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We study theoretically the local density of states (DOS) in a topological Josephson junction. We show that the well-known 4x

Josephson effect originates from the interference effect between two Majorana fermions (MFs) that are localized at the Josephson

junction. In addition, the DOS for electrons (holes) shows the 4 interference information along each parity conserved energy spec-

trum. The DOS displays a 27 period oscillation when two trivial states interfere with each other. This means that the DOS informa-

tion may be used to distinguish the MFs from trivial localized states. We suggest that the interference effect and the DOS can be

detected by using two STM leads or two normal leads. A single side lead can only detect the Andreev reflection tunneling process

in the junction, which cannot reveal information about the interference effect in general. However, using two side leads, we can

reveal information about the interference effect of the MFs as well as the DOS by combining Andreev reflection with the electron

transmission process.

Introduction

After Kitaev reported that Majorana fermions (MFs) can appear
as quasi-particle states at the ends of a one-dimensional (1D)
p-wave superconductor [1], the generation of MFs became a
popular goal in condensed matter physics [2]. Several methods
were suggested to fabricate and detect MFs in effective 1D
p-wave superconductor systems [3-11]. The use of a semicon-
ductor wire with Rashba spin—orbit coupling and proximity-in-
duced superconductivity appear to be the most promising

method [4]. Indeed, a semiconductor—superconductor nanowire

was manufactured to confirm the prediction of the theory [12-
14]. The second topological superconducting system that was
realized experimentally is related to ferromagnetic atomic
chains, which are put on a trivial superconductor [15]. It is
believed that MFs can generate a zero-bias conductance peak
(ZBP) in the conductance spectrum [16-19], and indeed the
signature of ZBPs has been observed in both systems in tunnel-
ing experiments. These advances accelerate the development of

nanotechnology [20-27]. Recently, a breakthrough was
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achieved in research groups led by Kouwenhoven and Marcus.
Both groups observed the integer ZBPs in a nanowire system
[28]. These are the most persuading results so far. However, all
these achievements relied on the observation of ZBPs, which
means that many other unique properties of MFs still require
further verification and investigation.

Apart from the ZBP, another significant feature of MFs is the
4m Josephson current. When two topological superconducting
wires are combined to form a topological Josephson junction
(Top-1J), the period of the supercurrent is 4x if MFs exist at the
ends of both wires. This is different from the trivial case with-
out MFs. In the trivial case in which only Cooper pairs can
tunnel, the period is 2x. Since MFs have only half a degree of
usual fermions, half a degree of Cooper pairs can tunnel in the
Top-JJ when the two MFs combine. In this situation, the period
is doubled. Because the 4w Josephson effect is a unique trans-
port property of MFs, many groups attempt to observe it.
Indeed, Kouwenhoven’s and Marcus’ groups fabricated such a
junction and obtained some preliminary results. However, the
expected 4 period was not observed [23-25]. The 4rn Josephson
effect needs a stringent condition that is known as the parity
conservation [29]. The evolution of the states is expected to
follow one fixed branch of the energy spectrum. It is particular-
ly susceptible at the degenerate point when the even and the odd
parity states intersect at zero energy for ¢ = (2n + 1)x. The state
then changes from one parity to another because of quasipar-
ticle poisoning, the background and the thermal effect [30-34].
In this case, the 4z period will return to the conventional 2.
Thus, to reveal the 4z nature of the MFs, it may be necessary to
observe more than just a supercurrent. Interestingly, several
groups have studied superconductor-topological insula-
tor—superconductor junctions that also display a 4w Josephson
current. However, the behavior of the 47 Josephson current is
not consistent with the theoretical prediction [35-41]. To distin-
guish the 4n information of MFs, it is necessary to reveal addi-
tional characteristic properties of such a Josephson junction.

In this paper, we study a Top-JJ composed of two topological
superconductors as shown in Figure 1a. Unlike previous studies,
we focus on the density of states (DOS) for both the electron
part and the hole part. The essential property of the MFs is that
the wave function of the electron part must be conjugated with
the wave function of the hole part, which is known as the self-
Hermitian property of the MFs. More specifically, the self-
Hermitian property of the MFs can be demonstrated directly
from the DOS of the electron and of the hole part, which is a
basic assumption used in this paper. Since the DOS only shows
the steady information of the whole energy spectrum, it does
not relate to the parity-conserving problem, which is a problem

of dynamic evolution. Therefore, compared to the supercurrent,
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Figure 1: (a) Schematic setup of an experiment in which two STM
leads or normal leads are connected to a Top-JJ that supports the
MFs. (b) Energy spectrum of the Top-JJ with chemical potential

u = —2t, which lies in the topological region. The two MFs, which are
localized at the junction, interfere with each other and display a 41
oscillation. (c) DOS for electron part of the coupled MFs in the Top-JJ.
Both even parity state and odd parity state show a parity-correlated 41
oscillation. (d) Energy spectrum of the Top-JJ with chemical potential

u = -2t + 5.7A, which lies in the trivial region, and the disorder strength
w = 0.13t. In this case, there does not exist any MF that is localized at
the junction. However, the trivial Andreev bound states occasionally
touch with each other in the presence of disorder. In such situation, the
trivial Andreev bound states behave like the Andreev bound states
formed by the two MFs in panel (b). (€) DOS of the trivial Andreev
bound states for the electron part. It is totally different from the DOS of
the nontrivial Andreev bound states in panel (c). The period of the
trivial state is 2.

the DOS are easier to detect. We show that the two Andreev
bound states formed by the MFs exhibit a 4x period due to the
interference effect between the two MFs. Furthermore, the DOS
of both the electron and the hole part can also reveal the 4x
period. The electron (hole) DOS of the two Andreev bound
states are related: One is destructive, while the other is
constructive. However, the DOS of the trivial Andreev bound
states contains different information. In general, the interfer-
ence effects in the trivial Andreev bound states are unrelated,
and their period is 2. Thus, it may be a way to distinguish them
using information contained in the DOS. We suggest that the
interference effect can be detected using two STM leads or two
normal leads. We show that a single side lead can only detect
the Andreev reflection tunneling process in the junction, which
cannot reveal information about the interference effect in
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general. However, using the two side leads, we can display
information about the interference effect of the MFs by combin-

ing Andreev reflection and the electron-transmission process.

Model Hamiltonian and formula

A typical Top-JJ is composed of two topological supercon-
ducting wires that have different superconducting phases. Ac-
cording to [9,18], the tight-binding model of a superconducting

wire is:

Hyqip =i qa (\de WVia +he. ) ] o Wi g
_zi,d,a,BiURWi+d,a2 (Gxd)og wip

+Zi7(x,|3 \Via [(chx )OLB imp (i )SQBJWI B (D
2 aAeid)s Wiawi—a

H Z ( C\VLN] WRl,iy,OL +h.C.).

+h.c.

Here, H, 4;p is the Hamiltonian of the left (right) wire with
s = L (R). The only difference between the two wires is the
phase of the superconducting order Ae'ts (here we set ¢; = ¢
and ¢p = 0). Furthermore, i denotes the lattice site, and d
denotes the two unit vectors dy and dy, which connect the

nearest neighbor sites in the x and y directions, respectively.

Moreover, a, B are the spin indices, ¢ is the hopping amplitude,
u is the chemical potential, Uy is the Rashba coupling strength,

and V), is the Zeeman energy caused by magnetic field along the
wire direction. A is the superconducting pairing amplitude and
Vimp() is the Gaussian impurity. H, describes the coupling be-

tween the left and the right topological superconducting wires.

To obtain the tunneling coefficient at the junction, we use the
recursive Green function method. We can then calculate the
scattering matrix of the system. The scattering matrix is related
to the Green functions via

siP =5, ;5

Tea 1/2 - B 1/2
" aﬁ-i-l[l"i} G -[FJ E)

Here, Sg."ﬁ is an element of the scattering matrix that denotes
the scattering amplitude of a B particle from the j-th lead to an a
particle in the i-th lead. Furthermore, i,j = 1 or 2, where 1 and 2
denote, respectively, the first and the second normal lead as
shown in Figure la. o,f € {e,4} denote the electron (e) or hole
(h) channels. In addition,

-1
.
G = |:E_HL,q1D —Hp gp—H, —Zi,a(z?) }
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is the retarded Green function of the Josephson junction, and
Y =i(=ZH)" —(Z7)“] is the linewidth function of an o particle
in the i-th lead, where (Zlq)r(a) is the retarded (advanced) self-
energy of the a particle for the i-th lead. In the following calcu-
lation we set 'Y =0.1A through wide-band approximation. The
physical meaning of the scattering matrix is: S[‘;’h means the
Andreev reflection coefficient 7 in the i-th lead, and S;°
means the electron transmission coefficient 7, from the i-th lead
to the j-th lead.

To match the experiment in [12], the parameters in the
tight-binding model were chosen as follows: A = 250 peV,
t =25A, Up = 2A, and the superconductor coherence length is
& = t/Aa = 500 nm with @ being the lattice constant. In addition,
we set V, = 2A such that the superconducting wire can support

the MF end states by tuning the chemical potential.

Results and Discussion

The following section is divided into three subsections. In the
first subsection, the 47 oscillation of the DOS is shown. In the
second subsection, the same oscillation information in a ring
structure is shown and in the third subsection, we discuss how
the information about the DOS is detected.

417 oscillation of the density of states

In this subsection, we consider the origin of the 4 Josephson
effect. Then, we show that the DOS for the electron (hole) part
can also exhibit the 4x interference effect. The well-known 4x
Josephson effect is directly related to the fractional nature of the
MFs. Because a single MF has only half a degree of a conven-
tional fermion, we can define a conventional fermion using
W = (Y2j—1 + iv2)). For the Top-JJ in Figure la, there are two
pairs of the MFs, which are localized at the ends of the
superconductor. We assume that the length of the wire is suffi-
cient so that y; and y, (y3 and v4) are not coupled to each other.
In this case, only v, and y3 can couple to each other at the junc-
tion, which is described in Equation 1. Because the phase of the
left wire is ¢ and the phase of the right wire is 0, the Hamil-
tonian of the left wire can be transformed into the right one
using a unitary transformation U =diag(e_i¢/2,ei¢/2). The
phase difference between y, and y3 is ¢/2. These two MFs will
interfere with each other and form two Andreev bound
states because of this phase difference. The effective Hamil-
tonian can be obtained by projecting the coupling of Equation 1

—i¢/2

onto the subspace of the MFs using iy.o —ie v, and

YRLiy,o0 =73 [6]. Then, the low-energy effective Hamiltonian
is
Her = ~Tegr c08(9/2)iv573
= —Tegr cos(9/2)(N -1/2).
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Here, N = yy is the number operator and y = y3 + iy,. Then,
the occupation number has two values: N, = 0,1, with N, =0
corresponding to the even parity state, and N,, = 1 correspond-
ing to the odd parity state. The Josephson current mediated by
the MFs can be given by 7; =0E($)/ 0 (—I)NV sin(¢p/2),
which displays the 4n oscillation. This is very different from the
case without the MFs. In such case, only Cooper pairs can

tunnel from one superconductor to another, and the period is 2.

We show that the fractional Josephson effect can be attributed
to the interference effect between the two MFs. Next, we show
that the DOS of the electron and the hole part of the Andreev
bound states, which are formed by the MFs, also display the 4n
period. The MF is a particle that is its own antiparticle. For such
a particle, the wave function of the electron part must be conju-
gated with the wave function of the hole part, which is the self-
Hermitian property of the MF. Thus, the general wave function
of the MFs should be [42]:
. . T
7y =Le ™25 (), 2 ()]

Here, \(x) is the wave function of the electron part, when the
phase of the superconducting order parameter is 0. In the Top-JJ
shown in Figure 1(a),

. . AT
T2 = (e 2000, ()

and

iy = (10, -" ()

These two degenerate MFs will couple with each other to form
an Andreev bound state via y = (y3 + iy;), and the excited wave
function should be combined using the same rule:
—ih/2 ~
v (a2 i) (e
Vi =73 +i(=1)""y, = RN )
AFeY )y () \V+

From Equation 4 we can see that the DOS for the electron
part is |uy |20c1icos(¢/2), while the DOS for the hole is
[vy |2oc 1¥ cos(¢/2). There are several unique properties of the
DOS for the Andreev bound states formed by the MFs: First,
the period along each energy spectrum is 47. Second, it is parity
correlated. The DOS is 1+ cos(¢/2) for the even parity state,
and the DOS is 1—cos(¢/2) for the odd parity state. Third, the
DOS of the hole part for the even parity state is the same as that
of the electron part for the odd parity state due to the self-
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Hermitian property of the MFs. Because of these unique proper-
ties of the DOS, we may differentiate the 4 information using
the DOS of the electron (hole) part, which should provide
clearer distinctions than the trivial states.

Our numerical results provide direct evidence for this conclu-
sion. We use the tight-binding model in Equation 1. The length
of each wire is Nya = 4um and 7, = 0.4¢. Figure 1b shows the
energy spectrum as a function of the flux ¢ with the chemical
potential p = —2¢, which lies in the topological region. The red
solid line is the energy spectrum for the odd parity state, while
the blue solid line is the energy spectrum for the even parity
state. We can see that both of them oscillate with a period of 4x.
Next, we study the information of the DOS more closely.
Figure 1(c) shows the information of the local DOS for the elec-
tron part |5 |2 along the fixed even parity state (blue solid
line) and the odd parity state (red solid line). Here, w5 is the
electron part wave-function localized at the junction, which can
be extracted through diagonalization of the lattice Hamiltonian
in Equation 1. The DOS of the electron oscillates with a period
of 4r and the interference pattern is correlated with the parity.
Furthermore, this relation is still valid in the presence of moder-
ate disorder. Figure 1b and Figure 1c¢ are calculated for the
Gaussian disorder of w = 0.067. We can see that the relation still
holds.

Interestingly, when the two trivial fermion states interfere with
each other, the situation is very different. Though an analytic
result cannot be obtained, our numerical simulation suggest that
the general formula for the DOS for the electron (hole) part
should be a + bcos(9), with a and b being real constants. This
can be understood as follows: For the trivial case, only Cooper
pairs can tunnel through the junction. Thus, the DOS must be a
function of cos(¢) instead of cos(¢/2). From our numerical
results, we know there are several differences to the nontrivial
case. First, the period is 27. Second, there is no corresponding
parity-correlated interference effect for the trivial case. Third,
the maximum (minimum) value of the DOS is at ¢ = (2n + D)x
for the trivial case and at 2nm for the nontrivial case. In
Figure 1d, we show the energy spectrum as a function of the
flux under strong disorder, w = 0.13¢ with p = —2¢ + 5.7A. It is
typical that the two trivial Andreev bound states are acciden-
tally in contact with each other for the strong disorder. From
Figure 1b and Figure 1d, we can see that the energy spectra are
very similar between the trivial case without the MFs and the
nontrivial case with the MFs. In this situation, it is difficult to
distinguish the trivial Andreev bound states from the Andreev
bound states formed by the MFs. Even though the period of the
Josephson current is still 2z, it may be changed into 4w via a
Landau—Zener transition [43]. Thus, the Josephson current

cannot distinguish the trivial Andreev bound states and the
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nontrivial Andreev bound states formed by the MFs. Figure le
displays the information of the DOS for the electron part for the
two trivial Andreev bound states. We can see that the DOS is
described by a + bcos(¢), which is distinct from the nontrivial
case shown in Figure 1(c). Therefore, the DOS are clearly
distinct.

Interference effect in a ring structure

Another typical Josephson junction is the ring structure shown
in Figure 2a. In such a ring structure, when a magnetic flux
threads the ring, the two MFs interfere with each other due to
the phase difference. In Figure 2b, we show the energy spec-
trum as a function of the flux. The Andreev bound states formed
by the two MFs show the same behavior as for the Top-JJ
shown in Figure 2b. Furthermore, the DOS of the electron part
in Figure 2c¢ also contains the same interference information as
the one shown in Figure 2¢. They are parity correlated with a 47
period. Thus, we can see that the fractional Josephson effect
originates from the interference effect between the two MFs.

aU

0 2
o/m

Figure 2: Interference effect in a typical Top-JJ of a ring structure.

(a) Schematic setup of the experiment. (b) Energy spectrum of the
Top-JJ with the chemical potential y = -2t which lies at the topological
region. The two MFs which are localized at the junction interfere with
each other and display the 41t oscillation. (c) DOS for the electron part
of the coupled MFs in the Top-JJ. Both the even parity and the odd
parity states show parity correlated 41 oscillation.

Although the two different structures show the same informa-
tion for the interference effect, we can say that they are qualita-
tively different. The parity in the ring structure will not be de-
stroyed when the parity of the whole system is conserved. How-
ever, the parity in the junction, as shown in Figure 1a, will be
destroyed even if the total parity is conserved. This is attributed
to the fact that there are two pairs of MFs in the system of
Figure 1a, while there is only one pair of MFs in the ring struc-
ture shown in Figure 2a. If there are two pairs of MFs, the effect
from the other MFs must be considered. For example, in the

Josephson junction shown in Figure 1a, y; will couple with vy,
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Figure 3: (a) For the Top-JJ shown in Figure 1a, when we consider
the energy splitting induced by the finite length of the wire, the parity
will be destroyed. The dashed line shows the energy spectrum versus
the phase difference with L1 = L, =100a. A small gap dE) can be ob-
served due to the finite-length effect. (b) Energy spectrum as a func-
tion of the flux in the ring structure with p = -2t + 0.4A and N, = 50a.
Here, Ej; = 0.05A and I'egr = 0.1A. We can see that the gap is not
opened and the 41 period persists. (c) Energy spectrum as a function
of the flux in the ring structure with y = -2t + 0.8A and N, = 50a. Here,
Ep=-0.12A > I We can see that the two states of different parity
are separated in energy space. (d) An energy spectrum that is beyond
the superconducting gap in the ring structure and also oscillates with
the 41 period. (e) Flux-dependent DOS of the electron part (red solid
line) and the hole part (blue solid line) along the odd parity state
energy spectrum in panel (c). They are correlated with each other.

(f) Flux-dependent DOS of the electron part (red solid line) and the
hole part (blue solid line) along the energy spectrum in panel (d). They
are not correlated with each other.

and y3 will couple with y4. The effective coupling Hamiltonian
should be Hys = Eppiiy1y2 + Emivsys, where Ejyp ) represents
the energy splitting between the two MFs in the left (right)
superconducting wire. Ejs;.2) decreases exponentially with the
length L) of the left (right) wire: Epicay < exp(=Lyz) / &)
with & being the coherence length of the superconducting wire
[42,44,45]. When effective coupling is considered in the Hamil-
tonian in Equation 3, the Andreev bound states would not inter-
sect at ¢ = 7. In Figure 3a the red (blue) solid line shows the
energy spectrum for the even (odd) parity state of the Andreev
bound states formed by the MFs. Here, the wire length is infi-
nite. Therefore, y; and y4 will not destroy the parity of the
Andreev bound states. When the wire length is finite (e.g.,
Ly =L, =100a), we can see from the dashed line that a band
gap 0E) exists at ¢ = . Thus, the parity is destroyed, and the
Josephson current has a 2w period. There is no 4n fractional

Josephson Effect in the junction shown in Figure la.

524



While there are only two MFs, the parity of states will not be
destroyed even if we consider the effective coupling induced by
the finite length of the wire. In this case, the total low-energy
effective Hamiltonian can be described as follows:

Hregr = [reff cos(¢/2)+ Ey ]i“m’z- Q)

Here, T'fr is the effective coupling between the two MFs at the
junction and E) is the energy splitting between the two MFs
due to the finite length of the ring shown in Figure 2a. We can
see that £ only shifts the energy of the even (odd) parity state
but does not destroy the parity. In Figure 3b, we show the
energy spectrum for a varying flux with p = —2¢ + 0.4A and
t. = 0.4t. Here, Ej; = 0.05A and T'egr = 0.1A. The two energy
spectra cross over without destroying the parity of the Andreev
bound states. When we consider the case of Ej; > [efp, the two
states are separated. The energy spectra of the Andreev bound
states shown in Figure 3c are separated and show the 4z oscilla-
tion for the ground state. In this case, we can ignore the parity
conservation problem. Here, E£j; = —0.12A when the parameters
are L =50a, t. = 0.4t and p = —2¢ + 0.8A. The analysis above in-
dicates there are qualitative differences between one pair of
MFs and two pairs of MFs. If there are two pairs of MFs, the
parity of the Andreev bound states formed by the two MFs can
be affected by coupling with the other MFs. However, if there is
only one pair of MFs, coupling only affects the effective cou-
pling between the two MFs but it does not destroy the parity of
states. In fact, coupling induced by the finite-length effect can
cause the same interference effect as in the Top-JJ of the ring
structure. Both of them originate from the interference effect
between the MFs.

We have shown that the 47 Josephson Effect can appear in the
mesoscopic ring structure without the need to consider the
parity-conserving problem. However, in this case, an unex-
pected coherent single electron tunneling process would occur
in the mesoscopic ring structure, which is similar to the persis-
tent current in the mesoscopic ring. It will occur in the conduc-
tion band, which lies above the superconducting gap. Figure 3d
shows the energy spectrum that lies above the superconducting
gap. It also oscillates with a 4xn period. It is difficult to derive
these two cases from the period. Here, we show that the DOS
can distinguish the two different cases. The DOS caused by the
MFs is parity related and has a 4n period, whereas the DOS
caused by the coherent tunneling does not exhibit a parity-
related oscillation. Figure 3e shows the DOS of the electron part
(red solid line) and the hole part (blue solid line) of the odd
parity state, respectively. We can see that they show the parity

related interference pattern, where one is constructive and the

Beilstein J. Nanotechnol. 2018, 9, 520-529.

other is destructive. Although the total DOS is not conserved
due to the splitting of the MFs, it is qualitatively different from
the DOS of the energy spectrum above the superconducting gap
(Figure 3f). The DOS in Figure 3f is not parity related and
shows very different oscillation behavior between the DOS of
the electron part and the hole part. Thus, they can be well distin-
guished by considering the DOS.

Detecting the 41 oscillation through two STM

leads

In the last section, we have shown that the main features of the
DOS for the nontrivial Andreev bound states are parity-corre-
lated with a 4z period, which is very different from the trivial
case. Next, we describe how the parity-correlated 4n period of
the DOS can be detected. The intuitive approach would be to
put a STM lead (normal lead) to detect the local DOS. Howev-
er, this does not work. In our previous paper [46], we studied
the conductance at the junction with a single STM lead. A
butterfly-pattern conductance caused by nontrivial Andreev
bound states would be observed as we vary the flux, which is
distinct from the conductance of a single impurity state local-
ized at the junction. Hence, the butterfly pattern can be regarded
as a unique property of the nontrivial Andreev bound states.
Figure 4a shows the same butterfly-pattern conductance. How-
ever, the peak value of the butterfly for each parity-conserved
energy spectrum has a 2m period instead of a 4x period. The
reason for this is that a single STM lead can only read the infor-
mation of the local DOS via Andreev reflection. Although the
numerical results in Figure 4 and Figure 5 are calculated using
recursive Greens function methods, the relation between
Andreev reflection and DOS can be obtained using a simplified
effective model. These two methods are consistent with each
other. The calculation of the Andreev reflection coefficient
through the effective model can be found in the appendix or in
[47], and can be expressed simply as

| e

(0-Ep )+ (Teett + Thetr )2

TA:

Here, I, ¢fr is the effective self-energy of the electron part of the
leads, I'j, of is the effective self-energy of the hole part of the
leads, and Ej; is the coupling energy of the two MFs.
Lo e ol s * = 1+ cos(¢/2) is proportional to the DOS of the
electron part, and I'j, o¢r oc| L4 \2 = 1Fcos(¢/2) is proportional
to the DOS of the hole part. Thus, the Andreev reflection
reveals the combined DOS of the electron and the hole parts,
which is a 2z period. It cannot reveal the DOS of the electron
(hole) part separately. In addition, we can see that if the two
MFs are decoupled from each other, |ux|? = Ju? and T4 shows

the well-known resonant Andreev reflection caused by the MFs.
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Figure 4: Two STM leads (or weak coupled normal leads) localized at
the junction can read the putative 41 period through the differential
conductance. (a) Contour plot of the Andreev reflection coefficient T4
of a STM lead as a function of the flux ¢ and the incident energy E.
(b) Contour plot of the electron tunneling coefficient T, from the STM
lead 1 to the STM lead 2 as function of the flux ¢ and the incident
energy E. (c) The ratio between the peak value of T, and the peak
value of T, here T = (Tg + T4)/2. They show similar information of the
DOS (see Figure 1c). The DOS of one energy spectrum exhibits a 41
period. However, when both spectra are considered, the period returns
to 2m. In this situation, we can distinguish by the even—odd cross point
as indicated by dashed circle. The parameters are Ny = 200a, y = —21,
and V, = 2A.

To detect the local DOS of the electron part or the hole part, we
need additional information beyond the Andreev reflection
process. Thus, it is necessary to add another STM lead to detect
the electron transmission or the crossed Andreev reflection be-
tween the two leads [47,48]. This can directly reveal the infor-
mation of the DOS. During this process, the electron tunneling
coefficient between the two leads is

U e ctt ] Rejett

(0—Ey )2 +(Treetr +Tinett + T rectr + T et )2

T =

e

Here, T'y gy cft | s \2 = lxcos(¢/2) is the effective elec-
tron part self-energy of the STM lead L(R), which is propor-
tional to the local DOS for the electron part. In Figure 4b, we
show the contour plot of 7, as a function of the flux ¢ and the
incident energy £. We can see that the peak value of the tunnel-
ing coefficient 7, is proportional to (1—cos(¢/2))?, i.e., the
square of the DOS of the electron part. In addition, there is a
sharp peak located at ¢ = (2n + 1)n. The peak appears due to
the overlap between the two energy spectra at the position

¢ = (2n + 1)x. This is a main feature of nontrivial Andreev
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Figure 5: The case for two accidentally touching Andreev bound
states. (a) Contour plot of the Andreev Reflection coefficient T4 as a
function of flux ¢ and the incident energy E. (b) Contour plot of the
electron tunneling coefficient T, from the STM lead 1 to the STM lead
2 as a funciton of the flux ¢ and the incident energy E. For both cases,
the period is 21r. (c) The ratio between the peak value of T, and the
peak value of T, here T = (Tg + Tp)/2. They yield similar information as
the DOS for the trivial states. The obvious characteristic is that they
will intersect an even number of times or not at all in a 21 period as in-
dicated by dashed circles. The parameters are N, = 200a,
p=-2t+5.7A, and V, = 2A.

bound states: The two energy spectra intersect with each other.
A better way to distinguish the information of DOS is to com-
bine both the Andreev reflection and the electron transmission.
In Figure 4c, we plot the ratio between the peak value of 7, and
the peak value of 7. Here T'= (T, + T4)/2 is the average tunnel-
ing coefficient of the Andreev reflection and electron transmis-
sion. We can see that this ratio is very similar to the DOS. One
spectrum is proportional to 1+ cos(¢ / 2), while the other one is
proportional to 1-cos(¢/2). Thus, combining the electron
transmission and the Andreev reflection process can reveal the
parity-correlated 4z oscillation of the DOS.

The tunneling coefficients show a very different behavior when
we use two normal leads to detect the trivial Andreev bound
states. Figure 5a shows the Andreev reflection coefficient as a
function of the flux ¢, while Figure 5b displays the evolution of
the electron transmission coefficient with varying ¢. The
obvious 27 period can be easily distinguished using the tunnel-
ing coefficient of electron transmission. However, the trivial
Andreev bound states are susceptible to the external circum-
stance. When the two leads are attached to the junction, the two
accidently touched trivial states will not overlap. In addition,
the DOS will also be affected by the lead contact. The DOS will
show a small variance when the coupling strength of the leads
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changes. As shown in Figure Sc, the ratio 7,/7T changes a little
compared to the DOS of trivial Andreev bound states. However,
two properties are preserved: First, the period is still 2 and can
be described as a + bcos(¢); second, both electron DOS and
hole DOS are generally unrelated, which strongly indicates that
the two Andreev bound states are not clearly correlated with
each other. Thus, the nontrivial Andreev bound states can be
distinguished from the trivial Andreev bound states by combin-
ing both the electron transmission process and the Andreev
reflection process.

Finally, we want to point out that the actual period in Figure 4c
returns to 2w when both parity states are considered. However,
we can still distinguish the trivial Andreev bound states and the
nontrivial Andreev bound states by the DOS. As shown in
Figure 4c, the DOS of nontrivial Andreev bound states is
1—cos(¢/2) for an even parity state and 1+ cos(¢/2) for an
odd parity state. The plots of the DOS for different parity states
would overlap once (see the dashed circle in Figure 4c). While
the DOS of the trivial Andreev bound states is a + bcos(¢), the
plot of the DOS for trivial states would overlap with zero or
even times in a 2z period as indicated by dashed circle in
Figure 5(c). This is decided by the functional properties of
cos(¢) and cos(¢/2). This kind of even—odd crossing would not
be affected by a small variance of the DOS. Thus, in general,
we can still distinguish the trivial states and nontrivial states
through the even—odd crossing of the DOS in a 27 period.

Conclusion

We have studied the interference effect of two MFs in a topo-
logical Josephson junction and a ring structure system. We
show that the 4x Josephson effect originates from the interfer-
ence between the two MFs, and so does the DOS of the
nontrivial Andreev bound states. Thus, detecting the behavior of
the DOS can directly reveal the nature of the fractional
Josephson effect. The trivial states, which behave like the
nontrivial Andreev bound states, are considered in the paper.
Although it is difficult to distinguish the two cases through the
supercurrent and the energy spectrum, it can be well separated
through the DOS. We suggest that the DOS can be detected
using two normal leads, i.e., STM leads. With the two leads, we
can obtain the electron transmission process beyond the
Andreev tunneling process. Then, the information of the DOS

can be derived by combining the two processes.

Appendix
Effective Hamiltonian and effective current

formula
In the main text we calculate the tunneling coefficients using
the recursive Green function method. To better understanding

the numerical results, we obtain the analytical results using the
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effective Hamiltonian and scattering matrices. The effective
Hamiltonian Hepr = Hy + Hyy + Hyp can be formulated as
follows:

+00
Hy =-iv, z I \y:& (x)o,y,, (x)dx,
oeLl/R —x

Hyr =iEyv172,

Hy = Z—i[“/l (fa,ﬂlfl (0)+ la1Va (0)) N

+72 (fa,ze_id)/z\vg (0)+, ¢y, (0))}

Here, Hy is the Hamiltonian of the left and right normal leads;
V(r) denotes a fermion operator of the left (right) normal lead,
and vris the corresponding Fermi velocity of the leads. H), de-
scribes the two coupled MFs, where E); is the coupling strength
between the two MF end states y; and y,. The coupling be-
tween the leads and the MFs is described by Hy, where the cou-
pling strengths are represented by fq,l and fa’z, respectively.

To calculate the scattering matrix of the system, we perform a
transformation first. Considering that a single MF is just half of
an ordinary fermion state, we can change the MF representa-
tion into the fermion representation y; = d + d¥, v, = i(d — d*).
Then, Hys and Hy are changed to:

Hy =Eydtd
ﬁT = Z(fa,ewg (O)d +;a,hWL (O)dT + hc)
(04

with (N
7 [z g —ih/2
tot,e =—1 (t(x,l + lt(x’ze ¢ ),
Z(X,h = _i(fa,l + ifa’26i¢/2 )

Next, we can formulate the scattering matrix in a model-inde-
pendent form,

~ -1
S(E)=1-2miwt (E— iy +inwwt) “w,  ®

with W the matrix that describes the coupling between the scat-
tering region and the leads:
L IRh

tL,e tR,e

W = 't“l 'fl 't“l E’!
—lrh TIRE TIRe TIRe
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In general, we can write the approximation as:

SJ%B =0/ 48up +im/(E—EM +iI").

Here, I'; , is the self-energy of the o part of the lead /, which is
renormalized by the local DOS of the two coupled MFs.
Furthermore, it is proportional to the local DOS of the a part of
the two coupled MFs. Thus, using the scattering matrix we can
find the information of the local DOS. However, only a single
tunneling process cannot provide all information. We need
more tunneling processes, and the two leads are necessary here.
There are three tunneling processes in such a two-lead setup:
the Andreev reflection, the crossed Andreev reflection, and the
electron transmission. We consider a symmetric connection
case and simplify the result. For this condition, the coefficient
of the Andreev reflection is the same as the coefficient of the
crossed Andreev reflection. Then, the current for lead 1 is
L =QTyx Vi +(T4+ T,)(V| — V3))el/h and the current for lead
21is 12 = (*2TA X Vz + (Te - TA)(Vl - V2))e/h. Thus, Te and TA

can be obtained using the current relation.
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We present an implementation of spin—orbit coupling (SOC) for density functional theory band structure calculations that makes

use of Gaussian basis sets. It is based on the explicit evaluation of SOC matrix elements, both the radial and angular parts. For all-

electron basis sets, where the full nodal structure is present in the basis elements, the results are in good agreement with well-estab-

lished implementations such as VASP. For more practical pseudopotential basis sets, which lack nodal structure, an ad-hoc increase

of the effective nuclear potential helps to capture all relevant band structure variations induced by SOC. In this work, the non-rela-

tivistic or scalar-relativistic Kohn—Sham Hamiltonian is obtained from the CRYSTAL code and the SOC term is added a posteriori.

As an example, we apply this method to the Bi(111) monolayer, a paradigmatic 2D topological insulator, and to mono- and multi-

layer Sb(111) (also known as antimonene), the former being a trivial semiconductor and the latter a topological semimetal featuring

topologically protected surface states.

Introduction

The topological character of topological materials (mostly insu-
lators but also non-insulators) in most relevant cases originates
from relativistic corrections that cannot be neglected in the

Hamiltonian of heavy elements, more specifically from

spin—orbit coupling (SOC). Such materials are usually charac-

terized by non-zero topological invariants that can be either
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computed simply from the parity of the Bloch wave functions in
centrosymmetric crystals or from other more involved imple-
mentations in non-centrosymmetric systems [1-6]. Topological
materials typically feature a band inversion. In a gedanken ex-
periment, one can imagine tuning the SOC at will. As the SOC
is increased from zero towards its nominal value, it pushes up
the valence band while bringing down the conduction band of
the imaginary SOC-free material. In this process, the gap closes
and reopens again, giving rise to the non-zero topological

invariant.

The essential features of the band structure of topological mate-
rials (at least the elemental ones) can be obtained from the tight-
binding (TB) model where the Hamiltonian is built through a
Slater—Koster [7] atomic parametrization. These models, how-
ever, are usually restricted to the description of valence elec-
trons, implicitly by assuming a minimal basis set of spd orbitals.
The SOC is included by adding the matrix elements of the
AL-S operator where A is taken as an atomic parameter [8]. Al-
though the simplicity of TB modeling is appealing, this method
is obviously restricted to a limited set of problems. TB parame-
ters are available for most elemental materials [9], but not in
general for all compound materials (which is the case of most
topological insulators). The versatility of this model is also
limited by the sensitivity of the TB parameters to the specific

structural variations which also needs to be parametrized [10].

On the opposite side of sophistication, the electronic structure
of topological materials can be evaluated through density func-
tional theory (DFT). According to the type of basis sets, DFT
codes fall into two broad categories: those making use of plane-
waves and those using localized orbitals. Arguably, the most
reliable implementations of SOC can be found in the code
FLEUR [11] and also in codes such as Vienna Ab initio Simula-
tion Package [12] (VASP) or QuantumEspresso [13,14] (QE),
all of them employing plane-waves for the interstitial or valence
electrons, while approaching the core electrons differently.
Since localized orbitals are convenient for a number of reasons,
for instance for quantum transport calculations [15,16], a
Kohn—Sham Hamiltonian obtained from plane-wave DFT codes
may be transformed into a TB-like Hamiltonian by changing to
a basis of Wannier functions [17,18]. While the results of this
transformation can be accurate, they are not straightforward to
carry out. On the other hand, self-consistent implementations of
SOC for codes using localized orbitals for valence electrons are,
however, much less common [19,20].

In most currently available implementations, including those
using localized orbitals basis sets, the SOC is effectively intro-
duced through pseudopotentials [19,20]. Here, we propose a
different route, employing the actual shape of the basis func-
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tions. In particular we present an implementation of SOC for
DFT calculations based on Gaussian-type localized basis sets,
attempting to bridge the gap between the simplicity of TB
Hamiltonians with their one-parameter implementation of SOC
and the accuracy and transferability of a DFT-level description
of the band structure. We make use of the non-relativistic (or
scalar relativistic) Kohn—Sham Hamiltonian, here obtained
using the CRYSTAL code [21-23], to which we add the SOC a
posteriori. The matrix elements are explicitly evaluated for both
radial and angular parts of the basis elements, by using the
screened nuclear potential. For the radial part, we rely on the
actual analytical expressions of the Gaussian-type basis ele-
ments, as employed in codes such as CRYSTAL, Gaussian [24],
Nwchem [25], etc. Among the available basis sets, all-electron
(AE) basis sets [26], featuring the full nodal structure of the
orbitals and able to properly capture SOC effects, might not be
well designed for band structure calculation of solids in general
or appear inefficient due to their computational cost. Here we
show that when AE basis sets work properly at the band struc-
ture level in calculations without SOC, accurate results can be
obtained from our proposed implementation. Alternatively,
basis sets using effective core potentials or pseudopotentials,
which reproduce better band structures and are computationally
less demanding, lack nodal structure near the nucleus. This has
prompted us to modify the nuclear potential through a fitting
multiplicative factor to effectively model the SOC effect. Im-
portantly, despite the fact that we are dealing with different
types of orbitals of different shells, only a single parameter is
needed since the relative values of the matrix elements are prop-
erly captured.

As possibly relevant examples, we have chosen to apply our
implementation to Sb and Bi, which are prototypical topolog-
ical materials where SOC plays a crucial role. Despite being
elemental, they present a broad range of behaviors. While bulk
Bi is a trivial semimetal, a Bi(111) monolayer is a 2D topolog-
ical insulator (TI) [27]. Sb few-layers in the (111) direction,
typically for more than =7 layers, behave as a 3D topological
semimetal, while the Sb(111) monolayer is a trivial indirect-gap
semiconductor. In order for our SOC implementation to be of
practical use, it should capture these trivial/non-trivial topolog-
ical transitions and give the most faithful representation of the
electronic band structure for any number of layers. This
includes the presence of helical and topologically protected
edge or surface states. For comparison, and as a reliable refer-
ence, we make use of the band structures obtained from the
well-established plane-wave code VASP. In general, we find a
very satisfactory agreement between the band structures calcu-
lated by our approach for both AE (without parameters),
pseudopotential (single parameter) basis sets, and the VASP

results, proving ours to be a practical a posteriori implementa-
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tion of SOC once a standard non-relativistic or scalar rela-
tivistic DFT calculation based on localized orbitals has been

performed.

Methodology

Gaussian basis sets

The accuracy of electronic structure calculations is limited, not
only by functional, but also by the basis set used to expand the
wave functions. When working with localized basis sets, it is
crucial to choose a large enough number of elements or a set of
properly chosen ones. Typically, the basis functions are
centered on atoms, and are so called ”atomic orbitals”. Two
types of atomic orbital functions are typically employed in mo-
lecular orbital calculations, namely, Slater type orbitals (STOs)
and Gaussian type orbitals (GTOs). Slater [7] introduced STOs
as basis functions due to their similarity with the eigenfunc-
tions of the hydrogen atom. They possess an exponential decay
at long range and Kato’s cusp [28] condition at short range.
Their general definition is

Wt (7,9,0) = Ne"le™7,,, (8,0), M

where N is the normalization constant. The radial part is charac-
terized by the principal quantum number 7 and the exponent {
while the angular part is given by the spherical harmonics
which are orthogonal to the radial part and characterized by /
and m, the azimuthal and magnetic quantum numbers, respec-
tively. The { parameter, is variationally optimized with respect
to the total energy of each atom. STOs have the advantage of a
direct physical interpretation and are thus naturally good basis
for molecular orbitals. However, from a computational point of
view, STOs are not competitive. In practice, the radial part of
STOs is approximated by a linear combination of GTOs (or
primitives). Spherical GTOs were proposed by Boys [29] with a
radial part defined as

ROTO (r) = Nrn_le_m2 s @)

where the exponent o determines the extension of the function.
Huzinaga [30] has illustrated that it is adequate to consider
n =1[+ 1 and hence optimized GTO basis sets use 1s functions
to represent all s-type orbitals, 2p functions for p-type, etc.
Despite the computational benefits, GTOs have two major
disadvantages, namely, they do not have a cusp at the nucleus
and they fall off to zero too rapidly for large radius. However,
these shortcomings can be overcome by considering linear com-
binations of GTOs to form contracted Gaussian-type orbitals
(CGTOs):
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Here each primitive, as defined in Equation 2, is normalized on
its own (&;) and the whole contracted function has an overall
normalization constant (Ny). The coefficients d; and exponents
a; determine the radial shape of the CGTO. A large enough
number of primitives with coefficients d; of different signs can
reproduce the expected atomic nodal behavior of wave func-
tions near the nucleus. Introducing the nodal structure in the
basis sets turns out to be irrelevant for most band structure
calculations and increases the computational effort, significant-
ly. However, as we will show in the next section, for the calcu-
lation of SOC, the exact behavior of the wave functions near the
core is required.

Evaluation of SOC matrix elements

The output Hamiltonian and overlap matrices of the CRYSTAL
code, ignoring broken spin-symmetry solutions, are the same
for up and down spin electrons. SOC is considered to be a
purely intra-atomic interaction. Rigorous approximations to the
full relativistic Dirac—Kohn—Sham Hamiltonian, which
decouple the electronic part from the positronic part, yield to
lowest order a SOC correction of the form @(r)[-S (see, e.g.,
[31] for a nice overview of a fairly extensive topic) which
mixes orbital angular momentum (m) and spin (6) quantum
numbers. Since the angular and radial parts of the wave func-
tions are orthogonal, SOC matrix elements between different
CGTOs can be straightforwardly evaluated as

§1J<ll,mll,s|z§|lj,mlj,s'>, (4)

where L-S acts on the spin degree of freedom and the spheri-
cal harmonics, while the radial contribution can be obtained

from

Ool dV r *
‘:ij 3 Ir eéi( )Ri(r)Rj (r)rzdr. 5)
0

2m,c

Here R(r) is the radial part of the i-th atomic CGTO (built as
described in the previous section) and Vee(r) is the effective
screened nuclear potential that electrons actually feel. Here we
are not concerned with the rigorous discussion concerning the
approximations that lead to Equation 5 and the origin of Ve
(for details see [31]). It suffices to say that, intuitively, the
potential must be of the form Z/r very close to the core and be-

have as 1/r far apart. For the case of an isolated atom, it has

1017



been shown that making use of the unscreened nuclear poten-
tial will result in an over estimation of SOC splittings. A simple
model has also been suggested for screened nuclear potential,
which includes the screening by adding an orbital dependent
charge term (placed at the origin) to the bare nuclear potential
[32]. The effective potential can also be extracted from an
atomic DFT calculation. Here, we explored both possibilities

and found no significant differences.

A correct electronic band structure in solids requires an accu-
rate description of chemical bondings and hence, enough varia-
tional flexibility in the valence region. On the other hand, since
the main contribution to the SOC matrix elements stems from
the vicinity of the nucleus, a correct description of orbitals is
also essential near the core. AE basis sets specifically designed
for the latter purpose are common in atomic physics and molec-
ular chemistry. While they can capture the full nodal structure
of the orbitals, it is, however, unclear how well they perform
when it comes to the band structure of solids, which is our main
concern here. Our results indicate that, when AE basis sets band
structures are in good agreement with those of plane-wave
calculations before including SOC (which might not be always
the case), fairly accurate results can be obtained after including
SOC. We have also found out that a proper renormalization of
the effective potential makes even pseudopotential basis sets
(without nodal structure) suitable for band structure calcula-

tions where SOC plays an important role.

