from our proposed implementation. Alternatively,
basis sets using effective core potentials or pseudopotentials,
which reproduce better band structures and are computationally
less demanding, lack nodal structure near the nucleus. This has
prompted us to modify the nuclear potential through a fitting
multiplicative factor to effectively model the SOC effect. Im-
portantly, despite the fact that we are dealing with different
types of orbitals of different shells, only a single parameter is
needed since the relative values of the matrix elements are prop-
erly captured.

As possibly relevant examples, we have chosen to apply our
implementation to Sb and Bi, which are prototypical topolog-
ical materials where SOC plays a crucial role. Despite being
elemental, they present a broad range of behaviors. While bulk
Bi is a trivial semimetal, a Bi(111) monolayer is a 2D topolog-
ical insulator (TI) [27]. Sb few-layers in the (111) direction,
typically for more than =7 layers, behave as a 3D topological
semimetal, while the Sb(111) monolayer is a trivial indirect-gap
semiconductor. In order for our SOC implementation to be of
practical use, it should capture these trivial/non-trivial topolog-
ical transitions and give the most faithful representation of the
electronic band structure for any number of layers. This
includes the presence of helical and topologically protected
edge or surface states. For comparison, and as a reliable refer-
ence, we make use of the band structures obtained from the
well-established plane-wave code VASP. In general, we find a
very satisfactory agreement between the band structures calcu-
lated by our approach for both AE (without parameters),
pseudopotential (single parameter) basis sets, and the VASP

results, proving ours to be a practical a posteriori implementa-
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tion of SOC once a standard non-relativistic or scalar rela-
tivistic DFT calculation based on localized orbitals has been

performed.

Methodology

Gaussian basis sets

The accuracy of electronic structure calculations is limited, not
only by functional, but also by the basis set used to expand the
wave functions. When working with localized basis sets, it is
crucial to choose a large enough number of elements or a set of
properly chosen ones. Typically, the basis functions are
centered on atoms, and are so called ”atomic orbitals”. Two
types of atomic orbital functions are typically employed in mo-
lecular orbital calculations, namely, Slater type orbitals (STOs)
and Gaussian type orbitals (GTOs). Slater [7] introduced STOs
as basis functions due to their similarity with the eigenfunc-
tions of the hydrogen atom. They possess an exponential decay
at long range and Kato’s cusp [28] condition at short range.
Their general definition is

Wt (7,9,0) = Ne"le™7,,, (8,0), M

where N is the normalization constant. The radial part is charac-
terized by the principal quantum number 7 and the exponent {
while the angular part is given by the spherical harmonics
which are orthogonal to the radial part and characterized by /
and m, the azimuthal and magnetic quantum numbers, respec-
tively. The { parameter, is variationally optimized with respect
to the total energy of each atom. STOs have the advantage of a
direct physical interpretation and are thus naturally good basis
for molecular orbitals. However, from a computational point of
view, STOs are not competitive. In practice, the radial part of
STOs is approximated by a linear combination of GTOs (or
primitives). Spherical GTOs were proposed by Boys [29] with a
radial part defined as

ROTO (r) = Nrn_le_m2 s @)

where the exponent o determines the extension of the function.
Huzinaga [30] has illustrated that it is adequate to consider
n =1[+ 1 and hence optimized GTO basis sets use 1s functions
to represent all s-type orbitals, 2p functions for p-type, etc.
Despite the computational benefits, GTOs have two major
disadvantages, namely, they do not have a cusp at the nucleus
and they fall off to zero too rapidly for large radius. However,
these shortcomings can be overcome by considering linear com-
binations of GTOs to form contracted Gaussian-type orbitals
(CGTOs):
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Here each primitive, as defined in Equation 2, is normalized on
its own (&;) and the whole contracted function has an overall
normalization constant (Ny). The coefficients d; and exponents
a; determine the radial shape of the CGTO. A large enough
number of primitives with coefficients d; of different signs can
reproduce the expected atomic nodal behavior of wave func-
tions near the nucleus. Introducing the nodal structure in the
basis sets turns out to be irrelevant for most band structure
calculations and increases the computational effort, significant-
ly. However, as we will show in the next section, for the calcu-
lation of SOC, the exact behavior of the wave functions near the
core is required.

Evaluation of SOC matrix elements

The output Hamiltonian and overlap matrices of the CRYSTAL
code, ignoring broken spin-symmetry solutions, are the same
for up and down spin electrons. SOC is considered to be a
purely intra-atomic interaction. Rigorous approximations to the
full relativistic Dirac—Kohn—Sham Hamiltonian, which
decouple the electronic part from the positronic part, yield to
lowest order a SOC correction of the form @(r)[-S (see, e.g.,
[31] for a nice overview of a fairly extensive topic) which
mixes orbital angular momentum (m) and spin (6) quantum
numbers. Since the angular and radial parts of the wave func-
tions are orthogonal, SOC matrix elements between different
CGTOs can be straightforwardly evaluated as