Results and Discussion:
Elemental topological Materials, Sb and
Bi 2D Crystals

Antimonene

Antimonene, a term generically used for Sb(111) in 2D form,
has been recently added to the growing library of 2D crystals.
Its recent isolation and characterization [33], is bringing this
material into the focus of the research community. Several DFT
studies on this material have predicted a number of exciting
physico-chemical properties, including a tunable band gap with
potential applications in optoelectronics [34-37], low thermal
conductance with low electrical resistivity for energy genera-
tion through thermoelectricity [38], and exotic topological fea-
tures under strain [39-41]. However, it was not until last year
that few experimental works brought all those expectations
closer to reality [33]. It was demonstrated that it is possible to
isolate few or even single stable layers of antimonene, in
ambient conditions. Moreover, new procedures such as liquid
exfoliation and epitaxial growth methods were reported.

Theoretical works on antimonene can be divided into two cate-

gories. The most recent publications refer to monolayer anti-
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monene (or occasionally bilayer antimonene) and can be found
in the context of new 2D crystals. Other works, which go a few
years back in time, refer to few-layered (FL) antimonene (or
Sb(111) thin films), and can be found in the context of 3D TIs
[1]. The physical properties of antimonene evolve quite drasti-
cally from mono- to few-layer cases, and each deserves a sepa-
rate discussion.

Monolayer antimonene

Figure 1 presents the DFT band structure of a single layer
of antimonene without SOC, in the framework of the
Perdew—Burke—Ernzerhof local density approximation [42] to
the functional for different basis sets. Panel (a) shows the
results using the VASP [12] package. Calculations are per-
formed with a plane-wave cutoff of 400 eV on a 15 x 15 x 1
Monkhorst—Pack k-point mesh. For structural relaxation, all
atoms are allowed to relax until atomic forces are smaller than
0.01 eV/A.

In agreement with previous studies for free standing anti-
monene [43], we obtain an in plane lattice constant of the
relaxed structure a = 4.12 A and a buckling height # = 1.64 A.
Panels (b) and (c) show the band structure obtained with
CRYSTAL using two standard AE basis sets properly
converged in the number of elements. The former is based on
relativistically contracted atomic natural orbitals [44,45] (ANO)
and the latter belongs to the family of well-tempered basis sets
[46] (WTBS). Examples of (the radial part of) basis elements
from these two basis sets are shown in Figure 2a. For the sake
of simplicity in the discussions and since no significant differ-
ences have been found, the same lattice structure (relaxed with
VASP in presence of SOC) and same functional has been used
in all band structure calculations. When compared to the VASP
results, ANO bands turn out not too satisfactory at the high
symmetry I" point where the ordering of degenerate and non-
degenerate bands is not reproduced. For other k-points across
the Brillouin zone the results are comparatively better. The
WTBS results shown in (c) manifest a significant improvement,
particularly for the conduction bands, although the ordering of
the valence bands is still not the correct one at the I" point. Inter-
estingly, we have found out that a combination of both ANO
and WTBS basis sets [panel (d)] improves the band structure to
the point of making it essentially similar to the VASP result.
Here we have complemented the WTBS basis with additional
valence orbitals from the ANO basis set. Adding this flexibility
to the basis, even the flat valence band falls below the degen-
erate ones at the I' point. This band structure corresponds to that
of a semiconductor with an indirect gap, as previously reported
[34]. The use of a hybrid functional such as HSE06 [37] will
certainly increase the value of the gap, but we are not concerned

with this issue here.
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Figure 1: Comparison between different calculations of the band structure of monolayer antimonene as obtained from (a) VASP and CRYSTAL with
different basis sets: (b) ANO, (c) WTBS, and (d) WTBS+ANO (see text for details). The lattice structure relaxed with VASP has been considered for all

cases and SOC has not been included in the calculations.
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Figure 2: Radial probability density of two selected elements of the AE
and small-core basis sets used in the calculations. (a) Solid blue curve
corresponds to the 5p shell of the WTBS while the dashed black repre-
sents the 6p (virtual) shell in the ANO basis set (see text). (b) Same as
in (a), the last partially occupied and the first empty (virtual) shell of the
small-core pseudopontential basis set (see text), showing the lack of
nodal structure required, in principle, for an appropriate SOC calcula-
tion.

Figure 3 shows the band structure obtained with CRYSTAL
using three different pseudopotential basis sets. From (a) to (c)
the quality of the basis set is improved. Starting from the bands
obtained with a large effective core (46 electrons) and a
minimal 4 element basis set [sp3] [47,48] [shown in panel (a)],
we first increase the number of valence basis elements to 8
[252p3] [49] [see panel (b)], and then decrease the number of
effective core electrons down to 28, while keeping a large 23
element basis set for the valence electrons [4s3p32d°] [50]

[panel (c)]. Figure 2b shows the radial part of the last two
p-orbitals (or p-type CGTOs) in this third basis set. As can be
observed, the nodal structure near the origin is absent. The
shorter radial extension when compared to the corresponding
orbital-like AE CGTOs (in particular for the one labeled 6p) is
due to the fact that one cannot naively make a one-to-one corre-
spondence between atomic orbitals and these basis elements.
Except for the results using the minimal basis set, where the
ordering of the bands is not the correct one (keeping in mind
that the lattice parameters are the same for all calculations), the

4
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Figure 3: Comparison between different calculations of the band struc-
ture of monolayer antimonene as obtained from CRYSTAL with differ-
ent pseudopotential basis sets: (a) large-core (46 electrons) and
minimal basis set, (b) large- core as in (a) but a larger basis set, and
(c) small-core and large basis set (see text for details). The lattice
structure relaxed with VASP has been used for all cases and SOC was
not included in the calculations.
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results of the other two calculations are fairly satisfactory. In
particular, the small-core basis set bands in Figure 3¢ match
nicely those obtained with VASP in Figure la. The slight
discrepancies between the bands in Figure 1a and Figure 3c on
one hand and the bands in Figure 1d on the other can be due to
the use of pseudopotentials in the former two or to an inaccu-
rate closure relation of the AE basis set in the latter. We will not
address this issue any further here. Finally, we stress that our
proposed implementation is not restricted to any specific
Gaussian-type basis set. As an advantage when compared to,
e.g., TB calculations, it can capture the SOC effect for more
flexible and larger basis sets when a minimal basis does not
give satisfactory results in a band structure calculation, as is the

case shown in Figure 3a.

Now that we have verified that we can obtain essentially the
same band structure with two different DFT codes and three dif-
ferent basis sets (plane waves, AE, and pseudopotential ones),
we add SOC. Figure 4 shows the band structure obtained with
VASP [panel (a)] and with our proposed implementation,
applied to the WTBS+ANO basis set [panel (b)] and to the
small core pseudopotential basis set [panel (c¢)]. The AE basis
set bands share all the features of the VASP bands, except a
slightly larger gap which originates from the calculations with-
out SOC. For the pseudopotential basis set, as discussed above,
we have increased the effective nuclear potential by a factor of
~65 (for this specific basis set) that makes the bands look as
similar as possible to those in panel (a). As can be seen, these
last bands, tuned by a single parameter, are essentially indistin-
guishable from the VASP bands. As can be observed, the
sizable SOC of Sb changes the previous band structure calcu-
lated without SOC considerably, removing degeneracies, but
not in a qualitative manner. The changes are, however, not so

trivial for few-layered antimonene as shown in the next section.
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Figure 4: Comparison between different calculations of the band struc-
ture of monolayer antimonene including SOC: (a) VASP code, (b) AE
basis set (WTBS+ANO), and (c) small-core pseudopotential basis set.
As a reference, thin gray curves indicate the bands before adding
SOC. The same lattice structure relaxed with VASP has been used for
all cases.
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Multilayer antimonene

As an elemental bulk material, Sb appears to be a topological
semi-metal due to an inversion of the “natural” bulk band order
[1]. Despite the absence of a bulk gap, its non-zero topological
invariant guarantees that antimony features protected topolog-
ical surface states (TSS), although coexisting with bulk bands at
the Fermi energy [51-54]. Sb(111) in thin film form could
become, in principle, a 3D (TI) if quantum confinement opened
a gap in the bulk bands. However, for sufficiently thin films, the
TSS situated on opposite surfaces can get coupled which
degrades or even destroys the TSS exotic properties such as
their expected protection against backscattering. Ultimately, a
single Sb(111) layer or monolayer antimonene even becomes a
trivial semiconductor, as discussed in the previous section.
Previous calculations have shown that the decoupling of the
TSS requires a minimum of =7 layers [54,55]. In between the
semiconductor monolayer and the 7-layered antimonene a
crossover occurs, where claims of the existence of a 2D topo-
logical insulator have also been reported, but we do not pursue
the investigation of this issue here [55]. When TSS are decou-
pled and the gap at the Dirac point closes down, the Fermi
energy crosses the Dirac cone above the Dirac point, but also
crosses 6 surface state pockets and 3 bulk pockets (see, e.g.,

[51]).

It has been shown that multilayer antimonene with hexagonal
structure, prefers ABC stacking and is more stable than other
allotropes for thicknesses larger than 3 layers [43]. In the
relaxed structure of 9 layer antimonene, the lattice constant is
a=4.27 A and the intra- and interlayer distances are 7 = 1.52 A
and d = 3.68 A, respectively. In Figure 5 we show the band
structure of 9 layers of antimonene including SOC, as obtained
with the small-core pseudopotential basis set and the same en-
hancement factor as in the previous section. The results
compare rather well down to any practical detail with those re-
ported in the literature. In the inset of Figure 5 we show that the
spin texture of the surface Dirac cone states around the I" point
and of the states in the nearby pockets, comes out as expected
[51,56]. This provides further evidence that not only the band
structure is reproduced at first glance, but also the wave func-
tions are properly evaluated. This non-trivial example illus-
trates the practicality of our proposed single-parameter imple-
mentation, when AE basis sets are computationally demanding.

Bi(111) monolayers

A monolayer of Bi(111) was one of the first 2D crystals pre-
dicted to be a 2D TI [27] and with actual chances to be experi-
mentally isolated and characterized. However, only a few
reports have confirmed the non-trivial topological character of
this material [57-60]. Having seen the trivial bands of anti-

monene monolayer changing to nontrivial in multilayers, the
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Figure 5: Band structure of 9 layers, ABC stacking Sb(111) films as
obtained from small core pseudopotential basis. The spin texture
around the I" point is presented in the inset.

band inversion of Bi(111) is addressed in this section. Using
different DFT packages, a wide range of structural parameters
have been reported for Bi(111). Being aware of the sensitivity
of the band structure to the exact atomic structure and for the
sake of comparison we use a lattice constant @ = 4.33 A and a
buckling height # = 1.74 A as reported in a similar VASP calcu-
lation [61]. Figure 6 shows the band structure of Bi(111) mono-
layer, as obtained from VASP (dashed black), and that calcu-
lated with a small-core pseudopotential basis set (solid blue), as
obtained with our implementation. Starting from very similar
band structures without SOC (a), the proposed implementation
of SOC gives a band structure in close resemblance with the
one obtained from VASP (b) (the multiplicative factor needed
to increase the nuclear potential is ~120 in case of this specific
basis set). Increasing the multiplicative factor of our implemen-
tation from zero to two intermediate values (for example 70 and
100), as shown in the inset of Figure 6a, one can follow the
evolution of the band structure from trivial to nontrivial bands
and the "Mexican hat” shaped valence band in Figure 6b. The
band inversion at the I point is evident. However, this visual
evidence is not sufficient to prove that this system is a topolog-
ical insulator and a calculation of the Z2 number demonstrates
that this is case.

Regardless of the shortcomings of tight binding method which
led us towards this implementation of SOC, here, we want to
compare the order of magnitude of tight binding SOC parame-
ters with our SOC correction. In TB implementation, only one
multiplicative parameter serves as the radial correction of SOC
and this factor is much smaller than our multiplicative factors.
The TB parameter entirely replaces the actual evaluation of the

radial integral in Equation 5. However, our multiplicative factor
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Figure 6: Band structure of a Bi(111) monolayer, obtained from VASP
(dashed black) and small core pseudopotential basis set (solid blue)
(a) without and (b) with SOC. Inset of panel (a) shows closing (blue)
and reopening (black) of the gap with two parameter values of 70 and
100, respectively. Inset of panel (b), using the final parameter value of
120, is the same bands zoomed in near the I' point showing the simi-
larity of the inverted bands compared to the VASP result.

is used to correct the radial integral which we actually perform
for all matrix elements. The large numbers that we report come
about because the radial matrix elements can be very small due
to the lack of nodal structure of the basis elements, but, in the
end, the correction parameter that accompanies the angular part
for the valence orbitals will be in the same order of magnitude

as what is reported for similar tight binding models.

Conclusion

We have presented an implementation of SOC suitable for DFT
band structure calculations based on CGTOs basis sets. We
evaluate both angular and radial part of the SOC relativistic
correction to the Hamiltonian, considering the spherical
harmonics and CGTOs as the angular and radial part of the
basis functions, respectively. The evaluated SOC term is then
added after a standard non-relativistic (or scalar relativistic)
self-consistent calculation. We have shown that if the AE band
structure is in good agreement with plane-wave bands without
SOC, when our implementation is applied, it can reproduce the
band structure obtained from the VASP code (used as a refer-
ence) to our satisfaction. Although we have only tested it in the
cases of antimonene and Bi(111), we see no reason why it
should not work for other elemental and compound materials,
since it is essentially first-principles and SOC is an intra-atomic
correction. We have also shown that a simple modification (by
a multiplicative factor) of the effective nuclear potential makes
this implementation applicable for pseudopotential basis sets
which lack nodal structure. Remarkably, the results obtained in
this last manner fit even better those obtained with plane-waves
and the VASP code. In contrast to standard TB implementa-
tions where the SOC parameter acts on the valence orbitals of a

minimal basis set, our method does not consider any pre-
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assumptions for the basis elements. Note that using GTOs as
basis elements, the so-called valence orbital might be split into
two or more basis elements to improve the quality of the band
structure. Our proposed approach is a practical way of includ-
ing SOC to standard DFT non-relativistic band structure calcu-
lations based on localized basis sets.
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Terahertz photoconductivity in heterostructures based on n-type Hg;—,Cd, Te epitaxial films both in the topological phase (x < 0.16,

inverted band structure, zero band gap) and the trivial state (x > 0.16, normal band structure) has been studied. We show that both

the positive photoresponse in films with x < 0.16 and the negative photoconductivity in samples with x > 0.16 have no low-energy

threshold. The observed non-threshold positive photoconductivity is discussed in terms of a qualitative model that takes into

account a 3D potential well and 2D topological Dirac states coexisting in a smooth topological heterojunction.

Findings

Discovery of theoretically predicted quantum spin Hall effect
states in HgTe quantum wells [1,2] has initiated extensive
studies of topological insulator materials [3,4]. Noteworthy, the
ARPES technique, being a well-developed method to probe
topological surface states, is a challenge in the case of HgTe-
based topological insulators due to its zero-gap energy spec-
trum in the bulk. Nevertheless, formation of topological surface
states in 3D HgTe has been convincingly proved by ARPES ex-
periments in several detailed studies [5-7].

Hg;—.Cd,Te solid solutions demonstrate a composition-driven
transition from the topological phase with inverted band struc-
ture to the trivial phase with normal band structure ordering at
x = 0.16 [8]. In contrast to most of the 3D topological insula-
tors, Hg;—,Cd, Te solid solutions are characterized by relatively
low free carrier concentration values in the bulk, and may be
therefore considered as good candidates for a case study
focused on determination of the topological state contribution to

the charge carrier transport. Laser terahertz probing is known to
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be a powerful tool that may provide an insight into the electron
dynamics in semiconductors, particularly, in topological insula-
tors [9-11]. Study of non-equilibrium processes in Hg|—,Cd, Te
in the terahertz spectral range is additionally motivated by the
application aspects related to the terahertz photodetector devel-
opment [12].

In our recent paper [13], we have shown that photoconductivity
in Hg;—,Cd,Te solid solutions at 280 pm wavelength changes
its sign across the topological transition from the inverted to the
normal band structure. It was assumed that the negative
photoresponse in the samples with the normal band structure is
most likely related to the electron gas heating, while the posi-
tive photoconductivity in the zero band gap mercury cadmium

telluride was reasonable to associate with interband transitions.

In this work, we focus on the study of terahertz photoconduc-
tivity in the spectral range of 90-496 um of Hg;_,Cd,Te solid
solutions in close vicinity of the band inversion point. This is
done to determine possible effects of the topological states on

the non-equilibrium transport.

Beilstein J. Nanotechnol. 2018, 9, 1035-1039.

The Hg;—,Cd,Te heterostructures were synthesized by MBE.
ZnTe and CdTe buffer layers, a CdTe-rich mercury cadmium
telluride relaxed layer, a 3D Hg;—,Cd,Te layer, and a CdTe-rich
cap layer were successively grown on a GaAs (013) semi-insu-
lating substrate (see the inset in upper right corner of the
Figure 1). The active 3D Hg;_,Cd, Te layer thickness was about
4 um. Composition of the films was controlled by ellipsometry.
The synthesis is described in detail in [14].

We have chosen samples with x = 0.13; 0.15; 0.17 for our study.
The latter corresponds to the trivial phase with the normal band
structure. The two others are characterized by the inverted band
structure (topological phase). Hall effect measurements have
shown that all the samples are of the n-type. Free electron con-
centration values determined in magnetic field of 0.05 T
at T = 4.2 K are in the range from 3.7 x 10" ¢m™3 to
5.2 x 10'% cm™. Within the two-band Kane model, the given
concentrations correspond to the Fermi level position not lower
than at 3 meV, 5 meV, and 7 meV above the conduction band
edge for the samples with x = 0.13, 0.15, 0.17, respectively. The
energy distance between the conduction band and the light-hole

Inverted energy x=013
spectrum (x < 0.16) A =90 pm 10 A =148 pm 10{A =496 um _
o6l Hg,_Cd,Te
I 3 Peak power Peak power 2
level, W: level, KW: e
& 25 0.3 4| GaAs(013)
B 04} - —~
8 — 140 | g5 —06]| 45
! — 400 [~ —19 - Peak power
y Eo<0 v level, W:
/L\‘ 0.2t 2 v, 3
1 \ i — 30
/ N\ IV 4 ) — 230
rG 0.0 L 0.0~ } 0.0k A/ W,
) ‘ . ‘ - ‘ . . Y e
0.0 0.2 04 O 0.2 04 06 0.0 0.1 02
t, us t, us t, us
Direct energy 010l x=0.17
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I's 0.05¢ m
) ‘“A b | 000
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0 Peak power Peak power 0.05 Peak power
-0.05¢ level, kW: level, kW: | ™ level, W:
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Figure 1: Photoconductivity kinetics Ao/og in Hg4-xCdyTe films with x = 0.13 (the upper panel) and x = 0.17 (the lower panel) at the wavelengths A =
90; 148; 496 um for various radiation peak power levels. The laser pulse time profiles are shown by grey lines. The energy band structure for both
solid solutions is shown schematically to the left of the plots. The heterostructure layers are outlined in the right upper corner. The cap and relaxed
Hg1-,CdyTe, buffer CdTe and ZnTe layers are indicated by the numbers from 1 to 4, respectively.
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valence subband used in the Kane model calculations was esti-

mated using the empirical relations [15-20].

Photoconductivity kinetics has been studied under 90, 148, 280,
and 496 um wavelength pulse laser radiation at the temperature
4.2 K. The measurements have been done in the Hall bar geom-
etry using the 4-probe method. The incident radiation was
normal to the sample surface. Duration of the pulse was
~100 ns. The radiation power was up to 7 kW and could be
varied by calibrated attenuators. The use of the incident radia-
tion power as a variable parameter can help to figure out mech-
anisms of the photoelectric phenomena in some cases [21,22].
The experimental details can be found elsewhere [23-27].

The photoconductivity kinetics Ac/c( for the samples with
x = 0.13 (the upper panel) and x = 0.17 (the lower panel) is
shown in the Figure 1. Here Ao is the change in conductivity
under pulse irradiation, o is the conductivity value before the
laser pulse. The data for the structures with x = 0.13 and
x = 0.15 (inverted band structure) are quite similar, therefore
only data for the sample with x = 0.13 are presented in the
Figure 1. The observed kinetics are rather complicated and can
be described by several superimposed processes characterized
by different relaxation time parameters. We will address here
only to relatively fast processes with the characteristic times of
100-200 ns. The long-term photoconductivity observed at
longer times after the laser pulse end may be due to photoin-
duced transitions to or from the local electron states in the
barriers. This long-term photoconductivity is not discussed in
this paper. It is important that the signs of the fast photore-
sponse for the normal and inverted band structure samples are
opposite. For the latter, the photoconductivity is positive.
Beside that, it demonstrates certain time delay with respect to
the excitation laser pulse. The negative photoconductivity in the
normal band structure case is much smaller in amplitude, and its
kinetics repeats the laser pulse time profile.

Photoconductivity kinetics keeps the features mentioned above
at lower radiation power levels (Figure 1). The absolute value
of photoresponse amplitude | Ac/oy | peak versus the number of
the incident quanta N per unit time is shown in the Figure 2 for
all wavelengths used and all samples studied. The photoconduc-
tivity amplitude dependence on the photon flux N for the sam-
ples with x = 0.13 and x = 0.15 is nonlinear and may be well
fitted by the power dependence | Aoc/o | ~ N% where o is close
to 1/4. It is important that the experimental data corresponding
to the samples with x = 0.13 and x = 0.15 are close for all wave-
lengths used. It means that the photoconductivity value is
defined only by the incident photon flux N irrespectively of the
wavelength. It is reasonable to assume therefore that the posi-

tive photoconductivity in these samples results from an increase

Beilstein J. Nanotechnol. 2018, 9, 1035-1039.

in the free carrier concentration due to the photogeneration
process with the constant quantum efficiency independently on
the wavelength. It should be stressed that the positive photocon-
ductivity is still observed even for the sample with x = 0.15 for
which the Fermi energy (>5 meV) well exceeds the quantum
energy of the 496 um wavelength laser radiation (2.5 meV).
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Figure 2: Dependence of the absolute value of the peak photore-
sponse amplitude |Ao/0g|peak (00 is the conductivity before a laser
pulse, Ao is the conductivity change under illumination) on the photon
flux density N for Hg1-xCdyTe films with x = 0.13 (black symbols),

x =0.15 (red symbols), and x = 0.17 (blue symbols) at various wave-
lengths. The photoconductivity kinetics at 496 um for the samples with
x=0.15 and x = 0.17 are shown in the inset. A typical pulse time
profile is shown by the grey line.

In contrast to that, the negative photoconductivity (sample with
x = 0.17) depends strongly on the radiation wavelength. The
electron gas heating by the incident radiation followed by an
electron mobility drop is most likely responsible for this effect.
This mobility drop is due to a scattering time drop with increas-
ing energy, as well as to a substantial increase in the electron
effective mass of hot electrons. This process obviously has no
energy threshold. In such a case, the photoconductivity is nega-
tive and depends on the power absorbed. Therefore, the data
calculated as a function of the incident quantum flux (see
Figure 2) differ for different wavelengths. An additional
discrepancy may come out as a result of carrier trapping by
acceptor resonant states [28,29].

Let us discuss now in more detail the experimental results ob-
tained for the Hg;_,Cd, Te topological phase (x < 0.16). The
most unusual result is the absence of a threshold energy in the
strong generation-related positive photoconductivity. The
photoresponse is observed even if the Fermi energy exceeds the
energy of the incident radiation quantum. Existence of the topo-
logical heterojunction may be a key factor that determines the

non-threshold photoexcitation in the structures studied.
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Indeed, the buffer and cap layers of the heterostructure are
formed of Hg;_,Cd,Te solid solutions with a relatively high
CdTe content providing normal band structure ordering. The
film under study is in the topological phase with the inverted
relative positions of the conduction and light hole bands. The
CdTe content x varies quite smoothly on the characteristic
length of about 1 pm along the heterojunctions between the
buffer and the film, as well as between the film and the cap
layer. Previously, it was theoretically demonstrated that in such
a situation, there should appear a 3D potential well in the
heterojunction area [30-32]. Beside that, 2D topological Dirac
states are formed at the position z( corresponding to the gap
absence between the conduction and light hole bands (Figure 3).
To the right of z(, the bulk semiconductor energy spectrum is
gapless. The Fermi level position in such a structure varies with
respect to the potential well bottom along the heterostructure
profile. Therefore, for any given energy of a terahertz quantum,
there should exist a position in the heterojunction area for which
photogeneration from the heavy hole band to the conduction
band becomes possible. It is important that this generation
process has no threshold in energy, and its intensity is defined
by the number of incident radiation quanta. Therefore, it may
give rise to the positive photoconductivity observed experimen-
tally.

There is one more possible mechanism providing appearance of
the positive photoconductivity in heterostructures under study.
As it was mentioned earlier, 2D Dirac states are formed at the
position z( corresponding to the bottom of the 3D heterojunc-
tion potential well. Heating of electrons by the incident tera-
hertz radiation in the 3D well leads to two competing effects.
The first one is the mobility drop that should result in the nega-
tive photoconductivity. The second effect corresponds to the
spatial diffusion of excited electrons to the 2D area. Indeed, it is
located at the bottom of the well. Beside that, the density of the
2D Dirac states depends linearly on energy E, whereas it is
proportional to EV/2 for the bulk conduction band states. It
means that for the heated electrons, there is an increased proba-
bility to diffuse to the z( position. Mobility of 2D Dirac elec-
trons is much higher than it is for the bulk electrons, therefore
this diffusion process results in the positive photoconductivity.
The amplitude of this effect is much higher than the mobility
drop due to the electron gas heating, so the positive photocon-
ductivity prevails. Moreover, the diffusion process is delayed
with respect to the photoexcitation which is observed experi-
mentally. This is due to the fact that the spin direction of 2D
Dirac electrons is locked to their momentum vector direction,
whereas the 3D electrons in the well do not possess this feature.
The suggested mechanism for the positive photoconductivity is
non-threshold in energy. As a final argument, the 3D potential

wells, as well as 2D Dirac states should not be formed for the

Beilstein J. Nanotechnol. 2018, 9, 1035-1039.
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Figure 3: Sketch of the smooth heteroboundary between the
Hg1-xCd,Te active layer (with the inverted band structure) and the
Hg1-,CdyTe barrier layer (with the normal band structure) in the sam-
ples with x < 0.16. Variable position edges of the conduction (E.) band,
the heavy hole valence (E,) subband, and the light hole subband in the
heterojunction are schematically shown by black solid lines. The Fermi
level is shown by the dash-dot line. The topological layer located in the
close vicinity to the zg position is sketched up by green dashed lines.
The red and the blank circles shown above and below the Fermi level,
respectively, correspond to the suggested mechanisms of the positive
photoconductivity effect. The CdTe content along the heterostrocture
profile is presented in the inset. The red rectangles correspond to the
heterojunction areas, the left one of which is zoomed in the main part
of the figure.

Hg;-,Cd,Te films with the composition corresponding to the
trivial phase, and the positive delayed photoconductivity is not
observed for these structures.

The two mechanisms for the positive photoconductivity sug-
gested above may coexist in the same structure.

In summary, we have observed a non-threshold positive photo-
conductivity in heterostructures based on Hg;_,Cd, Te thick
films being in the topological phase. We suggest possible mech-
anisms responsible for the effect that takes into account diffu-
sion of photoexcited electrons in the heterojunction area to the
2D Dirac state.

Acknowledgements

The authors are grateful to Prof. S.D. Ganichev. Prof. V.V.
Bel’kov, Dr. D.A. Kozlov, and to G.M. Min’kov for fruitful
discussions and technical assistance. The research described in
this paper was supported by the grant of the Russian Science
Foundation #17-72-10064.

1038



ORCID® iDs

Sergey A. Dvoretskiy - https://orcid.org/0000-0002-1295-5598
Dmitry R. Khokhlov - https://orcid.org/0000-0003-2292-117X

References

1. Bernevig, B. A.; Hughes, T. A.; Zhang, S.-C. Science 2006, 374,
1757-1761. doi:10.1126/science.1133734

2. Koénig, M.; Wiedmann, S.; Brine, C.; Roth, A.; Buhmann, H.;
Molenkamp, L. W.; Qi, X.-L.; Zhang, S.-C. Science 2007, 318,
766-770. doi:10.1126/science.1148047

3. Hasan, M. Z,; Kane, C. L. Rev. Mod. Phys. 2010, 82, 3045-3067.
doi:10.1103/RevModPhys.82.3045

4. Bansil, A.; Lin, H.; Das, T. Rev. Mod. Phys. 2016, 88, 021004.
doi:10.1103/RevModPhys.88.021004

5. Briine, C.; Liu, C. X.; Novik, E. G.; Hankiewicz, E. M.; Buhmann, H.;
Chen, Y. L,; Qi, X. L.; Shen, Z. X.; Zhang, S. C.; Molenkamp, L. W.
Phys. Rev. Lett. 2011, 106, 126803.
doi:10.1103/physrevlett.106.126803

6. Crauste, O.; Ohtsubo, Y.; Ballet, P.; Delplace, P.; Carpentier, D.;
Bouvier, C.; Meunier, T.; Taleb-Ibrahimi, A.; Levy, L. P. arXiv 2013,
No. 1307.2008.

7. Liu, C.; Bian, G.; Chang, T.-R.; Wang, K.; Xu, S.-Y.; Belopolski, I.;
Miotkowski, I.; Cao, H.; Miyamoto, K.; Xu, C.; Matt, C. E.; Schmitt, T.;
Alidoust, N.; Neupane, M.; Jeng, H.-T.; Lin, H.; Bansil, A;;

Strocov, V. N.; Bissen, M.; Fedorov, A. V.; Xiao, X.; Okuda, T.;
Chen, Y. P.; Hasan, M. Z. Phys. Rev. B 2015, 92, 115436.
doi:10.1103/physrevb.92.115436

8. Orlita, M.; Basko, D. M.; Zholudev, M. S.; Teppe, F.; Knap, W.;
Gavrilenko, V. I.; Mikhailov, N. N.; Dvoretskii, S. A.; Neugebauer, P.;
Faugeras, C.; Barra, A.-L.; Martinez, G.; Potemski, M. Nat. Phys. 2014,
10, 233-238. doi:10.1038/nphys2857

9. Valdés Aguilar, R.; Stier, A. V.; Liu, W.; Bilbro, L. S.; George, D. K;
Bansal, N.; Wu, L.; Cerne, J.; Markelz, A. G.; Oh, S.; Armitage, N. P.
Phys. Rev. Lett. 2012, 108, 087403.
doi:10.1103/PhysRevLett.108.087403

10.Wu, L.; Brahlek, M.; Valdés Aguilar, R.; Stier, A. V.; Morris, C. M.;
Lubashevsky, Y.; Bilbro, L. S.; Bansal, N.; Oh, S.; Armitage, N. P.
Nat. Phys. 2013, 9, 410-414. doi:10.1038/nphys2647

11.Luo, C. W.; Chen, H.-J.; Tu, C. M.; Lee, C. C.; Ku, S. A.; Tzeng, W. Y ;
Yeh, T. T.; Chiang, M. C.; Wang, H. J.; Chu, W. C,; Lin, J.-Y;

Wu, K. H.; Juang, J. Y.; Kobayashi, T.; Cheng, C.-M.; Chen, C.-H.;
Tsuei, K.-D.; Berger, H.; Sankar, R.; Chou, F. C.; Yang, H. D.
Adyv. Opt. Mater. 2013, 1, 804—808. doi:10.1002/adom.201300221

12.Rogalski, A. Rep. Prog. Phys. 2005, 68, 2267—2336.
doi:10.1088/0034-4885/68/10/R01

13. Galeeva, A. V.; Artamkin, A. |.; Mikhailov, N. N.; Dvoretskii, S. A;
Danilov, S. N.; Ryabova, L. |.; Khokhlov, D. R. JETP Lett. 2017, 106,
162-166. doi:10.1134/S0021364017150061

14.Dvoretsky, S.; Mikhailov, N.; Sidorov, Yu.; Shvets, V.; Danilov, S.;
Wittman, B.; Ganichev, S. J. Electron. Mater. 2010, 39, 918-923.
doi:10.1007/s11664-010-1191-7

15.Hansen, G. L.; Schmidt, J. L.; Casselman, T. N. J. Appl. Phys. 1982,
53, 7099-7101. doi:10.1063/1.330018

16.Chu, J.; Xu, S.; Tang, D. Appl. Phys. Lett. 1983, 43, 1064—1066.
doi:10.1063/1.94237

17.Schmit, J. L.; Stelzer, E. L. J. Appl. Phys. 1969, 40, 4865.
doi:10.1063/1.1657304

18. Scott, M. W. J. Appl. Phys. 1969, 40, 4077. doi:10.1063/1.1657147

Beilstein J. Nanotechnol. 2018, 9, 1035-1039.

19. Finkman, E.; Nemirovsky, Y. J. Appl. Phys. 1979, 50, 4356.
doi:10.1063/1.326421

20. Wiley, I. D.; Dexter, R. N. Phys. Rev. 1969, 181, 1181.

21.Galeeva, A. V.; Egorova, S. G.; Chernichkin, V. I.; Tamm, M. E.;
Yashina, L. V.; Rumyantsev, V. V.; Morozov, S. V.; Plank, H,;
Danilov, S. N.; Ryabova, L. |.; Khokhlov, D. R. Semicond. Sci. Technol.
2016, 31, 095010. doi:10.1088/0268-1242/31/9/095010

22.Galeeva, A. V.; Krylov, |. V.; Drozdov, K. A.; Knjazev, A. F.;
Kochura, A. V.; Kuzmenko, A. P.; Zakhvalinskii, V. S.; Danilov, S. N.;
Ryabova, L. I.; Khokhlov, D. R. Beilstein J. Nanotechnol. 2017, 8,
167-171. doi:10.3762/bjnano.8.17

23. Ganichev, S. D.; Ziemann, E.; Gleim, T.; Prettl, W.; Yassievich, I. N.;
Perel, V. I.; Wilke, |.; Haller, E. E. Phys. Rev. Lett. 1998, 80,
2409-2412. doi:10.1103/PhysRevLlett.80.2409

24.Ganichev, S. D.; Yassievich, I. N.; Prettl, W.; Diener, J.; Meyer, B. K;
Benz, K. W. Phys. Rev. Lett. 1995, 75, 1590-1593.
doi:10.1103/PhysRevLett.75.1590

25. Ganichev, S. D.; Terentev, Y. V.; Yaroshetskii, |. D.
Sov. Tech. Phys. Lett. 1985, 11, 20.

26. Ganichev, S. D.; Yassievich, I. N.; Prettl, W. J. Phys.: Condens. Matter
2002, 14, R1263—-R1295. doi:10.1088/0953-8984/14/50/201

27.Egorova, S. G.; Chernichkin, V. |.; Ryabova, L. I.; Skipetrov, E. P.;
Yashina, L. V.; Danilov, S. N.; Ganichev, S. D.; Khokhlov, D. R.
Sci. Rep. 2015, 5, 11540. doi:10.1038/srep11540

28.Rumyantsev, V. V.; Kozlov, D. V.; Morozov, S. V.; Fadeev, M. A;;
Kadykov, A. M.; Teppe, F.; Varavin, V. S.; Yakushev, M. V.;
Mikhailov, N. N.; Dvoretskii, S. A.; Gavrilenko, V. I.
Semicond. Sci. Technol. 2017, 32, 095007.
doi:10.1088/1361-6641/aa76a0

29.Rumyantsev, V. V.; Morozov, S. V.; Antonov, A. V.; Zholudev, M. S;
Kudryavtsev, K. E.; Gavrilenko, V. |.; Dvoretskii, S. A.; Mikhailov, N. N.
Semicond. Sci. Technol. 2013, 28, 125007.
doi:10.1088/0268-1242/28/12/125007

30. Volkov, B. A;; Idlis, B. G.; Usmanov, M. S. Phys.-Usp. 1995, 38,
761-771. doi:10.1070/PU1995v038n07ABEH000097

31.Volkov, V. A,; Enaldiev, V. V. J. Exp. Theor. Phys. 2016, 122, 608—620.
doi:10.1134/S1063776116030213

32. Tchoumakov, S.; Jouffrey, V.; Inhofer, A.; Bocquillon, E.; Plagais, B.;
Carpentier, D.; Goerbig, M. O. Phys. Rev. B 2017, 96, 201302.
doi:10.1103/PhysRevB.96.201302

License and Terms

This is an Open Access article under the terms of the
Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which

permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of
Nanotechnology terms and conditions:
(https://www.beilstein-journals.org/bjnano)

The definitive version of this article is the electronic one
which can be found at:
doi:10.3762/bjnano.9.96

1039


https://orcid.org/0000-0002-1295-5598
https://orcid.org/0000-0003-2292-117X
https://doi.org/10.1126%2Fscience.1133734
https://doi.org/10.1126%2Fscience.1148047
https://doi.org/10.1103%2FRevModPhys.82.3045
https://doi.org/10.1103%2FRevModPhys.88.021004
https://doi.org/10.1103%2Fphysrevlett.106.126803
https://doi.org/10.1103%2Fphysrevb.92.115436
https://doi.org/10.1038%2Fnphys2857
https://doi.org/10.1103%2FPhysRevLett.108.087403
https://doi.org/10.1038%2Fnphys2647
https://doi.org/10.1002%2Fadom.201300221
https://doi.org/10.1088%2F0034-4885%2F68%2F10%2FR01
https://doi.org/10.1134%2FS0021364017150061
https://doi.org/10.1007%2Fs11664-010-1191-7
https://doi.org/10.1063%2F1.330018
https://doi.org/10.1063%2F1.94237
https://doi.org/10.1063%2F1.1657304
https://doi.org/10.1063%2F1.1657147
https://doi.org/10.1063%2F1.326421
https://doi.org/10.1088%2F0268-1242%2F31%2F9%2F095010
https://doi.org/10.3762%2Fbjnano.8.17
https://doi.org/10.1103%2FPhysRevLett.80.2409
https://doi.org/10.1103%2FPhysRevLett.75.1590
https://doi.org/10.1088%2F0953-8984%2F14%2F50%2F201
https://doi.org/10.1038%2Fsrep11540
https://doi.org/10.1088%2F1361-6641%2Faa76a0
https://doi.org/10.1088%2F0268-1242%2F28%2F12%2F125007
https://doi.org/10.1070%2FPU1995v038n07ABEH000097
https://doi.org/10.1134%2FS1063776116030213
https://doi.org/10.1103%2FPhysRevB.96.201302
http://creativecommons.org/licenses/by/4.0
https://www.beilstein-journals.org/bjnano
https://doi.org/10.3762%2Fbjnano.9.96

( J BEILSTEIN JOURNAL OF NANOTECHNOLOGY

Thermoelectric current in topological insulator nanowires

with impurities

Sigurdur I. Erlingsson’, Jens H. Bardarson? and Andrei Manolescu’’

Full Research Paper

Address:

School of Science and Engineering, Reykjavik University,
Menntavegur 1, IS-101 Reykjavik, Iceland and 2Department of
Physics, KTH Royal Institute of Technology, Stockholm, SE-106 91
Sweden

Email:
Andrei Manolescu” - manoles@ru.is

* Corresponding author

Keywords:
topological insulators, nanowires, thermoelectric current

Abstract

Beilstein J. Nanotechnol. 2018, 9, 1156-1161.
doi:10.3762/bjnano.9.107

Received: 04 December 2017
Accepted: 09 March 2018
Published: 12 April 2018

This article is part of the Thematic Series "Topological materials".

Guest Editor: J. J. Palacios

© 2018 Erlingsson et al.; licensee Beilstein-Institut.
License and terms: see end of document.

In this paper we consider charge current generated by maintaining a temperature difference over a nanowire at zero voltage bias.

For topological insulator nanowires in a perpendicular magnetic field the current can change sign as the temperature of one end is

increased. Here we study how this thermoelectric current sign reversal depends on the magnetic field and how impurities affect the

size of the thermoelectric current. We consider both scalar and magnetic impurities and show that their influence on the current are

quite similar, although the magnetic impurities seem to be more effective in reducing the effect. For moderate impurity concentra-

tion the sign reversal persists.

Introduction

It has been known for quite some time now that the efficiency
of thermoelectric devices can be increased by reducing the
system size. The size reduction can improve electronic trans-
port properties and also reduce the phonon scattering which
then leads to increased efficiency [1]. Interestingly, often the
materials that show the best thermoelectric properties on the
nanoscale can also exhibit topological insulator properties [2],
although the connection between the two properties is not
always straightforward [3]. Even though few experimental
studies exist on thermoelectric properties in topological insu-
lator nanowires (TIN), many studies have reported magnetore-
sistance oscillations, both in longitudinal and transversal fields
for TINs [4-10].

In its simplest form, thermoelectric current is generated when a
temperature gradient is maintained across a conducting materi-
al. In the hotter end (reservoir) the particles have higher kinetic
energy and thus velocity compared to the colder reservoir. This
leads to a flow of energy from the hot to cold end of the system.
Under normal circumstances this will lead to particles flowing
in the same direction as the energy flow. The charge current can
of course be positive or negative depending on the charge of the
carriers, i.e., whether they are electrons or holes. Recently, it
was shown that in systems showing non-monotonic transmis-
sion properties the particle current can change sign as a func-
tion of the temperature difference [11]. Sign changes of the
thermoelectric current are well-known in quantum dots [12-15]
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when the chemical potential crosses a resonant state. A sign
change of the thermoelectric current can be obtained when the
temperature gradient is increased, which affects the population
of the resonant level in the quantum dot [16-19].

For topological insulator nanowires one can expect reversed, or
anomalous, currents measured in tens of nanoamperes [11], well
within experimental reach. Also, since the transport is over long
systems, it is much simpler to maintain a large temperature
difference of tens of kelvins, compared to the case of quantum
dots. In this paper we extend our previous work on thermo-
electric currents in TIN [11], by including the effects of impuri-
ties, both scalar and magnetic ones. The impurities deteriorate
the ballistic quantum transport properties, but as long there are
still remnants of the quantized levels, the predicted sign reversal

of the thermoelectric current remains visible.

Results and Discussion
Clean nanowires

When a topological insulator material, such as BiSe, is formed
into a nanowire, topological states can appear on its surface.
Recently, such wires in a magnetic field have been studied
extensively both theoretically [20-24] and experimentally
[5-10,25]. When the nanowires are of circular cross section the
electrons move on a cylindrical surface with radius R. The sur-
face states of the topological insulator are Dirac fermions, de-
scribed by the Hamiltonian [20,21,26]

. eB . 1
Hyy = —ihvg {cz (82 +17R Sln(pj+6y E%} (D

where v is the Fermi velocity, and the spinors satisfy antiperi-
odic boundary conditions (@) =—y(¢+2m) because of a
Berry phase [20,21]. We chose the coordinate system such that
the magnetic field is along the x-axis, B = (B,0,0), the vector

10
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potential being A = (0,0,By) = (0,0,BRsing). For B = 0 the
angular part of the Hamiltonian has eigenfunctions "/ 2n
where n are half-integers to fulfill the boundary condition. It is
convenient to diagonalize Equation 1 in the angular basis,
which are exact eigenstates when B = 0.

An example of the energy spectrum is shown in Figure 1 for
B =0 (Figure 1a) and for B =4.0 T (Figure 1b). The model pa-
rameters are comparable to experimental values [10]. For zero
magnetic field the energy spectrum has a gap at £ = 0 resulting
from the antiperiodic boundary conditions [20,21]. For the case
of non-zero magnetic fields, precursors of Landau levels around
k = 0 are seen, both at negative and positive energy. The local
minima away from k = 0 are precursors of snaking states. Such
sates have been studies for quadratic dispersion (Schrodinger)
where the Lorentz force always bends the electron trajectory
towards the line of vanishing radial component of the magnetic
field [27-30]. In fact, this is a classical effect known in the two-
dimensional electron gas in inhomogeneous magnetic fields
with sign change [31-34]. For Dirac electrons it has
been reported in graphene p—n junctions in a homogeneous
magnetic field, since in this case the charge carriers change sign
[35].

In order to calculate the current in multi-channel one-dimen-
sional systems one needs to calculate the product of the velocity
v,(E) and density of states p,(E) of a given mode » at energy F
[36]. This product is a constant v,,(E)p,(E) = 1/h, irrespective of
the form of g,(k), which leads to the well-known conductance
quantum e2/A. For infinitely long, ballistic systems all channels
are perfectly transmitted 7,, = 1, so one can simply count the

number of propagating modes to obtain the conductance.

If the curvature of the dispersion is negative (here we consider
positive energy states) at k£ = 0, then the mode can contribute
twice to the conductance since there are two values of & that
fulfill €,(k) = E and have the same sign of v,(E) (see Figure 1b).

20 -15 110 5 0 5 10
kR

15 20

Figure 1: Energy spectra for a) B =0 and b) B = 4.0 T. Note that the system is gapped at B = 0 but not at B=4.0 T. We used v¢ = 10° m/s and R =

50 nm for the current calculations, which gives Eq = (fivg)/ R = 1.3 meV.
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The transmission, which in this case is simply the number of
propagating modes, can jump up by two unit values and then
again fall by one unit value as a function of the energy. As was
pointed out recently, the presence of such non-monotonic be-
havior in the transmission function 7(E) can give rise to anom-

alous thermoelectric currents [11].

In order clarify the origin of the sign reversal of the thermo-
electric current, and how its affected by magnetic field, we will
briefly outline how the current is calculated using the Landauer
formula. The charge current /; is given by

I, :% [T(B)] fx (E)- £, (E)]dE. @)

Here fi jr(E) are the Fermi functions for the left/right reservoir
with chemical potentials py g and temperatures 71 r. We will
consider pup = pgr = p. If the transmission function 7(£) in-
creases with energy over the integration interval (and the chem-
ical potential is situated somewhere in the interval) the thermo-
electric current is positive. This is the normal situation. An
anomalous negative current can instead occur if the transmis-
sion function decreases with energy. The curve for B=2.0 T in
Figure 2a shows the normal situation where the chemical poten-
tial is positioned at an upward step at L = 6.8 meV. The vertical
line indicates the position of p. The resulting charge current is
shown in Figure 2b) where the normal situation is evident for
B =2.0 T. If the magnetic field is increased to B = 2.8 T, the
energy spectrum changes (not shown) and so will the transmis-
sion function 7(E). Now a downward step occurs at pu, which
leads to an anomalous current, as can be seen in Figure 2b. Note
that the current sign an be changes by either varying the temper-
ature of the right reservoir or the magnetic field. The anom-
alous current can be in the range of tens of nanoamperes, which
is well within experimental reach.
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Modeling of impurities

The anomalous current introduced above relies on non-mono-
tonic steps in the transmission function. For ballistic nanowires
the steps are sharp, but in the presence of impurities the steps
will get distorted. In order to simulate transport in a realistic
nanowires, we will assume short-range impurities. These are de-
scribed by

Vimp(z’q)):ZWS(Z_Zi)S((p_(pi)’ 3)

where W is the impurity strength. Due to fermion doubling, the
Hamiltonian in Equation 1 can not be directly discretized [37].
However, adding a fictitious quadratic term

_Yeh

H, =" 220, (R%?) )

solves the issue of fermion doubling [38]. To fix the value of A,
we will first look at the longitudinal part of Equation 1 in the

absence of a magnetic field

. vih
HTI,Z = —ihvgo,0, _%}"zcx (Rzaz ) )

If this Hamiltonian is discretized on a lattice with the lattice pa-

rameter a the spectrum will be

4
a a

2 4
si(k)zih% K sin? (ka) + (20)* £ _sin (%"j ©)

where ka €[-n,n]. The value of A can be set by the condition
that the Taylor expansion of (g.(k))? contains no quartic term,
which maximizes the region showing linear dispersion. This
condition is fulfilled when

60

40 |

B=20T b) |
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Figure 2: a) Transmission function and b) thermoelectric current for two different magnetic fields. In a), the transmission function T(E) for B=2.8 T is
offset by 6 for clarity. We used vg = 105 m/s and R = 50 nm for the current calculations, which gives Eg = (ivg)/ R = 1.3 meV.
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For zero magnetic field we choose the lattice parameter
a = 0.02 R, which ensures that the first ten states calculated via
the lattice model with the A2 term deviate by less than 1% from
those obtained with the continuum model (Figure 1a). For a
non-zero magnetic field we use a = 0.01 R, because more states
contribute to the flat bands at £ = 0. At this point we are free to
use standard discretization schemes and the transmission func-
tion in the case when impurities are included is obtained using
the recursive Green’s function method [39].

Experiments on normal (not topological) nanowires show a
conductance that can be complicated, but reproducible trace for
a given nanowire. This means that the measurement can be
repeated on the same nanowire and it will give the same
conductance trace as long as the sample is kept under un-
changed conditions. But a different nanowire would show a dif-
ferent, but reproducible, conductance trace [40]. This motivates
us to consider a fixed impurity configuration, i.e., no ensemble
average.

In Figure 3 we show the transmission functions and the thermo-
electric currents for a magnetic field of B =4.0 T, for a nano-
wire of length L = 1000 nm. The disorder strength is set to W =
4.8 (Avp)/R and the density of impurities is varied:
n; = 3.0 nm~!, 6.0 nm~! and 12 nm~!. For comparison, we
consider two types of impurities: scalar impurities described by
Equation 3 (red traces), and magnetic impurities described by

VimpOx (blue traces).

When the transmission function in Figure 3a in the presence of
impurities is studied, a definite trend towards reduced non-

18 ‘ T
16 |
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10

T(E)
@

onNn O
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monotonic intervals is visible as the density of impurities is in-
creased from 3.0 to 6.0 and 12 nm™!. This applies both to scalar
(red) and magnetic impurities (blue), even though the magnetic
impurities seem to cause a quicker reduction in the transmis-
sion peaks. Both scalar and magnetic impurities open up a gap
around E = 0. This is due to scattering between counter-propa-
gating states on the same side of the nanowire [24]. When
looking at the calculated charge current in Figure 3b, the differ-
ence between the scalar and magnetic impurities becomes more
clear. In both cases the strength and density of impurities is the
same but magnetic impurities are substantially more effective in
reducing the anomalous current. Note that due to the different
impurity configurations between the magnetic and scalar cases
we adjusted the chemical potential to p = 7.15 meV to maxi-
mize the anomalous current. The values of Wiy, and n; used
here were chosen such that we could observe an evolution in
Figure 3a from resolving the quantized steps to not seeing any.
For experiments, this would mean that samples that show some
indication of quantized conductance steps should suffice to
observe the anomalous current.

In our calculations we neglected the Coulomb interactions be-
tween electrons that, in the nonlinear regime of transport, may
alter the current, at least in non-topological materials [41-43].
To our knowledge, the present experimental data in TI nano-
wires can be explained without considering the Coulomb inter-
action. But, nevertheless, this issue can be an open question for
future research.

Conclusion

We studied the reversal of the thermoelectric current in topolog-
ical insulator nanowires and how it evolves with changing mag-
netic fields. Using lattice models we simulated realistic nano-
wires with both scalar and magnetic impurities. Even though
both scalar and magnetic impurities reduce the size of the

30

20

10

I, [A]

b)

10
TrIK]

Figure 3: a) Transmission function and b) thermoelectric current calculated in the presence of impurities at B = 4.0 T. The nanowire length is
L = 1000 nm and the impurity densities are n;=3.0 nm~!, 6.0 nm~! and 12 nm™~". The red curves are for scalar impurities with chemical potential
J = 7.28 meV and the blue curves are for magnetic impurities with y = 7.15 meV.
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anomalous current we expect that in quasiballistic samples the
effect should be observable. Interestingly, magnetic impurities
seem to be more effective than scalar impurities when it comes
to reducing the anomalous thermoelectric current. For hollow
nanowires described by the Schrédinger equation the backscat-
tering is the same for magnetic and scalar impurities, in the
absence of spin—orbit interactions. This is in contrast to the TI
nanowires studies here, which are more susceptible to scat-
tering by magnetic impurities due to spin—-momentum locking
of the surface states [23].
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We study the influence of the inverse proximity effect on the superconductivity nucleation in hybrid structures consisting of semi-
conducting nanowires placed in contact with a thin superconducting film and discuss the resulting restrictions on the operation of
Majorana-based devices. A strong paramagnetic effect for electrons entering the semiconductor together with spin—orbit coupling
and van Hove singularities in the electronic density of states in the wire are responsible for the suppression of superconducting
correlations in the low-field domain and for the reentrant superconductivity at high magnetic fields in the topologically nontrivial
regime. The growth of the critical temperature in the latter case continues up to the upper critical field destroying the pairing inside
the superconducting film due to either orbital or paramagnetic mechanism. The suppression of the homogeneous superconducting
state near the boundary between the topological and non-topological regimes provides the conditions favorable for the

Fulde—Ferrel-Larkin—Ovchinnikov instability.

Introduction

The transport phenomena in semiconducting wires with in-
duced superconducting ordering and strong spin—orbit interac-
tion are in the focus of current experimental and theoretical
research in field of nanophysics and quantum computing [1-10].
The interest in these systems is stimulated by the perspectives
of their use for design of topologically protected quantum bits.
The key idea is based on the observation that for a certain range
of parameters and rather strong applied magnetic fields H the
induced superconducting order parameter reveals so called

p-wave symmetry realizing, thus, a model of Kitaev's chain [1].

The edges of such wires can host the subgap quasiparticle states
that are considered as a realization of Majorana particles in

condensed matter systems [11-16].

In most cases, theoretical studies of these Majorana wires are
based on a simplified model of the superconducting correla-
tions described by a phenomenological gap potential inside the
wire [3,4] placed in contact with a standard s-wave supercon-
ductor (Figure 1). This model, while being useful in many cases

for a qualitative understanding of the induced superconduc-
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tivity, is known to possess still a number of important short-
comings. An obvious way to overcome these shortcomings is to
use the microscopic theory of the proximity effect [17-24], i.e.,
Gor'kov equations. The microscopic approach allows one to get
the effective gap operator analogous to the one used in the
phenomenological model. On top of that it gives the gap depen-
dence on the transparency of the interface between the wire and
the s-wave superconductor and chemical potential via density of
states (DOS). Another important point is that the exchange of
electrons between the wire and superconductor can cause a
so-called inverse proximity effect, i.e., the suppression of the
gap function at the superconductor surface. For a rather thin
superconducting shell covering the wire this gap suppression
can result in the change of the superconducting critical tempera-
ture of the whole system. The analysis of this inverse proximity
phenomenon is important to find out the optimal range of pa-
rameters that allows one to realize the switching between the
topologically trivial and nontrivial states of the semiconducting
wire used in various braiding protocols.

- o
N i
L Eflon] l} s )
—
substrate

|

Figure 1: Schematic picture of the semiconducting wire (yellow)
covered by the superconducting layer (green) placed on a substrate
(light blue). Ry, ds and ¢q show linear and azimuthal dimensions. The
magnetic field H is applied along the wire axis Oy while the Rashba
spin—orbit vector is perpendicular to the substrate (not shown).

The goal of this work is the self-consistent analysis of the criti-
cal-temperature behavior of the wires while considering the in-
fluence of the inverse proximity effect on the induced supercon-
ducting ordering. For this purpose we start from the full set of
microscopic equations for the Green functions taking into
account both scattering rates describing the quasiparticle
transfer between the superconducting film and the wire [17].
The first rate, yg, characterizes the electron leakage from the
wire to the superconductor and is responsible for the energy-
level broadening in the wire. The second rate, v,,, corresponds
to the reverse process. These rates are determined both by the
probability of electron tunneling through the barrier at the
superconductor/semiconductor (S/SM) interface and the corre-
sponding densities of states. In particular, it is important that the
rate v,, is proportional to the DOS in the SM nanowire resulting
in its non-trivial energy dependence. Indeed, considering, e.g., a
single-channel nanowire we get the DOS diverging as a square
root function of the energy relative to the bottom of the conduc-

tion band. This van Hove singularity in the DOS should cause a

Beilstein J. Nanotechnol. 2018, 9, 1184—-1193.

strong energy dependence of the scattering rate vy,, and, as a
consequence, the superconducting critical temperature should
depend on the position of the Fermi level with respect to the
bottom of the one-dimensional conduction band in the SM wire.
The influence of the van Hove singularity on superconductivity
should be also accompanied by the strengthening of the para-
magnetic effect. Indeed, one can naturally expect that the scat-
tering rate v,, could result in an additional effective Zeeman
field induced in the superconductor due to the electron
exchange with the SM wire. Due to the divergence in the DOS
together with the large g-factor in the wire this induced Zeeman
field can even exceed the value of the usual Zeeman field.
Under such conditions the field dependence of the critical tem-
perature would have a minimum near the fields H = |p,,|/gB,
where 1, is the Fermi energy of the wire relative to the bottom
of its conduction band at H = 0 and B is the Bohr magneton.
Strictly speaking, the spin—orbit interaction may cause the
emergence of the third van Hove singularity below —gBH/2, but
it appears only at rather large spin—orbit interaction strengths.
Note that for a vanishing induced superconducting gap Aj,q this
field separates the regimes with trivial and nontrivial topolog-
ical properties of the system [3,4,18]. Further increase in the
magnetic field is known to suppress the proximity effect since
in the absence of the spin—orbit coupling the Fermi level crosses
the only energy branch with a complete spin polarization along
the magnetic field direction. The nonzero spin—orbit coupling
destroys this spin polarization mixing different spin projections
and resulting in a nonzero induced superconducting gap in the
wire of approximately aA;,q4/gPH, where Ajnq is the induced
superconducting order parameter in the wire, and o is the
spin—orbit coupling constant. Still, even in the presence of the
spin—orbit coupling the increasing magnetic field suppresses the
induced superconductivity, which definitely restores the super-
conducting order parameter in the S film. This reentrant super-
conductivity stimulated by the magnetic field can only be main-
tained up to the upper critical field associated with either orbital
or intrinsic paramagnetic effect in the S shell.

The suppression of the superconducting order parameter near
the line of transition between the topologically trivial and
nontrivial phases can result in one more interesting phenome-
non: Similarly to the standard paramagnetic effect this suppres-
sion can cause the transition into the analogue of the so-called
Fulde—Ferrel-Larkin—Ovchinnikov (FFLO) [25,26] state with
the spatially modulated superconducting order parameter.

The paper is organized as follows: In section “Basic equations”
we give the main equation of our model. Section “Results and
Discussion” is devoted to the description of the solution and the
analysis of the phase diagrams. In the Conclusion section we

summarize our results and the suggestions for the experiment.
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Basic Equations

Hereafter we consider a long 1D semiconducting wire partially
covered by a thin superconducting shell with the thickness
d, <&, where & is the superconducting coherence length. In
the cross section of the wire the superconducting film covers the
angular sector ¢(. The model system is schematically shown in
Figure 1. Hereafter we use the units with kg = ## = 1, where kg
is the Boltzmann constant, and 7% is the Planck constant. The

Hamiltonian of the system reads:

H="H, +H, +7, )

with the first term

H, =d,R,, [dy do| ] (1), (1) (r)

* @
+A, (r)\@ (r)\vi () +A, (D) yy (H)yy (r)},
describing the s-wave superconducting shell.
H,, = Swjdy al (y)[sw (y)-ia6,0, +hs, LG, ag (¥) 3)

corresponds to the Hamiltonian of the nanowire, and the tunnel
Hamiltonian takes the form

H, = Jd,R,S,, [dy do[ vl (0.)T (0.7)aq (»)

val (0T (9.9) o (0.)]. ®

Here o = 1, | denotes spin degrees of freedom (summation over
repeated spin indices is always assumed throughout the paper),
while &, (m =x, y, z) are the Pauli matrices in the spin space.
R,, is the radius and S,, = anv is the cross-sectional area of the
wire, (r) = (R, 9, ), ¢ is the polar angle in the plane perpen-
dicular to the wire axis, which changes in the interval
0 < @ < @qg. y denotes the coordinate along the wire,
g,(r)= —Vf /2mg —pg and €,(y) = —6§ /2m,,—n,, stand for
the quasiparticle kinetic energies in the shell and in the wire
with respect to the corresponding chemical potentials p and .
mg and m,, are the effective masses of the electrons in the
subsystems, Ay(r) is the superconducting order parameter, a is
the spin—orbit coupling constant, # = gBH/2 is the Zeeman
energy, and H is the applied magnetic field.

We consider the incoherent tunneling model, which does not
conserve the momentum, e.g., due to the presence of the
disorder at the interface. Thus, the ensemble average of the

tunneling amplitudes has the form:

Beilstein J. Nanotechnol. 2018, 9, 1184—-1193.

T)T W) =208(y-y)5(0-9'), ®)

where /. is the length of the order of the atomic scale. The
tunneling is also assumed to be independent of energy and spin
and occurs locally in time and in space, i.e., from a point r on
the superconducting shell into the point y in the wire and back
with the amplitude 7 (r).

It is important to note that here we do not consider the orbital
effects in the superconducting shell. This approximation
imposes some restrictions on the value of magnetic fields under
consideration, which are nevertheless quite realistic for the ex-
periments aimed at the manipulation with Majorana states in
such systems. It is the large g-factor in the SM wire that allows
to have the magnetic field values affecting the electronic states
in the wire and barely affecting the ones in the superconducting
cover. Note that omitting the orbital effects we cannot describe
possible Little-Parks effect arising in the wires fully covered by
the S shell [27,28].

Neglecting the order parameter inhomogeneity in the shell for
d;, < &, we derive the following system of Gor'kov equations
written in the frequency—momentum representation (see Sup-
porting Information File 1 for the details of the derivation):

v

(io)n—SS%ZJrA—ZS)(V}S:i, (6)

(io)n —&,t, —ap,6, —hG, —iw)Gw =1, ©)

where o, = 2nT(n + 1/2) is the Matsubara frequency, T is the
temperature, p, is the momentum along the wire, T, (m=x,y,
z) are the Pauli matrices acting in the Nambu space,
A= (A%Jr +ATE ), A= Ag(iG ), Ay is the superconducting order
parameter, which we assume to be constant in space and real-
valued, 1, =(1,%it,)/2, and ¢, = p)z, /2m,,—p,,. The
tunneling self-energy parts are given by the following expres-

sion:

is(w) = FW(S) 'VCZ gW(S‘) :Ez . (8)

where T’ =t2€cRWmS(po/2 and I}, =12£c /2v. The func-
tions gs(w) are the quasiclassical Green’s functions:

. 1 v
&s :;J‘dgs Gs ((Dn’gs)’ ©)
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ngu?ojdpy Gw (0 Py )- (10

The precise definitions of the Green’s functions GW,S of the
wire and of the shell, respectively, together with the derivation
of Equation 6 and Equation 7 are given in Supporting Informa-
tion File 1.

Note that we neglect here the possible dependence of these
quasiclassical Green’s functions on the coordinate along the
wire. That is, we assume the limit of an infinitely long wire
without edge effects. The velocity v is introduced just for the
purpose of unification of dimensionality of the tunneling rates
I, and I'; and does not appear in the product ', g, that enters
the measurable quantities. One can choose this velocity, e.g., as
Vg = /21, / m,, so that the rate I, includes the divergent DOS
in the 1D wire.

Tunneling rates for the quasiparticles from the shell into the
wire, I, and from the wire into the shell, Iy, can be expressed
in terms of the normal-state tunnel resistance R in the

following manner [20]:

1 k 1
FW = oc g 7?0 Fw s an
4nRSGyV R kg (kpoR,)

1
OC”'W&’

r-—— -~
ST 4Rl Gov, TR (12)

where S =2nR, ¢, is the contact area, 7, is the wire length,
Go = €%/ is the conductance quantum, v, = my/2n and
Vip = (2my,/p,p) /72 are the normal DOS in the shell and in the
wire, respectively, R, = (NGO)_I, N =kg,/0,,,

the Fermi momentum in the shell (wire). The expressions for

and sz(w) is

the tunneling rates can be conveniently written through the
numbers of transverse modes in the superconducting shell
(N, ~kf. d;R,0g) and in the wire (N,,):

2
Iy=t74, =, (13)
DFS
2
r,~t(,—%, (14)
Yo

where vg = kg /mg. Here we use the simplest generalization
[17] of the expression for I'), for the case of an arbitrary num-
ber of transverse modes in the nanowire assuming also the value
1/vg to be averaged over these modes. The resulting ratio of the

tunneling rates takes the form:
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r NS UO.

N

(15)

Due to the growth of N with the shell thinkness d in the multi-
mode regime of the superconductor this ratio may become
rather small weakening the inverse proximity effect (the details

of experimental relevance are considered in the next section).

Equation 6 and Equation 7 must be solved together with the
self-consistency equation for the superconducting gap function:

(16)

* anT v LA
A :T(DZ:Tr (gsll(zcy) ,

where A is the dimensionless pairing constant and the trace is
taken over the spin indices. The next section is devoted to the
perturbative solution of the Gor'kov equations (Equation 6 and
Equation 7) and the self-consistency equation (Equation 16) in
the gap potential which allows one to find the critical tempera-
ture of superconducting transition as a function of magnetic
field and materials parameters.

Results and Discussion
Considering the perturbation theory in the superconducting gap
function Ay it is natural to start with the equations for the

normal Green’s functions

(iw, —&5 ~T,8,, )G =1, (17)
(10),, +&g l“wgw)GiY =1, (18)
(icon—sw—apyé'x—héy—l“sgs)éw:i, (19)
(io)n +&,, —0p, 6, —hG, -T,g, )é =1, (20)

which give us the zero-order solution of the Gor'kov equations

é _ i(’on —& _ngWO +ngW0'
s 2 27 (21)
(lmn —& _ngwo) _(ngw)

- in,—¢,-T.g.0+U o
Gw= : n w sS850 . w —~ 22)
(lmn —&y _rSgSO) _Uw
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Here, Uy, = [(opy, + [sgsx), (1 + I'sgsy), T'sgs2] and the quasiclas-
sical Green’s functions are written in the spin form

8k = ko + &1 O (23)

with k = s(w) for the shell (wire). The solutions for spin matrix
functions 6/{ are given by Equation 21 and Equation 22 with
the replacements g;——¢; and g; — g

According to the definitions for the quasiclassical Green’s func-
tions (Equation 9 and Equation 10) and due to a specific spin
structure of the Zeeman term and spin—orbit coupling term in
Equation 17-Equation 20, one can easily get that only g,y and

Beilstein J. Nanotechnol. 2018, 9, 1184—-1193.

The equations for the anomalous Green’s functions read:

(i, +2, -T2, ) £ = _(AT +rwf;§)és, 26)

(icon +&,,—0p, 6, —hG, —Fsgrs) AVI =T, /1G,, @7

and give the solution for the anomalous Green’s functions 19,:
within the first-order perturbation theory in the supercon-
ducting gap:

8y are nonzero. It is convenient to rewrite the normal Green’s ~ N ) A
function in the wire as a sum of singular contributions va’i: Fy =-G; (A +T S ) G, (28)
" _
é :(8S0+80)GV€ _(SSO_EO)le; R
" 2 1 =-G,I,/1G, . (29)
_ (24)
(64 -at")
h 2¢ (Ocpny + hcy )’ Introducing a general presentation for the components of the
quasiclassical anomalous Green’s functions
2 _(gso_gﬂ(;)évl\?r+(8S0+88)é£_ ot A ¥ i
G, = v =IOy (fko +fk6)’ (30)
280
_ _ (25)
e-ax )
- * (apyéx +h&y>, we get the set of equations in Equation 31 for them with
8 KN K
0 Joe =TIz =0.
where The solutions of Equation 31 take the form given in
Equation 32 and Equation 33.
Gl* =(i®, — &, +&, t&y)
. \F We use the following notations:
Gpr=-(at7) .
dp, —
— wo_ Y Grvgem
802\/2830(uw+l(0n)+8§o+h2, IVH_ITGW G
- 34
&5, =m0’ and gy +gn" oy
_ . == %
o, =0, +I'sign(o,). 2im, +VvEy + Mgy
1y Ly Ly + LoUo = L) | Y[ Loluy + 1y o+ 1) | | 1 X [ 130] a
= . 31
T SUT
y[[solwy +1y, (1o —IWX)] 1+ y[lsy wy 150 (T + Lo )] 15 sy
2 2
" |:[SO_y([w0+]wx)(]s0_[sy)}
Fs0 ==As (32)

2(r2 2 2 2 2
[1_2Y(1501w0 +[sy1wy)+y (150 _[sy)(lwo _wa _Iwy):|
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2
[]sy + Y]wy ([SO
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S )}

1l ==

]\%:I i 2m

—pv | — *
gh (_lmn —VEg T Hy, +8s0)

= " (35)
(2ic_on +1¢gg +vs0)
+ghn (ic_on +ngy +u,, + gm)
(21'(T)n +1ngg +vg:;) ’
€ IW)C
[wx = Z ~ Vn (36)
v,n==l 2|80|
I
| (RSB K
v,n==tl &0
(-h)I
Iwy = Z (ngz +V80) ; (8)
v,n=t1 4|80|

In addition, v, 1 = £1. The expressions for the integrals involv-
ing the products of the normal Green’s functions in the shell can
be written as follows:

I

N

o=1g +1,_, (39)

I, =1

sy s+~ L5 (40)

l (gsn +g5n) @)

2 [Zimn -T, (gwn +&un )J

j(z ) sn sn

In the definitions in Equation 34 and Equation 35 and
Equation 39—Equation 41, we have introduced the following

functions:

gsn =8m =850 = —isign(mn), 8y = 0, (42)
o sign(®, +ne;)
8y =2 (43)

\/7180 +H,, +&g, +iO,

y 2 2 \(2 2 _p2
[1—2y(1301W0+13y1wy) 1513 )10~ 13- 13 )}

(33)

Here, g, = (gko + Nghy)> 5" =gPC™T, and & = Im(ep).
Finally, we explicitly show the expressions for the normal
Green’s functions in the wire:

| my, (80 +nas0)sign(6n+n81)
&wo = TH — > (44)
n==l1 €9 \/1180 THy TEg TI0,
m nsign(o, +ne;
Gy =i /TW > (©, )__ (45)
n==tl1 €9 \/“80 THy TEg T10,

Note that in the absence of spin—orbit coupling, zero magnetic
field and for energy-independent DOS in the wire the self-
consistency equation formally coincides with the one obtained
in the seminal work by McMillan [17].

Turning now to the case of nonzero Zeeman energy and
spin—orbit coupling we use a numerical approach to analyze
the solution of the self-consistency Equation 16 with the Equa-
tion 32 and Equation 33 for the anomalous Green function.
Typical dependencies of the critical superconducting tempera-
ture on the magnetic field and chemical potential p,, are shown
in Figure 2. Note that here we choose the strength of the
spin—orbit coupling consistent with the properties of InAs [22]:
€50 = Myy02 = 52 peV, which corresponds to approximately
600 mK. Taking the critical temperature of Al 7.yp = 1.3 K, we
find g5, = m,, 0% = 0.46T,.

The color plots in Figure 2 show the critical temperature 7, both
in topologically trivial (|u,,| > /) and nontrivial (Ju,,| < &)
regimes. The border lines p,, = £k (shown by white dashed
lines) coincide with the locations of van Hove singularities in
the SM nanowire. One can clearly see that the suppression of
the critical temperature appears to be the strongest close to these
lines. The magnetic field dependence of 7, appears to be drasti-
cally different in topologically trivial and nontrivial regimes.
Indeed, in the nontopological regime the critical temperature
decays as we increase the magnetic field due to a standard para-
magnetic effect. In contast, in the topologically nontrivial
regime T, increases (with or without initial decay at small
fields). This increase in the critical temperature originates from
the reduction of the proximity effect due to almost pure spin po-
larization of quasiparticles in the wire. The above mentioned
increase in the critical temperature is limited from above by

either orbital or intrinsic paramagnetic effects in the S shell and
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Figure 2: Color plot of the critical temperature of the system as a function of the chemical potential p,, and the Zeeman energy h = gBH/2 for
€50 = Mya? = 0.46 T, and several values of Iy = tZECRWmsch /2and [, = tzfc / 2uy with ug = /2T / my, . In panels (a) and (b) I'y, = 0.1T¢p, while in
panels (c) and (d) we take Iy, = T¢p. In panels (a) and (c) ['s = 0.1T¢p, in panels (b) and (d) ['s = 10Tp. In all panels the white dashed lines denote the

boundaries between nontopological and topological regimes py, = h.

continues up to the upper critical field in the superconductor.
One can see that the scattering rates I',, and I'y have a strong
quantitative effect on the above physical picture because of
smearing and shifting of the peculiarities of the DOS and the re-
sulting smoothing of 7. variations. The nonmonotonic behavior
of T, is illustrated by the plots in Figure 3. Using the above
expressions in Equation 13—Equation 15 for the tunneling rates,
we estimate the ratio of mode numbers as N,,/N; = 105-1074
for typical Majorana nanowires [11-16]. Taking into account
the decrease of the vy value close to the van Hove singularity
(v, /v = 102-10°), we get I',/Ty = 1073-107". Assuming
strong coupling between the nanowire and superconducting
shell with Ty > T,j, we get I', = (1073-10"1)T,,. Note that
under realistic experimental conditions the number of modes in

the wire (V,,) can increase due to the formation of the accumu-

lation layer near the superconductor—semiconductor interface
[29-31]. However, the increase of the shell thickness dy may
weaken the effect in the multimode regime of the supercon-
ductor. Overall, such estimate allows us to expect that the
consequences of the inverse proximity effect analyzed in our

paper can be observed experimentally.

It is worth noting that the 7.(%) plot in the Figure 3a clearly
demonstrates the appearance of / regions where the linearized
self-consistency equation has three solutions instead of one. In
other words, there can exist three critical temperatures corre-
sponding to a given magnetic field. This is evidence for the fact
that although the superconducting shell has a small g-factor, the
indirectly superconducting region is affected by effective
Zeeman field through tunneling. The presence of several solu-

0.95

081 (b) — 1, 0Ty
0oR SO
”szOTco
0.85
08}
0.75
0 5 10 15 20 25 0 10 20 30 40 50
gBHIRT gBHRT

Figure 3: The critical temperature of the system as a function of the Zeeman field h for different values of the chemical potential in the wire p,, (shown

in the legend). Here, €5, = 0.46Tpand I, =

co- (@) Ts=0.1Tgpand (b) s = 10T¢p.
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tions for T, is typical for the standard paramagnetic effect in
superconductors and usually this behavior results in the FFLO
instability of the homogeneous solution for the gap function
[32]. To verify this scenario in our system we have solved a
self-consistency equation for the modulated order parameter
A, oc % and found that the regions with several solutions for
T, for the homogeneous gap can, indeed, host an energetically
more favorable inhomogeneous FFLO gap function. The criti-
cal temperature 7.(g) for different ¢ values can be seen in
Figure 4. As we increase the / value from 4 =10.8 to 2 = 11.05
the ¢ value corresponding to the maximal 7, changes from
kpgq/mg = Teg to kpsg/mg = 0.44T,. It is important to note that
as we solve the linearized equation for the superconducting gap,
we find, of course, only the critical temperatures corresponding
to the second-order phase transitions. Changing the period of
the gap modulation of the FFLO-type we also find only the tem-
peratures corresponding to the second-order phase transition.
The physical picture can become more complicated if one takes
into account possible first-order transitions corresponding to the
interplay between different local minima of the thermodynamic
potential in the nonlinear regime. However, the solution of non-
linear gap equations is beyond the scope of the current work
and needs further investigations. Note also that the possible
FFLO phase appears on either side of topological transition
(h? = p%v + Aiznd) depending on the sign of the chemical poten-
tial p,,. Indeed, in general the temperature as a formal solution
of the self-consistency Equation 16 is not a single-valued func-
tion of the magnetic field in the regions & > +p,, slightly above
the positions of van Hove singularities, being inside the topo-
logical (trivial) regime for the upper (lower) sign. In experimen-
tally feasible cases of considered I'y,, (Figure 2) the upper
singularity at p, = 4 is more pronounced (Figure 3). Additional-

ly, an accurate analysis of the FFLO state should include careful

s H/2TCO

Figure 4: Critical temperature of the system as a function of the
Zeeman field h for €go = 0.46T;p, Fs—0 and 'y, = T, for the supercon-
ducting states with different modulation vectors q ranging from

q = 0.44mgTolkes at h = 11.05T to g = msTolkrs at h = 10.8T¢.
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consideration of the modulation of the superconducting order
parameter both along the wire and in the azimuthal direction
[27,28].

Before we conclude, we discuss briefly the influence of the

inverse proximity effect on the effective induced gap operator
2

ind >
crucial importance for topological superconducting electronics

Asop in the topological regime, W > pfv +A which is of
and topologically protected fault-tolerant quantum computing.
In our estimates we take the standard limit of p,, = 0 for
the sake of simplicity. First, the increase of I',, reduces the
parameter range of the topological insulator regime op > h
as the magnetic field should well exceed I'), to avoid the
suppression of the critical temperature due to the van Hove
singularities (see Figure 2a,c for small I'; values). As soon
as I, becomes comparable with ap with the typical quasipar-
ticle momentum p =,/2m,h this regime completely disap-
pears. Further increase of the scattering rate should suppress

the gap A, copA;q/h in the Kitaev limit. Indeed, for

to,
I, > mya2 :P €, its value is limited from above by the quantity
Aop = Aind(Eso/Ty)2 < Ajng. Such decrease in the attainable in-
duced gap values imposes more strict conditions on working
temperatures for Majorana-based devices, due to quasiparticle
poisoning as the residual quasiparticle density is exponentially
sensitive to the gap values [33-36]. Of course, at large values of
I (see Figure 2b,d) the van Hove singularities are smeared and
the critical temperature (together with the gap value) is
suppressed only partially. However, even the partial suppres-
sion up to tens of percents may drastically increase the effect of

quasiparticle poisoning mentioned above.

Conclusion

We have studied the distinctive features of the inverse prox-
imity effect arising in the presence of a large Zeeman energy
and strong spin—orbit coupling in the hybrid systems consisting
of the SM nanowires covered by thin superconducting films.
Assuming a strong difference in g-factors between the wire and
superconducting metal we find the range of parameters and
fields corresponding to the FFLO instability and the regime of
reentrant superconductivity. We focus on the topologically
nontrivial regime of relatively large magnetic fields and analyze
consequences of the inverse proximity effect on the quasipar-
ticle poisoning in Majorana-based devices.

Supporting Information

Supporting Information File 1

Derivation of the model Equation 6 and Equation 7.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-9-109-S1.pdf]
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Background: Majorana states in condensed matter devices may be of a localized nature, such as in hybrid semiconductor/supercon-

ductor nanowires, or chirally propagating along the edges such as in hybrid 2D quantum-anomalous Hall/superconductor structures.

Results: We calculate the circular dichroism due to chiral Majorana states in a hybrid structure made of a quantum-anomalous Hall

insulator and a superconductor. The optical absorption of chiral Majorana states is characterized by equally spaced absorption peaks

of both positive and negative dichroism. In the limit of a very long structure (a 2D ribbon) peaks of a single sign are favored.

Conclusion: Circular-dichroism spectroscopy of chiral Majorana states is suggested as a relevant probe for these peculiar states of

topological matter.

Introduction

The physics of Majorana states in condensed matter devices is
attracting strong interest for a few years now [1-8]. The
measured zero-bias conductance peaks in hybrid semiconduc-
tor/superconductor nanowires have been attributed to the pres-
ence of localized Majorana modes on the two ends of the nano-
wires [9-14]. A Majorana mode enhances the zero-bias conduc-
tance by allowing a perfect Andreev backscattering at zero exci-
tation energy when the nanowire is attached to a normal lead.
These peculiar pairs of states may be seen as nonlocal split

fermions, protected by an energy gap that separates them from

other normal states lying at finite energies. Besides the zero
energy of the Majorana state, also the conductance peak height
was recently seen to coincide with the expected value 2e2/h
[15].

Majorana end states in (quasi) 1D nanowires are inherently
localized, i.e., their wave function decays exponentially with the
distance to the nanowire end. By contrast, propagating Majo-
rana states with sustained spatial oscillations can be present at

the edges and along the perimeter of 2D-like hybrid structures.
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This is the situation in presence of p + ip superconductivity for
spinless quasiparticles, a class of hybrid systems where Majo-
rana states appear around 2D vortex cores in the bulk and on the
external edges of the sample [16]. Another class of 2D materi-
als with propagating Majorana modes are the topological insula-
tors based on the quantum-anomalous Hall effect. We refer,
specifically, to the hybrid devices of [17], consisting of a quan-
tum-anomalous Hall insulator and a superconductor material. In
such systems, chiral Majorana modes propagating along the
edges in a clockwise or anticlockwise manner, depending on the
orientation of a perpendicular magnetic field, are formed at the
2D interfaces between the quantum-anomalous Hall and the
superconductor materials [18-22]. Each chiral Majorana state
contributes 0.5¢2/A to the linear conductance of the device, such
that by tuning the number of Majorana states the conductance
takes values 0.5¢2/h and 1¢%/h for the topological phases with
one and two chiral Majorana states, respectively. It is remark-
able that the intrinsic magnetization of the material in the anom-
alous Hall effect allows for the tuning of the phase transitions
using much weaker magnetic fields than with the standard Hall
effect.

In this work we discuss the connection between chiral Majo-
rana states and optical absorption. We expect that in presence of
chiral Majorana states, the optical absorption of circularly
polarized light will differ for clockwise and anti-clockwise po-
larizations. The difference, known as circular dichroism (CD)
[23,24], can thus be seen as a measure of the existence of such
chiral states. We want to investigate how this behavior is actu-
ally realized by explicit calculations of the optical aborption. In
previous works we analyzed the optical absorption of localized
Majorana states in nanowires [25,26]. In those systems the CD
vanishes and the presence of the Majorana state is signaled by a
plateau with lower absorption, starting at mid-gap energy, of the
y-polarized signal with respect to the x-polarized signal. It is
also worth mentioning that alternative techniques for detecting
Majorana fermions, based on microwave photoassisted tunnel-

ing in Majorana nanocircuits have been suggested in [27].

For chiral Majorana states in a 2D square or rectangular geome-
try the CD at low energies is characterized by a sequence of
equally spaced peaks, corresponding to transitions of Bogoli-
ubov—deGennes quasiparticles from negative to positive energy.
In the usual energy ordering of quasiparticle states (n = +1, +2,
...), the selection rules are: a) transitions between conjugate
states —n—n are forbidden by electron—hole symmetry, b) tran-
sitions —n—m are allowed only when n and m are both even or
both odd. The rationale behind rule b) is the constructive inter-
ference of the corresponding quasiparticle states connected by
the excitation operator on the edges of the system. Furthermore,

it will be shown below that the CD peaks corresponding to
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those even—even or odd—odd quasiparticle transitions may be
either positive or negative. In the limit of a long 2D ribbon there
is a preferred CD sign, depending on the magnetic field orienta-
tion. For a disc geometry the generalized angular momentum J,
becomes a good quantum number. Then, the combination of cir-
cular and particle—hole symmetries in a disc causes a vanishing
absorption for p, + ip), fields and, obviously, also a vanishing
CD.

Model

We use the model of [17] for a quantum-anomalous Hall (3D)
thin film in contact with two different superconductors. This
model represents the device as two surfaces with a certain inter-
action between them, with Majorana states being located at their
edges. In a Nambu spinorial representation that groups the field
operators in the top (f) and bottom (b) layers,

T
t t tt it b b bt bt
|:(quT’\Pki’\p—ki’ \y—kT)’(\PkT’Wki’\P—ki’ \P—kT):| ’

the Hamiltonian is reformulated in the notation of Pauli
matrices (with ¢ and b surfaces corresponding to the Pauli
indices 1 and 2, respectively):

2, 2
H:[m0+m1 (px +py)}rz7»x+ABGZ—ptz

—(1( PxCy —pny)Tz }Vz S
A, T+ A, T

This Hamiltonian is acting in the combined position—spin—iso-
spin—pseudospin space. Spatial positions are treated as a 2D
continuum (x,y €L, x L)) and a discrete two-valued pseu-
dospin (z). The two-valued spin, isospin and pseudospin degrees
of freedom are represented by o, T and A Pauli matrices, respec-
tively. As mentioned, the pseudospin (A) is modeling a coupled
bilayer system in which quasiparticles move. The set of Hamil-
tonian parameters is mg, my, Ag, p, o, A, and A, The latter two
are given in terms of the pairing interaction in the two layers, A;
and A, by

A, +A
Ap,m:fTb. )

Hybridization of the two surfaces is represented by parameters
mg and my. Ap is an effective Zeeman-like parameter including
the exchange field associated with the intrinsic magnetization of
the material. The chemical potential is given by p while o repre-

sents a Rashba-type spin—orbit interaction.
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Below we numerically determine the eigenvalues and eigen-
states of H using a 2D grid for x and y. When Ap is increased,
the spectrum of low-energy eigenvalues evolves from a gapped
(void) spectrum around zero energy at low values of A, to the
emergence of chiral near-zero-energy modes for sufficiently
large values of Ag. When the pairing parameters for each layer
are equal (A,, = 0) chiral Majorana states appear in pairs
(0-2-...), while for sufficiently different parameters it is A,, # 0
and there may be phases with odd numbers of chiral Majorana
states as well.

The numerical results shown below are given in an
effective unit system, characterized by the choice of 7 =1,
mass m = 1/2m| = 1 and a chosen length unit Ly, typically
Ly = 1 pm. The corresponding energy unit is then
Ey=h/ml;.

Circular dichroism
We compute the optical absorption cross section for right (+)
and left (—) circularly-polarized light from

1 . 2
S(0)=4mf > —Kklpxilpy\Sﬂ 8(0-04) (3)
£>0,5<0 Pks

where 7oy, =g, —g, is the energy difference between particle
(unoccupied) and hole (occupied) states. The prefactor 4m12
gives the squared inverse effective mass (1/ mesz) of the Hamil-
tonian and fixes the dimensions of S as an area. The circular di-
chroism at a given frequency Scp(®) is then defined as the
difference between the absorptions for the two circular polariza-
tions,

Sep (@) =8, (0)-S_ (o). )

Obviously, in absence of any chirality preference Scp exactly
vanishes.

Results and Discussion
Chiral bands

Figure 1 shows the evolution of the eigenvalue spectrum as a
function of the magnetic field parameter Ag. The results repro-
duce already known results [17]. At vanishing Ag the spectrum
around zero energy is gapped, a gap that tends to close with in-
creasing Ap by the appearance of a quasi-continuum distribu-
tion of eigenvalues. These low-energy states are indicating the
presence of propagating Majorana states, energy-discretized due
to the finite size of the system. When A, = A, (Figure la,c) the
degeneracy is such that the Majorana branches appear in pairs.

Directly determining the degeneracy of the energy eigenstates

Beilstein J. Nanotechnol. 2018, 9, 1194—1199.

close to zero energy is an alternative way to characterize the
topological invariant or Chern number discussed in [20]. We
also notice that there is no qualitative difference in the eigen-
value distribution between a square and a rectangle (upper vs
lower panels). It is remarkable that when a Majorana phase is
well developed the low-energy states are equally spaced in
energy. This is particularly clear for 2 < Ap/Ey < 4 in Figure la
and Figure 1c, corresponding to the phases with two Majorana
states. It can also be seen in Figure 1b and Figure 1d for the
phases with one Majorana state while that the equally spaced
distribution also hints to the beginning of the phase with two
Majorana states.

Energy (£,)
=1

Energy (£)
<

Figure 1: Energy eigenvalues close to zero energy as a function of Ag.
Panels a) and b) are for a square of dimensions Ly = L, = 10Ly, while
c) and d) correspond to a rectangle of Ly = 2L, = 20Ly. In a) and c) the
same pairing energy is assumed in each layer A; = Ay = Ey while in b)
and d) it is As = Ap/3 = Ey. The framed labels indicate the degeneracy
of the near-zero energy states, which indicates the topological phase.
Other parameters: mg =0, p =0, a = EyLy.