§1J<ll,mll,s|z§|lj,mlj,s'>, (4)

where L-S acts on the spin degree of freedom and the spheri-
cal harmonics, while the radial contribution can be obtained

from

Ool dV r *
‘:ij 3 Ir eéi( )Ri(r)Rj (r)rzdr. 5)
0

2m,c

Here R(r) is the radial part of the i-th atomic CGTO (built as
described in the previous section) and Vee(r) is the effective
screened nuclear potential that electrons actually feel. Here we
are not concerned with the rigorous discussion concerning the
approximations that lead to Equation 5 and the origin of Ve
(for details see [31]). It suffices to say that, intuitively, the
potential must be of the form Z/r very close to the core and be-

have as 1/r far apart. For the case of an isolated atom, it has
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been shown that making use of the unscreened nuclear poten-
tial will result in an over estimation of SOC splittings. A simple
model has also been suggested for screened nuclear potential,
which includes the screening by adding an orbital dependent
charge term (placed at the origin) to the bare nuclear potential
[32]. The effective potential can also be extracted from an
atomic DFT calculation. Here, we explored both possibilities

and found no significant differences.

A correct electronic band structure in solids requires an accu-
rate description of chemical bondings and hence, enough varia-
tional flexibility in the valence region. On the other hand, since
the main contribution to the SOC matrix elements stems from
the vicinity of the nucleus, a correct description of orbitals is
also essential near the core. AE basis sets specifically designed
for the latter purpose are common in atomic physics and molec-
ular chemistry. While they can capture the full nodal structure
of the orbitals, it is, however, unclear how well they perform
when it comes to the band structure of solids, which is our main
concern here. Our results indicate that, when AE basis sets band
structures are in good agreement with those of plane-wave
calculations before including SOC (which might not be always
the case), fairly accurate results can be obtained after including
SOC. We have also found out that a proper renormalization of
the effective potential makes even pseudopotential basis sets
(without nodal structure) suitable for band structure calcula-

tions where SOC plays an important role.

Results and Discussion:
Elemental topological Materials, Sb and
Bi 2D Crystals

Antimonene

Antimonene, a term generically used for Sb(111) in 2D form,
has been recently added to the growing library of 2D crystals.
Its recent isolation and characterization [33], is bringing this
material into the focus of the research community. Several DFT
studies on this material have predicted a number of exciting
physico-chemical properties, including a tunable band gap with
potential applications in optoelectronics [34-37], low thermal
conductance with low electrical resistivity for energy genera-
tion through thermoelectricity [38], and exotic topological fea-
tures under strain [39-41]. However, it was not until last year
that few experimental works brought all those expectations
closer to reality [33]. It was demonstrated that it is possible to
isolate few or even single stable layers of antimonene, in
ambient conditions. Moreover, new procedures such as liquid
exfoliation and epitaxial growth methods were reported.

Theoretical works on antimonene can be divided into two cate-

gories. The most recent publications refer to monolayer anti-
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monene (or occasionally bilayer antimonene) and can be found
in the context of new 2D crystals. Other works, which go a few
years back in time, refer to few-layered (FL) antimonene (or
Sb(111) thin films), and can be found in the context of 3D TIs
[1]. The physical properties of antimonene evolve quite drasti-
cally from mono- to few-layer cases, and each deserves a sepa-
rate discussion.

Monolayer antimonene

Figure 1 presents the DFT band structure of a single layer
of antimonene without SOC, in the framework of the
Perdew—Burke—Ernzerhof local density approximation [42] to
the functional for different basis sets. Panel (a) shows the
results using the VASP [12] package. Calculations are per-
formed with a plane-wave cutoff of 400 eV on a 15 x 15 x 1
Monkhorst—Pack k-point mesh. For structural relaxation, all
atoms are allowed to relax until atomic forces are smaller than
0.01 eV/A.

In agreement with previous studies for free standing anti-
monene [43], we obtain an in plane lattice constant of the
relaxed structure a = 4.12 A and a buckling height # = 1.64 A.
Panels (b) and (c) show the band structure obtained with
CRYSTAL using two standard AE basis sets properly
converged in the number of elements. The former is based on
relativistically contracted atomic natural orbitals [44,45] (ANO)
and the latter belongs to the family of well-tempered basis sets
[46] (WTBS). Examples of (the radial part of) basis elements
from these two basis sets are shown in Figure 2a. For the sake
of simplicity in the discussions and since no significant differ-
ences have been found, the same lattice structure (relaxed with
VASP in presence of SOC) and same functional has been used
in all band structure calculations. When compared to the VASP
results, ANO bands turn out not too satisfactory at the high
symmetry I" point where the ordering of degenerate and non-
degenerate bands is not reproduced. For other k-points across
the Brillouin zone the results are comparatively better. The
WTBS results shown in (c) manifest a significant improvement,
particularly for the conduction bands, although the ordering of
the valence bands is still not the correct one at the I" point. Inter-
estingly, we have found out that a combination of both ANO
and WTBS basis sets [panel (d)] improves the band structure t