The chiral character of the gap-closing Majorana states is
clearly seen in Figure 2. The equally spaced states at low energy
arrange themselves on a line (a chiral band) when plotted as a
function of the z-component of the angular momentum. For pos-
itive Ap the angular momentum decreases with increasing
energy, causing empty (particle) states to have negative values
of (J,), while occupied (hole) states have positive values of
(J,). The results of Figure 2a,b correspond to the rectangle
with different pairing energies in each layer shown in Figure 1d.
For Ag =2Ey (Figure 2a) there is a single chiral band, while for
Ap = 4.75Ey (Figure 2b) there are two overlapping bands.
Notice that the overlap of states in Figure 2b degrades as the
energy deviates from zero, indicating that the second Majorana
band is not yet fully settled for this particular Ag. Additionally,
Figure 2c¢ explicitly shows the edge character of the states of a
chiral Majorana band. A similar distribution is obtained for all

the states in a chiral band. On the contrary, states that are not
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aligned along the chiral band in Figure 2a,b are bulk states sepa-

rated by a gap from zero energy.

| W a1 o b)
’E 'l" ‘:\
53 Y "
53 0 0 : -
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-8 0 8
v(L;)

Figure 2: Energy eigenvalues as a function of (J,). Panels a) and b)
correspond to the phases in Figure 1d with one (Ag = 2E) and two
(Ag =4.75E) Majorana states, respectively. The grey shaded zones
indicate the occupied (hole) states while the arrows in panel a) show
the two lowest allowed transitions to the first particle state. Panel c)
shows the probability density corresponding to the lowest positive-
energy state in panel a), adding all spin, isospin and pseudospin
contributions.

Absorption and CD

Absorption cross-sections and CD for the spectra of the
rectangle with different pairing energies in the two layers
(Figure 1d) are shown in Figure 3 for selected values of Ag.
They correspond to zero (Figure 3a), one (Figure 3b) and two
(Figure 3c) chiral bands. As anticipated, in presence of the
chiral states the system develops a clear CD. For the sake of a
better comparison, identical scales have been used in the three
panels of Figure 3. In these scales, the two absorptions and the
CD essentially vanish in the absence of chiral modes
(Figure 3a). The rightmost inset in panel Figure 3a shows that
for energies exceeding the quasiparticle gap a small absorption
eventually appears due to transitions between bulk states (cf.
Figure 1d). However, the CD still vanishes within numerical
precision. The negative CD peaks dominate in Figure 3b,c due
to the negative slope of the chiral bands (Figure 2a,b). It is
remarkable, however, that a few positive peaks are also present.
We attribute them to the fact that in a rectangular geometry J, is
not a good quantum number and, therefore, there are states with
mixed angular momentum. We have performed calculations in a
circular geometry confirming this interpretation. Therefore,
quasiparticle scattering by the corners plays a nontrivial role on
the absorption by chiral edge states.

The most conspicuous feature of Figure 3b is the regular energy

spacing of the first few CD peaks. Analysing them in terms of
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Figure 3: Absorption cross-sections S, S_ and Sgp defined in the
main text. The shown results correspond to the spectra of Figure 1d for
Zeeman parameters of (a) Ag = 0.3Ey, (b) 2Ey), and (c) 4.75Ey. The
rightmost inset in Figure 3a corresponds to an extended energy range
and a zoomed vertical scale for the data of this panel.

energy transitions of the chiral band it is easily noticed that they
correspond to jumps of 3, 5, 7,... steps (see arrows in
Figure 2a). We explain this selection rule noticing the following
restrictions for transitions from the negative n-th state to the
positive m-th state (—n—m): (a) Transitions between conjugate
states —n—n are forbidden by particle-hole symmetry [25], and
(b) n even to m odd transitions (or vice versa) are forbidden
because of destructive interference along the nanostructure
perimeter with the excitation operator. This rule is far less
obvious than rule (a) and results from the approximately 1D
character of the chiral edge modes and the interference induced
by the propagation through corners. Indeed, we have seen that
for active transitions within the chiral bands the regions around
the corners are those contributing the most to the matrix ele-

ment in Equation 3.

For a disc, J, becomes a good symmetry and, by angular
momentum conservation with a dipole operator only the transi-
tion —1—1 is possible. However, this transition is blocked by
rule (a) and, therefore, no dipole absorption is possible and the
CD exactly vanishes. We have also checked this behavior by
explicit calculation for a device with circular geometry. For a
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square and rectangle, quasiparticle scattering by the corners
plays a nontrivial role yielding the mentioned deviations with

respect to the disc.

The pattern of equally spaced peaks is fulfilled only when one
or several chiral bands are fully developed and they exactly
overlap. In Figure 3¢ we see that the slight degradation of the
two-band overlaps of Figure 2b manifests in a small twofold
splitting of the CD peaks. It is also worth stressing that once the
chiral bands are fully formed, the energy positions of the first
few CD peaks become independent on Ag (cf. Figure 2b and
Figure 2¢).

Figure 4 shows the absorption results for different geometries, a
square (Figure 4a) and a long rectangle resembling a 2D ribbon
(Figure 4b). For the square, the first CD peaks alter sign in a
remarkable way. For the ribbon the alternation is of a longer
period, the positive peaks having a much lower intensity than
the negative ones and there are groups of a few consecutive
negative peaks. The 2D ribbon shape thus favors the observa-
tion of CD peaks of the same sign. Nevertheless, the presence
of the corners is still essential since for a strictly infinite ribbon
the CD exactly vanishes. This is clear when realizing that with
fully translational invariant states the p, operator in Equation 3
is not yielding any excitation and, therefore, the sign of the p,

operator becomes irrelevant, yielding S, =S_.

037 WL
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0.0 L AL A 4 H
— $
SO < ¢D
5
Z -05
9 T T
3 S
E 0.5 b) \y \'\l
g
&
00 A AN T N——
-0.5 1
0.0 0.5 1.0 1.5 2.0
Energy (£,))

Figure 4: Absorption cross-sections S,, S_ and Scp for (a) a square
of Ly =L, =20 Ly), and for (b) a rectangle of Ly = 6L, = 60Ly (b). In
both cases we used Ag = 2Ey and A¢ = Ap/3 = Ey.

Conclusion
In this work we have investigated the manifestation of chiral

Majorana modes in the CD of the dipole absorption. The chiral
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bands formed at the edges of a hybrid system made of a quan-
tum-anomalous Hall insulator and a superconductor yield
equally spaced peaks in the CD signal. We identified the parti-
cle—hole selection rules responsible for this behavior from the
analysis in terms of chiral bands. In a disc there is no CD signal
due to the incompatibility of the selection rules with the angular
momentum restriction; a square or rectangular geometry (or,
more generally, a system with straight edges or breaking circu-
lar symmetry) is needed. The presence of two chiral bands can
be inferred from the small splitting of the CD peaks. Finally,
both positive and negative CD peaks can be seen, with a perfect
alternation in a square and a favored sign in a long 2D ribbon
geometry.

Our results suggest the use of CD spectroscopy as a valuable
probe of chiral Majorana states, complementing the evidences
obtained with electrical conductance measurements [17]. This
may require the use of an array of absorbing devices, in order to
achieve a combined signal of sufficient intensity. Alternatively,
techniques such as those developed for single plasmonic nano-
particle sensing [28] might be applied to an isolated chiral
Majorana device. Particularly, among the latter we stress the
techniques for single-particle absorption that have allowed
measuring the extinction spectrum of a single silica shell-coated
silver nanoparticle excited with varying polarizations [29].
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There have recently been several experiments studying induced superconductivity in semiconducting two-dimensional electron

gases that are strongly coupled to thin superconducting layers, as well as probing possible topological phases supporting Majorana

bound states in such setups. We show that a large band shift is induced in the semiconductor by the superconductor in this geome-

try, thus making it challenging to realize a topological phase. Additionally, we show that while increasing the thickness of the

superconducting layer reduces the magnitude of the band shift, it also leads to a more significant renormalization of the semicon-

ducting material parameters and does not reduce the challenge of tuning into a topological phase.

Introduction

Topological superconductors host zero-energy Majorana bound
states at their edges that are highly sought for applications in
topological quantum computing [1-3]. The two proposals to
realize topological superconductivity that have received the
most attention to date involve engineering Majorana bound
states in either low-dimensional semiconducting systems [4-23]
or in ferromagnetic atomic chains [24-32]. After the first signa-
tures of topological superconductivity were observed [33-37],
much of the experimental focus was placed on developing more
suitable devices for realizing robust topological supercon-

ducting phases. One of the most significant experimental

advances of the past few years was the successful epitaxial
growth of thin layers of superconducting Al on InAs and InSb
nanowires [38-42]. The intimate contact between the semicon-
ductor and superconductor in these devices ensures a hard in-
duced superconducting gap. Recently, this epitaxial growth
technique has been applied also to InAs two-dimensional elec-
tron gases (2DEGs) [43-47].

The proximity effect has been theoretically studied recently in

both strictly one-dimensional (1D) [48] and quasi-1D [49] wires
coupled to thin superconducting layers. In both instances, a
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strong proximity coupling induces a large band shift on the
semiconducting wire. This band shift is comparable to the level
spacing in the superconductor, 3E; = mhivp / d (which is 8Eg ~
400 meV for a superconductor thickness of d ~ 10 nm and a
Fermi velocity of Al of vg ~ 2 x 10® m/s). In both cases, this
large band shift makes it very challenging to realize a topolog-
ical phase when utilizing thin superconducting layers.

In this paper, we extend the works of [48,49] to the 2D limit.
We show that the large band shift that plagues the 1D case
persists also in two dimensions. First, we show that the self-
energy induced in an infinite 2DEG coupled to a supercon-
ductor of finite thickness is equivalent to that induced in an infi-
nite wire coupled to a 2D superconductor of finite width (corre-
sponding to the theoretical model of [48]), with the simple
replacement of a 1D momentum by the magnitude of a 2D
momentum. Analyzing the self-energy, we find that the in-
duced gap in the presence of only Rashba spin—orbit coupling
can be made comparable to the bulk gap of the superconductor
only if the tunneling energy scale exceeds the large level
spacing of the superconducting layer. As in the 1D case, the
large tunneling energy scale induces a large band shift on the
2DEG and makes it very challenging to realize a topological
phase. We also show that while the band shift can be signifi-
cantly reduced by increasing the thickness of the supercon-
ducting layer, the topological phase is still difficult to realize if
the 2DEG/superconductor interface remains very transparent.

Model of the Proximity Effect

The system we consider consists of a 2DEG with strong Rashba
spin—orbit interaction (SOI) proximity-coupled to an s-wave
superconductor of thickness d, as shown in Figure 1. The

2DEG-superconductor heterostructure is described by the action

S=S8p+8 +5;. )
The action of the 2DEG in Nambu space is given by

1 . 2D
S2D =E.[k,(oclt7") (ICO—Hk )Ck,(x)’ (2)

where o is a Matsubara frequency, k = (k,,k,) is the momentum,

fioo=[do/2a] dk/(2r)’,

and

(& =| G C C‘T CT !
ko =\ %o Kol k0 kol

Beilstein J. Nanotechnol. 2018, 9, 1263—-1271.

is a spinor of Heisenberg operators describing states in the
2DEG. The Hamiltonian density is

2
P =¢, . +oc(kycx —erzcy), 3)

where &; = K2 2myp — wp (mop and pop are the effective
mass and chemical potential of the 2DEG, respectively, and
K= kf + kﬁ), o is the Rashba SOI constant, and oy, ; (Tx,2)
are Pauli matrices acting in spin (Nambu) space. The supercon-
ductor is described by the BCS action,

1 d .
SS :EJ.k,wJ.O dZT]Lw (Z)|:1(D_H/f (Z)]nk,u) (Z)’ (4)
where
+ t g
Nk,0 = [nk,m,T M o, n—k,—m,T ’ n—k,—@»‘l’ :|

is a spinor of Heisenberg operators describing states in the
superconductor and the Hamiltonian density is

() 82 ;2
H (z)=| ——= +——U [T, —AC T, 5
k ) ] ) ] s |z y'y (&)

with myg, 1, and A the effective mass, chemical potential, and
pairing potential of the superconductor, respectively. Local
tunneling at the interface between the two materials is assumed
to conserve both spin and momentum,

t
S = _Ek'[ [n;r(,m (ZZD )1:201{,0J + H.c.], )
,®

where ¢ is the tunneling amplitude. We must take the 2DEG to
be located at some finite zop (0 < zpp < d) due to the break-
down of the tunneling Hamiltonian approach for the case where
the 2DEG is located at the boundary of the superconductor. The
breakdown of the tunneling Hamiltonian results from our

z
Superconductor Id

Yy 9DEG

X

Figure 1: A 2DEG is proximity-coupled to an s-wave superconductor
with finite thickness d. Both systems are taken to be infinite in the
Xxy-plane.
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neglect of the thickness of the 2DEG (for related calculations in
which the finite thickness is taken into account, see [50-53]).
However, as shown in [48], choosing kpz,p <1 (where
kg = /2mgg is the Fermi momentum of the superconductor)
yields good agreement with numerical calculations in which
there is no issue with placing the 2DEG strictly at the boundary.

In the absence of tunneling, the spectrum of the 2DEG consists

of two spin—orbit-split subbands described by

Ef (k)= (& J_rock)z. 7

When the finite-size quantization scale of the superconductor
greatly exceeds the gap, 1/ myd 2> A, the first few subbands of
the superconductor follow a linearized form given by (% =1)

2
2
ked[r-nJoE, - | 8%, @
m,

S

Ep (k)=

where 8Eg = mvg/d is the level spacing in the superconductor
(vg = kp/mg is the Fermi velocity) and n € Z*. When the thick-
ness of the superconducting layer is much smaller than its
coherence length, d <& = nvp/A, the level spacing of the layer
greatly exceeds its gap, 0E,>A.

The spectra of the 2DEG and the superconductor are plotted in
Figure 2. Provided that min(| kpd / ©—n[)>A/SE,, the bands

E _

y :/t ,-/t

>k

Figure 2: Sketch of Bogoliubov excitation spectra as a function of
k= (kf + kf )1/2 in the absence of tunneling, assuming dE¢>E, and
Uop = 0. The red and blue curves correspond to + subbands of the
2DEG (Equation 7), respectively, which result from the spin-splitting
Rashba SOI. The black curve corresponds to the lowest-energy
subband of the superconductor (Equation 8). A weak tunneling ampli-
tude t induces anticrossings in the spectrum where indicated and in-
duces a superconducting gap in the 2DEG at the Fermi momenta (cor-
responding to those momenta for which E.(k)=0). Due to the large
energy mismatch between the superconducting subband and the
Fermi points of the 2DEG, the induced gap is very small.

Beilstein J. Nanotechnol. 2018, 9, 1263—-1271.

of the 2DEG and superconductor intersect at high energies
E ~38E; > A. Since we impose momentum conservation (in ad-
dition to energy conservation) in Equation 6, the subbands are
coupled only at the intersection points. Thus, a weak tunnel
coupling induces anticrossings in the spectrum, as indicated in
Figure 2, which leads to a shift in the subbands of the 2DEG.
Additionally, the tunnel coupling opens a superconducting gap
at the Fermi momenta of the 2DEG; however, due to the inter-
section points lying at very large energies, the gap opened in the
2DEQG is very small. A large gap can only be induced if tunnel-
ing is strong enough to overcome the large energy mismatch
similar to dF.

To determine the self-energy of the 2DEG induced by the
superconductor, we integrate out the superconducting degrees
of freedom. After integrating out, the 2DEG can be described
by the effective action

Setr = | o (i0-H =24 4 )t o ©
Kk,

with the self-energy given by

2
o =1 .G (z2p-22p )T, (10)

In Equation 10, Gy ,(2,z") is the Green’s function of the bare
superconductor (in the absence of tunneling), which satisfies

[im—HE (Z):|G]§’O) (2,2)=8(z-2"). (1)

Imposing a vanishing boundary condition at z = 0 and z = d, we
find a solution to Equation 11 given by

ka( ,2') = (10) At,c +1Q1:)

y

{sm[k (d-2)] .,
[

s1nkd

]sm(k z') _lk+z}

(m) A'c c, —-1Qrt ) (12)

+

2VFQ
x{[ i+ cot(k_d) Jsin(k =)

+sin[k_ (d-2)] _y .
sin(k.d)

+G}§il)k (z-2"),
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where k2 = 2my(pg + iQ) — k2 and Q2 = A2 + o [48,54]. The
Green’s function of a bulk superconductor, expressed in real

space, is

. 2
% o+ (ék"’ k2 /zmS)TZ_ATyGyeikZ(z—z’)

G,E}gk(z—z') = —J. o

m2+(§k +k22/2ms )2+ A?
(13)

=— VF:_Z(P [(io)—Atycy)cos(g |z-z2'))

~Qu_sin(§] z—z2'|) ] M,

where, in evaluating the integral, we make a semiclassical
expansion ki = kpo + 1Q/(vpo) = € + iy (valid in the limit
pg>Q) and define a quantity q)z =1-k* /k% that parame-
trizes the trajectories of states in the superconductor. Substi-
tuting the Green’s function (Equation 12) into the self-energy
(Equation 10), we find

Sro = (10+81,6, ) (1-YT1 o ) =Bl 0Tz (14)
where we define
Tho=| 1+ !
© Q(p[cosh(Exd)—cos(%d)]
x {sinh (2%d)—cos(2Lzyp )sinh [2)( (d-z3p )]
-1
_cos[2§(d—22D )]sinh(szzD )}) ) (15)

_ Y
o[cosh(2yd) —cos(2Ed)]

x{sin(24d) - sin(2zyp) cosh| 2y (d - 23p ) |,

—sin [zg (d-z3p )} cosh (2xz5p )} ,

6“k,oa =

with y = 2/vg, an energy scale determined by the tunneling
strength. The quantity I'; ,, can be interpreted as an effective
quasiparticle weight, as it takes values of 0 < I" < 1, and is re-
sponsible for inducing superconductivity in the 2DEG, while
Sk, corresponds to a tunneling-induced shift in the effective
chemical potential of the 2DEG. Quite surprisingly, the self-
energy in Equation 14 and Equation 15 coincides with that of a
nanowire coupled to a two-dimensional superconductor with
finite width as found in [48], with the simple replacement of a
1D momentum by the magnitude of a 2D momentum.

Results and Discussion
Induced gap and band shift

Using the self-energy derived in the previous section, we first

calculate the size of the proximity-induced gap in the 2DEG.

Beilstein J. Nanotechnol. 2018, 9, 1263—-1271.

Once we find an expression for the gap, we estimate the tunnel-
ing strength needed in order for the gap in the 2DEG to be
comparable to that in the superconductor. We then add a
Zeeman term to the Hamiltonian of the 2DEG and estimate the
Zeeman energy needed to reach the topological phase in such a
setup.

It is convenient to work in the chiral basis in which the normal
Green’s function of the 2DEG is diagonal. To this end, we

introduce a unitary transformation

1 | 0 0

o] “iel% itk 0 0 y

k= o 0 1 Y
0 0 etk om0

with ¢y :tan_l(ky/kx), which can be used to convert
between the spin (o) and chiral (A) bases, Gl}(”’m = UIIGf’wUk.
The Green’s function in the spin basis is given by
(€ :(im—HﬁD—ka)_l. Rotating to the chiral basis, we
find a Green’s function given by

-io-E, iAe 10
252,372 0 232, %2 0
a°+EL+A A" +EL+A
“ip-E_ CiRe e
0 .0 =2 72 A2
2 O +E +A O +E°+A
Gk,oa: ) - 5 (]7)
—iAe "k —-io+E&,
232,72 0 232, %2 0
O°+E&L+A " +E&L+A
A% —i6)+%,
@ +E2 + A @+ %+ A

where & = /T, &, = & — Sl + akand A = A(1/T;q — ).
The spin—singlet pairing induced by the superconductor appears
as intraband chiral p-wave pairing (of the form p, + ipy) when
expressed in the chiral basis.

Before continuing, let us simplify the parameters I'y (, and dpiy (.
We will focus on the limit where the thickness of the supercon-
ducting layer is much smaller than its coherence length, d <&,
(equivalently, A< 3E;), and where the normal layer is located
close to the edge of the superconductor, kpz,p <1. Because of
the large Fermi surface mismatch between the 2DEG and super-
conductor, we must have k< kg (or, equivalently, ¢ = 1); in the
following, we neglect the momentum dependence by setting ¢ =
1 (which is justified as long as we only consider momenta
k<<1/\/k1:_d). In the limit ®<8E;, the parameters simplify to
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SE, sin” (kpd )

S =2y (kpzop )| 1= (kpzap ) cot (kpd) |,

(18)

where we drop the subscript (k,) because both I' and dp are
now independent of frequency and momentum. In expanding
Equation 15 to arrive at Equation 18, we assumed that
| sin(kgd)|> A/ 3E (therefore, these expressions break down
when kpd/n—n, with n e Z").

The spectrum of the proximitized 2DEG is determined by the
poles of the retarded Green’s function. After analytic continua-
tion io—E + i0", we find two branches of the spectrum from
Equation 17 given by

2
g ok | +A2(0-T)%, (19)

EZ(k)=T?
myp

where s = Hop + O is an effective chemical potential of the
2DEG. The spectrum describes an s-wave superconductor with
Rashba-split bands and an excitation gap

Ey =A(1-T). (20)

We see that the size of the excitation gap is determined by the
parameter I'. When I'«1, the full bulk gap of the supercon-
ductor is induced in the 2DEG, while for (1-I')«xl1, a very

small gap is induced. In order to have an induced gap compa-

3.0

2.5
2.0
5
=
1.0 0.001
0.5
0.000
00 ] I I IV
00 05 1.0 15 20 25

k/kso
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rable (but not equal) to the bulk gap, we require that neither
I'«1 nor (1-I')«1 is satisfied. However, to realize this situa-

tion requires a tunneling strength

Y ~ OF, 1)

where we have assumed that (kpzyp)2/sin?(kgd) ~ 1. If the
tunneling strength is chosen as in Equation 21, the band shift
measured at £ = 0, £.(0), is

E, (0) ~ T'dp ~ 8. (22)
Therefore, the scale of the band shift is also set by the level
spacing in the thin superconducting layer. We note that while
the quantity Sy is bounded only by the chemical potential of the
superconductor i (as the tunneling Hamiltonian approach itself
should break down for y ~ ), the band shift saturates to
E.(0) ~ 8E in the limit y>38E  (where I'xl).

We plot the spectrum of the 2DEG (see Equation 19) in
Figure 3. In the weak-coupling limit (Figure 3a), there is a
rather small band shift but a negligible superconducting gap is
opened in the 2DEG. In the strong-coupling limit (Figure 3b),
we show that while a larger gap is induced, the band shift is
very large.

Topological transition
We now add a Zeeman splitting Az to the Hamiltonian of the
2DEG such that

HIZ(D: éktz + (X(k

yo'x—k 1.0

X'z y)_AZTsz' (23)
600
500
400

D 300

K
200

100

10 15 20 25

k/kso

Figure 3: Spectrum of a 2DEG coupled to a thin superconducting layer (see Equation 19) for (a) y = A (corresponding to I' = 0.9996 and du = 0.78A)
and (b) y = 8E; (corresponding to I' = 0.735 and du = 780A). When tunneling is weak (as in panel a), the band shift is rather small but the induced gap
is negligible. If tunneling is strong enough to open a sizable gap (as in panel b), the band shift is very large (note that the band shift is given by E.(0) ~
5 rather than dp). In both plots, Eq = 2A, 8Es = 10004, yop = 0, ked/Tr = 48.75, and krzop = 0.3. Here kso = ma is the spin—orbit momentum. Note

n_n

that although, in the insets, we show only the induced gap on the "-"-subband, there is an equally large gap induced on the "+"-subband.
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Such a Zeeman splitting can arise due to the application of an
out-of-plane magnetic field [4,5] (though orbital effects are not
incorporated here) or due to the proximity of a magnetic
insulator [8]. Also, it is possible to apply an in-plane magnetic
field (to avoid unwanted orbital effects) to reach the topolog-
ical phase if the 2DEG has a finite Dresselhaus SOI, as shown
in [9]. An in-plane magnetic field in the presence of only
Rashba SOI is not sufficient to reach the topological phase
because it does not open a gap in the Rashba spectrum. The
spectrum in the presence of the Zeeman splitting, which again
is determined by poles in the retarded Green’s function
GRp =(E-H{P-2+i0")", is given by

E?=T? [A% (g —du) + a2k2J+ E}

(24)
J_r2F\/A%E§ +T2 (g, o) (A% +02k2),

where we have used £ = A(1 — ) as in Equation 20. Therefore,
we find a gap-closing topological transition at £ = 0 for the criti-

cal Zeeman splitting

FAS = 12 (yp +0)° + E2. 25)

In the case of a very large band shift, l"8u>>Eg and du>>pyHp,
the topological transition is given by A% =8p [note that I' drops
out of Equation 25 in this limit].

We now provide an estimate of the Zeeman splitting at which
we expect the k£ = 0 gap-closing transition to occur experimen-
tally in an Al/InAs 2DEG heterostructure. Given the thickness
of the superconducting Al layer of d = 10 nm [44], we estimate
nhvg /d = 413 meV (taking vg =
2 x 10% m/s). Therefore, if a sizable gap is induced in the

a level spacing of 6E =

2DEQG, as observed experimentally, typical values for the band
shift are of the same order of magnitude as the level spacing,
I'sp ~ 400 meV. Then, provided that the chemical potential
cannot be controlled over such a large scale by external gates,
the critical Zeeman splitting needed to reach the topological

(a)

Superconductor

2DEG

Superconductor

Id PU

Id/2—>oo
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phase is A} = 8u ~ 400 meV. Such a large Zeeman splitting
cannot be achieved in the 2DEG without destroying supercon-
ductivity in the thin layer. We also note the possibility that, by
coincidence, the band shift vanishes (or becomes small); from
Equation 18, we see that 8 = 0 if kpd = cot 1(1/kpzp) + nn (for
n € Z). In this special case, which requires the thickness of the
superconducting layer to be finely tuned on the scale of its
Fermi wavelength, there is no band shift to prevent one from
tuning into a topological phase. However, for most devices, the
large band shift makes it very challenging to realize a topolog-
ical phase.

Increasing thickness of superconducting
layer

The self-energy appearing most frequently in the literature to
describe proximitized nanowires and 2DEGs [55-60], which
also has been used often in interpreting experimental results
[40,42], is that induced by a bulk superconductor,

-1
Fbulk :(1+’Y/Q) .
Sty =0

26)

Equation 26 can be obtained by setting zyp = d/2 and taking the
limit d—o0 in Equation 15 (or, as it is usually done, by substi-
tuting the bulk Green’s function in Equation 13 when evalu-
ating the self-energy in Equation 10). Hence, this self-energy
describes a 2DEG embedded within a bulk superconductor, as
shown in Figure 4a. To describe the case where a 2DEG is
placed at the surface of a bulk superconductor (as shown in
Figure 4b), the limit d—oo should be taken in Equation 15 while
keeping zpp finite (or, equivalently, substituting the Green’s
function of a semi-infinite (SI) superconductor when evaluating
the self-energy in Equation 10). For this case, we obtain

-1
Ty = (1 +%{1 —cos(2¢zyp )e—ZXZm }] ,

~2920D

@7
dugy = ysin (2(;22]3 )e

d— oo

Superconductor

Figure 4: (a) Evaluating the self-energy with the Green'’s function of a bulk superconductor (see Equation 26) corresponds to a 2DEG embedded
within an infinitely large superconductor. (b) Evaluating the self-energy with the Green’s function of a semi-infinite superconductor (see Equation 27)
corresponds to a 2DEG placed on the surface of an infinitely large superconductor.
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The most notable difference is the presence of a nonzero band
shift in the semi-infinite case. However, this band shift is signif-
icantly reduced compared to the case of a thin superconducting
layer, as it saturates to £.(0) ~ I'sidugy ~ A in the limit y>>A.

Although it may seem that a topological phase can be much
more easily realized by simply increasing the thickness of the
superconducting layer in order to reduce the band shift induced
on the 2DEG, this is not the case. Crucially, both the bulk and
the semi-infinite self-energies give the ratio y/A as the relevant
parameter determining whether the system is in the weak-cou-
pling [(1-T)<1, or equivalently E, <A] or strong-coupling
[(1 =T) ~ 1, or equivalently £; ~ A] limit. This is in stark
contrast to the limit of a thin superconducting layer, where a
tunneling energy vy ~ 8E>A is required to open a gap Eg ~ A
in the 2DEG. Therefore, because the tunneling energy v is a
property of the interface and should not be expected to change
as the thickness of the superconducting layer is increased, this
energy is fixed to y ~ 8Eg provided that the interface is trans-
parent enough to induce a gap in the thin-layer limit (as seen in
the experiments). If the thickness of the superconductor is in-
creased, such that d>&, the system will be deep within the
strong-coupling limit; from Equation 26 and Equation 27, we
find I ~ A/ y<1. The critical Zeeman splitting needed to in-
duce a topological phase (see Equation 25) is therefore given by
AY ~ AIT ~y ~ 400 meV. We note that in the case of a thin
superconducting layer, the topological transition is pushed to
large Zeeman splitting by very large dp, which could possibly
be compensated for if the chemical potential p,p has a large
range of tunability. In the case of a bulk system, the topological
transition is pushed to large Zeeman splitting by very small I,
which cannot be affected by tuning p,p. Hence, even if the
thickness d of the superconducting layer is made infinite, the
topological phase transition is determined by the interfacial
tunneling energy. In order to induce a topological phase more
reliably, a much weaker coupling between a 2DEG and a bulk
superconductor (such that y < A) should be sought. We also
note that this result applies to the 1D model considered in [48]
as well.)

Conclusion

We have studied the proximity effect in a two-dimensional elec-
tron gas (2DEGQG) strongly coupled to a thin superconducting
layer, showing that the detrimental band shift shown in [48,49]
to dominate the proximity effect in wires is also crucial in
2DEGs. In order to induce a sizable gap in the 2DEG, the
tunneling energy scale must overcome the large level spacing
within the superconductor. However, introducing such a large
energy scale to the semiconductor induces a large band shift
that makes it challenging to realize a topological phase. This

challenge cannot be alleviated by simply increasing the thick-

Beilstein J. Nanotechnol. 2018, 9, 1263—-1271.

ness of the superconducting layer but requires a significant
weakening of the proximity coupling afforded by the epitaxial

interface.
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Abstract

Hybrid superconductor—semiconductor nanowires with Rashba spin—orbit coupling are arguably becoming the leading platform for
the search of Majorana bound states (MBSs) in engineered topological superconductors. We perform a systematic numerical study
of the low-energy Andreev spectrum and supercurrents in short and long superconductor—normal—-superconductor junctions made of
nanowires with strong Rashba spin—orbit coupling, where an external Zeeman field is applied perpendicular to the spin—orbit axis.
In particular, we investigate the detailed evolution of the Andreev bound states from the trivial into the topological phase and their
relation with the emergence of MBSs. Due to the finite length, the system hosts four MBSs, two at the inner part of the junction and
two at the outer one. They hybridize and give rise to a finite energy splitting at a superconducting phase difference of n, a well-
visible effect that can be traced back to the evolution of the energy spectrum with the Zeeman field: from the trivial phase with
Andreev bound states into the topological phase with MBSs. Similarly, we carry out a detailed study of supercurrents for short and
long junctions from the trivial to the topological phases. The supercurrent, calculated from the Andreev spectrum, is 2z-periodic in
the trivial and topological phases. In the latter it exhibits a clear sawtooth profile at a phase difference of © when the energy split-
ting is negligible, signalling a strong dependence of current—phase curves on the length of the superconducting regions. Effects of
temperature, scalar disorder and reduction of normal transmission on supercurrents are also discussed. Further, we identify the indi-
vidual contribution of MBSs. In short junctions the MBSs determine the current—phase curves, while in long junctions the spec-

trum above the gap (quasi-continuum) introduces an important contribution.
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Introduction

A semiconducting nanowire with strong Rashba spin—orbit cou-
pling (SOC) with proximity-induced s-wave superconducting
correlations can be tuned into a topological superconductor by
means of an external Zeeman field [1-3]. This topological phase
is characterized by the emergence of zero-energy quasiparticles
with Majorana character localized at the nanowire ends. These
Majorana bound states (MBSs) are attracting a great deal of
attention owing to their potential for topological, fault-tolerant
quantum computation [4-6]. Tunneling into such zero-energy
MBSs results in a zero-bias peak of high 2¢2/4 in the tunnelling
conductance in normal-superconductor (NS) junctions due to
perfect Andreev reflection into a particle-hole symmetric state
[7]. Early tunnelling experiments in NS junctions [8-12] re-
ported zero-bias peak values much smaller than the predicted
2¢%/h. This deviation from the ideal prediction, together with al-
ternative explanations of the zero-bias peak, resulted in contro-
versy regarding the interpretation. Recent experiments have re-
ported significant fabrication improvements and high-quality
semiconductor—superconductor interfaces [13-16] with an
overall improvement on tunnelling data that strongly supports
the observation of MBS [17-21].

Given this experimental state-of-the-art [22], new geometries
and signatures beyond zero-bias peaks in NS junctions will
likely be explored in the near future. Among them, nanowire-
based superconductor-normal—superconductor (SNS) junctions
are very promising since they are expected to host an exotic
fractional 4zn-periodic Josephson effect [4,23,24], signalling the
presence of MBSs in the junction. While this prediction has
spurred a great deal of theoretical activity [25-32], experiments
are still scarce [33], arguably due to the lack of good junctions
until recently. The situation is now different and, since
achieving high-quality interfaces is no longer an issue,
Andreev-level spectroscopy and phase-biased supercurrents
should provide additional signatures for the unambiguous detec-
tion of MBSs in nanowire SNS junctions. Similarly, multiple
Andreev reflection transport in voltage-biased SNS junctions
[34,35] is another promising tool to provide further evidence of
MBS:s [36].

Motivated by this, we here present a detailed numerical investi-
gation of the formation of Andreev bound states (ABSs) and
their evolution into MBSs in nanowire-based short and long
SNS junctions biased by a superconducting phase difference ¢.
Armed with this information, we also perform a systematic
study of the phase-dependent supercurrents in the short- and
long-junction limits. Due to finite length, the junction always
hosts four MBSs in the topological regime. Apart from the
MBSs located at the junction (inner MBSs), two extra MBSs
are located at the nanowire ends (outer MBSs). Despite the

Beilstein J. Nanotechnol. 2018, 9, 1339-1357.

early predictions [4,23,24] of a 4n-periodic Josephson effect in
superconducting junctions containing MBSs, in general we
demonstrate that the unavoidable overlap of these MBSs
renders the equilibrium Josephson effect 2n-periodic [26,27] in
short and long junctions, since they hybridize either through the
normal region or through the superconducting regions giving
rise to a finite energy splitting at phase difference ¢ = . As an
example, our calculations show that, for typical InSb parame-
ters, one needs to consider junctions with long superconducting
segments of the order of Lg > 4pm, where Lg is the length of the
S regions, in order to have negligible energy splittings.

In particular, we show that in short junctions with Ly <&,
where Ly is the normal region length and & is the superconduct-
ing coherence length, the four MBSs (inner and outer) are the
only levels within the induced gap. On the contrary, the four
MBSs coexist with additional levels in long junctions with
Ly >&, which affect their phase dependence. Despite this
difference, we demonstrate that the supercurrents in both limits
exhibits a clear sawtooth profile when the energy splitting near
¢ = 1 is small, therefore signalling the presence of weakly over-
lapping MBSs. We find that while this sawtooth profile is
robust against variations in the normal transmission and scalar
disorder, it smooths out when temperature effects are included,
making it a fragile, yet useful, signature of MBSs.

We identify that in short junctions the current—phase curves are
mainly determined by the levels within the gap and by the four
MBSs, with only very little quasi-continuum contribution. In
long junctions, however, all the levels within the gap, the MBSs
and the additional levels due to longer normal region together
with the quasi-continuum determine the current—phase curves.
In this situation, the additional levels that arise within the gap
disperse almost linearly with ¢ and therefore affect the features
of the supercurrents carried by MBSs only.

Another important feature we find is that the current—phase
curves do not depend on Lg in the trivial phase (for both short
and long junctions), while they strongly depend on Lg in the
topological phase. Our results demonstrate that this effect is
purely connected to the splitting of MBSs at ¢ = =, indicating
another unique feature connected with the presence of MBSs in
the junction. The maximum of such current—phase curves in the
topological phase increases as the splitting is reduced, satu-
rating when the splitting is completely suppressed. This and the
sawtooth profile in current—phase curves are the main findings
of this work. Results presented here therefore strongly comple-
ment our previous study on critical currents [37] and should
provide useful insight for future experiments looking for Majo-

rana-based signatures in nanowire-based SNS junctions.
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The paper is organized as follows. In section “Nanowire model”
we describe the model for semiconducting nanowires with
SOC, where we show that only the right combination of Rashba
SOC, a Zeeman field perpendicular to the spin—orbit axis and
s-wave superconductivity leads to the emergence of MBSs.
Similar results have been presented elsewhere but we include
them here for the sake of readability of the next sections. In
section “Results and Discussion” we discuss how nanowire-
based SNS junctions can be readily modeled using the tools of
section “Nanowire model”. Then, we describe the low-energy
Andreev spectrum and its evolution from the trivial into the
topological phase with the emergence of MBSs. In the same
section, we report results on the supercurrent, which exhibits a
sawtooth profile at ¢ = m as a signature of the emergence of
MBSs. In section “Conclusion” we present our conclusions. For
the sake of completeness, we also show wavefunction localiza-
tion and exponential decay as well as homogeneous charge
oscillations of the MBSs in wires and SNS junctions in Support-
ing Information File 1.

Nanowire model

The aim of this part is to properly describe the emergence of
MBSs in semiconducting nanowires with SOC. We consider a
single-channel nanowire in one-dimension with SOC and
Zeeman interactions, the model Hamiltonian of which is given
by [38-43]

2
_ Py OR
Ho—E—M—TGypx""BGx, (1)

where p, =—ifi0, is the momentum operator, p the chemical
potential that determines the filling of the nanowire, oR repre-
sents the strength of Rashba spin-orbit coupling, B = gugB8/2
is the Zeeman energy as a result of the applied magnetic field B
in the x-direction along the wire, g is the g-factor of teh wire
and pg the Bohr magneton. Parameters for InSb nanowires
include [8]: the effective mass of the electron, m = 0.015m,,
with m, being the mass of the electron, and the spin—orbit
strength ar = 20 meV-nm.

We consider a semiconducting nanowire placed in contact with
an s-wave superconductor with pairing potential Agr (which is in
general complex) as schematically shown in Figure 1. Elec-
trons in such a nanowire experience an effective superconduct-
ing pairing potential as a result of the so-called proximity effect
[44,45]. In order to have a good proximity effect, a highly trans-
missive interface between the nanowire and the superconductor
is required, so that electrons can tunnel between these two
systems [13-16]. This results in a superconducting nanowire,

with a well-defined induced hard gap (namely, without residual
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quasiparticle density of states inside the induced superconduct-
ing gap). The model describing such a proximitized nanowire

can be written in the basis (WT’WVWLWI) as

Hy Ag(x)
H= « b (@)
AL(x) —Hy

where Ag < Ag'. Since the superconducting correlations are of
s-wave type, the pairing potential is given by

Ag (x) =ic, Ae'?, 3)

where ¢ is the superconducting phase. We set ¢ = 0 when
discussing superconducting nanowires, while the SNS geome-
try of course allows a finite phase difference ¢ # 0 across the
junction.

v

Ls

Figure 1: A semiconducting nanowire with Rashba SOC is placed on a
s-wave superconductor (S’) with pairing potential Ag' and it is subject-
ed to an external magnetic field 5 (denoted by the black arrow). Su-
perconducting correlations are induced into the nanowire via proximity
effect, thus becoming superconducting with the induced pairing poten-
tial Ag < Ag.

It was shown [1,2,46] that the nanowire with Rashba SOC and
in proximity to an s-wave superconductor, described by Equa-
tion 2, contains a topological phase characterized by the emer-
gence of MBSs localized at the ends of the wire. This can be
understood as follows: The interplay of all these ingredients
generates two intraband p-wave pairing order parameters

A (k)= (iaRkA)/ JB? +ajk?
and one interband s-wave

A, = (BA)/ JB? +akk?
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where + and — denote the Rashba bands of H(,. The gaps associ-
ated with the + Bogoliubov—de Gennes (BdG) spectrum are dif-
ferent and correspond to the inner and outer part of the spec-
trum, denoted by A; , at low and high momentum, respectively.
These gaps depend in a different way on the Zeeman field.
Indeed, as the Zeeman field B increases, the gap A, referred to
as the inner gap, is reduced while A, referred to as the outer
gap, is slightly reduced although for strong SOC it remains
roughly constant. The inner gap A; closes at B = B, and reopens
for B > B, giving rise to the topological phase, while the outer
gap remains finite. The topological phase is effectively reached
due to the generation of an effective p-wave superconductor,
which is the result of projecting the system Hamiltonian onto
the lower band (—) keeping only the intraband p-wave pairing
A__[1,2]. Deep in the topological phase B > B, the lowest gap
is Aj.

In order to elucidate and visualize the topological transition, we
first analyze the low-energy spectrum of the superconducting
nanowire. This spectrum can be numerically obtained by
discretising the Hamiltonian given by Equation 1 into a tight-
binding lattice:

1 SN 777
. N ety (a)
w
(\1
> NE
23 0
-
O
=
0
-1
0 1
Zeeman field B/u
1 RN 7Y
- i\\\"»';,i""%‘
3 ,,
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Q
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0 1
Zeeman field B/B,

Beilstein J. Nanotechnol. 2018, 9, 1339—-1357.

H0=20;rhci +Z clT ve; + h.c., )
i @

where the symbol (jj) means that v couples the nearest-neighbor
sites i, j; h = (2t — Wog + Bo, and v = —to + it500), are matrices
in spin space, = n? /(2m*a2) is the hopping parameter and
tsoc = ar/(2a) is the SOC hopping. The dimension of H, is set
by the number of sites of the wire. Then, it is written in Nambu
space as given by Equation 2. Such a Hamiltonian is then diago-
nalized numerically with its dimensions given by the number of
sites Ng of the wire. Since this description accounts for wires of
finite length, it is appropriate for investigating the overlap of
MBSs. The length of the superconducting wire is Lg = Nga,
where Ng is the number of sites and « is the lattice spacing. As
mentioned before, the superconducting phase in the order pa-
rameter is assumed to be zero as it is only relevant when inves-
tigating Andreev bound states in SNS junctions.

In Figure 2 we present the low-energy spectrum for a supercon-
ducting nanowire as a function of the Zeeman field at a fixed
wire length Lg. Figure 2a shows the case of zero superconduct-
ing pairing and finite SOC (A = 0, ar # 0), while Figure 2b

YoVs O
BB
!O/’I"O
RN

Zeeman field B/B,

Figure 2: Low-energy spectrum of a superconducting nanowire as function of the Zeeman field B. At zero superconducting pairing with finite SOC the
spectrum is gapless and becomes spin-polarized at B = y as indicated by the green dashed line (a), while a finite superconducting pairing with zero
SOC induces a gap for low values of B (b). As B increases, the induced gap is reduced and closed at B = A (vertical magenta dash-dot line). The
bottom panels correspond to both finite superconducting pairing and SOC for Lg = 4000 nm (c) and Ls = 10000 nm (d). Note that as the Zeeman field
increases the spectrum exhibits the closing of the gap at B = B.. While in the trivial phase, B < B, there are no levels within the induced gap (c,d), in
the topological phase for B > B, the two lowest levels develop an oscillatory behaviour around zero energy (c). These lowest levels are the sought-for
MBSs. For sufficiently long wires the amplitude of the oscillations is reduced (d) and these levels acquire zero energy. Solid red, green and dashed
cyan curves indicate the induced gaps A7 o and min(A4, Ap). Parameters: ag = 20 meV:-nm, y = 0.5 meV, A = 0.25 meV and Lg = 4000 nm (a,b).
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shows a situation of finite pairing but with zero SOC (A # 0,
or = 0). These two extreme cases are very helpful in order to
understand how a topological transition occurs when the
missing ingredient (either superconducting pairing of finite SO)
is included. This is illustrated in the bottom panels, which corre-
spond to both finite SOC and superconducting pairing for
Lg < 2&\ and Lg > 28y, respectively. Here, &y represents the
Majorana localization length, which can be calculated from
Equation 2[1,31],

K2 +4(p+ Cod ) Ok +81C2Aagk +4C,C2 =0,

where C =m/#h* and Co = u? + A2 — B2. The Majorana locali-
zation length is defined as &y = max[—1/kgq]-

For the sake of the explanation, we plot the spectrum in the
normal state (A = 0), Figure 2a, which is, of course, gapless. As
the Zeeman field increases, the energy levels split and, within
the weak Zeeman phase, B < p, the spectrum contains energy
levels with both spin components. In the strong Zeeman phase,
B >y, one spin sector is completely removed giving rise to a
spin-polarized spectrum at low energies as one can indeed
observe in Figure 2a. The transition point from weak to strong
Zeeman phases is marked by the chemical potential B = p
(green dashed line). Figure 2b shows the low-energy spectrum
at finite superconducting pairing, A # 0, and zero SOC, ag = 0.
Firstly, we notice, in comparison with Figure 2a, that the super-
conducting pairing induces a gap with no levels for energies
below A at B =0, being in agreement with Anderson’s theorem
[47]. A finite magnetic field induces a so-called Zeeman
depairing, which results in a complete closing of the induced
superconducting gap when B exceeds A. This is indeed ob-
served in Figure 2b (magenta dash-dot line). Further increasing
of the Zeeman field in this normal state gives rise to a region for
A < B < B, which depends on the finite value of the chemical
potential (between red and magenta lines) where the energy
levels contain both spin components (for p = 0 the magenta
dash-dot and the red dashed line coincide, not shown). Note that
B, = \/AZ + uz . For B > B, one spin sector is removed and the
energy levels are spin-polarized, giving rise to a set of Zeeman
crossings that are not protected. Remarkably, when ag # 0, the
low-energy spectrum undergoes a number of important changes,
Figure 2c.d. First, the gap closing changes from A, Figure 2b, to
B, = A%+ uz (bottom panels). Second, a clear closing of the
induced gap at B =B, and reopening for B > B, is observed as
the Zeeman field increases. This can be seen by plotting the in-
duced gaps A; », which are finite only at finite Zeeman fields. In
Figure 2d, the red, green and dashed cyan curves correspond to
Ay, Ay and min(Aj, A,). Remarkably, the closing and reopening
of the induced gap in the spectrum follows exactly the gaps A; >

derived from the continuum (up to some finite-size corrections).
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Third, the spin-polarized energy spectrum shown in Figure 2b at
zero SOC for B > B, is washed out, keeping only the crossings
around zero energy of the two lowest levels. This kind of
closing and reopening of the spectrum at the critical field B, in-
dicates a topological transition where the two remaining lowest-
energy levels for B > B, are the well-known MBSs. Owing to
the finite length Lg, the MBSs exhibit the expected oscillatory
behaviour due to their finite spatial overlap [48-51]. For suffi-
ciently long wires Lg > 2&),, the amplitude of the oscillations
is considerably reduced (even negligible), which pins the MBSs
to zero energy. Fourth, the SOC introduces a finite energy sepa-
ration between the two lowest levels (crossings around zero)
and the rest of the low-energy spectrum denoted here as “topo-
logical minigap”. Note that the value of this minigap, related to
the high momentum gap A, remains finite and roughly con-
stant for strong SOC. In the case of weak SOC the minigap is
reduced and for high Zeeman field it might acquire very small
values, affecting the topological protection of the MBSs.

To complement this introductory part, calculations of the wave-
functions and charge density associated with the lowest levels
of the topological superconducting nanowire spectrum are
presented in the Supporting Information File 1.

Results and Discussion

Nanowire SNS junctions

In this part, we concentrate on SNS junctions based on the prox-
imitized nanowires that we discussed in the previous section.
The basic geometry contains left (S) and right (Sg) supercon-
ducting regions of length Lg separated by a central normal (N)
region of length Ly, as shown in Figure 3. The regions N and

Ls Ly Ls

Figure 3: Schematic of SNS junctions based on Rashba nanowires.
Top: A nanowire with Rashba SOC of length L = Lg + Ly + Lg placed
on top of two s-wave superconductors (S’) with pairing potentials Ag'
and subjected to an external magnetic field B (denoted by the black
arrow). Superconducting correlations are induced into the nanowire
through the proximity effect. Bottom: Left and right regions of the nano-
wire become superconducting, denoted by S| and Sgr, with induced
pairing potentials ASL S Ag' and chemical potentials HS () while
the central region remains in the normal state with Ay = 0 and chemi-
cal potential py. This results in a superconductor—-normal—supercon-
ductor (SNS) junction.
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Sp(r) are described by the tight-binding Hamiltonian H given
by Equation 4 with their respective chemical potentials, py and
HS| gy The Hamiltonian describing the SNS junction without
superconductivity is then given by

Hy, Hgy 0
hsns = HSTLN Hy  Hysg | 5)
il
0 Hlg Hs,

where HSi with i = L/R and Hy are the Hamiltonians of the su-
perconducting and normal regions, respectively, HSiN and
H Ns; re the ones that couple S; to the normal region N. The el-
ements of these coupling matrices are non-zero only for adja-
cent sites that lie at the interfaces of the S regions and of the N
region, while zero everywhere else. This coupling is parame-
trized between the interface sites by a hopping matrix vg = tv,
where 1 €[0,1], providing a good control of the normal trans-
mission 7. The parameter t controls the normal transmission
that ranges from fully transparent (t = 1) to tunnel (t < 0.6), as
discussed in [37] for short junctions, being also valid for long

junctions.

The superconducting regions of the nanowire are characterized
by chemical potential HS, r and the uniform superconduc.ting
pairing potentials [_52,53] ASL =Ae 2 and ASR =Zel¢/2,
where A < Agrand A =ic A. The central region of the nano-
wire is in the normal state without superconductivity, Ay = 0,
and with chemical potential py. Thus, the pairing potential
matrix in the junction space reads

ASL 0 0 AO,S el¢L 0 0
0 0 ASR 0 0 AO,S el¢R

Next, we define the phase difference across the junction as
or — 9. =¢. Thus, the Hamiltonian for the full SNS junction
reads in Nambu space [31,37]

hsNs

il * ’
ASNS _hSNS

Agns

Hgng = (7

In what follows, we discuss short (Ly <) and long (Ly>&)
SNS junctions, where Ly is the length of the normal region and
&="nvp /A is the superconducting coherence length [52]. The
previous Hamiltonian is diagonalized numerically and in our
calculations we consider realistic system parameters for InSb as

described previously.
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Low-energy Andreev spectrum

Now, we are in a position to investigate the low-energy
Andreev spectrum in short and long SNS junctions. In particu-
lar, we discuss the formation of Andreev bound states and their
evolution from the trivial (B < B.) into the topological phases
(B > B.). For this purpose we focus on the phase and the
Zeeman-dependent low-energy spectrum in short and long junc-
tions, presented in Figure 4 and Figure 5 for Lg < 2&y. For
completeness we also present the case of Lg>>2&), in Figure 6
and Figure 7.

We first discuss short junctions with Lg < 2&ys. In this regime,
at B =0 two degenerate ABSs appear within A as solutions to
the BdG equations described by Equation 7, see Figure 4a. It is
interesting to point out that within standard theory for a trans-
parent channel the ABS energies reach zero at ¢ = & in the
Andreev approximation pg>>A [54]. Figure 4a, however,
shows that in general the ABS energies do not reach zero at
¢ = n. The dense amount of levels above |e,| > A represents the
quasi-continuum of states, which consists of a discrete set of
levels due to the finite length of the N and S regions. Moreover,
it is worth to point out that the detachment (the space between
the ABSs and quasi-continuum) of the quasi-continuum at
¢ = 0 and 2= is not zero. It strongly depends on the finite length
of the S regions (see Figure 6).

For a non-zero Zeeman field, Figure 4b and Figure 4c, the
ABSs split and the two different gaps A and A;, discussed in
section ‘Nanowire model’, emerge indicated by the dash-dot red
and dashed green lines, respectively. By increasing the Zeeman
field, the low-momentum gap A; gets reduced (dash-dot red
line), as expected, while the gap A, (dashed green line) remains
finite although it gets slightly reduced (Figure 4b and
Figure 4c). For stronger, but unrealistic values of SOC we have
checked that A, is indeed constant. The two lowest levels in this
regime, within A (dash-dot red line), develop a loop with two
crossings that are independent of the length of the S region but
exhibit a strong dependence on SOC, Zeeman field and chemi-
cal potential. We have checked that they appear due to the inter-
play of SOC and Zeeman field and disappear when p acquires
very large values, namely, in the Andreev approximation.

At B = B, the energy spectrum exhibits the closing of the low-
momentum gap A, as indicated by red dash-dot line in
Figure 4d. This indicates the topological phase transition, since
two gapped topologically different phases can only be
connected through a closing gap. By further increasing the
Zeeman field, Figure 4e.f, B > B, the inner gap A acquires a
finite value again. This reopening of A; indicates that the
system enters into the topological phase and the superconduct-

ing regions denoted by Sy r) become topological, while the N
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Figure 4: Low-energy Andreev spectrum as a function of the superconducting phase difference ¢ in a short SNS junction with Ly = 20 nm and

Ls = 2000 nm. Different panels show the evolution with the Zeeman field: trivial phase for B < B, (a—c), topological transition at B = B (d), and in the
topological phase for B > B; (e,f). The energy spectrum exhibits the two different gaps that appear in the system for finite Zeeman field (marked by
red and green dashed horizontal lines). Note that after the gap inversion at B = B, two MBSs emerge at the ends of the junction as almost dispersion-
less levels (outer MBSs), while two additional MBSs appear at ¢ = 1 (inner MBSs). Parameters: ar = 20 meV:nm, py = pg = 0.5 meV and

A =0.25meV.
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Figure 5: Same as in Figure 4 for a long junction with Ly = 2000 nm and Lg = 2000 nm. Note that, unlike short junctions, in this case the four lowest
states for B > B, coexist with additional levels within the induced gap which arise because Ly is longer.
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Figure 6: Same as in Figure 4 for a short junction with Ly = 20 nm and Lg = 10000 nm. Note that in this case, the emergent outer MBSs are disper-
sionless with ¢, while the inner ones touch zero at ¢ = 1 acquiring Majorana character.

Figure 7: Same as in Figure 4 for a long junction with Ly = 2000 nm and Lg = 10000 nm. The four lowest levels coexist with additional levels. The
outer MBSs lie at zero energy and the inner ones reach zero at ¢ = 1 acquiring Majorana character.
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region remains in the normal state. Thus, MBSs are expected to
appear for B > B, at the ends of the two topological supercon-
ducting sectors, since they define interfaces between topologi-
cally different regions.

This is what we indeed observe for B > B, in Figure 4e and
Figure 4f, where the low-energy spectrum has Majorana proper-
ties. In fact, for B > B, the topological phase is characterized
by the emergence of two (almost) dispersionless levels with ¢,
which represent the outer MBSs y; 4 formed at the ends of the
junction. Additionally, the next two energy levels strongly
depend on ¢ and tend towards zero at ¢ = =, representing the
inner MBSs vy, 3 formed inside the junction. For sufficiently
strong fields, B = 2B, the lowest gap is A, indicated by the
green dashed line, which in principle bounds the MBSs. The
quasi-continuum in this case corresponds to the discrete spec-
trum above and below A,, where A is the high-momentum gap
marked by the green dashed horizontal line in Figure 4e,f.

The four MBSs develop a large splitting around ¢ = &, which
arises when the wave-functions of the MBSs have a finite
spatial overlap Lg < 2&y. Since the avoided crossing between
the dispersionless levels (belonging to v; 4) and the dispersive
levels (belonging to v, 3) around ¢ = m depends on the overlap
of MBSs on each topological segment. It can be used to quan-
tify the degree of Majorana non-locality (a variant of this idea
using quantum-dot parity crossings has been discussed in
[55,56]). This can be explicitly checked by considering SNS
junctions with longer superconducting regions, where the condi-
tion Lg>>2E,, is fulfilled such that the energy splitting at ¢ ==
is reduced.

As an example, we present in Figure 6 the energy levels as a
function of the phase difference for Lg > 2&,,, where the low-
energy spectrum undergoes some important changes. First, we
notice in Figure 6 that the energy spectrum at B = 0 for [g,| > A,
exhibits a visibly denser spectrum than that in Figure 4
signaling the quasi-continuum of states. Notice that in the topo-
logical phase, B > B, the lowest two energy levels, associated
to the outer MBSs, are insensitive to ¢ remaining at zero
energy. Thus, they can be considered as truly zero modes. On
the other hand, the inner MBSs are truly bound within A,
unlike in Figure 4, and for ¢ = 0 and ¢ = 2x they merge with
the quasi-continuum at +A. Thus, an increase in the length of
the superconducting regions favors the reduction of the detach-
ment between the discrete spectrum and the quasi-continuum at
0 and 2m, as it should be for a ballistic junction [23,24]. More-
over, the energy splitting at ¢ = 7 is considerably reduced, even
negligible. However, it will be always non-zero, though not
visible to the naked eye, due to the finite length and, thus, due
to the presence of the outer MBSs.
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The low-energy spectrum as a function of the superconducting
phase difference for different values of the Zeeman field in long
SNS junctions is presented in Figure 5 for Lg < 2&y;. Addition-
ally, we show in Figure 7 the case for Lg > 2&),.

As expected, long junctions contain more levels within the
energy gap A, see Figure Sa and Figure 7a, than short junctions.
As we shall discuss, this eventually affects the signatures of
Majorana origin in the supercurrents for B B ., namely, the ones
corresponding to the lowest four levels.

The above discussion can be clarified by considering the depen-
dence of the low-energy spectrum on the Zeeman field at fixed
phase difference ¢ = 0 and ¢ = m. This is shown in Figure 8
(short junction limit), Figure 9 (intermediate junction limit) and
Figure 10 (long junction limit) for Lg < 2&y (panels a and ¢ in
each figure) and Lg>>2&),, (panels b and d in each figure). In
panels a and b, the gaps A, A, and min(A},A,) are also plotted
as solid red, solid green and dashed cyan lines to visualize the
gap closing and reopening discussed in the previous section. In
all cases, it is clear that MBS smoothly evolve from the lowest
ABS either following the closing of the induced gap A, indicat-
ed by the solid red curve, at ¢ = 0 or evolving from the lowest
detached levels at ¢ = m. The latter first cross zero energy,
owing to Zeeman splitting, and eventually become four low-
energy levels oscillating out of phase around zero energy
(Figure 8c). The emergence of these oscillatory low-energy
levels, separated by a minigap A,, indicated by the solid green
curve, from the quasi-continuum characterizes the topological
phase of the SNS junction. As expected, the oscillations become
reduced for Lg>>2&), and the four levels at ¢ = m become

degenerate at zero energy, see Figure 8b,d.

An increase in the length of the normal section results in an
increase of the amount of subgap levels as observed in Figure 9
and Figure 10. In both cases, in the topological phase, B > B,
these additional levels reduce the minigap with respect to short
junctions and also slightly reduce the amplitude of the oscilla-
tions of the energy levels around zero as seen Figure 9a and
Figure 9b as well as Figure 10a and Figure 10b. Also, the mini-
gaps for ¢ =0 and ¢ = & are different, in contrast to short junc-
tions. In fact, the minigap at ¢ = 0 is almost half of the value at
¢ = = for the chosen parameters. This can be understood from
the phase dispersion of the long junction ABS spectra such as
the ones in Figure 5 and Figure 7. For longer N regions, this
difference can be even larger.

From the above discussion it is clear that the energy spectrum
of SNS nanowire junctions offers the possibility to directly
monitor the ABSs that trace the gap inversion and eventually

evolve into MBSs.
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Figure 8: Low-energy Andreev spectrum as a function of the Zeeman field in a short SNS junction at ¢ = 0 (a,b) and ¢ = 1 (c,d) with Lg = 2000 nm
(a,c) and Lg = 10000 nm (b,d). The low-energy spectrum traces the gap closing and reopening by the solid red curve that corresponds to A4, while for
B > B we observe the emergence of two MBSs at ¢ =0 (a) and four MBSs at ¢ = 1 (c), which oscillate around zero energy with B due to Lg < 2&y
within a minigap defined by A (solid green curve). For Lg>2¢&), the MBSs are truly zero modes (b,d). Parameters: Ly = 20 nm, ar = 20 meV-nm,

u=0.5meV and A = 0.25 meV.
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Figure 9: Same as in Figure 8 for an intermediate junction with Ly = 400 nm.
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Figure 10: Same as in Figure 8 for a long junction with Ly = 2000 nm.

Supercurrents

After having established in detail the energy spectrum in short
and long SNS junctions, we now turn our attention to the corre-
sponding phase-dependent supercurrents. They can be calcu-
lated directly from the discrete Andreev spectrum g, as
[37,54,57]:

€
I(¢) = —% z tanh| —2— |—£, (8)

where £, is the Boltzmann constant, 7 is the temperature and
the summation is performed over positive eigenvalues ¢,. By
construction, our junctions have finite length, which implies
that Equation 8 exactly includes the discrete quasi-continuum
contribution.

In Figure 11 and Figure 12 we present supercurrents as a func-
tion of the superconducting phase difference 1(¢) for different
values of the Zeeman field in short and long SNS junctions, re-
spectively. Panels a and c correspond to Lg < 2&y, while panels
b and d correspond to Lg>>2&),.

First, we discuss the short junction regime presented in
Figure 11. At B = 0 the supercurrent /(¢) has a sine-like depen-
dence on ¢, with a relative fast change of sign around ¢ = & that

is determined by the derivative of the lowest-energy spectrum
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2
Zeeman field B/BC

profile around ¢ = 7. This result is different from usual ballistic
full transparent supercurrents in trivial SNS junctions [54],
where the supercurrent is proportional to sin(¢/2) being
maximum at ¢ = n. This difference from the standard ballistic
limit can be ascribed to deviations from the ideal Andreev
approximation, see also the discussion of Figure 4a, owing to
the relatively low chemical potential needed to reach the helical
limit and, eventually, the topological regime as the Zeeman
field increases. At finite values of the Zeeman field B, but still
in the trivial phase B < B, (dashed and dash-dot curves), I(¢)
undergoes changes. First, the maximum value of I(¢) is reduced
due to the reduction of the induced gap that is caused by the
Zeeman effect. Second, /(¢) develops a zig-zag profile (just
before and after ¢ = m) signalling a 0—n transition in the super-
current. This transition arises from the zero-energy crossings in
the low-energy spectrum, see Figure 4b,c. As discussed above,
these level crossings result from the combined action of both
SOC and Zeeman field at low p, and introduce discontinuities in
the derivatives with respect to ¢. Besides these features, all the
supercurrent curves for B < B, for both Lg < 2&y and
Lg > 2&), exhibit a similar behavior, see Figure 11. Interest-
ingly, the system is gapless at the topological transition, B = B,,
but the supercurrent remains finite, see red curve in Figure 11c.

For B > B, the S regions of the SNS junction become topolog-

ical and MBSs emerge at their ends, as described in the

previous subsection. Despite the presence of MBSs, the super-
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Figure 11: Supercurrent as a function of the superconducting phase difference in a short SNS junction, /(¢), for Ls = 2000 nm < 2¢ (a,c) and

Ls =10000 nm > 2&y (b,d). Panels a and b show the Josephson current in the trivial phase for different values of the Zeeman field, B < B, while
panels c and d correspond to different values of the Zeeman field in the topological phase, B 2 B.. Note the sawtooth feature at ¢ = 1 for Lg > 2§y
Parameters: ag=20 meV-nm, y = 0.5 meV, A=0.25meV and Iy =eA/ 7.
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Figure 12: Supercurrent as a function of the superconducting phase difference in a long SNS junction with Ly = 2000 nm, for Lg = 2000 nm < 2¢gy
(a,c) and Ls = 10000 nm > 2¢y (b,d). Panels a and b show the Josephson current in the trivial phase for different values of the Zeeman field, B < B,
while panels c and d correspond to different values of the Zeeman field in the topological phase, B = B. In this case the magnitude of the supercur-
rent is reduced, an effect caused by the length of the normal section.
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current /(¢) remains 2x-periodic, i.e., I(¢p) = I(¢p + 2m). This
results from the fact that we sum up positive levels only, as we
deal with an equilibrium situation. Since the supercurrent is a
ground state property, transitions between the negative and pos-
itive energies are not allowed, because of an energy gap origi-
nating from Majorana overlaps. Strategies to detect the pres-
ence of MBSs beyond the equilibrium supercurrents described
here include the ac Josephson effect, noise measurements,
switching-current measurements, microwave spectroscopy and

dynamical susceptibility measurements [25-30].

As the Zeeman field is further increased in the topological
phase, B > B, the supercurrent tends to decrease due to the
finite Majorana overlaps when Lg < 2&), see dotted and dashed
blue curves in Figure 11d. On the other hand, as the length of S
becomes larger such that Lg>>2&,, the overlap is reduced,
which is reflected in a clear sawtooth profile at ¢ = =, see dotted
and dashed blue curves in Figure 11d. This discontinuity in (¢)
depends on Lg and results from the profile of the lowest-energy
spectrum at ¢ = 71, as shown in Figure 6d. The sawtooth profile
thus indicates the emergence of well-localized MBSs at the
ends of S and represents one of our main findings.

As discussed above, the supercurrent for B < B, Figure 11a and
Figure 11b, does not depend on Lg. In contrast, supercurrents in
the topological phase, Figure 11c and Figure 11d, do strongly
depend on Lg owing to the emergence of MBSs.

In Figure 12 we present /(¢) for long junctions Ly>§ at dif-
ferent values of the Zeeman field. Panels a and ¢ correspond to
Lg < 2&y and panels b and d correspond to Lg > 2&y;. Even
though the maximum value of the current is reduced in this
regime, the overall behavior is very similar to the short-junc-
tion regime for both B < B. and B > B. The only important
difference with respect to the short junction case is that /(¢) in
the long-junction regime does not exhibit the zig-zag profile
due to O—x transitions.

As the system enters into the topological phase for B > B, and
Lg <2&y, Figure 12¢, the maximum supercurrent decreases, in-
dicating the non-zero splitting at ¢ = 7 in the low-energy spec-
trum. Deep in the topological phase, the supercurrent exhibits a
slow (slower than in the trivial phase Figure 12a) sign change
around ¢ =7, and its dependence on ¢ tends to approach a sine
function. However, for Lg > 2&,,, shown in Figure 12d, the
supercurrent acquires an almost constant value as B increases
and develops a clear sawtooth profile at ¢ = due to the zero
energy splitting in the low-energy spectrum at ¢ = 7, similarly
to the short-junction case. It is worth to point out that, although
the maximum supercurrent is slightly reduced, deep in the topo-

logical phase (dashed and dotted blue curves) its maximum
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value is approximately close to the maximum value in the trivial
phase, which is different from what we found in the short-junc-
tion case. This is a clear consequence of the emergence of addi-
tional levels within the induced gap due to the increase of Ly.
These additional levels exhibit a strong dependence on the su-
perconducting phase, very similar to the inner MBSs as one can
see in Figure 5e,f.

In order analyze the individual contribution of outer and inner
MBSs with respect to the quasi-continuum we calculate and
identify supercurrents for such situations. This is presented in
Figure 13 for short junctions (Figure 13a,b) and for long junc-
tions (Figure 13c,d). In this regime the lowest gap is the high-
momentum gap A,, and the levels outside this gap constitute the

quasi-continuum.

Firstly, we discuss short junctions. The supercurrent due to
outer MBSs for Lg < 2&) is finite only around ¢ = 7, exhibit-
ing an odd dependence on ¢ around n. However, away from
this point it is approximately zero and independent of ¢ (see
blue curve in Figure 13a). When Lg>>2E&,,, the outer MBSs are
very far apart and their contribution to /(¢) is zero (see blue
curve in Figure 13b). On the other hand, the contribution of the
inner MBSs to /(¢) is enormous and the outer part only slightly
changes the shape of the maximum supercurrent when
Lg < 2&\;, while for Lg>2E), the outer MBSs do not contrib-
ute, as shown by the dashed brown curve in Figure 13a,b. More-
over, the inner contribution exhibits roughly the same depen-
dence on ¢ as the contribution of the whole energy spectrum
shown by the black curve in Figure 13a,b. As described in the
previous subsection, the quasi-continuum is considered to be
the discrete energy spectrum above |g,| > A;. The quasi-contin-
uum contribution to /(¢) is finite and odd in ¢ around =, as
shown by green curves in Figure 13a,b. The quasi-continuum
contribution to the total supercurrent /(¢) far away from ¢ ==
is appreciable mainly when the MBSs exhibit a finite energy
splitting as seen in Figure 13a. Interestingly, the outer and in
particular the inner MBSs (levels within A,) are the main source
when such overlap is completely reduced and determine the
profile of 7(¢), as shown in Figure 13b.

In long junctions the situation is different, mainly because more
levels emerge within A in the trivial phase. For B > B, within
A, these additional levels coexist with the inner and outer
MBSs, see Figure 13c,d. The contribution of the outer MBSs to
1($) exhibits roughly similar behaviour as for short junctions al-
though smoother around ¢ = 7, shown by the blue curve in
Figure 13c,d. The inner MBSs, however, have a strong depen-
dence on ¢ and develop their maximum value close to ¢ = 2nn
with n = 0,1,... (see red curve). The outer MBSs almost do not

affect the overall shape of the I(¢) curve (see dashed brown
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Figure 13: Supercurrent as a function of ¢ at B = 1.5B. Contributions to the supercurrent for (a,b) short and (c,d) long junctions. (a,c) Lg < 2&; and
(b,d) Lg>> 2§y. The different curves in (a,b) correspond to individual contributions to /(¢) from outer, inner, and outer + inner (levels within the lowest
induced gap A;), quasi-continuum (levels above the lowest gap Ay) and total levels. In (c,d), the additional magenta curve corresponds to all levels
within Ap. In long junctions the number of levels within A, exceeds the number of MBSs. MBSs coexist with additional levels within Ap. Parameters:

or =20 meV-nm, y=0.5meV,A=0.25meVand [ =eA/h.

curve). Since a long junction hosts more levels, we also show
by the dash-dot magenta curve the contribution of all the levels
within A,, including also the four MBSs. This contribution is
considerably large only close to ¢ = 7, with a minimum and
maximum value before and after ¢ = n for Lg < 2y, respec-
tively. This is indeed the reason why the supercurrent is reduced
as B increases in the topological phase for Lg < 2&)y,, see dotted
and dashed blue curves in Figure 12¢. For Lg>>2&), the contri-
bution of all the levels within A, exhibits a sawtooth profile at
¢ = m, which, instead of reducing the quasi-continuum contribu-
tion (green curve), increases the maximum value of I(¢) at
¢ = m resulting in the solid black curve. Importantly, unlike in
short junctions, in long junctions the quasi-continuum modifies
1(¢) around ¢ = m. Thus, a zero-temperature current-phase mea-
surement in an SNS junction setup could indeed reveal the pres-
ence of MBSs by observing the reduction of the maximum
supercurrent. In particular, well-localized MBSs are revealed in
the sawtooth profile of I(¢) at ¢ = m. In what follows we
analyze the effect of temperature, variation of normal transmis-
sion and random disorder on the sawtooth profile at ¢ = m of the

supercurrent.

Temperature effects
In this part, we analyze the effect of temperature on supercur-
rents in the topological phase. In Figure 14 we present the

supercurrent as a function of the superconducting phase differ-

ence, I(¢), in the topological phase B = 1.5B, at different tem-
perature values for Lg < 2&y (Figure 14a) and Lg > 2&y
(Figure 14b). At zero temperature, for Lg < 2&y, shown by the
black solid curve in Figure 14a, the dependence of the supercur-
rent on ¢ approximately corresponds to a sine-like function. A
small increase in temperature kg7 = 0.01 meV (magenta dashed
curve) slightly modifies the profile of the maximum supercur-
rent. However, for Lg>>2&), (Figure 14b), the same tempera-
ture (dashed curve) value has a detrimental effect on the
sawtooth profile of I(¢) at ¢ = nr, which reduces the maximum
value and smooths the curve out due to the thermal population
of ABSs. We have checked that smaller temperature values than
the ones presented in Figure 14 also smooth out the sawtooth
profile but the fast sign change around ¢ = = is still visible. This
effect remains as long as kg7 <A. As the temperature in-
creases, I(¢) smoothly acquires a true sine shape, as seen in
Figure 14a. Although the sawtooth profile might be hard to
observe in real experiments, the maximum value of 7(¢), which
is finite in the topological phase and almost halved with respect
to the trivial phase in short junctions [37], still provides a
measure to distinguish it from 7(¢) in trivial junctions.

Normal transmission effects

The assumption of perfect coupling between N and S regions in
previous calculations is indeed a good approximation because
of the enormous advances in fabrication of hybrid systems.
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LS>>23§M

Figure 14: Finite temperature effect on the supercurrent, /(¢), in (a,b) a short and (c,d) a long junction. (a,c) Ls = 2000 nm < 2¢y and (b,d)
Ls =10000 nm > 2&y. Different curves correspond to different values of kgT. The sawtooth profile smooths out at finite temperature. Parameters:
Ly =20 nm for short and Ly = 2000 nm for long junctions, ar =20 meV-nm, uy = 0.5 meV, A =0.25 meV and Iy =eA/ #.

However, it is also relevant to study whether the sawtooth
profile of I(¢) is preserved or not when the normal transmis-
sion Ty, described by T, is varied.

Figure 15 shows the supercurrent /(¢) in short junctions at
B = 1.5B_ for different values of t for Lg < 2&y (Figure 15a)
and Lg>>2&), (Figure 15b). When 1 is reduced, the supercur-
rent /(¢) is also reduced. However, for Lg < 2&y, there is a tran-
sition from a sudden sign change around ¢ = 7 to a true sine
function with reducing 1, very similar to the effect of tempera-
ture discussed above. Notice that in the tunnel regime, T = 0.6,
I(¢) is approximately zero. For Lg>>2&), the sawtooth profile
at ¢ = m is preserved and robust when 71 is reduced from the
fully transparent to the tunnel regime, as seen in Figure 15b.
Quite remarkably, in the tunneling regime, /(¢) is finite away
from nx for n = 0,1,.... The finite value of the supercurrent
could serve as another indicator of the non-trivial topology and,

thus, of the emergence of MBSs in the junction.

Disorder effects

Now we analyze the sawtooth profile of I(¢) for B > B, in the
presence of disorder. Disorder is introduced as a random on-site
potential V; in the tight-binding Hamiltonian given by
Equation 4. The values of V; lie within [-w, w], with w being

the disorder strength. When considering this kind of disorder,

the chemical potential undergoes random fluctuations. Hence,
values of w do not include w>> .

In Figure 16(a,b) we present /(¢) in short junctions at B = 1.58,
for 20 disorder realizations and different values of the disorder
strength w. Disorder of the order of the chemical potential p has
little effect on () as shown by dashed curves in Figure 16a,b.
The behavior of I(¢) is approximately the same as without
disorder. This reflects the robustness of the topological phase,
and thus of MBSs, against fluctuations in the chemical poten-
tial [58,59]. Stronger disorder (dotted and dash-dot curves)
reduce the maximum value of /() although its general behav-
ior is preserved. The sawtooth profile at ¢ =« in Figure 16b is
robust against moderate values of disorder strength. We have
confirmed that these conclusions are still valid even when we
consider disorder of the order of 5u (not shown).

Conclusion

In this numerical work we have performed a detailed investiga-
tion of the low-energy spectrum and supercurrents in short
(Ly <§) and long (Ly >&) SNS junctions based on nanowires
with Rashba SOC and in the presence of a Zeeman field.

In the first part, we have studied the evolution of the low-energy
Andreev spectrum from the trivial phase into the topological
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L <2E,, L>>28

b/
Figure 15: Effect of normal transmission through the coupling parameter 1 on the supercurrent, /(¢), in (a,b) a short and (c,d) a long SNS junction.
(a,c) Ls = 2000 nm < 2§y and (b,d) Ls = 10000 nm > 2¢),. Although after decreasing T the magnitude of the supercurrent at ¢ = 1 decreases, the

sawtooth profile is preserved. Parameters: Ly = 20 nm for short and Ly = 2000 nm for long junctions, ar = 20meV:-nm, p = 0.5 meV, A = 0.25 meV
and lp =eA/n.

LS<2§M LS>>2§M

d/m
Figure 16: Effect of random on-site scalar disorder on the supercurrent /(¢) in (a,b) a short and (c,d) a long SNS junction at B = 1.58c. (a,c)
Ls =2000 nm < 2§y and (b,d) Ls = 10000 nm > 2§y. Each curve corresponds to 20 realizations of disorder, where w is the disorder strength. For

small values of w of the order of the chemical potential, the sawtooth profile at ¢ = 1 is preserved (see right panel). Parameters: Ly = 20 nm for short
and Ly = 2000 nm for long junctions, ar = 20 meV-nm, y=0.5meV, A=0.25meV and /[y =eA/h.

1354



phase and the emergence of MBSs in short and long SNS junc-
tions. We have shown that the topological phase is character-
ized by the emergence of four MBSs in the junction (two at the
outer part of the junction and two at the inner part) with impor-
tant consequences to the equilibrium supercurrent. In fact, the
outer MBSs are almost dispersionless with respect to supercon-
ducting phase ¢, while the inner ones disperse and tend to reach
zero at ¢ = 7. A finite energy splitting at ¢ = occurs when the
length of the superconducting nanowire regions, Lg, is compa-
rable to or less than 2&y;. Although in principle such energy
splitting can be reduced by making the S regions longer, we
conclude that in a system of finite length the current—phase
curves are 2n-periodic and the splitting always spoils the
so-called 4m-periodic fractional Josephson effect in an equilib-

rium situation.

In short junctions the four MBSs are truly bound within A only
when Lg>>2&),, while in long junctions the four MBSs coexist
with additional levels, which profoundly affects phase-biased
transport. As the Zeeman field increases in the trivial phase
B < B, the supercurrent /(¢) is reduced due to the reduction of
the induced gap. In this case, the supercurrents /(¢) are inde-
pendent of the length of the superconducting regions, Lg, an
effect preserved in both short and long junctions.

In short junctions in the topological phase with B > B, the
contribution of the four MBSs levels within the gap determines
the shape of the current—phase curve (¢) with only little contri-
bution from the quasi-continuum. For Lg < 2&yy, the overlap of
MBS wavefunctions at each S region is finite, and the quasi-
continuum contribution is appreciable and of the opposite sign
than the contribution of the bound states. This induces a reduc-
tion of the maximum supercurrent in the topological phase. For
Lg>2&), when both the spatial overlap between MBSs and
the splitting at ¢ = 7 are negligible, the quasi-continuum contri-
bution is very small and the supercurrent /(¢) is dominated by
the inner MBSs. Remarkably, we have demonstrated that the
current—phase curve /(¢) develops a clear sawtooth profile at
¢ = m, which is independent of the quasi-continuum contribu-
tion and represents a robust signature of MBSs.

In the case of long junctions we have found that the additional
levels that emerge within the gap affect the contribution of the
individual MBSs. Here, it is the combined contribution of the
levels within the gap and the quasi-continuum that determine
the full current—phase curve /(¢), unlike in short junctions. The
maximum supercurrent in long junctions is reduced in compari-
son to short junctions, as expected. Our results also show that
the maximum value of the supercurrent in the topological phase
depends on Lg, acquiring larger values for Lg>>2&,, than for
Lg < 2&\.
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Finally, we have analyzed the robustness of the characteristic
sawtooth profile in the topological phase against temperature,
changes in transmission across the junction and random on-site
scalar disorder. We found that a small finite temperature
smooths it out due to thermal population of ABSs. We demon-
strated that, although this might be a fragile indicator of MBSs,
the fast sign change around ¢ = 7 could help to distinguish the
emergence of MBSs from trivial ABSs. Remarkably, the
sawtooth profile is preserved against changes in transmission,
i.e., it is preserved even in the tunneling regime. And finally, we
showed that reasonable fluctuations in the chemical potential p
(up to 5p) do not affect the sawtooth profile of I(¢) at ¢ = .

Our main contribution are summarized as follows. In short and
long SNS junctions of finite length four MBSs emerge, two at
the inner part of junction and two at the outer ends. The
unavoidable overlap of the four MBSs gives rise to a finite
energy splitting at ¢ = m, thus rendering the equilibrium
Josephson effect 2n-periodic in both short and long junctions.
Current—phase curves of short and long junctions exhibit a clear
sawtooth profile when the energy splitting near ¢ = 7 is small,
which indicates the presence of weakly overlapping MBSs.
Remarkably, the current—phase curves do not depend on Lg in
the trivial phase for both short and long junctions, while they
strongly depend on Lg in the topological phase. This effect is
solely connected to the splitting of MBSs at ¢ = 7, indicating a
unique feature of the topological phase and therefore of the
presence of MBSs in the junction.

Supporting Information

Supporting Information File 1

Majorana wavefunction and charge density in SNS
junctions.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-9-127-S1.pdf]
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We investigate the effect of three types of intrinsic disorder, including that in pairing energy, chemical potential, and hopping

amplitude, on the transport properties through the superconducting nanowires with Majorana bound states (MBSs). The conduc-

tance and the noise Fano factor are calculated based on a tight-binding model by adopting a non-equilibrium Green’s function

method. It is found that the disorder can effectively lead to a reduction in the conductance peak spacings and significantly suppress

the peak height. Remarkably, for a longer nanowire, the zero-bias peak could be reproduced by weak disorder for a finite Majorana

energy splitting. It is interesting that the shot noise provides a signature to discriminate whether the zero-bias peak is induced by

Majorana zero mode or disorder. For Majorana zero mode, the noise Fano factor approaches zero in the low bias voltage limit due

to the resonant Andreev tunneling. However, the Fano factor is finite in the case of a disorder-induced zero-bias peak.

Introduction

Searching for Majorana bound states (MBSs) have recently
received widespread attention due to their potential applica-
tions in topologically-protected quantum computing [1-9]. In
the past two decades, the realizations of MBSs has been pre-
dicted in many condensed-matter systems, including p-wave
superconductors [10,11], topological insulator-superconductor
hybrid structures [12,13], artificially engineered Kitaev chains

[14,15], semiconductor-superconductor hybrid nanowire

systems [16-21]. Very recently, the one-dimensional Majorana
mode running along the sample edge was shown in the hetero-
structure consisted of a quantum anomalous Hall insulator bar
contacted by a superconductor [22]. Among all these proposals,
the semiconductor-superconductor hybrid Majorana systems
have attracted particular attention and have been demonstrated
in several experiments since 2012 [23-30]. As an important

signature of MBSs in the semiconductor nanowires which are
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proximity-coupled to s-wave superconductors, the zero-bias
conductance peak has been observed in the tunneling spectra in
the presence of a finite magnetic field [23-28]. However, it is
suggested that such zero-bias features could also be induced by
non-topological physics such as Kondo effect [31], smooth
confinement [32], or strong disorder [33-35].

In one-dimensional case, the hybridization of the pair of MBSs
localized at the wire ends produces a finite Majorana energy
splitting and zero-bias peak splitting [36-38] due to the finite
size effects. In a recent experiment [39], the energy splitting of
Majorana zero mode has been observed in InAs nanowire seg-
ments with epitaxial aluminium, which forms a proximity-in-
duced superconducting Coulomb island. It is illustrated that the
energy splitting is exponentially suppressed with increasing
wire length. For short wires with a typical length of a few
hundred nanometers, the Majorana energies oscillate as the
magnetic field varies. These observations are consistent with
previous theoretical predictions [36,37]. However, there still
exist some critical discrepancies between the theories and ex-
perimental results of the evidences for the MBSs. Firstly, it is
easy to note that the zero-bias peak is significantly lower than
the predicated value of 262 / h, whereas the MBSs are expected
to give exactly 2¢? / h [40-43]. Secondly, theory predicts an in-
creasing oscillation magnitude of Majorana energy splitting
with the increase of magnetic field [36,44], while the experi-
ment indicates the damped oscillation with increasing field.
Similar discrepancy was also shown in the Majorana-quantum
dot hybrid devices in the subsequent experiments [45-47]. It is
important to know what physical mechanism leads to the
damped oscillation of Majorana energy splitting.

Up to now, several theoretical studies have been devoted to
explain these discrepancies [48-61], among which some
possible reasons have been proposed, such as the combining
effect of high temperature and multisubband occupancy in a
Coulomb-blocked nanowire where the non-topological low-
energy Andreev bound states and MBSs simultaneously exist
[53], the zero-energy pinning effect induced by the interactions
between the bound charges in the dielectric surroundings and
the free charges in the nanowire [55], a finite leakage out of the
Majorana modes due to the presence the normal drain [59], a
finite coherence length in the induced superconducting pairing
[60], and the orbital magnetic effects [61]. Although it is
noticed that the trivial Andreev bound states are non-negligible
in the experiments, the enhanced Majorana energy oscillation
for increasing Zeeman field is robust and unaffected when
various mechanisms are taken into account.

Here we investigate the effect of different types of disorder on

the transport properties of a topological superconducting wire

Beilstein J. Nanotechnol. 2018, 9, 1358-1369.

hosting a pair of MBSs. Although the disorder-modulated phase
transition in this system has been widely discussed [43,62-74],
we focus on the transport properties, especially the splitting of
zero-bias conductance peak in presence of disorder. We adopt
the non-equilibrium Green’s function (NEGF) method for a
tight-binding model of the nanowire. Three different types of
disorder are separately considered, including the disorder in the
site-dependent chemical potential, the spatial deformations of
the superconducting gap, and hopping disorder between the
nearest neighbors. The results reveal that the disorder could sig-
nificantly suppress the conductance magnitude. More impor-
tantly, the splitting of the conductance peak is removed by the
disorder and a zero-bias peak is reformed with an increasing
disorder strength. This paper is organized as follows. In section
’The model’ we present a tight-binding model for the one-
dimensional superconducting nanowire and the theoretical
framework based on NEGF. In section *Numerical results’ we
give the numerical results of the conductance and the noise
Fano factor for different wire lengths and discuss different types
of disorder-induced effect on these transport properties respec-

tively. Finally, we conclude our results in section ’Conclusion’.

Results and Discussion

The model

The schematic representation of our one-dimensional Majorana
system is shown in Figure 1. We consider a setup of two normal
metal leads sandwiching a spin-orbit coupled semiconductor
nanowire, which is covered by a parent s-wave superconductor
to induce the proximity effect. The Zeeman field is realized by
applying a magnetic field perpendicular to the spin-orbit cou-
pling direction and the wire. It is proposed that such a hybrid
system can hold a pair of MBSs at the two wire ends by tuning
the Zeeman field or chemical potential to satisfy V7, > VAT + pz
[16-21], for which the nanowire will be driven into the topolog-

B

- s-wave Superconductor
' Nanowire .

yl YZ
Left Lead Right Lead

f_ﬂ [so y

Figure 1: Scheme of our one-dimensional Majorana system. A semi-
conductor nanowire with spin-orbit interaction sandwiched by two
normal leads (L, R) is proximity-coupled to an s-wave superconductor.
The nanowire is driven into the topological phase and a pair of MBSs
(Y1, Y2) emerge at the two wire ends with suitable parameters. A bias
voltage Vis applied across the device. The nanowire is arranged along
the x-axis and the magnetic field (B) is applied along the z-axis, per-
pendicular to the spin-orbit coupling field (SO) in the y-direction.
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ical phase. Here V7, A and p are the Zeeman splitting energy,
proximity-induced superconducting pairing and the chemical
potential, respectively. Although this work is motivated by the
experiment by Albrecht et al. [39], our model does not take the
Coulomb blockade effects into account. The reason is that the
physics of disorder-induced suppression of the conductance
peak spacings and reformation of the zero-bias peak, which we
discuss below, is independent of Coulomb blockade physics. In
the presence of a charging energy in the nanowire, it was shown
that the zero-bias conductance values are considerably
suppressed by the Coulomb energy [75]. The situation of
interest to us is how intrinsic disorder in the nanowire affect the
Majorana energy E); and the splitted zero-bias conductance
peak induced by Ep. In situations like this, the intrawire
charging energy could modulate the actual conductance value,
but the main physics induced by the disorder is captured even
though the charging energy is not taken into account.

The generic form of the Hamiltonian that models this Majorana

hybrid structure reads as

where the term Hyy, Hi (r), and Ht account for the supercon-
ducting nanowire, the left (right) normal metal lead, and the
tunnel coupling between the leads and the wire, respectively.
Following the Bogoliubov—de Gennes formalism the Hamil-
tonian describing the low-energy physics for our one-dimen-
sional superconducting wire is given by

1
iy = J 97 (x) Hpag ¥ (x)dr, @)

where W(x) =[eq(x),¢] (¥),¢; (x),c{ ()] is the Nambu spinor
for which c4(x) (c:g (x)) annihilates (creates) electrons with spin
o at position x. For numerical calculations, we invoke a lattice
tight-binding model to discretize the BdG Hamiltonian and the

Hamiltonian for the nanowire can then be written as [16-19]

N-1 .
L iy
— l
H.., = Z {—Eci Ciil +?ci G )¢y +h.c}
i=l

3)

+ [(ti —)ele; +A; (cipcy +hec)+ Vzciczci}

™M= i

Il
—_

1

where #; characterizes the nearest-neighbor hopping between
site i and i + 1, y; and A; represent the on-site chemical
potential and pairing, a is the spin-orbit coupling constant,
¢; = [, cil]T (c;r :[c;},c;l]) is the spinor form of electron
annihilation (creation) operator on the ith site, and o;,

i=0,x,y, z, are Pauli matrices acting on the spin space. The
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wire length is L = Na where a is the lattice constant and N is the
total number of sites. In this work, three different types of
intrinsic disorder in the nanowire are considered: the fluctua-
tions of the site-dependent chemical potential, the nonlinear
tunneling between neighboring sites, and the disorder arising in
the pairing as a result of inhomogeneous superconductor—semi-
conductor coupling. In the case of a clean wire, we set u; = o,
A; = Ay, and ¢; = t; for all sites. For each single disordered con-
figuration of the system, the on-site disorder are modeled by the
white noise and their strength is assumed to be randomly distri-
buted in the range [-3W, +6W], where the W = ¢, u, A denotes
the strength for different types of disorder.

The Hamiltonian describing the normal metallic leads is given

by

_ z i
H o CaksCokoCaks 2 “)
k,o

where g4 (@ = L, R) represents the single-particle energy in
T

the lead a and cyks (¢, ) is the annihilation (creation) oper-

akc
ator for the lead a. The sum is over momentum k and the spin c.
The last term in the total Hamiltonian, Hy, characterizes the

coupling between the wire and the two leads, which is given by

HT = ZIL (cEkGCIG +h.C.)+tR (Cii‘{kcyCNG +h.C.), (5)
k,c

where f,r) denotes the hopping strength through left (right)
lead and the wire. The operators ¢ and ¢y correspond to the
annihilation operators on the first and last site at opposite ends
of the wire. Taking all lattice sites into account, we can now
write out the Hamiltonian for the nanowire as a 4N x 4N matrix
of which the submatrix entry H;; fully characterizes the cou-
pling between site i and site j. The nonzero off-diagonal entries
read as

Hi,i:(ti—ui)co ®1,+V;0,81)+A;6,Q1,, (6)
t; o
Hi,i+1 :_EIGO ®’CZ —70},@’50. (7)

and the subdiagonals are related to the superdiagonals by
Hy;=H]

i+Li =i
on the Nambu space.

Here 1, i = 0, x,y,z, are the Pauli matrices acting

The operator of tunneling current from the lead a to the central

region is defined as
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dn,

a

dt

I,()=-e

and then one can obtain [76-79]

e~ A7 e
I ——[NL,H] :—ILZ(CE,(GCIG _Cch;CLko)’
h ko
ier ~ A ie + + ®)
Ig = ;[ RaH:| = —fRZ(CRkGCNc _chchcs)'
ko

The current noise correlations are defined as
Sap (1) = (1o ()15 (¢') + 1 () 1o, ()= 216, )1 )- ©)

Sap is referred to as the noise auto- or cross-correlation between
the currents flowing through the lead o and lead . To evaluate
the current and noise within the framework of Keldysh
NEGF formalism, we need to derive the retarded (advanced)
Green’s function G"(@) and the lesser (greater) Green’s
function G<) from the contour-ordered Green function
G(t,t')= —i<‘I‘(t)‘{’T(t’)> in the Nambu space spanned by the
spinor ‘-P:[cL,cR,c}:,cJ{{,cl,...,cN,cT,...,cj\,]T, where ¢ (Rr) is
the electron annihilation operator in the left (right) lead. In this
Nambu space, we define the matrix of the lesser Green’s func-
tion G* [78,79]

<
G (t-1)= <<‘I’(t) |t (t’)>> =¥ ()% (1)) (0
In this representation, the currents are given by
I, =Tr[iaG<J, (11)
and the noise spectrum Syp(o) is given by:
Sch
S(XB ((,0) = SCLC SO‘B
/ T <71 > A>3 < (12)
2[do e 1,65156 0 +igGarlaGirro |

where S§°“ is the frequency-independent Schottky noise origi-
nating from the self-correlation of a given tunneling event with
itself, which the double-time correlation function can not
contain, and GL*) = IdtG<(>)(t)ei“’t denotes the lesser
(greater) green functions in the frequency space. The matrices

of the current operators are given by
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A e L
I; =—ty M~ ®oy,
L=5L 0
(13)

e R
Ig =—HRrM" ®o,
R =52 R 0

where ML and MR are the block (2N + 4) x (2N + 4) matrices
with nonzero elements

L L L L

M3 =Mpy,s53 =-Mj5 =-M3y,5=1, "
L L L L

Mg =My 64="M37s="Mg =1,

respectively. From the standard equation of motion for the
central region, we can write the retarded Green’s function G in

terms of the Dyson equation G" = g" + g'¥'G’, which gives

G’ =(1—gr2r)_lgr. (15)

Here g is the bare Green’s function of the central region with-
out coupling to the leads (7, = tg = 0),

g (0) " = (fplgxs]@J(wlwxw -H,,), (6

where I,x, is the n x n identity matrix. Since G’ is already
given and the advanced Green’s function G? can be obtained
from G = (G¥T, it is now straightforward to obtain the lesser
Green’s function from the standard Keldysh equation,

G = (1 + GrZr)g< (1 +39GY ) +G'E G?

amn
_ Grgr—lg<ga—lGa +G'I<GY.
In the present case, =~ = 0 and
A 0
r-1_<_a-1 e
= ® O nwan > 18
g g¢ ( 0 A}J 4ANX4N (18)
with
2i [ foFpp 0
Ae(h):_ ( ) _ @Go, (19)
w0 f(oFug)
where Q44 is the 4N x 4N zero matrix, f(w)=[1+ e/ 877!

is the Fermi—Dirac distribution function and kg7 is the tempera-

ture. In the calculation of the noise spectrum Syp(w), the greater
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Green’s function G~ can be readily obtained since the relation
G~ -G~ = G* —=G' holds. Finally, we define the noise Fano
factor F' = Sy (o = 0)/2ely, to measure the deviation from the
uncorrelated Poissonian noise for which F = 1, with respect to
which the shot noise can be enhanced or suppressed because the
current fluctuations in the device are highly susceptible to dif-
ferent interactions in the system.

Numerical results

In this section we present the numerical results of the transport
properties for the disordered Majorana nanowire. Here we
mainly discuss the disorder-induced effects on the differential
conductance, especially on the conductance peak spacing and
its relation with the Majorana energy oscillation. To exclude
thermal fluctuations, we restrict our discussion to the zero tem-
perature kg7 = 0. The lattice constant is set to ¢ = 10 nm
throughout the paper. For the disorder-free situation, we choose
to =12 meV, pg = 2.0 meV, Ag = 0.9 meV, o = 2.4 meV, and
the symmetric lead-wire coupling strength I't = I'g = 0.3 meV.
The bias voltage V across the whole device will shift the chemi-
cal potential pp(pR) in the leads to +V/2. In modeling the
disorder effect on the quantum transport in mesoscopic devices,
the numerical results need to be averaged over enough random
configurations. In our calculation, the conductance and the
noise Fano factor is averaged over 400 random configurations

for each data point.

In previous work [35], it was found that the disorder could in-
duce a nonquantized zero-bias peak at finite temperature even
when the nanowire is in a topologically trivial regime. In their
work, a single disorder realization is considered for their
3-dimensional multiband Majorana wire. The consideration of
the multiband wire model leads to the weaker sample—sample
fluctuations than the single channel model. Although a single
disorder configuration is considered, their results are obtained at
a finite temperature, which implies that thermal averaging is
done. With the increase of temperature, the sample-to-sample
fluctuations are suppressed [80]. It is thus reasonable for them

to consider a single disorder configuration.

Here we study the effect of three types of disorder on the trans-
port in a Majorana device. To exclude the thermal effect, we
restrict our discussion to the zero temperature case. The large
sample-to-sample fluctuations is thus unavoidable. In principle,
several similar samples are also needed in experiments to
confirm the existence of related physical mechanisms. In a
previous experiment [39], only one sample is reported for each
wire length. It is indicated that a damped oscillation magnitude
of the Majorana energy splitting occurs with the increase of
magnetic field, which contradicts the theoretical result. Our

calculation suggests that the discrepancy may arise from the
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intrinsic disorder. To confirm this, more experiments are ex-

pected to be performed in the future for similar samples.

Majorana energy oscillation

We firstly present the lowest energy E) as a function of the
magnetic field in the presence of different kinds of disorder.
Considering the finite-size effects on the coupling between the
two MBSs and the recently reported suppression of the energy
splitting due to the increase in wire length [39], we consider
wires of two typical lengths in particular: a shorter one with
L =0.60 um and a longer one with L = 0.95 pm. In Figure 2,
when V7 is relatively small, the system stays in the topologi-
cally trivial phase, and the lowest energy is linearly suppressed
as the magnetic field strength increases. Without disorder in the
system, the nanowire is driven into a topological supercon-
ducting phase when we tune ¥ to exceed the phase transition
point V- = WIA% + p%, and E) begins to oscillate near the zero
value. This behavior, originating from the finite-size effects, is
absent in a long enough wire, where the field-independent exact

Majorana zero mode emerges with its energy pinned to zero.

0.2 L=0.6pm L=0.95pym
clean (a) clean (b)
0.1
0.0 o
0.2
5A=09 (c) 5A=0.9 (d)
0.1
o 00 ANW\/\NVV\NV
0.2
£ Su=1.0 (e) su=1.0 ®
lu:

2 4 6 8 2 4 6 8
V, (meV) v, (meV)

Figure 2: The Majorana energy Ey as a function of the Zeeman split-
ting Vz for different types of disorder. (a,b) The clean cases;

(c,d) disorder in pairing energy 8A = 0.9 meV; (e,f) disorder in the
chemical potential du = 1.0 meV; (g,h) disorder in the nearest hopping
6t = 1.0 meV. For comparison, two different wire lengths L = 0.6 um
(left panels) and L = 0.95 um (right panels) are separately considered.
Other parameters are taken as ty = 12.0 meV, Ag = 0.9 meV,
Ho=2.0meV,a=24meV,and N =Tg=0.3 meV. The MBSs
appears at the wire ends for Vz > Vzc.

For disordered wires, we find that the exact Majorana zero
mode gradually vanishes in the presence of disorder in hopping

or chemical potential. In particular, as shown in Figure 2, a o¢
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with strength 1.0 meV, which is comparable to the strength of
Zeeman splitting, can remarkably flatten the energy oscillation.
On the contrary, the strong disorder in the pairing energy leaves
the Majorana energy oscillation almost unaffected. In the topo-
logical phase and in the strong Zeeman field regime, the spins
are nearly polarized and one can project the original Hamil-
tonian onto a simpler one-band problem [7]. To leading order,
one obtains an effective p-wave-like Hamiltonian with the
effective chemical potential pesr = p + Vz/2 and the effective
pairing energy A.fr = aA/2Vz. Because small spin-orbit cou-
pling is considered, the effect of the disorder 6A in the pairing
energy is considerably suppressed with increasing V7 due to the
multiplication factor a/2V7z. However, there is no multiplication
factor for i, hence the disorder du has a stronger influence on
the Majorana energy oscillation. The hopping disorder and
chemical potential disorder can both considerably destroy the
Majorana zero modes, leading to increased Majorana energy
splitting and enhancement of the MBSs hybridization.

To get a closer look into the effects of disorder on the Majo-
rana energy splitting, it is beneficial to investigate the localiza-
tion length that characterizes the hybridization between the pair
of MBSs. In weak spin-orbit coupling regime, the localization
length increases gradually as «B [36,38]. Therefore, the
strength of the Zeeman splitting V7 should be chosen as the
energy scale to determine whether the disorder strength is
strong or not. Meanwhile, the disorder strength that can remove
the energy splitting signature is also determined by the wire
length. For a longer wire, a disorder of the same strength could
lead to a more evident suppression of the energy splitting signa-
ture.

In Figure 3, without loss of generality, we focus on the evolu-
tion of the MBS probability density on the left wire end in the
presence of disorder in chemical potential, of which the influ-
ence is more evident compared with the limited effects induced
by the pairing disorder. Here we choose a rather long wire of
length L = 2.0 um, where the two spatially separated MBSs are
well localized at each end of the wire, thus the hybridization be-
tween the pair of MBSs is negligibly small. In our case where
Vg > m(oca)z/h the system is in a weak spin-orbit interaction
regime, and the approximate value of the localization length for
a discretized tight-binding model is analytically given by

-1 _ 20A
&~ aVzt’

with which the MBS probability density has an exponentially
decaying envelope of the form |V |e2nvoc e % [81]. As shown in
Figure 3, the numerically fitted decaying envelope of the

disorder-free probability density gives & = 0.0727 pm, com-
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pared to the approximate analytical results of § ~ 0.0775 um the
difference is below a lattice constant. With the disorder strength
increasing, the probability density at the end is suppressed and
the localization length & of the fitted envelope becomes larger.
This can also be directly identified from the noticeable defor-
mations of the tail part of the probability density, which implies
an enhanced hybridization between the two MBSs with an in-
creasing disorder strength. In a shorter wire where the overlap
between the two MBSs is stronger, it is reasonable to expect a
more evident disorder-induced increment in the MBSs hybridi-
zation, which agrees with the results shown in Figure 2.

0.10
0.095
. 0.090
0.08 ﬂ T .08
“‘, ;’1,. 0.080
‘ “, 0075
~ 0.06 “‘ 0.070! 75 = 6“
> ‘ —0.0
- 1.0
2.0
3.0
—4.0

0.3 0.4 0.5
L (um)

Figure 3: The spatial distribution of probability density |%|? (solid lines)
and their fitted envelopes |W |§nv (dashed lines) in the presence of dif-
ferent strengths of chemical potential disorder dy; the inset shows the
localization length ¢ of the fitted envelope varies with different values of
Ou. Here we choose L =2.0 ym, p =0, A=2.0 meV, Vz=6.1 meV and
other parameters are taken as those used in Figure 2.

Conductance peak spacings

In Figure 4, we demonstrate the effects of three types of
disorder on the conductance peak spacings for different wire
lengths. In a disorder-free case, the Majorana energy splitting of
the system can be reflected by the conductance peak spacing.
We take a Zeeman field V7 = 6.6 meV that is associated with
clear energy splittings and conductance peak spacings.

For a shorter nanowire L = 0.6 pum, it is found that all three
types of disorder can suppress the amplitude of the conduc-
tance peak and broaden the peak width to some different extent.
The presence of disorder in the system leads to a similar result
induced by dissipation or finite temperature, both of which can
lower the peak and broaden its width [57]. What makes a differ-
ence here is that one can additionally observe a suppression,
which is pronounced especially in the cases of hopping or
chemical potential, of the conductance peak spacings due to the
effect of disorder.

1363



Beilstein J. Nanotechnol. 2018, 9, 1358-1369.

0.00
V(mv)

0.00
V(mvV)

Figure 4: The differential conductance G = dl/dV as a function of the bias voltage V under the influence of different types of disorder. (a,d) disorder dp
in the chemical potential; (b,e) disorder &t in the nearest hopping; (c,f) disorder 8A in pairing energy. The upper panels corresponds to the shorter wire
case L = 0.6 pm and the lower panels represents the case of L = 0.95 um. Other parameters are taken as those used in Figure 2.

When the device becomes longer (L = 0.95 pm), the Majorana
energy splitting is exponentially suppressed, thus the conduc-
tance peak spacing in a clean system becomes much narrower.
As illustrated in the lower panels of Figure 4, smaller disorder
than that in the shorter wire can lead to notable suppressions on
the conductance peak spacings, and as the disorder strength
eventually exceeds some certain value, a zero-bias peak is
formed from the two spaced peaks. It is interesting that a strong
disorder in pairing could even elevate the induced zero-bias
conductance peak. These numerical results, together with that
revealed in Figure 2, suggest that we can not simply neglect the
role played by disorder in detecting Majorana energy oscilla-
tion experimentally through transport measurements since for
some values of Zeeman field the disorder-induced effects can
broaden the Majorana energy splitting of the low-energy states
while simultaneously narrows the conductance peak spacing.
This means that the Majorana energy splitting can not be
genuinely characterized by the conductance signature. One
possible reason is that the Majorana energy splitting is not
robust. When the energy splitting of the Majorana modes is
negligible compared to the magnitude of disorder, the conduc-
tance signature associated with the Majorana energy splitting
could be annihilated by the noise arising in the system, which is
equivalent to raising the temperature. Different from the ther-
mal fluctuations that could be excluded by lowering the temper-
ature, the three types of intrinsic disorder discussed here are

hard to avoid in a realistic experiment.

Above we consider the case that the critical Zeeman field V¢ is
much stronger than the disorder strength 5/¥. Now we turn to
discuss the more experimentally relevant case where /W = V.
Figure 5 demonstrates the effect of three types of disorder on
the conductance for a small V'zc. The chemical potential in the
wire is tuned as g = 0, while the other parameters are taken as
the same as that for the lower panels in Figure 4. It is shown in

1.0 —— T
— 5t =0.8
— 3A=0.8
0.8f — sp=08] ]|
clean

0.00 0.05

V(mV)

-0.05

0.0
-0.10

0.10

Figure 5: The differential conductance G = d//dV in the longer wire

(L = 0.95 ym) as a function of the bias voltage V with

Op = 0A = dt = 0.8 meV approaching the critical Zeeman splitting

Vzc = 0.9 meV. Here we have pg =0, Vz = 6.0 meV and other parame-
ters are taken as those used in Figure 4.
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Figure 5 that for W = Vy, the disorder can suppress the peak
spacing and a single zero-bias peak is produced. Similar to the
large V7 case, the main conclusion is qualitatively consistent
with the results in Figure 4.

In previous experiments [39,46,47], the Majorana energy split-
ting for a nanowire with Coulomb interactions was represented
by the even—odd peak spacing differences. However, the ex-
pected field-dependent decay behavior of Majorana energy
oscillations is not observed in the experiments. On the contrary,
the detected conductance peak differences tend to decay sharply
as the magnetic field increases, which contradicts the theoreti-
cal predictions. Although here we consider an interaction-free
scenario, our results indicate that the disorder can partially
reduce the splitting of the conductance peak. In addition, for a
shorter wire, the hybridization of the MBSs at two ends can
generate a relatively large splitting in the conductance peak,
which is consistent with the result of the previous experiments.
The magnetic field could suppress the superconducting pairing
energy, which leads to the enhancement of disorder strength in

some sense.

Zero-bias conductance as a function of Zeeman
field

In superconducting nanowire systems, a quantized zero-bias
conductance peak is considered as direct evidence for the pres-
ence of MBSs, and its emergence is often associated with the
resonant Andreev reflection [41]. However, for realistic Majo-
rana nanowires, the observed conductance peaks are often much
smaller than 2e%/h. In Figure 6, we show the disorder-induced
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effects on the zero-bias conductance oscillation as a function of
the Zeeman splitting Vz. For the clean wire, the zero-bias
conductance has a clear oscillating behavior in the topological
phase (V7 > Vz¢), and its peak value is quantized to 2e%/h.
These quantized peaks of the conductance emerge from the
exact zero-energy modes, while the valley of the conductance
corresponds to the peak value of Majorana energy splitting.
With an increasing magnetic field, the valley of the conduc-
tance gradually decays, corresponding to an enhancement of the
Majorana energy splitting through the magnetic field. When the
magnetic field is strong enough, the transport channel of the
resonant Andreev reflection is almost closed and the valley of
conductance approaches zero.

In the presence of disorder, the most notable difference is that
the conductance oscillation peaks do not become more quan-
tized. In Figure 2, it is shown that the disorder could destroy the
exact Majorana zero mode and produce a finite energy splitting.
Correspondingly, the quantized zero-bias conductance peak is
suppressed by the disorder, as a manifestation of the induced
finite energy splitting. This phenomenon is particularly evident
for the cases where the disorder in the hopping or in chemical
potential exists. As shown in Figure 6b and Figure 6f, the
conductance peaks stay almost quantized even in the presence
of a relatively strong pairing disorder. Additionally, one can
find that the valleys of the conductance oscillation are almost
unaffected by all kinds of disorder, which also agrees with the
result of Figure 2. These observations suggest that the intrinsic
disorder in the nanowire could strongly reduce the zero-bias
conductance oscillation associated with the Majorana energy

10 L =0.6 um, clean L=0.6um, 8A=0.5 L=06pm, 5p=1.0 L=0.6pm
(a) (b) (c) (d)
E /8[': 0.5
005 6t=1.0
&O.
= U
o | U N
0'00 2 4 6 80 2 4 6 2 4 6 8
10 L=0.95um, cl an L=0.95um, 3A=0.5 L =0.95 pm, Su=1.0
(e) () (9)
<
005
o
° | !
0'00 2 4 6 8 0 2 4 6 0 2 4 6 8
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Figure 6: The zero-bias conductance G as a function of the Zeeman splitting V for different types of disorder. (a,e) The clean case; (b,f)disorder in
pairing energy 8A = 0.5 meV; (c,g) disorder in the chemical potential du = 1.0 meV; (d,h) disorder in the nearest hopping 8¢ = 0.5 meV and 1.0 meV.
The upper panels correspond to the shorter wire case L = 0.6 um and the lower panels represent the case of L = 0.95 pm. In panel (h), we show that
a disorder of 8t = 1.0 meV could remove the conductance oscillation as Vz increases. Other parameters are taken as those used in Figure 2.
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splitting. However, although the disorder significantly sup-
presses the oscillation, it does not eliminate the zero-bias

conductance peak.

Shot noise

We now turn to investigate the shot noise properties of the
Majorana system. For a long nanowire, the Majorana energy
splitting is negligible, and the noise Fano factor is suppressed at
zero voltage due to the resonant Andreev tunneling in an isolat-
ed MBS. In the clean case, a large Majorana energy splitting
could strongly suppress the resonant Andreev tunneling, leading
to the increase of the noise Fano factor and splitting of the
conductance peak. It is shown in Figure 4 that the split conduc-
tance peaks are reformed to one zero-bias peak by the disorder.
However, the zero-bias conductance peak can also arise due to
the exact Majorana zero mode in the clean case. It is expected
that the shot noise may provide the signature to distinguish the
zero-bias conductance peak in a clean system from that which
arises in a disordered one. This can be verified by the results

given in Figure 7.

Here we present the Majorana energy splitting £y, the conduc-
tance G and the noise Fano factor F' = S/2el in the clean and
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disordered cases, in which three different types of disorder are
taken into account. In the clean case, we separately choose point
A and B which represents the zero energy mode and a finite
splitting case, respectively. For a Majorana zero mode, a quan-
tized zero-bias conductance peak could be induced and the
noise Fano factor approaches zero due to the resonant Andreev
tunneling. While for the case of finite energy splitting, the zero-
bias conductance peak is split and the shot noise is enhanced
due to the crossed Andreev reflection (CAR) which, con-
trasting with the local Andreev reflection that injects a Cooper
pair in a single lead, would split a Cooper pair over two leads.
The CAR processes will induce a current noise cross-correla-
tion between two normal leads and predominate over the local
Andreev reflection with the presence of a MBSs pair [77-79].
For short wires, the Fano factor at zero bias is close to unity for
a strongly coupled MBS pair between two leads. As the wire
length increases, the coupling between the MBSs at the two
ends decreases, leading to the suppression of CAR process and
a reduction of Fano factor.

For comparison we also choose a point C for the disordered
case. The points C correspond to MBSs with a finite energy
splitting in the disordered case, where V7 at point C is equal to
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Figure 7: Comparison of the noise Fano factor F between the cases of Majorana zero mode and disorder-induced zero-bias conductance peaks. The
upper, middle, and lower panels represent the effect of disorder in chemical potential 5y, superconducting pairing 8A, and the hopping amplitude &t,
respectively. (a), (d) and (g): Majorana energy Ey; as a function of Vz. The points A and B denote the MBSs with zero energy and a finite energy in the
disorder-free case, respectively. The points C corresponds to the MBSs with a finite energy splitting in the disordered cases, where V7 at point C
equals to that at point B. (b), (e) and (h): The differential conductance G as a function of the bias voltage V. In the clean case, the quantized zero-bias
peak is formed for Majorana zero mode (green lines). Disorder-induced zero-bias peaks (black lines) are formed from the spaced conductance peaks
(orange, dotted line). (c), (f) and (i): The noise Fano factor F as a function of the bias voltage V. In the clean case, F in the low bias limit approaches
zero for Majorana zero mode (green line), and F is finite for a finite energy splitting (orange, dotted line). For the disordered case, F in the low bias
limit is finite (black line) although a zero-bias peak emerges in this case. The disorder strengths are du = 1.0 meV, dA = 0.8 meV, and 5t = 0.5 meV.
The wire length is taken as L = 0.95 pm and other parameters are taken as those in Figure 2.

1366



the Zeeman field at point B. As shown in Figure 7 the Majo-
rana energy splitting in point C has a non-zero value, and its
value is slightly enhanced or weakened with respect to the
Zeeman field strength. For the conductance, the peak splitting at
point B is reformed to a single zero-bias peak induced by three
types of disorder. Differently, in the low-bias voltage regime,
the noise Fano factor F deviates from zero in the presence of
disorder, indicating a stronger coupling between the two sepa-
rated MBS. This result is a clear manifestation of the Majorana-
assisted CAR process. This means that although the zero-bias
conductance peak could originate from an exact zero mode or
intrinsic disorder in the nanowire, one can discriminate these
two different mechanisms from the shot noise properties. In a
clean nanowire, the zero-bias peak is induced by the Majorana
zero mode. In this case, the appearance of the zero-bias peak is
always accompanied by the zero noise Fano factor, i.e., F = 0.
However, in the disordered case, the zero-bias conductance
peak could also be induced for a finite energy splitting, while
the noise Fano factor F has a finite value. Thus, whether the
Fano factor F at the low-bias limit equals to zero or a finite
value provides a signature to distinguish the zero-bias peak in-
duced by Majorana zero mode from that by disorder.

Conclusion

To conclude, we investigated the effect of intrinsic disorder on
the transport properties of a Majorana nanowire by adopting a
one-dimensional tight-binding model. We introduce three types
of disorder into the system, including random fluctuations in the
chemical potential, spatially changing in the superconducting
pair potential, and the anisotropy of the nearest-neighbor
hopping strength through lattice sites. We demonstrated that the
disorder could remove the peak spacing in the differential
conductance and induce a zero-bias peak for a finite Majorana
energy splitting. For a shorter nanowire, the magnitude of the
conductance peaks and the peak spacings are considerably
suppressed as the disorder is taken into account. Such a
disorder-induced suppression of conductance peaks and peak
spacings provides a simple but interesting scenario to explain
the absence of Majorana energy oscillation observed in previous
experiments. Especially for a longer nanowire (L = 1 pum), the
Majorana energy splitting is exponentially small, and the spaced
conductance peaks are facilitated to form a zero-bias peak by
the disorder. However, the presence of disorder does not
suppress the Majorana energy splitting. On the contrary, the
disorder in hopping and chemical potential destroys the locali-
zation of MBSs and thus enhance their hybridization, leading to
an increase in the Majorana energy splitting. This phenomenon
can be further identified with the disorder-induced increment in
the localization length. The exact Majorana zero modes in the
clean case gradually vanish with increasing disorder strength.

As a function of Zeeman field, the quantized zero-bias conduc-
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tance peaks by the exact zero mode are shown to be strongly
suppressed due to the presence of disorder. In particular, for an
increase in hopping disorder, the oscillation behavior in the
zero-bias conductance spectra vanishes in the longer wire case.

In the presence of disorder, the Majorana energy splitting is not
suppressed and zero modes are removed, while the zero-bias
conductance peaks are induced for a finite energy splitting. To
distinguish whether the zero-bias conductance peak is induced
by a Majorana zero mode or by the disorder, we further investi-
gate the shot noise properties of the device. For a clean nano-
wire, we show that the appearance of the zero-bias peak is
always accompanied by a zero-noise Fano factor (5 = 0) in the
low-bias voltage limit. In contrast, the Fano factor F in the
disordered case has a finite value at the low-bias limit. In this
case, the finite Majorana energy splitting induces a crossed
Andreev reflection and the resonant Andreev tunneling is
suppressed, resulting in the deviation of the Fano factor from
zero. Therefore, the shot noise provides a clear signature to
discriminate between the two different mechanisms that lead to

the formation of the zero-bias conductance peak.
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We investigate single and multiple defects embedded in a superconducting host, studying the interplay between the proximity-in-

duced pairing and interactions. We explore the influence of the spin—orbit coupling on energies, polarization and spatial patterns of

the bound (Yu—Shiba—Rusinov) states of magnetic impurities in a two-dimensional square lattice. We also address the peculiar

bound states in the proximitized Rashba chain, resembling the Majorana quasiparticles, focusing on their magnetic polarization that

has been recently reported by S. Jeon et al. (Science 2017, 358, 772). Finally, we study leakage of these polarized Majorana quasi-

particles into side-attached nanoscopic regions and confront them with the subgap Kondo effect near to the singlet—doublet phase

transition.

Introduction

Magnetism is usually detrimental to superconductivity because
it breaks the Cooper pairs (at the critical field strength H»).
There are, however, a few exceptions in which these phenome-
na coexist, e.g., in iron pnictides [1], CeColns [2]. Also, some-
times magnetic fields induce superconductivity [3]. Plenty of
other interesting examples can be found in nanoscopic systems,
where magnetic impurities (dots) exhibit a more subtle relation-
ship with the electron pairing driven by the proximity effect
[4,5]. Cooper pairs easily penetrate the nanoscopic impurities,
inducing the bound (Yu—Shiba—Rusinov) states that manifest

the local pairing in coexistence with magnetic polarization.
Such bound states have been observed in various systems
[6-14]. In-gap states (appearing in pairs symmetrically around
the Fermi level) can be nowadays controlled electrostatically or
magnetically [12] whereas their topography, spatial extent and
polarization can be precisely inspected by the state-of-art
tunneling measurements [15,16].

It has been reported that adatoms deposited on a two-

dimensional (2D) superconducting surface develop

1370


https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:doman@kft.umcs.lublin.pl
https://doi.org/10.3762%2Fbjnano.9.129

Yu-Shiba—Rusinov (YSR) states, extending to a dozen of inter-
site distances and they reveal particle-hole oscillations [11].
Bound states of these magnetic impurities in superconducting
NbSe, are characterized by the star shape [17] typical for the
rotational symmetry of its triangular lattice. More complex
objects, such as dimers, reveal other spatial features, showing
the bonding and antibonding states [18]. In a somewhat differ-
ent context it has been pointed out [19] that exchange coupling
between numerous quantum defects involving their intrinsic
spins can couple them ferromagnetically. This can be used (e.g.,
in metallic carbon nanotubes) for a robust transmission of mag-

netic information over large distances.

In all cases the bound YSR states are also sensitive to interac-
tions. One of them is the spin—orbit coupling (usually mean-
ingful at boundaries, e.g., surfaces) [20-22]. Such interaction in
one-dimensional magnetic nanowires can induce the topologi-
cally nontrivial superconducting phase, in which the YSR states
undergo mutation to Majorana (zero-energy) quasiparticles.
Coulomb repulsion between the opposite spin electrons can
bring additional important effects. In the proximitized quantum
dots it can lead to a parity change (quantum phase transition)
with further influence on the subgap Kondo effect (driven by
effective spin-exchange coupling with mobile electrons).
Furthermore, such spin exchange can be amplified by the in-
duced electron pairing, and can have constructive influence on
the Kondo effect [23,24].

We study here the polarized bound states, taking into account
the spin—orbit and/or Coulomb interactions. In particular, we
consider: (i) a single magnetic impurity in a 2D square lattice of
a superconducting host, (ii) a nanoscopic chain of magnetic
impurities on the classical superconductor (i.e., proximitized
Rashba nanowire) in its topologically trivial/nontrivial super-
conducting phase, and (iii) a strongly correlated quantum dot
side-attached to the Rashba chain, where the Kondo and the
leaking Majorana quasiparticle can be confronted with each
other. These magnetically polarized YSR and Majorana quasi-
particles as well as the subgap Kondo effect can be experimen-
tally verified using tunneling heterostructures with ferromag-
netic lead (STM tip).

Results and Discussion

Single magnetic impurity

Let us start by considering a single magnetic impurity on the
surface of an s-wave superconductor in presence of spin—orbit
interactions. This situation can be modeled by the Anderson-
type Hamiltonian

Beilstein J. Nanotechnol. 2018, 9, 1370-1380.

We describe the superconducting substrate by
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where é;ra (¢;5) denotes creation (annihilation) of an electron
with spin o at the i-th site, ¢ is a hopping integral between the
nearest neighbors, p is the chemical potential, and 7,5 = E;Géic
is the number operator. For simplicity, we assume a weak
attractive potential U < 0 between itinerant electrons and treat it
within the mean-field decoupling

chenel ey ~uehel +aieén—ln P

+”iT‘A7,-T¢CAii + ”n‘f’jﬁn RLOLE

where y; = (éi iéiT> is the local superconducting order parame-
ter and n;, = (7;5). The Hartree term can be incorporated
into the local (spin-dependent) chemical potential
W — [z =1 — Un;. The second term in Equation 1 refers to

the local impurity
Himp =~ (5360160 601 )+ K (hhégnicliéo ) @

which affects the order parameter x; near the impurity site i = 0,
inducing the YSR states [25,26]. In this work we focus on the
magnetic term J [4,27], disregarding the potential scattering K.

The spin—orbit coupling (SOC) can be expressed by

Fsoc =03 il a5 -wé
soc =1 Zci+dj0 jxe Wi’ “4)

jjoo’

where the vector d; =(d”~',djy,0) refers to positions of the
nearest neighbors of the i-th site, anﬁl 6 = (oy, 0, 0;) stands for
the Pauli matrices. The unit vector w shows the direction of the
spin—orbit field, which can be arbitrary. Here we restrict our
considerations to the in-plane w=# = (1, 0, 0) polarization,
which will be important for nontrivial superconductivity in
nanowires discussed in the subsection "Magnetically polarized
Majorana quasiparticles’. The other (out-of-plane) component
could eventually mix 1 and | spins [22].

Impurities break the translational invariance, therefore the
pairing amplitude y; and occupancy n;; have to be determined
for each lattice site individually. We can diagonalize the Hamil-

tonian (Equation 1) by the unitary transformation
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where «}g) are quasiparticle fermionic operators with eigenvec-
tors u;,s and v;,s. This leads to the Bogoliubov—de Gennes
(BdG) equations

™
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where D;; = 6;;Uy;, and the single-particle term is given by

Hiyjo =18 jy = (i —0J80 ) 8 +S57°
with the spin—orbit coupling term

oo’ . ~oc' | ~
SU =—1}\.Z(dl><6 j‘Wﬁj’Hdl.
!

Here, S;7° and S,»C;E (where G is opposite to ) correspond to
in-plane and out-of-plane spin—orbit field, respectively, and
satisfy S§° =(S5°)*.

Solving numerically the BAG equations (Equation 6) we can de-
termine the local order parameter y; and occupancy 7,4

Xi = Z[uiniv;kan(gn ) _uinTV;i«f(_gn ):|’ @)

Nig = Z[|“inc|2 £(&)+ sl £ (=, )}’ ®)

n

where flo) = [1 + exp(w/kgT)]"!. In what follows, we shall
inspect the spin-resolved local density of states

Pic ((’)) = Z|:|uinc|2 6(('0_811 )+|vin(5|2 6(w+€n )jl

For its numerical computation we replace the Dirac delta func-
tion with the Lorentzian function 8(®) = {/[n(w? + (2)] with a
small broadening { = 0.01 t. We have solved the BdG equations,
considering a single magnetic impurity in a square lattice, com-
prising N, x Np =41 x 41 sites. We assumed U/t = -3, Wt =0,
and determined the bound states for two representative values

of the spin—orbit coupling A upon varying J.
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The magnetic potential has substantial influence on the local
order parameter . In particular, at some critical value J; this
quantity discontinuously changes its magnitude and sign (see
the upper panel in Figure 1), signaling a first-order phase transi-
tion [28-30]. This quantum phase transition at J; is an artifact of
the classical spin approximation. When spin fluctuations are
allowed, a Kondo-like crossover is obtained instead of a first-
order phase transition [31,32]. In general, the quasiparticle
spectrum at the impurity site is characterized by two bound
states £EygR inside the gap A of the superconducting host
(displayed in the bottom panel of Figure 1). These energies
+FEysr and the related spectral weights depend on J. At J=J,
the YSR bound states cross each other Eygr(J.) = 0 and their
crossing signifies the ground-state parity change [33] from
BCS-type (spinless) to the singly occupied (spinful) configura-
tions [8,15,21,34]. Let us remark that this quantum phase transi-
tion is also accompanied with a reversal of the YSR polariza-
tion (see bottom panel in Figure 1). A similar behavior can be
observed also for multiple impurities, at several critical values
of J[35].

Within the BdG approach we can inspect spatial profiles of the
YSR states by integrating the spectral weights

(&)
pi = L)f Pio(®)do

in the interval o € (w;,,) capturing the quasiparticles at nega-
tive/positive energies +Evgg [36]. Figure 2 illustrates the results
obtained for A = 0 (left panel) and A = ¢ (right panel). We clearly
notice a fourfold rotational symmetry (typical for the square
lattice) and the spatial extent of YSR states reaching several
sites away from the magnetic impurity. The non-vanishing
difference of the spectral weight \uinﬂz —|u,~nl\2 at the positive
energy ® = +Eygg and of |"inT|2 _|"inl|2 at the negative energy
o = —FEygg implies the effective spin-polarization of the bound
states (their polarization is illustrated in the bottom panel of
Figure 1).

For a quantitative estimation of the spatially varying magnetiza-
tion (driven by the particle-hole asymmetry) we have com-
puted the displaced moving average Ei(r), which corresponds
to an averaged spectral weight contained in a ring of the radius r
and a small half-width 7. This quantity is sensitive only to the
radial distance » from the magnetic impurity, averaging the
angular anisotropy. Our results, presented in Figure 3, clearly
indicate the spatial particle-hole oscillations Ei(r) of the YSR
states (compare the blue and red lines). Such particle-hole
oscillations decay exponentially with » in agreement with
previous studies [11,37,38]. The dominant (particle or hole)
contributions to the YSR bound states are displayed by the
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Figure 1: The local order parameter obtained at zero temperature for weak A/t = 0.1 (red line) and strong spin—orbit coupling M/t = 1 (blue line). The
bottom panel shows the energies and magnetic polarization poy(w) =~ po(w) of YSR states obtained in the weak-coupling limit A/t = 0.1.
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Figure 2: Spatial profiles of the YSR states ZapﬁI obtained for |J| < J; in the absence of spin—orbit coupling (left panel) and for strong in-plane cou-
pling A = t (right panel). The spin—orbit field is chosen along the x-axis and leads to an additional imaginary hopping term along the y-axis, which elon-
gates the YSR states in the y-direction. The impurity spin is oriented along the (0, 0, 1) direction.

alternating color of the background in Figure 3. We notice that
the spin—orbit coupling seems to suppress these particle-hole

oscillations.

Summarizing this section, we point out that the quantum phase
transition at J. depends on the spin—orbit coupling A and it has
experimentally observable consequences in the magnetization

induced near the impurity site. For weak magnetic scattering

|J] < J. the impurity is partly screened, whereas for stronger
couplings |J] > J. the impurity polarizes its neighborhood in the
direction of its own magnetic moment. Similar effects have
been previously discussed in [21], but here we additionally
consider the role of spin—orbit coupling. First of all, such inter-
action shifts the quantum phase transition (to larger values of J)
and secondly it enhances the spatial extent of YSR states and
gradually smoothes the particle-hole oscillations.
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Figure 3: Hole-like (blue line) and electron-like (red line) displaced moving average Ei(r) as a function of the radial distance r from the impurity site
obtained for |J| < J; using dr = 0.5a. The blue and red background color indicates the dominant type (hole or particle) of the YSR states at a given dis-

tance r. The left and right panels correspond to A = 0 and A = ¢, respectively.

Magnetically polarized Majorana quasiparti-

cles

In this section we increase the number of impurities. Let us now
imagine a nanoscopic chain of magnetic impurities (for instance
Fe atoms) deposited on the surface of a conventional s-wave
superconductor. We study the magnetically polarized bound
states, focusing on the proximity-induced nontrivial supercon-
ducting phase. In practice, the quasiparticle spectrum can be
probed within STM-type setups, by attaching a conducting
[39,40], superconducting [41], or a magnetically polarized tip
[42]. We assume the spin—orbit interaction aligned perpendicu-
larly to the wire and the magnetic field parallel to it, leading to
the effective intersite pairing of identical spins and (under spe-
cific conditions) inducing zero-energy end modes resembling
Majorana quasiparticles. This issue has been recently studied
very intensively but here we simply focus on the spin-polarized
aspects of this problem.

Due to the spin—orbit interaction, momentum and spin are no
longer “good” quantum numbers. By solving the problem
numerically, however, we can estimate the percentage with
which the true quasiparticles are represented by the initial spin.
We have recently emphasized [43], that the amplitude of inter-
site pairing (between identical spin electrons) differs several
times for 1 and | sectors. This leads to an obvious polarization
of the YSR and Majorana quasiparticles (the latter appearing
near the nanochain edges).

Let us consider the STM-type geometry relevant to the recent
experimental situation addressed by A. Yazdani and co-workers

[42], which can be described by the following Hamiltonian

~ ~ ~ prox ~
‘H = Htip + Hchain + Htip-chain - ©)

We assume here that the STM tip describes a polarized fermion
gas

S o At s
HN=D, ERNCionChoN
k,c

where the energy &Py =g, — g Can be controlled by some
finite detuning of the chemical potentials pnt — pN| - Individual
atoms of the nanochain are coupled with such STM tip through

oo 5 A * ot 5
Htip-chain = Z(Vi,kN d; CkoN + Vz‘,kﬁcchdi,c :
k,c

For simplicity, we assume constant couplings

FB = 27TZ|I/I~7kB|2 8(())—&_,](& )
k

The low-energy physics of such proximitized Rashba nanowire
can be described by [44]

~prox

Hehain = (fij —ngu)“;ztc“;j,c

2 + ﬂRashba + ';'\{Zeeman + ﬂprox; (10)
i,j,0

where ‘21(2 annihilates (creates) an electron of spin o at site i
with energy ¢;, and f;; is the hopping integral. The effective
intersite (p-wave) pairing is induced through a combined effect
of the Rashba and the Zeeman terms
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7/'\[Rashba =—q z |:‘2it-1,cs (icy )06’ &i,cl + H.C.:|, (11)

i,6,6'

~ B n n
Hiseman =5282 Y df (0°) d
[e]e)

i,0,0'

(12)

The proximity effect, which induces the on-site (trivial) pairing,
can be modelled as [45]

Horox = 4; (a?T (13)

!y vd, ¢dm)

with the local pairing potential A; = I'g/2.

Figure 4 shows evolution of the spin-dependent spectrum p;4(®)
as a function of a varying magnetic field. At a critical value
(B = 0.2) we observe the emergence of zero-energy quasiparti-

cles, whose spectral weights strongly depend on the spin c.

)
0.5 ©n
)
Q
53 0
> 1
B
=
- 0.5 ©n
)
Q
. 0
0 0.5 1
B/t

Figure 4: The effective quasiparticle spectrum p;;(w) as a function of a
magnetic field B aligned along the nanochain obtained for o = 1 (upper
panel) and ¢ = | (bottom panel). The magnetic field B is expressed in
units of t/(gug/2).

For a better understanding of the polarized zero-energy quasi-
particles, we present in Figure 5 the spatial profiles of the zero-
energy (Majorana) quasiparticles. As usually such quasiparti-
cles emerge near the edges of a nanoscopic chain, practically
over 10 to 15 sites (see inset). Note the substantial quantitative
difference between these zero-energy quasiparticles appearing
in 1T and | spin sectors. This “intrinsic polarization” of the

Majorana modes has been previously suggested in [46], and

Beilstein J. Nanotechnol. 2018, 9, 1370-1380.

recently we have proposed [47] their empirical detection by
means of selective equal-spin Andreev reflection (SESAR)

spectroscopy.

0.9
0.8
0.7
0.6

i

0.5

—p;

i

04 “g
0.3
0.2
0.1
0.0

Figure 5: Magnetically polarized spectrum p; ;(w) = p; |(w) obtained at
w = 0 for peripheral sites of the Rashba chain.

The main idea is to apply a bias voltage V' between the STM tip
and the superconducting substrate, inducing a charge transport
that, in a subgap regime (|V |<A/|e|) originates from the
Andreev (particle to hole) scattering mechanism. The polarized
Andreev current can be expressed by the Landauer—Biittiker

formula

If(V)zg.[du) 1 ()] f(o-eV) - f(o+el)], (14)

where transmittance is defined as

A oA 2 A A 2
1 (@) =1 [(digdisioD|| +TR | (iodicie)]

and
c 2 505 2
77 (0) =T [(diodao )|

13 (0) =T ‘<<C?NG&N_10>>‘2 .

The anomalous Green’s functions can be computed
numerically from the solution of the Bogoliubov—de Gennes
equations of this model (Equation 10). The net spin current
1P () = II-T(V) - ]l-¢ (V) turns out to be predominantly sensi-
tive to the Majorana end-modes. Its differential conductance
GPM (V)= (2/8V)[P™ (V) can thus distinguish the polarized
Majorana quasiparticle (near ¥V = 0) from the YSR states
(appearing at finite voltage).
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Bound states can leak to other side-attached nanoscopic objects.
This proximity effect has been also predicted for the Majorana
quasiparticles by E. Vernek et al. [48] and it has been indeed
observed experimentally by M. T. Deng and co-authors [49].
Inspired by this achievement, extensive studies have been
carried out regarding the YSR states coalescencing into the
zero-energy Majorana states in side-coupled quantum dots
driven by electrostatic or magnetic fields [50-52]. This issue
would be particularly important when attempting to braid the
Majorana end modes, e.g., in T-shape nanowires upon turning
on and off the topological superconducting phase in its seg-
ments. We briefly analyse here the polarized zero-energy Majo-
rana modes leaking into the multi-site quantum dot (comprising
ten lattice sites) side-attached to the proximitized Rashba chain
discussed above.

Figure 6 displays the spatial profile of the polarized spectrum
obtained at ® = 0 as a function of the gate voltage V,, which
detunes the energies Vy = &; — p of the multi-site (1 < i < 10)
quantum dot. For numerical calculations we used the model pa-
rameters A = 0.15¢, p = —2¢, A; = 0.2¢ and B > B, which guar-
antee the Rashba chain to be in its topologically nontrivial
superconducting phase, hosting the zero-energy Majorana
quasiparticles (intensive black or red regions). We clearly
observe that for some values of V, these Majorana modes
spread over the entire quantum dot region. By inspecting
Figure 6 we furthermore notice the pronounced spatial oscilla-
tions of these zero-energy modes. In our opinion, this is a signa-
ture of a partial delocalization of the polarized Majorana quasi-
particles. Surprisingly, this process seems to be less efficient in

site

o
ot
LDOS [a.u.]

site

o
(2
LDOS [a.u.

Figure 6: Leakage of the spin-polarized Majorana quasiparticles from
the topological superconducting phase of the Rashba chain (i 2 10)
onto the side-attached multi-site (i € (1;10)) quantum dot. The upper
and bottom panel show p;s(w) at w = 0 for 1 and | spin, respectively.
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the minor spin (¢ = |) section. This effect has to be taken into
account, when designing nanostructures for a controllable
spatial displacement of the Majorana modes (criticial for the re-
alization of quantum computations with use of the Majorana-
based qubits) either by electrostatic or magnetic means. Some
proposals for such nanodevices have been recently discussed by
several authors [52,53].

In summary of this section, we emphasize that the Majorana
modes coalescing from the YSR states in the proximitized
Rashba nanowire are characterized by their magnetic polariza-
tion. Indeed, such a feature has been recently observed by STM
spectroscopy with use of a polarized tip [42]. We have studied
here the evolution of the polarized quasiparticle states with
respect to the magnetic field (Figure 4) and investigated the
spatial oscillations of the Majorana zero-energy modes near the
chain edges (Figure 5). Finally, we analyzed leakage of the
polarized Majorana modes on the multi-site quantum dots,
revealing their partial delocalization (Figure 6).

Majorana vs Kondo effect

In previous section we have discussed the polarized Majorana
modes leaking into side-attached objects, such as single impuri-
ties or segments of normal nanowires. In this section we shall
focus on the correlation effects [54-56], confronting the Majo-
rana quasiparticle with the Kondo effect (both manifested at
zero energy). This can be practically achieved using STM-type
configurations sketched in Figure 7. In particular, we consider
the subgap Kondo effect, effectively driven by the Coulomb
repulsion U and coupling of the quantum dot (QD) with the
normal lead Iy in presence of electron pairing (induced via I'g),
which has a significant influence on the spin-polarized bound
states of the QD. The basic mechanism of this subgap Kondo
effect showing up near the quantum phase transition has been
earlier considered by us in absence of the Rashba nanowire

s Iy

B O IN

Figure 7: Schematic illustration of the quantum dot (QD) coupled be-
tween the metallic (N) and superconducting (S) leads and hybridized
with the Rashba nanowire, hosting the Majorana quasiparticles n{ and
n at its edges.
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[24,57]. Our considerations can be practically verified within
STM geometry [39,40] using magnetic atoms (e.g., Fe) and
side-coupled nonmagnetic atoms (for instance Ag or Au)
deposited on the superconducting substrate (such as Pb or Al)
probed with a conducting STM tip [42].

The topological superconducting phase, hosting the Majorana
modes, can be driven in semiconducting wires [58,59] or in
nanochains of magnetic atoms [39-42] through nearest-neighbor
equal-spin pairing. The efficiency of such p-wave pairing
differs for each spin [47], giving rise to polarization of the
Majorana quasiparticles, with noticeable preference for the 1
sector (see Figure 4). In order to study the correlation effects we
shall assume here a complete polarization of the Majorana
quasiparticles. We thus focus, for simplicity, on the topological
state originating from intersite pairing of only 1 electrons and
consider its interplay with the correlations. Let us remark, how-
ever, that the superconducting lead mixes both the QD spins
with the side-attached Majorana quasiparticle [60]. In conse-
quence we shall observe an interesting and spin-dependent rela-
tionship between the Majorana and Kondo states that could be
probed by the polarized Andreev (particle-to-hole conversion)

mechanism.

Our setup (Figure 7) can be described by the following

Anderson-type Hamiltonian

7/'\( = z (7/'\([3 + 7/'\(B_QD)+ 7/'\lQD + 7/'\ZMQD,
B=S,N

(15)

where 7/‘\(N corresponds to the metallic electrode, 7/:ls refers to
the s-wave superconducting substrate and the correlated QD is
modeled by 7/:(QD = zcsc;'j,a;c +Un iy, where ¢ denotes the
energy level and U stands for the repulsive interaction between
opposite spin electrons. The QD is coupled to both f = N,S
reservoirs through 7/'\[[3—QD = Zkﬁ(Vch}j,ékGB +H.c.) and we
assume a wide bandwidth limit, using the constant couplings I'g.
It can be shown [61-64] that for energies | ® |[< A the super-con-
ducting electrode induces the static on-dot pairing

Hs +Hs-QD = Hyrox = zgdgdc +Un np
(e}
Us (5 50 5ist
—T(dﬂg +djdy).
Taking into account the finite magnitude of superconducting
gap [50] does not affect the main conclusions of our study.

The effective Majorana modes of the nanowire can be modeled
by [65]

Beilstein J. Nanotechnol. 2018, 9, 1370-1380.
~ A A n A A
Hwmaop =ie,mm; +7~(d¢m +Mdy ),

where 1; = ﬁlT are Hermitian operators and g, corresponds to an

overlap between Majoranas. We recast these operators by
the standard fermionic ones [66] 7, :(l/ﬁ)(f+f1')
and M = (-i/ \/5)(]' - er). Finally, the Hamiltonian of Equa-

tion 15 simplifies to

~ o~ o~ o n o T on e

H=HN+HN_QD+zgd;dG+Un¢n¢—7S(de¢+dld+)
(e}

(16)

e ot (0= ) (4 7)o

with the auxiliary coupling ¢, =%/2. The subgap Kondo
physics originates in this model from the Coulomb term Un iﬁT
and the effective spin-exchange interactions due to 7/:(N_QD. It
has been shown [23,24] that under specific conditions the
on-dot pairing can cooperate with the subgap Kondo effect.
This particular situation occurs only near the quantum phase

transition.

Let us examine how the subgap Kondo effect gets along with
the Majorana mode. Earlier studies of the correlated quantum
dot coupled to both normal (conducting) electrodes indicated
that the side-attached Rashba chain leads to a competition be-
tween the Kondo and Majorana states [67-72]. For a suffi-
ciently long wire (g,, = 0) the Kondo effect persists only in the
spin-channel |, whereas for 1 electrons there appears a dip in
the spectral density at ® = 0. The resulting tunneling conduc-
tance is then partly reduced (from the perfect value 2¢%/h) to the
fractional value 3¢%/2h [67,68,71-73]. In contrast, for the short
Rashba wires (with g,, # 0) the Kondo physics persists in both
spin channels.

In our present setup (Figure 7) the correlated quantum dot is be-
tween the metallic and superconducting reservoirs, therefore the
Kondo effect is additionally affected by on-dot pairing. Its in-
fluence is mainly controlled by the ratio U/T's and partly by the
level €, determining whether the QD ground state is in the
spinful or spinless configuration [23,24,62,64,74]. Obviously
the latter one cannot be screened. For instance, for the half-
filled QD (g = —U/2) the spinful (doublet) configuration occurs
in the regime U > I's.

For studying the correlations we adopt perturbative treatment of
the Coulomb potential, treating it self-consistently to the second
order in the normal and anomalous channels [62,75]. Specific
expressions have been provided by us in [24]. Figure 8 shows
the spectral function pg(®) for both spins obtained at zero tem-

perature for the Coulomb potential U, covering the (spinless)

1377



singlet and (spinful) doublet configurations. In the weak inter-
action regime we observe appearance of two YSR states. For
U = T'g these peaks merge, signaling the quantum phase transi-
tion. The Kondo effect shows up only in the correlated limit
(U > T'g), but its spectroscopic signatures are qualitatively dif-
ferent for each of the spins. Leakage of the Majorana quasipar-
ticle suppresses the low-energy states of 1 electrons. We notice
that the initial density (for #,, = 0) is reduced by half, whereas
we observe a constructive influence of the Majorana quasipar-

ticle on opposite-spin | electrons.

06 _U/I‘_Nf4 tm=01rN ]

Py

]

Figure 8: The polarized spectral function ps(w) obtained at zero tem-
perature for the half-filled QD (e = -U/2), ['s = 2Ty, t;; = 0.1y and
several values of the Coulomb potential U (as indicated). Energies are
expressed in units of I'y.

Figure 9 shows evolution of the spectral function py(w) for
various couplings #,,. In the weak-coupling limit we clearly
observe a reduction (by half) of the initial density of states.
With increasing ¢, the spectrum develops the three-peak struc-
ture that is typical for the “molecular” limit. This behavior indi-
cates that the Majorana and Kondo states have rather a compli-
cated relation, which is neither competitive nor cooperative. In
fact, some novel scaling laws have been recently reported by
several authors [69,70,76-79] also considering the correlation
effects directly in the Rashba nanowire.

Conclusion
We have studied the polarized bound states of magnetic impuri-

ties embedded in an s-wave superconducting material, taking

Beilstein J. Nanotechnol. 2018, 9, 1370-1380.

t/TN=0 ——

06 =01 ——

Py

Figure 9: The spectral function p;(w) of the half-filled quantum dot
(e = —UI2) obtained at T =0 for ['g/l'y = 2, UMy = 4 and several values
of tp, (as indicated).

into account the spin—orbit and/or Coulomb interactions.
We have shown that spin—orbit coupling strongly affects the
subgap states, both of the single impurities and their conglom-
erate arranged into a nanoscopic chain. For the case of single
magnetic impurity the spin—orbit interaction (i) shifts the
quantum phase transition towards higher magnetic coupling
Je, (ii) enhances the spatial size of the YSR states, and
(iii) smoothes the particle-hole oscillations. For the magnetic
chain spin—orbit coupling combined with the Zeeman term in-
duce the topologically nontrivial superconducting state and
indirectly give rise to substantial polarization of the Majorana
modes (Figure 4), the oscillations of which show up near the
chain edges (Figure 5). The polarized Majorana quasiparticles
can also leak into other side-coupled objects, such as single or
multiple quantum impurities (Figure 6). These polarized Majo-
rana quasiparticles can be controlled by a magnetic field or by
an electrostatic potential. This would be important for future
quantum computers using qubits based on topologically pro-
tected Majorana states. Finally, we have also confronted the
Majorana quasiparticles with the subgap Kondo effect,
revealing their complex relationship that can be hardly regarded
as competitive or collaborative in some analogy to the Kondo
effect originating from multiple degrees of freedom [80]. The
aforementioned spin-polarized effects can be experimentally
verified by polarized ballistic tunneling or by using STM spec-
troscopy, relying on the selective equal-spin Andreev reflec-
tions.
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The cubic ThTaN3 compound has long been known as a semiconductor with a band gap of approximately 1 eV, but its electronic

properties remain largely unexplored. By using density functional theory, we find that the band gap of ThTaNj is very sensitive to

the hydrostatic pressure/strain. A Dirac cone can emerge around the I point with an ultrahigh Fermi velocity at a compressive strain

of 8%. Interestingly, the effect of spin—orbital coupling (SOC) is significant, leading to a band gap reduction of 0.26 eV in the

ThTaN3 compound. Moreover, the strong SOC can turn ThTaN3 into a topological insulator with a large inverted gap up to

0.25 eV, which can be primarily attributed to the inversion between the d-orbital of the heavy element Ta and the p-orbital of N.

Our results highlight a new 3D topological insulator with strain-mediated topological transition for potential applications in future

spintronics.

Introduction

The ThTaN3 compound generally presents three structural
phases in cubic perovskite (c-PV), hypothetic orthorhombic
perovskite (0-PV GdFeOs-type), and post-perovskite (PPV)
forms [1]. Among them, c-PV ThTaNj3 was first synthesized in
early 1995 [2] and is known to crystallize in the space group
Pm3m with a band gap of approximately 1 eV [1]. Pressure can
induce a phase transition from c-PV to o-PV and PPV accompa-
nied by the transition from a moderate band gap semiconductor
(=1 eV band gap in c-PV) to a small band gap semiconductor
(PPV) in ThTaNj [1]. c-PV ThTaNj has also been proposed as
a potential ground for studying nonlinear optical response [2]

due to its large band gap and non-centrosymmetry. As protons
are found to be significantly stable in nitrides, c-PV ThTaNj3 is
also evaluated as an ideal proton-conducting ceramic [1].
Nevertheless, theoretical understanding of the electronic proper-
ties of ThTaN3 is so far very limited and mainly focused on
pressure-induced phase transition [3]. Therefore, a systematic
study of the electron structure of ThTaNj3 in a certain phase is
highly desired.

Topological insulators (TIs) have attracted much attention due

to their distinct quantum mechanical properties, which makes
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them important in the fields of physics [4,5], chemistry, and
materials science [6]. Tls are materials with a bulk band gap
generated by strong spin—orbit coupling (SOC) that have topo-
logically protected metallic surface states. Although many ma-
terials are theoretically predicted to be TIs [7-11], the experi-
mental realization of TIs is very limited. Therefore, the search
for experimentally synthesized large band gap TIs is of para-
mount importance for their practical application. Theoretically,
the transition from the trival insulator to the topological insu-
lator can be achieved by increasing the SOC or by altering the
lattice parameters [12,13]. A number of compounds [14-25],
such as LaPtBi, LuPtSb, YPdBi [15-18], and HgTe [19,20],
have been studied using a first-principles approach, showing
that they can be turned into TIs under external strain. All these
materials possess heavy elements and the strong SOC can in-
duce a band inversion, which is a typical mechanism for TIs
[26,27].

The experimentally observed pressure-induced phase transition
in ThTaN3 indicates that the electronic structure of 3D ThTaNj3
is likely very sensitive to the external strain. In particular, c-PV
ThTaNj can crystallize in the tetragonal shape with C4 rota-
tional symmetry, which is an ideal platform to study its topolog-
ical properties [28]. The combination of such C4 rotational and
time-reversal symmetry and the heavy elements (Th, Ta) in
ThTaNj3 are expected to substantially alter the electronic band
structure and thus achieve an exotic topological property [26].

By using first-principles calculations, we demonstrate here, for
the first time, that the cubic perovskite ThTaNj3, a relatively
large band gap semiconductor, can turn into a TI under moder-
ate pressure/strain. A Dirac cone can emerge in the ThTaN3y
compound with an ultrahigh Fermi velocity under an 8%
compressive strain. The band gap opening, induced by SOC,
can be as high as 0.25 eV, which is large enough for the realiza-
tion of the quantum spin Hall (QSH) states at room temperature.
In addition, by tuning the SOC strength, we predict that the

(a) crystal structure

(b) PBE

Beilstein J. Nanotechnol. 2018, 9, 1399-1404.

topological feature actually starts to show up at a 5% compres-
sive strain. The strain-mediated topological phase transition in
the perovskite ThTaN3 compound is attributed to band inver-
sion between the d-orbital of the heavy elements and the
p-orbital of the N atom [12,29,30].

Computational Methods
First-principles calculations were performed based on density
functional theory (DFT) as implemented in the plane wave basis
VASP code [31-33]. A generalized gradient approximation
(GGA) in the Perdew, Burke, and Ernzerhof (PBE) form
exchange—correlation functional was used. The hybrid
Heyd—Scuseria—Ernzerhof (HSE06) functional [34,35] was
adopted for the accurate calculation of band structures of 3D
ThTaNj. A plane-wave basis set with an energy cut-off of
500 eV was employed and long range van der Waals dispersion
[36] was incorporated to correct the total energy. The geometry
structures were fully optimized until the maximum energy and
force were less than 107 eV and 0.01 eV/A, respectively. A
Monkhorst—Pack k-point mesh of 7 x 7 x 7 was used for geom-
etry optimization. The SOC effect was also considered in the
calculation. The electron effective mass (m*) of ThTaNj at the
conduction band minimum (CBM) is estimated from the curva-
ture of the electronic band dispersion, that is, the formula

o? )
ok*

where E and k are the band energy and reciprocal lattice vector.
* * %k %
For anisotropic materials, m = Jmi m;my where i, j and k

label the transport direction along the x, y and z-axis.

m*="h

Results and Discussion

The geometry structure of cubic perovskite ThTaN3 was first
fully relaxed as shown in Figure la. It crystallizes in the space
group Pm3m with Cy4 rotational symmetry. The lattice parame-

(¢) HSE (d) PBE+SOC  (e) HSE+SOC

ay (eV)
¥

Ener

V==V IV

A
pad

Figure 1: (a) Top view of ThTaN3 with green, grey, and brown spheres representing Th, N, and Ta atoms, respectively. (b—e) The band structures of
3D cubic ThTaN3 calculated by PBE, HSE, PBE+SOC, and HSE+SOC methods, respectively.
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ters of c-PV ThTaNj were then calculated by using the PBE
functional and the hybrid HSE06 functional methods, respec-
tively. It was found that the PBE functional overestimates the
experimental lattice constants by 1%, whereas the HSE06 can
successfully reproduce the experimentally reported lattice pa-
rameters (4.02 A) [2].

Figure 1 presents the detailed electronic band structure of 3D
ThTaNj for the PBE exchange correlation (Figure 1b) and HSE
hybrid functional (Figure 1c). A small direct band gap of
0.07 eV at the I point is predicted by the PBE functional and
the HSE functional produced a large band gap of 0.76 eV,
which is very close to the experimental measurement (1.0 eV)
[1]. The band gap should exhibit substantial differences
depending on the relative weights of the Hartree—Fock and
traditional LDA or GGA exchange energies in the hybrid func-
tional as well as those of the long range van der Waals interac-
tions. However, we found that the impact of van der Waals
interaction on the band gap of ThTaNj is negligible. Figure 1d
and Figure le present band structures in the presence of the
effect of SOC. Clearly, an energy gap of 0.15 eV and 0.49 eV
were opened by the SOC for the PBE and the HSE functional
methods, respectively. Compared to the HSE result without
SOC (Figure 1c), the band gap reduction is significantly high
(0.26 eV) after the incorporation of SOC.

Then we turned to study the effect of strain [37] on the elec-
tronic structure of ¢c-PV ThTaNj by applying a hydrostatic
strain ranging from —10% (compressive strain) to +15% (tensile
strain) on 3D ThTaN3. As shown in Figure 2d—g, the size of the
direct gap continued to increase as the positive strain was in-
creased. At a strain of 3%, the direct band gap turned to an indi-
rect one and the band gap slightly decreased with further in-
creasing strain. When a compressive strain was exerted into 3D
ThTaNj3, the band gap could be significantly reduced. As shown
in Figure 2a, the energy gap was reduced to 0 eV at a compres-
sive strain of —8%. A Dirac-cone-like band structure [38]
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emerged with an ultrahigh Fermi velocity 6.33 x 10° m/s that is
comparable to that of graphene (1.1 x 10° m/s) [39]. It is very
important to note that the conduction band (CB) of ThTaNj is
very dispersive around the I' point, signifying a very low elec-
tron effective mass. The effective mass of the electron at the I'
point is calculated to be 0.395 me. Such a small electron mass
will greatly improve charge carrier mobility, suggesting great

potential for application of ThTaNj in electronics.

As eluded to above, the effect of SOC on the band gap of
ThTaNj is significant. It is therefore important to further study
the effect of strain on the electronic structure of ThTaN3 in the
presence of SOC (Figure 3). For strain-free ThTaNj3, the band
gap is 0.49 eV as calculated by the HSE+SOC method. The
band gap is reduced approximately 0.26 eV compared to the
HSE result (0.76 eV) without SOC. When an 8% compressive
strain is exerted on the ThTaN3 compound, SOC opens a large
band gap (approximately 0.25 eV) for the Dirac cone as shown
in Figure 3d. It can be seen that under compressive strain, the
SOC gap of ThTaNj can be closed and reopened. In addition,
the shape of the band structure is changed correspondingly, in-
dicating a topological phase transition [40-42]. In order to deter-
mine topological features, we calculated the Z2 topological
index [19,27]. The topological invariant Z, is 1;(0,0,0) for
ThTaN3 under 8% compressive strain, which indicates the
strong topological property (more details including methods and
parities of the relevant bands can be found in Supporting Infor-
mation File 1). We further scrutinized the SOC band structure
of ThTaNj3 (Figure 3¢) and find that the band inversion actually
occurred at a 5% compressive strain. The above results clearly
indicated that we can turn ThTaNj3 into a TI by applying an

external hydrostatic pressure in the presence of SOC.

We further analyzed the orbital-resolved band structure of
ThTaN3 at a lower compressive strain (5%) as shown in
Figure 4. The conduction band (CB) state mainly consisted of
Px> Py and p, orbitals of the N atom, while the valence band

15 (2)8% (b) -5% (©)-3% (d) 0% (€) 3% (f) 5% (9) 7%
s i i ALA VA
d 05 N N - o " N
50.0 —— L N " " 4
Qo5 n N [\ A n
I
A A A MUPVRIVE
15 /
M r RM r RM r RM r RM r RM r RM r R

Figure 2: The modulation of band gap (red line) by hydrostatic and tensile strain (—~8% to +7%) in ThTaN3 by using the HSE method. A Dirac cone
emerges when a —8% strain is added to the ThTaN3 compound. And the green arrow shows that the change from a direct band gap to an indirect
band gap with strain is increased from 3% to 7%. The Fermi level is set at an energy of zero.
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Figure 3: Band structures of ThTaNj3 calculated by the HSE+SOC method under a strain of -8% to 0%. The Fermi level is set to zero.

HSE
Energy(ev)

HSE+SOC
Energy(ev)

Figure 4: Orbital-resolved band structures for ThTaN3 under 5% compressive strain as calculated by the HSE (top panel) and HSE+SOC methods
(bottom panel). The contributions are mainly from py, py, pz of N atoms and dyz, dyy, dy, of Ta atoms. The thicker and thinner lines account for large

and low orbital contributions, respectively.

(VB) state is comprised of the hybridization dyy, dyz, dy,
orbitals of the Ta atom. When the SOC effect was incorporated,
a p—d-type band inversion took place with the reduction of the
band gap, manifesting a topological phase transition due to the

synergistic effects of SOC and lattice strain.

Generally, the topological phase transition can be also directly
observed by modifying the SOC strength [29,30]. To provide a
clear picture of the band inversion or topological phase transi-
tion in ThTaN3 under a 5% compressive strain, we then studied
the electronic structure of 3D cubic perovskite ThTaNj3 at
various SOC strengths as shown in Figure 5a—e. With increas-
ing SOC, the VBM and CBM gradually become closer (see
Figure 5a—¢), and then the gap closed and reopened with a large

portion of band inversion, which can be clearly seen from the

enormous change of the CBM and VBM band shape into
Mexican-hat-like band dispersion, a typical indication of topo-
logical phase transition (see Figure 5e).

Conclusion

In summary, we have systematically studied the electronic
structure in the 3D perovskite ThTaN3 compound. We find the
band gap of ThTaNj is very sensitive to the lattice strain. A
Dirac-cone-like band with an ultrahigh Fermi velocity can
emerge at a compressive strain of 8%. The topological phase
transition can be realized with a large gap (=0.25 eV) opened in
the presence of SOC. Further analysis of orbital contribution in-
dicates p—d band inversion in 3D ThTaNj3. Our results highlight
a new, interesting, 3D, topological insulator material with great

potential for future application in spintronics.
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Figure 5: Band structures for 3D cubic ThTaN3 with a 5% compressive strain as calculated by the HSE+SOC method at different SOC strengths

(0-2.5 times). The Fermi energy level is set to zero.

Supporting Information

Supporting Information File 1

Additional calculations.

The lattice parameters of ThTaN3 under strain, the surface
state of ThTaN3, and the calculation of the topological
invariant number Z2.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-9-132-S1.pdf]
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Several I[IV-VI semiconductor compounds made of heavy atoms, such as Pb;_,Sn,Te, may undergo band-inversion at the L point of

the Brillouin zone upon variation of their chemical composition. This inversion gives rise to topologically distinct phases, charac-

terized by a change in a topological invariant. In the framework of the k-p theory, band-inversion can be viewed as a change of sign

of the fundamental gap. A two-band model within the envelope-function approximation predicts the appearance of midgap inter-

face states with Dirac cone dispersions in band-inverted junctions, namely, when the gap changes sign along the growth direction.

We present a thorough study of these interface electron states in the presence of crossed electric and magnetic fields, the electric

field being applied along the growth direction of a band-inverted junction. We show that the Dirac cone is robust and persists even

if the fields are strong. In addition, we point out that Landau levels of electron states lying in the semiconductor bands can be

tailored by the electric field. Tunable devices are thus likely to be realizable, exploiting the properties studied herein.

Introduction

In 1982, Thouless et al. [1] made a connection between the
quantum Hall effect and a topological invariant, the so-called
first Chern number [2]. The fact that a quantum Hall system
was insulating in the bulk but had a quantized conductivity on
the edge could be related to the non-trivial topology of the band
structure. In 2006, topology came up to stage once again with
the theoretical prediction by Bernevig et al. [3] of a topological
insulating behaviour in a HgTe/CdTe quantum well. The differ-
ence between the latter and the quantum Hall system lies in the

fact that the quantum well required no magnetic field at all, but
just relativistic corrections (Darwin and mass—velocity
interactions) large enough so as to invert the I'q and I'g
bands [4]. The HgTe/CdTe quantum well possesses non-trivial
edge states when a certain width is exceeded. In 2007,
experiments verified this remarkable result and established the
existence of the quantum spin Hall effect [5]. However, no clear
signatures of conductance quantization have been observed yet
[6,7].
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Besides 1I-VI compound semiconductors, such as HgTe, [V-VI
semiconductors support non-trivial edges states as well [8]. In
this regard, Dziawa et al. reported evidence of topological crys-
talline insulator states in Pb—,Sn,Se [9]. High-resolution scan-
ning tunneling microscopy studies of these topological
crystalline insulators provided strong evidence of the coexis-
tence of massless Dirac fermions, protected by crystal
symmetry, with massive Dirac fermions consistent with crystal-
symmetry breaking [10]. Recently, these results have received
further support with the aid of Dirac Landau level spectroscopy
[11,12].

Band-inverted structures were already studied back in the
1980°s and 1990’s under the name of band-inverted junctions,
in which the fundamental gap has opposite sign on each semi-
conductor. A salient feature is the existence of interface states
lying within the gap, provided that the two gaps overlap [13-
17]. These states are protected by symmetry, and are responsi-
ble for the conducting properties of the surface. In IV-VI
heterojunctions, such as PbTe/SnTe, interface states are accu-
rately described by means of a two-band model using the effec-
tive k'p approximation [18,19]. The equation governing the
conduction- and valence-band envelope functions reduces to a
Dirac-like equation after neglecting far-band corrections. In
view of this analogy, exact solutions can be then straightfor-
wardly found by means of supersymmetric [16] or Green’s
function approaches [20]. In the context of symmetry-protected
topological phases, our model can be applied not only to topo-
logical crystalline insulators, like the ones mentioned above [8],
but also to more general three-dimensional topological insula-
tors, such as Bi,Ses, in contact with a trivial insulator [21,22].
In the former case, mirror symmetry makes it possible to define
mirror Chern numbers, which determine the topological crys-
talline phase [8]. In the latter, time-reversal symmetry, parity
and particle-hole symmetry allow us to define a topological
index given by the sign of the Dirac mass [21].

In 1994, Agassi studied the case of a band-inverted junction
with a magnetic field applied parallel to the junction [23]. This
author showed that the Dirac point remains robust upon the ap-
plication of a magnetic field of arbitrary strengths and that the
Landau levels in the continuum split for non-zero values of the
in-plane momentum in the direction perpendicular to the mag-
netic field. By means of the modern theory of symmetry-pro-
tected topological phases, the protection of the Dirac point can
be understood in the case of topological crystalline insulators
from the fact that a magnetic field perpendicular to a mirror
plane renders a system that is still symmetric about that plane
[8]. This is not the case in a magnetic field parallel to the mir-
ror plane, where the Dirac cone turns into the usual relativistic

Landau levels [13,15,24]. Going back to the parallel magnetic

Beilstein J. Nanotechnol. 2018, 9, 1405-1413.

field, Agassi demonstrated that for large values of this in-plane
momentum, the states evolve to the bulk Landau states and the
midgap state becomes the zero Landau level, usual of these
Dirac systems. The reason is that the in-plane momentum per-
pendicular to the magnetic field is proportional to the position
of the Landau orbits. If it becomes very large and the magnetic
length is at the same time small, which happens for large mag-
netic fields, then the orbits do not intersect the junction and they
might not notice that boundary. Hence, the case of most
interest is in the vicinity of low in-plane momentum perpendic-
ular to the field, where the states differ the most from the
Landau levels of the bulk and we can see the effects of the
interface.

In this same topic of external fields applied to band-inverted
junctions, we have recently studied band-inverted junctions
based on IV-VI compounds using a two-band model when an
electric field is applied along the growth direction [25]. We
have demonstrated that the Dirac cone of midgap states is
robust against moderate values of the electric field but Fermi’s
velocity decreases quadratically with the applied field. The aim
of this paper is to characterize electron states in band-inverted
junctions using a two-band model in the presence of crossed
magnetic and electric fields, the former parallel to the junction,
the latter perpendicular to it. We show that the Dirac cone of
midgap states arising in the single-junction configuration is
robust against crossed electric and magnetic fields. In addition,
Landau levels of electron states lying in the semiconductor
bands can be tailored by the electric field. Finally, the elec-
tronic structure of band-inverted junctions when the magnetic
field is applied along the growth direction, parallel to the elec-

tric field, will also be briefly discussed for comparison.

Theoretical model

We consider heterojunctions of IV-VI compound semiconduc-
tors, such as Pb;_,Sn, Te and Pb;_,Sn,Se. The latter are known
to shift from being semiconductors to topological crystalline
insulators due to the band inversion at the L points of the Bril-
louin zone as the Sn fraction increases [8,26,27]. In order to
keep the algebra as simple as possible, we restrict ourselves to
the symmetric heterojunction with same-sized and aligned gaps,
as depicted in Figure 1a. This assumption simplifies the calcula-
tions while keeping the underlying physics [28]. Thus, a single
and abrupt interface presents the following profile for the mag-

nitude of the gap

Eg (z) =2Asgn(z), M

where sgn(z) = |z|/z is the sign function. Here the Z-axis is

parallel to the growth direction [111].
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Figure 1: (a) Lg and Lg band-edge profile of an abrupt band-inverted
junction with aligned and same-sized gaps, located at the XY-plane,
and b) schematic view of the applied electric and magnetic fields.

The envelope functions of the electron states near the band
extrema L and Lg in IV-VI compounds are determined from
the following Dirac-like Hamiltonian [15,16,19]

Hy :m.p%EG (2)B. @

Here @ = (oy, 0, 0;) and B denote the usual 4 x 4 Dirac
matrices, o; =6, ®0c; and f=0c,® 1,, o; and 1, being the
Pauli matrices and n X n identity matrix, respectively. More-
over, v is an interband matrix element having dimensions of
velocity and it is assumed scalar, corresponding to isotropic
bands around the L point. It is worth mentioning that the bands
of IV-VI compounds around the L points are actually
anisotropic. Nevertheless, this anisotropy can be absorbed in the
definition of the dimensionless parameters defined below. That
is, it is possible to consider a direction-dependent velocity, but
it will not change the results shown below, except for a propor-
tionality constant in the definition of the dimensionless in-plane
momenta (see [19,28] for further details). In addition, we focus
on states close to one of the L points of the Brillouin zone [§]
and neglect other valleys in what follows since midgap states
are stable against gap opening by valley mixing. Also notice
that only linear momentum terms are taken into account in
Equation 2 but quadratic momentum terms could have an
impact of the electronic levels [29,30]. However, the two-band
model Hamiltonian (Equation 2) successfully describes the
hybridization of interface states in band-inverted quantum wells
[31], in perfect agreement with more elaborated models includ-
ing quadratic momentum terms [30]. The Hamiltonian (Equa-
tion 2) acts upon the envelope function y(r), which is a four-
component vector composed of the two-component spinors
%+(r) and x—(r) belonging to the Lg and Lg bands. The inter-
face momentum is conserved and the envelope function can be

expressed as y(r) =y(z)exp(ir, -k, ), where it is understood
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that the subscript “_L” in a vector indicates the nullification of
its z-component. In the case of aligned and same-sized
gaps, it is found that ¥(z) ~ exp(—|z|/d), with d =hv/A and
the interface dispersion relation is a single Dirac cone
E(k,)==xhv|k, |, where the origin of energy is taken at the
center of the gaps [20]. v is the group velocity at the Fermi level
in undoped samples and it will be referred to as Fermi velocity
hereafter.

Electron states under crossed electric
and magnetic fields

We now turn to the electronic states of a single band-inverted
junction exposed to a perpendicular electric field F= Fz and a
parallel magnetic field B= By, as shown schematically in
Figure 1b. By choosing the Landau gauge, the vector potential
is given as A(z) = BzX.

The electrostatic potential eFz and the vector potential A(z)
only depend on the z-coordinate. Therefore, p| =7k | is a con-
stant of motion and the envelope function can still be factorized
to the form y(r)=y%(z)exp(ir, -k ;). Now the longitudinal
envelope function %(z) satisfies the following Dirac equation:

[HO +eva-A(z)+er—E}f((Z)=0, 3

where H, is given by Equation 2. To address this problem we
shall follow the Feynman—Gell-Mann ansatz [32] and define a
new four-component vector y(z) as

f((z)=[7'q) +eva-A(z)—er+E]\|1(z), 4)

It is convenient to introduce the following dimensionless quan-
tities k, =k, d, & =z/d, & = E/A, f= eFd/A, and b= eBd* | .
Notice that f/2 is the ratio between the electric potential drop
across the spatial extent of the midgap states d =7%v/ A in the
absence of fields and the magnitude of the fundamental gap 2A.
Similarly, b is the square of the ratio between d and the magnet-
ic length ¢ =<7/ eB . Hereafter we shall consider b > > 0 for
reasons that will become clear shortly. Let us define

2
b—
p:L2 82 _Ki _1+M s
2p u
(©)
s =—ﬁu[§—@}
u

where p = (b2 — f2)"4 is real. Then, inserting the ansatz (Equa-
tion 4) in Equation 3 and taking into account Equation 5, we get
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2 2
{—5—2+%—p+M}w(s)=8(s—s0)/\/\|1(s), (6)
A)

where s = s(& = 0). Here M and N are 4 x 4 matrices given
by

Moo o M=o, )
n

Let us diagonalize the left-hand side of the equation by intro-
ducing a unitary matrix U such that M =U(B/2)U -1 Doing so
and defining W = U'NU and d(s) = U_l\u(s) we obtain

a* §? 1
ds—2+7—p+EB $(s)=5(s—s9)W(s). (3)

In order to solve Equation 8 we shall use the Green’s function
method. The solution to Equation 8 will be given by

o(s) = j ds'G(s,s')S(S'—SO)W(I)(s')
oo (€))

=G (5,50 )WV(sp) »

where the retarded Green’s function G(s,s’) satisfies

% 2 1 '
gty PryB|0s) =851, (o)
A

and G(s,s")—0 as |s|,|s| —o0. Note that G(s,s") is continuous on
the line s = s’. Equation 9 can be particularized for s = sy,
leading to a homogeneous system of equations with non-trivial
solutions existing for energies satisfying the vanishing of the
determinant

det[ 1,~G(s9.50)W]=0. )

Since G(s,s") can be considered as the inverse of the operator
that acts upon it and the latter is diagonal, we may consider
G(s,s") to be block diagonal. Hence,
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where @, is the 2 x 2 null matrix and the scalar functions
g4(s,s") satisty

o s?

——+——p; |G (s,s')zS(s—s’),

R (13)
A

with p, = pF1/2. Since s is real because we have chosen p to
be so, then s2 > 0 and this equation corresponds to a harmonic
oscillator. Notice that this would not be the case if p were imag-
inary as in that case s2 < 0 and we would not have the positive
parabola required for a harmonic oscillator. The solution to this
problem is known to be [33,34]

N 1
e (5) == 31 [p 12()2p a50) 18

where I'(z) is the Gamma function, D,(z) is the parabolic-
cylinder function, s> = max(s,s") and s< = min(s,s"). Now that
we have G(s,s"), it is straightforward to obtain from Equation 11

that g,(s0,50)g—(50.50) = 1%/2. Equivalently

D, (50)D, (~50) Dy (50) Dpy (=50 ) + —2b—

pr*(-p)

=0.(15)

Equation 15 determines the dispersion relation &(k) of midgap
interface states as well as Landau levels lying in the semicon-
ductor bands. It reduces to the result found by Agassi when the
electric field vanishes [23].

Results and Discussion

Energy levels in the absence of electric field

This section is added for completeness and essentially repro-
duces the results found by Agassi [23] for small values of «,.
However, we will be able to give approximate dispersion rela-
tions for the midgap state and the Landau levels that will
provide us with a clearer view of the effect of the magnetic field
in our case of interest. This section then corresponds to the =0
case, where approximate results can be obtained. In fact, these
results are exact when «, = 0, where sy = 0. Let us explore this
last case. Using I'(1 + z) = z['(z) and the Legendre duplication
formula ['(2z)=2**""T(2)['(z+1/2)/Jx, it is straightfor-

ward to obtain from Equation 15

1+2pu2

=0. (16)
p2r2 (_p)

There are now two possibilities, either the numerator goes to

zero or the denominator goes to infinity. If p < 0, it is neces-
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sary to have a numerator equal to zero, which amounts to

having,

v )

This is nothing but a Dirac linear dispersion in the y-direction. It
is remarkable that the Dirac point remains robust for any
strength of b. Taking into account the definition of p, the case
where p < 0 corresponds to |e| < 1 at , = x;, = 0, meaning that
these states lie within the gap.

Let us explore other possibilities. If p = 0, then both the numer-
ator and the denominator are finite, which implies that p = 0 is
not a solution. The other option where p > 0 is only achieved if
the denominator goes to infinity because the numerator is
always positive in this case. For this to happen, p must be a pos-
itive integer. The corresponding energies are the usual Landau
levels of a relativistic particle

8:i1/1+2nb+1<§,,

There is no zero Landau level because the requirement of p > 0

n=12,... (18)

implies [g] > 1 at K, = x,, = 0, that is, Landau levels exist outside
the gap. With this results in mind, we can now turn to the case
where K, # 0, but 5p—0. After some tedious algebra we arrive at
the following expression:

2 2
1+2pp” —syp| n(p)+ =0, (19)

p2F2 (—p) n(P)

where

_p| I(=p2)

R e “

If 59 = 0 we obtain again Equation 16, corresponding to «, = 0.
Now if x, # 0, then either the term in curly brackets is zero or
the prefactor multiplying this term is zero. As before, if the pre-
factor is zero then p is a positive integer. However, that would
imply two possible energies for each integer, but numerically
we will show briefly that this is not the case. Thus, we must
consider the term in curly brackets to be equal to zero. If we
consider b—0, but at the same time k,—0 sufficiently fast so
that sg—0, then it is not difficult to obtain for the states inside

the gap
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2
1—i K2+K2
4

g== YTy,

(2]

whereas for the Landau levels we obtain to lowest order in «,

e=+,1+2nb+x (22)

where c¢(n) results from the expansion around integer values of
pofn(p) + Wl (p) + 2 = c(n)(p — n)"2. For instance, ¢(1) = 2/x,
c(2) = l/zn, ¢(3) = 3/2m,... Before we consider each case, it is
important to mention that the approximation of low b corre-
sponds to the range of interest in experiments since typically d
~ 4.5 nm and as a result b = 0.5 corresponds to a very large
magnetic field of about 16 T.

Let us now consider each case separately. On the one hand,
Equation 21 corresponds to an elliptic cone and for b = 0 we
recover the original Dirac cone. It is not only remarkable, as we
mentioned above, that the Dirac point is robust, but also that the
shape of the dispersion relation remains a cone but slightly
widened in the x-direction, as shown in Figure 2. Hence, the
Fermi velocity becomes anisotropic and can actually be modu-
lated with the magnetic field. It is expected that the application
of an electric field will lead to further reduction of the Fermi
velocity [25]. We will prove later that this is actually the case.

Figure 2: Dirac cones with, b# 0, and without, b = 0, a magnetic field
applied. The original cone is distorted along the x-direction and the
Fermi velocity, i.e., the slope, becomes anisotropic.

In Figure 3a we show a comparison between the Fermi velocity
in the x-direction (recall that it does not change in the y-direc-
tion) given by the numerical evaluation of Equation 15 and the
approximation in Equation 21. The agreement is noteworthy for

low values of b.
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Figure 3: Comparison between exact and approximate results given
by (a) Equation 21 and (b) Equation 22. In panel (a) the Fermi velocity
along the x-direction, calculated as the slope of the dispersion relation,
is substantially reduced and the agreement between the exact and ap-
proximate results is noteworthy up to b < 0.2. In panel (b), the Landau
level splitting in the x-direction is very well predicted even for b = 0.5,
as shown for the first level.

We can now focus on the Landau levels given by Equation 22.
As it can be seen, for non-zero values of «,, each Landau level
at k, = 0 splits into two Landau levels at «, # 0 due to the occur-
rence of a “+”-sign inside the square root. The comparison for
the first Landau level, n = 1, between the approximate result
and the numerical calculations from Equation 15 are shown in
Figure 3b. In contrast to Figure 3a, there is still agreement be-

tween both approaches for a large field of b = 0.5.

Energy levels at finite electric field

Let us now bring our attention to the case of f# 0. In contrast to
the case of /= 0, we have been unable to obtain explicit expres-
sions of the dispersion relation, but the numerics shows remark-
able results. Let us focus first on the midgap states. Since the
magnetic field did not erase the Dirac point and based on
known results of a band-inverted junction under an electric field
[25,28], it seems plausible to argue that the effect of the electric
field will be to enhance the reduction of the Fermi velocity in
the x-direction and to introduce a reduction in the y-direction as
well, leaving however the Dirac point untouched. This is indeed
what we observe and we show our results in Figure 4. The
insets show the Fermi velocity reduction as a function of the
electric field for a fixed value of » = 0.5. It is remarkable how
the Fermi velocity along the x-direction is substantially de-
creased in band-inverted junctions subject to crossed magnetic

and electric fields.

We may now turn to the evolution of the Landau levels as a
function of the electric field. For simplicity, we shall consider
only the first Landau level. It is illustrative to consider first the
evolution of the lowest point of the Landau bands, that is,

Kk, =0. If the electric field is zero, we already know what the

Y T

Figure 4: The additional effect of the electric field leads to a further
reduction of the Fermi velocity in the x-direction and to a reduction
along the y-direction as well. The Dirac point, however, remains
robust. The insets show the Fermi velocity reduction as a function the
electric field for a fixed magnetic field of b = 0.5.

energy will be from the discussion above. However, as we turn
on the electric field, a splitting similar to the one we had with «,
begins to develop. This splitting increases with electric field, up
to a point where it starts decreasing again as f approaches b. In
the limiting case where f—b, the splitting goes to zero, as we
show in Figure 5 for b = 0.5.

15 L 1 L 1 L 1 L 1
10 - e N\ =
—
[a)
o | o 02
w R
0593 014 = B
m -
. 00T T T 71
0.0 0.1 0.2 0.3 04 0.5
0.0 T T T J: T T T T
0.0 0.1 0.2 0.3 0.4 0.5

f

Figure 5: Splitting of the Landau levels at k;, =0 and b=0.5as a
function of the electric field. It is important to note that the Landau
levels move below the band edge due to the bending by the electric
field (see main text for details).

In Figure 5 it may be surprising to see that the Landau bands
shift below the band edge, leading to the apparent and erro-
neous belief that the latter enter the band gap. The effect of the
electric field is to bend the constant band edges shown in

Figure 1a upwards due to the presence of the electrostatic
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potential eF’z, and so the Landau levels of the conduction band
can move towards lower energies as long as the corresponding

wave functions are not inside the band gap in position space.

Finally, it deserves consideration the previous discussion for
low values of k. As we can see in Figure 6, the parabolic
dispersion that we obtained in the y-direction in the absence of
an electric field splits into two parabolic bands. However, it is
more remarkable to see that, instead of obtaining a splitting
similar to that in Figure 3b, the dispersion goes downwards.

0.0653 . . .
a s
@ g ®) F0.06
0.0652 - L
= =
N
% 0.0651 - L -
o 006347 4 Fo.04 X2
w w
0.0632 : : : 0.02
000 002 004 006 0.00 0.02 0.04
K, K,

Figure 6: First Landau level dispersions for b = 0.5 and f=0.499. In
panel (a), the original parabolic dispersion along the y-direction splits
into two parabolic dispersions with energies below the band edge for
the chosen fields, whereas in panel (b), the previously obtained split-
ting in the x-direction is now exclusively downwards.

Electron states under perpendicular
electric and magnetic fields

In the previous sections we considered electron states when the
magnetic field is parallel to the band-inverted junction, as
depicted in Figure 1. For completeness, we now briefly discuss
the salient features of the energy spectrum when the electric and
magnetic fields are both perpendicular to the junction. The
vector potential is then given as A(x) = Bxy in the Landau
gauge and thus B = Bz. Starting from the Dirac Equation 3 with
this vector potential and using the Feynman—Gell-Mann ansatz
(Equation 4), one is led to a two-dimensional Schrodinger equa-
tion in the XZ plane. The resulting equation turns out to be sepa-
rable in the x and z coordinates and can be straightforwardly
solved by Green’s function techniques. At low or moderate
electric and magnetic fields (' < b < 1), the energy levels within
the gap are found to be

e=+ 2nb(l—§f2j, (23)

where n =0, 1,... The above expression resembles the Landau

levels of relativistic particles for an effective dimensionless
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magnetic field bepr = b(1 — 5f/8)2 =~ b(1 — 5f/4). Therefore, the
electric field decreases the Landau level spacing as in the
previous field configuration. There is yet another way of inter-
preting this result. If we undo the change of variables, we obtain
for the energy the usual expression for the Landau levels that
develop from a Dirac cone, the same as in graphene,

E =+vp (F)<J2eBhn (24)
but with a renormalized Fermi velocity,
2
5F
VF(F)EV 1——2 , (25)
8F¢

where Fc = Aled. In [25], it was anticipated that this renormal-
ization of the Fermi velocity in a band-inverted junction with a
perpendicular electric field could be measured by means of
magnetotransport experiments, a prediction that is confirmed

here.

Conclusion

We have studied band-inverted junctions under crossed electric
and magnetic fields, the electric field being applied along the
growth direction. Electron states are described by a spinful two-
band model that is equivalent to the Dirac model for relativistic
electrons. The mass term is half the bandgap and changes its
sign across the junction. For the sake of algebraic simplicity, we
assumed same-sized and aligned gaps, although this is not a
serious limitation to the validity of the results [28].

In the absence of external fields, it is well known that band-
inverted junctions support topologically protected states locat-
ed at the interface. Their energy lies within the common gap of
the two semiconductors and the dispersion relation is a Dirac
cone [13,15,16,20]. The Dirac cone remains even if an electric
field perpendicular to the junction is applied, but it widens and
the Fermi velocity is quadratically reduced with the electric
field [25,28]. In this paper we have proved that electrons with
energy within the gap still behave as massless fermions when an
additional magnetic field parallel to the band-inverted junction
is applied. The original Dirac cone widens only in the direction
perpendicular to the magnetic field but remarkably the disper-
sion relation remains gapless. Hence, the Fermi velocity
becomes anisotropic and the combination of both electric and
magnetic fields allows the Fermi velocity to be finely tuned. In
addition, states lying within the semiconductor bands display
relativistic-like Landau levels that split upon the application of
the magnetic and electric fields. Interestingly, if both fields are

parallel to the growth direction, the Landau level spacing can be
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further reduced by the electric field. We expect that the control
of the Fermi velocity of topologically protected states will have
applications for the design of novel electronic devices based on
topological materials.

Acknowledgements
The authors thank L. Chico and J. W. Gonzalez for helpful
discussions. This work was supported by the Spanish MINECO
under grant MAT2016-75955.

ORCID® iDs

Alvaro Diaz-Fernandez - https://orcid.org/0000-0001-9432-7845
Natalia del Valle - https://orcid.org/0000-0001-7751-5422
Francisco Dominguez-Adame - https://orcid.org/0000-0002-5256-4196

References

1. Thouless, D. J.; Kohmoto, M.; Nightingale, M. P.; den Nijs, M.
Phys. Rev. Lett. 1982, 49, 405. doi:10.1103/PhysRevLett.49.405

2. Kane, C.L.; Mele, E. J. Phys. Rev. Lett. 2005, 95, 146802.
doi:10.1103/PhysRevLett.95.146802

3. Bernevig, B. A.; Hughes, T. L.; Zhang, S.-C. Science 2006, 314, 1757.
doi:10.1126/science.1133734

4. Chu, J.; Sher, A. Physics and Properties of Narrow Gap
Semiconductors; Springer: Berlin, Germany, 2008; p 157.

5. Konig, M.; Wiedmann, S.; Briine, C.; Roth, A.; Buhmann, H.;
Molenkamp, L. W.; Qi, X.-L.; Zhang, S.-C. Science 2007, 318, 766.
doi:10.1126/science.1148047

6. Gusev, G. M.; Kvon, Z. D.; Shegai, O. A.; Mikhailov, N. N.;
Dvoretsky, S. A.; Portal, J. C. Phys. Rev. B 2011, 84, 121302.
doi:10.1103/PhysRevB.84.121302

7. Grabecki, G.; Wrébel, J.; Czapkiewicz, M.; Cywinski, £.;
Gierattowska, S.; Guziewicz, E.; Zholudev, M.; Gavrilenko, V.;
Mikhailov, N. N.; Dvoretski, S. A.; Teppe, F.; Knap, W.; Dietl, T.
Phys. Rev. B 2013, 88, 165309. doi:10.1103/PhysRevB.88.165309

8. Hsieh, T. H.; Lin, H.; Li, J.; Duan, W.; Bansil, A.; Fu, L. Nat. Commun.
2012, 3, 982. doi:10.1038/ncomms1969

9. Dziawa, P.; Kowalski, B. J.; Dybko, K.; Buczko, R.; Szczerbakow, A,;
Szot, M.; Lusakowska, E.; Balasubramanian, T.; Wojek, B. M,;
Berntsen, M. H.; Tjernberg, O.; Story, T. Nat. Mater. 2012, 11, 1023.
doi:10.1038/nmat3449

10.Okada, Y.; Serbyn, M.; Lin, H.; Walkup, D.; Zhou, W.; Dhital, C;

Neupane, M.; Xu, S.; Wang, Y. J.; Sankar, R.; Chou, F.; Bansil, A;;
Hasan, M. Z.; Wilson, S. D.; Fu, L.; Madhavan, V. Science 2013, 341,
1496. doi:10.1126/science.1239451

.Serbyn, M,; Fu, L. Phys. Rev. B 2014, 90, 035402.

doi:10.1103/PhysRevB.90.035402

12.Phuphachong, T.; Assaf, B. A.; Volobuev, V. V.; Bauer, G.;
Springholz, G.; de Vaulchier, L.-A.; Guldner, Y. Crystals 2017, 7, 29.
doi:10.3390/cryst7010029

13.Volkov, B. A.; Pankratov, O. A. Sov. Phys. - JETP 1985, 42, 178.

14.Korenman, V.; Drew, H. D. Phys. Rev. B 1987, 35, 6446.
doi:10.1103/PhysRevB.35.6446

15.Agassi, D.; Korenman, V. Phys. Rev. B 1988, 37, 10095.
doi:10.1103/PhysRevB.37.10095

16. Pankratov, O. A. Semicond. Sci. Technol. 1990, 5, S204.
doi:10.1088/0268-1242/5/3S/045

1

-

Beilstein J. Nanotechnol. 2018, 9, 1405-1413.

17.Kolesnikov, A. V.; Silin, A. P. J. Phys.: Condens. Matter 1997, 9,
10929. doi:10.1088/0953-8984/9/49/012

18. Kriechbaum, M. Envelope Function Calculations for Superlattices. In
Two-Dimensional Systems: Physics and New Devices; Bauer, G.;
Kuchar, F.; Heinrich, H., Eds.; Springer: Berlin, Germany, 1986;
pp 120-129.

19.Ando, Y,; Fu, L. Annu. Rev. Condens. Matter Phys. 2015, 6, 361.
doi:10.1146/annurev-conmatphys-031214-014501

20.Dominguez-Adame, F. Phys. Status Solidi B 1994, 186, K49.
doi:10.1002/pssb.2221860231

21.Zhang, F.; Kane, C. L.; Mele, E. J. Phys. Rev. B 2012, 86, 081303.
doi:10.1103/PhysRevB.86.081303

22.Tchoumakov, S.; Jouffrey, V.; Inhofer, A.; Bocquillon, E.; Plagais, B.;
Carpentier, D.; Goerbig, M. O. Phys. Rev. B 2017, 96, 201302.
doi:10.1103/PhysRevB.96.201302

23.Agassi, D. Phys. Rev. B 1994, 49, 10393.
doi:10.1103/PhysRevB.49.10393

24.Pankratov, O. A.; Pakhomov, S. V.; Volkov, B. A. Solid State Commun.
1987, 61, 93. doi:10.1016/0038-1098(87)90934-3

25.Diaz-Fernandez, A.; Chico, L.; Gonzalez, J. W.; Dominguez-Adame, F.
Sci. Rep. 2017, 8, 8058. doi:10.1038/s41598-017-08188-3

26. Assaf, B. A.; Phuphachong, T.; Volobuev, V. V.; Inhofer, A.; Bauer, G.;
Springholz, G.; de Vaulchier, L. A.; Guldner, Y. Sci. Rep. 2016, 6,
20323. doi:10.1038/srep20323

27.Xu, S.-Y.; Liu, C.; Alidoust, N.; Neupane, M.; Qian, D.; Belopolski, |.;
Denlinger, J. D.; Wang, Y. J.; Lin, H.; Wray, L. A.; Landolt, G;
Slomski, B.; Dil, J. H.; Marcinkova, A.; Morosan, E.; Gibson, Q.;
Sankar, R.; Chou, F. C.; Cava, R. J.; Bansil, A.; Hasan, M. Z.
Nat. Commun. 2016, 7, 12505. doi:10.1038/ncomms 12505

28.Diaz-Fernandez, A.; Dominguez-Adame, F.
Phys. E (Amsterdam, Neth.) 2017, 93, 230.
doi:10.1016/j.physe.2017.06.026

29. Kriechbaum, M.; Ambrosch, K. E.; Fantner, E. J.; Clemens, H.;
Bauer, G. Phys. Rev. B 1984, 30, 3394.
doi:10.1103/PhysRevB.30.3394

30.Buczko, R.; Cywinski, t.. Phys. Rev. B 2012, 85, 205319.

doi:10.1103/PhysRevB.85.205319

.Diaz-Fernandez, A.; Chico, L.; Dominguez-Adame, F.

J. Phys.: Condens. Matter 2017, 29, 475301.

doi:10.1088/1361-648X/aa91a6

32.Feynman, R. P.; Gell-Mann, M. Phys. Rev. 1958, 109, 193.
doi:10.1103/PhysRev.109.193

33. Dominguez-Adame, F. Europhys. Lett. 1991, 15, 569.
doi:10.1209/0295-5075/15/6/001

34.Glasser, M. L.; Nieto, L. M. Can. J. Phys. 2015, 93, 1588.
doi:10.1139/cjp-2015-0356

3

=

1412


https://orcid.org/0000-0001-9432-7845
https://orcid.org/0000-0001-7751-5422
https://orcid.org/0000-0002-5256-4196
https://doi.org/10.1103%2FPhysRevLett.49.405
https://doi.org/10.1103%2FPhysRevLett.95.146802
https://doi.org/10.1126%2Fscience.1133734
https://doi.org/10.1126%2Fscience.1148047
https://doi.org/10.1103%2FPhysRevB.84.121302
https://doi.org/10.1103%2FPhysRevB.88.165309
https://doi.org/10.1038%2Fncomms1969
https://doi.org/10.1038%2Fnmat3449
https://doi.org/10.1126%2Fscience.1239451
https://doi.org/10.1103%2FPhysRevB.90.035402
https://doi.org/10.3390%2Fcryst7010029
https://doi.org/10.1103%2FPhysRevB.35.6446
https://doi.org/10.1103%2FPhysRevB.37.10095
https://doi.org/10.1088%2F0268-1242%2F5%2F3S%2F045
https://doi.org/10.1088%2F0953-8984%2F9%2F49%2F012
https://doi.org/10.1146%2Fannurev-conmatphys-031214-014501
https://doi.org/10.1002%2Fpssb.2221860231
https://doi.org/10.1103%2FPhysRevB.86.081303
https://doi.org/10.1103%2FPhysRevB.96.201302
https://doi.org/10.1103%2FPhysRevB.49.10393
https://doi.org/10.1016%2F0038-1098%2887%2990934-3
https://doi.org/10.1038%2Fs41598-017-08188-3
https://doi.org/10.1038%2Fsrep20323
https://doi.org/10.1038%2Fncomms12505
https://doi.org/10.1016%2Fj.physe.2017.06.026
https://doi.org/10.1103%2FPhysRevB.30.3394
https://doi.org/10.1103%2FPhysRevB.85.205319
https://doi.org/10.1088%2F1361-648X%2Faa91a6
https://doi.org/10.1103%2FPhysRev.109.193
https://doi.org/10.1209%2F0295-5075%2F15%2F6%2F001
https://doi.org/10.1139%2Fcjp-2015-0356

License and Terms

This is an Open Access article under the terms of the
Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which

permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of
Nanotechnology terms and conditions:
(https://www.beilstein-journals.org/bjnano)

The definitive version of this article is the electronic one
which can be found at:
doi:10.3762/bjnano.9.133

Beilstein J. Nanotechnol. 2018, 9, 1405-1413.

1413


http://creativecommons.org/licenses/by/4.0
https://www.beilstein-journals.org/bjnano
https://doi.org/10.3762%2Fbjnano.9.133

( J BEILSTEIN JOURNAL OF NANOTECHNOLOGY

Robust topological phase in proximitized core—shell
nanowires coupled to multiple superconductors

Tudor D. Stanescu’, Anna Sitek?:3 and Andrei Manolescu™

Full Research Paper

Address:

Department of Physics and Astronomy, West Virginia University,
Morgantown, WV 26506, USA, 2Department of Theoretical Physics,
Faculty of Fundamental Problems of Technology, Wroclaw University
of Science and Technology, Wroclaw, 50-370, Poland and 3School of
Science and Engineering, Reykjavik University, Menntavegur 1,
1S-101 Reykjavik, Iceland

Email:
Andrei Manolescu” - manoles@ru.is

* Corresponding author
Keywords:

core—shell nanowires; Majorana states; multiple 1D chains; prismatic
geometry; topological superconducting phase

Abstract

Beilstein J. Nanotechnol. 2018, 9, 1512—-1526.
doi:10.3762/bjnano.9.142

Received: 03 December 2017

Accepted: 13 April 2018

Published: 22 May 2018

This article is part of the Thematic Series "Topological materials".

Guest Editor: J. J. Palacios

© 2018 Stanescu et al.; licensee Beilstein-Institut.
License and terms: see end of document.

We consider core—shell nanowires with prismatic geometry contacted with two or more superconductors in the presence of a mag-

netic field applied parallel to the wire. In this geometry, the lowest energy states are localized on the outer edges of the shell, which

strongly inhibits the orbital effects of the longitudinal magnetic field that are detrimental to Majorana physics. Using a tight-binding

model of coupled parallel chains, we calculate the topological phase diagram of the hybrid system in the presence of non-vanishing

transverse potentials and finite relative phases between the parent superconductors. We show that having finite relative phases

strongly enhances the stability of the induced topological superconductivity over a significant range of chemical potentials and

reduces the value of the critical field associated with the topological quantum phase transition.

Introduction

The intense ongoing search for Majorana zero modes (MZMs)
in solid states systems is motivated, in part, by the perspective
of using them as a platform for fault-tolerant topological quan-
tum computation [1-4]. Several practical realizations of “syn-
thetic” topological superconductors that host zero-energy Majo-
rana modes have been proposed in the past few years, the most
promising involving semiconductor-superconductor hybrid
systems [5-9]. The basic idea [10-13] is to proximity-couple a
semiconductor nanowire with strong Rashba-type spin-orbit

coupling (e.g., InSb or InAs) to a standard s-type supercon-
ductor (e.g., NbTiN or Al) in the presence of a longitudinal
magnetic field. The system is predicted to host zero-energy
Majorana modes localized at the two ends of the nanowire
[5,7,8]. These zero-energy states combine equal proportions of
electrons and holes and are created by second quantized opera-
tors satisfying the “Majorana condition” y = y. The topological
character of these modes endows them with robustness against

perturbations that do not close the superconductor gap, e.g.,
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weak interactions, wire bending, a certain amount of disorder,
etc.

The most straightforward experimental signature of a Majorana
mode is a zero-bias conductance peak that is produced in a
charge transport measurement by tunneling electrons between
the semiconductor wire and external electrodes attached to its
ends [14-24]. These experiments have provided strong indica-
tions regarding the presence of Majorana bound states at the end
of the wire, but no clear evidence of a phase transition to the
topological phase, as revealed by the closing of the bulk quasi-
particle gap [10-13], or evidence of correlated features at the
opposite ends of the wire [25].

Ideally, the MZMs are hosted by a one-dimensional (1D)
p-wave superconductor. However, the experimental realization
and detection of these modes involve 3D nanowires [26]. The
most common materials are InSb and InAs due to their large
g-factor and strong SOC. The wires are grown by bottom-up
methods and have usually a prismatic shape with a hexagonal
cross section, as determined by the crystal structure [27]. The
finite cross section of the wires used in the experiments may
generate additional phenomena, which are not captured by ideal
1D models. In particular, the orbital effects of the magnetic
field, which is oriented parallel to the nanowire, may reduce or
even destroy the stability of the Majorana modes [28].

Proximitized core—shell nanowires are slightly more complex
systems recently shown [29] to have interesting Majorana
physics that is practically immune to orbital effects. With a
conductive shell and an insulating core, such heterostructures
become tubular conductors. The prismatic shape of the
core—shell wires implies that the cross section of the shell can
be seen as a polygonal ring. This is an interesting geometry
because the corners of the polygon act like quantum wells
where the states with the lowest energies are localized. Further-
more, a group of states with higher energies is localized on the
sides of the polygon [30]. Although most of the core—shell
nanowires have a hexagonal profile, square [31] or triangular
[32-36] cross sections can also be obtained. The core diameter
is typically between 50-500 nm and the shell thickness is be-
tween 1-20 nm. For all these geometries, the edge states corre-
sponding to corner localization represent better approximations
of the ideal 1D limit than the states hosted by a full wire.
Remarkably, the energy separation between the corner states
and the side states increases when the shell thickness is narrow
compared to the radius of the wire, and when the corners are
sharp. This means that the triangular shell would be the best
choice for the realization of 1D edge channels. For example,
with a shell thickens of 8-10 nm and a radius of 50 nm the

energy separation between corner and side states can be be-
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tween 50—100 meV [29,37]. In this case the corner states are
extremely robust to orbital effects of the magnetic field and the
low-energy subspace is well separated from higher-energy
states. Another interesting aspect of a prismatic shell is that it
can host several Majorana states at each end of the wire. One
can actually view the wire as a set of n coupled chains, each
having a pair of Majorana modes at its ends. On the one hand,
this results in a rich phase diagram [29], which means that
core—shell nanowires provide an interesting playground for
studying topological quantum phase transitions. On the other
hand, this richness is associated with rather fragile topological
phases [29]. In practice, it would be extremely useful to have a
knob enabling one to control the robustness of topological

superconducting phase.

In this work we show that coupling a core—shell nanowire to
two or more parent superconductors with non-vanishing rela-
tive phases enhances the stability of the topological phase and
lowers the critical magnetic field associated with the (lowest
field) topological quantum phase transition. In principle the
phase difference between superconductors can be achieved
either by applying an additional magnetic field, i.e., other than
the longitudinal field needed for the Zeeman energy, or by
driving a supercurrent through the superconductors. Hence, by
controlling the relative phases of the parent superconductors
coupled to the wire one can stabilize the topological supercon-
ducting phase that hosts the zero-energy Majorana modes and
one can obtain an additional experimental knob for exploring a
rich phase diagram and observing potentially interesting low-
energy physics.

The rest of this article is organized as follows. We first describe
the coupled-chains tight binding model that we use in our nu-
merical analysis. Then, using this simple model, we study the
topological phase diagram of (infinite) core—shell wires with
triangular and square cross section coupled to superconductors
having the same superconducting phase. Next, we show that a
finite phase difference can stabilize the topological phase in
both triangular and square geometries. In addition, we show that
the critical field associated with the (low-field) topological
quantum phase transition can be made arbitrarily low. The
implications of these findings for the stability of the Majorana
modes emerging in finite wires is discussed in the subsequent
section. Next, we corroborate our results for the topological
phase diagram using an alternative “geometric” model. Finally,

we summarize our findings and present our main conclusions.

The Coupled-chains Tight-binding
Model

We start by formulating the effective thigh-binding model that
describes the low-energy physics of a core—shell nanowire with
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n edges. The model has already been introduced for triangular
core—shell nanowires in [29] (Appendix), and also previously
considered by other authors, in different forms, for ladder
systems [38,39]. A “coarse-grained” shell is modeled by one
chain associated with each vertex and one or more chains corre-
sponding to each side, as shown in Figure 1. Note that the
minimal model for a nanowire with n edges consists of 2n
coupled chains (n for vertexes and n for sides), but more
detailed representations can be obtained by increasing the num-
ber of chains associated with the sides. A model that takes into
account the details of the internal geometry of the wire [29] will
be used later in the paper to corroborate the results obtained
with this simple tight-binding model. In the numerical calcula-
tions we use minimal tight-binding models consisting of 6 (for
triangular wires) or 8 (for square wires) parallel chains. Note
that the odd chains, ¢ = 1,3,..
the even chains, ¢ =2.4,..., represent the sides.

., correspond to the corners, while

" O @
¢ ®

® - ®

15

iy

/ng

Figure 1: Schematic representation of the chain model for triangular
(left) and square (right) core—shell nanowires. The shell (yellow) is
coarse-grained so that the vertices and the sides are represented by
1D chains (red circles). The arrows indicate the direction of the effec-
tive spin-orbit field n, associated with the (longitudinal) Rashba spin-
orbit coupling. In a minimal model each side is represented by one
chain (left); a more detailed representation can be obtained by adding
more chains associated with the sides (right).

Consider now 2n 1D coupled chains proximity-coupled to one
or more s-wave superconductors. The superconducting prox-
imity effect is incorporated through the pairing potential Ay,
1 < ¢ < 2n associated with each chain. Note that, in principle,
the induced pairing potential may be chain-dependent. The low-
energy physics of the hybrid structure is described by the
following Bogoliubov—de Gennes (BdG) Hamiltonian:

H= —t.z (cLMGCifc +h.c.)—t"z (c;r“lccl-gc +h.c.)

il e
(even)
+4Z [Vetr (£)-1] efyotito + So_z Y. lioCito
o ey "
+%%[“C§+w (6-mp)cyp +a'cly,16.ci0+ h.c}
s Z;,ng&z Gt Zé: (AECLTC;LQ + ATCiCipp ) ,
Lt L
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where c;y is the annihilation operator for an electron with spin
projection o localized on the lattice site i of the chain ¢ and
cio =(CimsCiny )T is the corresponding spinor operator. The first
two terms in Equation 1 represent the nearest-neighbor hopping
along the chains, with characteristic energy ¢, and the inter-
chain coupling, with characteristic energy #. In the summations
over the chain index / we use the convention 2n + 1 = 1. The
third term of the Hamiltonian (Equation 1) contains a chain-de-
pendent effective potential Ve /) that incorporates the pres-
ence of various external electrostatic fields (e.g., gate potentials)
and the chemical potential p. Note that, in general, V(7))
breaks the n-fold rotation symmetry of the original nanowire.
The term proportional to gy accounts for the fact that the side
states have higher energies than the corner states and the param-
eter gy > 0 controls the energy gap between the two types of
states. The next term represents the Rashba type spin-orbit cou-
pling (SOC), with longitudinal and transverse components
proportional to a and o', respectively. The underlying assump-
tion is that the spin-orbit coupling is generated by an effective
potential in the shell region due to the presence of the core [29].
The corresponding direction of the spin-orbit field n, for elec-
trons moving along the wire is shown in Figure 1. The next
term in Equation 1, I'g = gu;B, corresponds to the Zeeman spin
splitting generated by an external magnetic field applied parallel
to the wire (e.g., along the z-axis). The last term describes the
proximity-induced pairing and takes into account the possibili-
ty that pairing potential A, be chain-dependent. We assume that
the vertex regions are covered by n different superconductors
separated by gaps over the side regions. The corresponding
proximity-induced pairing potentials are

0 if /is even,

Ay = .
"7 Ae if 2is odd,

2

where ¢, the phase of the superconductor coupled to the vertex
/, is an experimentally-controllable quantity. In the numerical
calculations presented below we use the following values
for the model parameters: ¢t = 5.64 meV, t' = 1.41 meV (or
t' = 2.25 meV, when explicitly specified), o = 2.0 meV,
a' = 0.5 meV, gg = 15.0 meV, and A = 0.3 meV.

To determine whether a given superconducting phase is topo-

logically trivial or not, we calculate the Z, topological index

M, i.e., the Majorana number [1],

M :sign[PfB(O)]sign[PfB(n)]. 3)

The trivial and topological superconducting phases are charac-
terized by M = +1 and M = —1, respectively. In Equation 3
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PA]...] represents the Pfaffian [40], while the antisymmetric
matrix B(k) is the Fourier transform of the Hamiltonian (Equa-
tion 1) in the Majorana basis. The matrix B(k) can be
constructed using the particle-hole symmetry of the BdG
Hamiltonian [8,41],

TH(K)T ' =H (k). @

where H (k) is the Fourier transform of the (single particle)
Hamiltonian corresponding to Equation 1 and 7 = UK is the
antiunitary time-reversal operator, with U; a unitary operator
and K the complex conjugation. Explicitly, we have

B(A)=H(A)U, 5)

where A = 0, n/a are the time-reversal invariant points charac-
terized by the property H(—A) = H(A). The antisymmetry of
B(k) at the time-reversal invariant points, BT(A) = —B(A), is a
direct consequence of Equation 4 and Equation 5. Considering
that for typical parameter values the Pfaffian is always positive
at the boundary of the Brillouin zone, sign[PfB(n)] = +1, we
conclude that the topological phase boundary is determined by a
sign change of PfB(0). Finally, using the general relation be-
tween the Pfaffian of a skew matrix 4 and its determinant,
[Pf(4)]? = Det(4), we have DetH (0) = [PfB(0)]%. Note that
DetH(0) = 0 signals the presence of gapless states. Thus, the
phase boundary, which corresponds to a sign change of the
Pfaffian, is accompanied by the closing of the quasiparticle gap
atk=0.

Results and Discussion
Nanowire coupled to superconductors with

no relative phase difference

The emergence of topological superconductivity and zero-
energy Majorana bound states in core—shell nanowires coupled
to a single superconductor (i.e., in the absence of supercon-
ducting phase differences) was discussed in [29]. Here, we sum-
marize the main results, as revealed by the simplified tight-
binding model given by Equation 1. First, we consider a
triangular system without a symmetry-breaking potential,
Vesf(£) = 0, and no superconducting phase difference, ¢, = 0.
The corresponding topological phase diagram (as function of
the chemical potential and the applied Zeeman field) is shown
in panel (A) of Figure 2. The white regions correspond to
M = +1 (i.e., topologically trivial phases), while the orange
areas represent topologically nontrivial phases with M = —1.
The effect of a symmetry-breaking potential is illustrated in
panel (B) of Figure 2. While the topology of the phase diagram

is the same, the phase boundaries are modified significantly

Beilstein J. Nanotechnol. 2018, 9, 1512-1526.

with respect to panel (A). We note that this result was obtained
by applying a rather modest symmetry breaking potential with
values Vegr=(0.67, 0.17, -0.33, —0.33, —0.33, 0.17) meV on the

six chains.

1
S \
0.8
H
= 0.6&
3=
S04
£
302
N (A) [ 11
0
1
éo.g /
%06\ ‘/eff:l'é 0
3=
g 0.4\
£ —
302
N (B) I 11
=% 52 48 —4.4

Chemical potential (meV)

Figure 2: (A) Topological phase diagram for a triangular wire with
Vesf(#) = 0 and ¢, = 0. The white areas are topologically trivial and the
orange regions are nontrivial. The 4-star symbols indicate gapless
superconducting phases. (B) Topological phase diagram for a trian-
gular wire with Veg( ) # 0 and ¢, = 0. The values of the effective
potential on the 6 chains are (0.67, 0.17, —0.33, —0.33, —-0.33, 0.17)
meV. The evolution of the (minimum) quasiparticle gap along the cuts |
(blue lines) corresponding to p = -5.4 meV and Il (red lines) corre-
sponding to p = -4.4 meV are shown in Figure 3 and Figure 4, respec-
tively. See also [29].

To get further insight into the nature of the phases shown in
Figure 2, we calculate the minimum quasiparticle energy
Emin(p,T'p) along the constant chemical potential cuts I (blue)
and II (dark red) marked on the phase diagrams. This energy
(which corresponds to the minimum quasiparticle gap) is

defined as

Emin (“’FB) = iIninn,k |En (k)| ’ (6)

where E, (k) are the eigenvalues of the BdG Hamiltonian from
Equation 1. The dependence of E\,j, on the Zeeman field for
n=-5.4 meV (i.e., the blue cuts I in Figure 2) is shown in
Figure 3, while the evolution of the minimum gap along the cuts
I (dark red) corresponding to p = —4.4 meV is shown in
Figure 4.

At zero Zeeman field, 'y = 0, the system is in a trivial

superconducting phase characterized by a quasiparticle gap
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Figure 3: Dependence of the minimum quasiparticle gap on the
Zeeman field along the blue cuts (I) corresponding to p = =5.4 meV in
Figure Figure 2. Top: Ver( /) = 0, see Figure 2A. Bottom: Veg( /) # 0,
see Figure 2B. The white/orange regions correspond to the trivial/
nontrivial phases shown in Figure 2. Note the gapless supercon-
ducting phase marked be the 4-star symbol (top panel). See also [29].
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Figure 4: Dependence of the minimum quasiparticle gap on the
Zeeman field along the dark red cuts (1) corresponding to

u =-4.4 meV in Figure 2. Top: Veg( /) = 0, see Figure 2A. Bottom:
Vesi(£) # 0, see Figure 2B. The white/orange regions correspond to the
trivial/nontrivial phases shown in Figure 2. Note the gapless supercon-
ducting phase marked be the 4-star symbol (top panel). See also [29].

A = 0.3 meV (see Figure 3 and Figure 4) given by the value of
the induced pairing potential. With increasing I, the quasipar-
ticle gap reduces and eventually closes at a certain critical
Zeeman energy. In the absence of a symmetry breaking poten-
tial, the system with p = —5.4 meV (see cut (I-A) in Figure 2)
remains gapless throughout the first (i.e., low-field) orange
region, which means that the system becomes a gapless super-
conductor. Another gapless superconducting phase corresponds

to the intermediate white region in panel (II-A) of Figure 4, i.e.,
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for Zeeman fields between approximately 0.55 meV and
0.85 meV. These gapless phases are marked by a 4-star symbol
in the phase diagram (see Figure 2A) and in Figure 3(I-A) and
Figure 4(I1-A). We note that inside the gapless superconducting
phases the gap closes at k£ # 0. Of course, at the phase bound-
aries the gap always closes at £ = 0. Furthermore, by increasing
the Zeeman energy above 0.7 meV in panel (I-A) of Figure 3 or
above 0.85 meV in panel (II-A) of Figure 4, the system evolves
into topological phase with a finite gap.

Upon breaking the three-fold rotation symmetry of the original
triangular wire, the gapless superconducting phases become
gapped. Also notice in panel (II-B) that the low-field topolog-
ical phase corresponding to p = —4.4 meV is now characterized
by a sizable quasiparticle gap, indicating a regime which may
be more favorable for robust zero-energy Majorana modes. We
note that the robust low-field topological phase in panel (II-B)
corresponds to a single pair of Majorana modes (i.e., one MZM
at each end of the wire) hosted by chain 1 (with the highest
value of Vegr, while the narrow low-field topological phase in
panel (I-B) corresponds to a pair of Majorana modes shared by
chains 2 and 3 (the chains with the lowest value of the
potential). Note that the expression “hosted by chain 1” (or
chains 2 and 3) actually means that most of spectral weight as-
sociated with the Majorana wave function is localized on the
corresponding chain(s) (also see below, Figure 11 and
Figure 13). The wide trivial region above I'3 = 0.4 meV in panel
(I-B) corresponds to a finite system with two pairs of Majorana
bound states (on chains 2 and 3). We also note that the low-field
phase boundaries converge to a single boundary in the limit of
isolated chains, i.e., when the inter-chain hopping energy is
much smaller than the hopping along the chains, #/t — 0. In this
case three Majorana pairs would form independently at the ends
of each chain, and coexist at zero energy, without “talking” to
each other. Physically, the limit ¢/t — 0 corresponds an infi-
nitely-thin shell. For finite values of #'/¢ (corresponding to finite
shell thicknesses), the coupling between chains lifts the degen-
eracy, such that at most one Majorana state can have zero

energy, while the other two will acquire finite energy.

The existence of gapless superconducting phases in systems
with rotation symmetry is generic, i.e., it holds for n > 3. We
emphasize that gapless phases cannot host stable Majorana
modes and, therefore, they are not suitable for studying Majo-
rana physics. Applying a symmetry-braking potential
Verr(£) # 0 opens a finite gap throughout the entire phase
diagram, except, of course, the phase boundaries, where the
quasiparticle gap vanishes at k£ = 0. To better illustrate this
point, we calculate the topological phase diagram for a square
wire with Veg( ¢) # 0 and the minimum gap along a representa-

tive cut through the phase diagram. The results are shown in
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Figure 5. Note that all topologically trivial and nontrivial phases
are gapped. However, the gaps are rather small indicating the
fact that topological superconductivity (and the corresponding
Majorana modes) are not very robust.
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Figure 5: (A) Topological phase diagram for a square wire with
Vei(¢) # 0 and ¢y = 0. The white areas are topologically trivial and the
orange regions are nontrivial. The values of the effective potential on
the 8 chains are (0.5, 0, —0.5, 0.5, -0.5, 0, 0.5, 0.5) meV and the
inter-chain hopping is t' = 2.25 meV. (B) Evolution of the minimum
quasiparticle gap along the horizontal cut I' = 0.35 meV shown in the
top panel.

An important difference between the phase diagram shown in
Figure 5 and that in Figure 2 is that for the square wire we have
used a larger value of the inter-chain hopping, ¢’ = 2.25 meV.
Enhancing the coupling between chains widens the low-field
topological regions (which would practically vanish in the limit
t'/t — 0). Finally, we emphasize that although a finite system
with parameters corresponding to a topologically nontrivial
phase will support one pair of MZMs (i.e., one Majorana mode
at each end of the wire), generically each Majorana mode is
hosted by multiple chains (rather than a single chain). For ex-
ample, in a configuration corresponding to Figure 5, the low-
field topological phases with u< 3.7 meV can support MZMs
hosted by chains 3 and 5 (with minimum values of Vg /),
while for p > 3.7 meV the MZMs are hosted by chains 1 and 7
(corresponding to the maximum values of Vgl /).

Wires coupled with multiple superconductors:
the stabilizing role of the phase difference

A critical question that we want to investigate concerns the
effect of a nonzero superconducting phase difference in a wire

coupled to multiple parent superconductors. A non-zero phase
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difference was shown to stabilize the topological phase in a
Josephson junction across a 2D electron gas with Rashba spin-
orbit coupling and in-plane magnetic field [42] and in a topo-
logical insulator nanoribbon coupled with two superconductors
[43]. Here, for concreteness, we consider a triangular core—shell
nanowire modeled by six chains, as described above, which are
coupled to three separate superconductors that induce pairing
potentials characterized by ¢1 =0, ¢3 =mn/2, and ¢5=—n/2. The
other parameters are the same as in Figure 2B, i.e., the case
Veer # 0 discussed above. The corresponding phase diagram is
shown in Figure 6. Remarkably, the “crossing points” that char-
acterize the phase diagram in Figure 2 disappear and, upon in-
creasing the Zeeman field, we have an alternance of trivial and
nontrivial phases for all values of the chemical potential. More
importantly, the low-field topological phase becomes stable for
a wide range of chemical potentials, i.e., it is characterized by a
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Figure 6: (A) Topological phase diagram for a triangular wire with
Veii( /) #0and ¢4 =0, ¢3=1/2, b5 = -1/2. The white and orange
phases are topologically trivial and nontrivial, respectively. The effec-
tive potential is the same as in Figure 2B. (B) Dependence of the
minimum quasiparticle gap on the Zeeman field along the blue cut (I)
in panel (A). (C) Dependence of the minimum quasiparticle gap on the
Zeeman field along the dark red cut (Il) in panel (A). Note the in-
creased stability of the low-field topological phase (see for comparison
Figure 2B) and the fact that the minimum critical field F§ =0.15 meV is
lower than the pairing potential for corner chains, A = 0.3 meV.
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significant quasiparticle gap, as shown in panels (B) and (C). In
addition, the lowest critical field FCB ~ 0.15 meV is about half
the value of the pairing potential (i.e., A/2). This is in sharp
contrast with the case of hybrid systems involving a single
superconductor, or multiple superconductors having the same
phase, ¢, = const., where the minimum critical field is T'G = A.

A comparison between the results in Figure 2 and those in
Figure 6 suggests that the superconducting phase could be
used as a knob for tuning the system across a topological quan-
tum phase transition. For example, if p = —5.4 meV and
I'p =0.25 meV the system evolves as a function of the super-
conducting phase differences from a topologically-trivial state
when ¢, = 0 to a topological superconductor when ¢ = 0 and
03 =—¢5=m/2. We emphasize that the simplified tight-binding
model can only provide a qualitative picture of the low-energy
physics of proximitized core—shell wires. For quantitative
predictions regarding the dependence of the low-energy physics
on the effective bias potential V¢ and the superconducting
phases ¢, a more detailed modeling of the hybrid structure
(possibly, at the microscopic level) is necessary.

To corroborate our findings regarding the effect of a phase
difference, we consider the square wire corresponding to the
phase diagram shown in Figure 5 coupled to four separate
superconductors that induce pairing potentials characterized by
01 =n/2, b3 =-1/2, ¢5=n/2, and ¢p7 = —n/2. The correspond-
ing phase diagram is shown in Figure 7. The qualitative effect
of having finite phase differences is the same as in the case of
the triangular wire, while quantitatively it is more significant as
a results of a stronger inter-chain coupling #'. The topology of
the phase diagram is similar to that shown in Figure 6. Howev-
er, the low-field topological phase now occupies a significant
region of the parameter space and the minimum critical field
' is practically zero. Furthermore, the topological gap is sub-
stantial, as shown in the lower panel of Figure 7, indicating a
robust topological superconducting phase.

Majorana modes in finite core—shell

nanowires

As a consistency check for the results discussed above, which
are based on a translation-invariant model (i.e., infinite wire),
and to gain further insight into the low-energy physics of the
hybrid structure, we continue now with the case of wires of
finite length. For concreteness, we consider a triangular wire of
length L = 2.25 um in the parameter regimes corresponding to
the panels labeled by “I” and “II” in Figure 3, Figure 4, and
Figure 6. The dependence of the low-energy spectrum on the
Zeeman field for p = —5.4 meV, i.e., corresponding to the (I)
panels, is shown in Figure 8. Note that when Vegr=0and ¢, =0
(top panel) the first transition is from a topologically-trivial
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Figure 7: (A) Topological phase diagram for a square wire with

Veif(£) # 0 and ¢4 =1/2, d3=-m/2, 5 =11/2, and ¢7 = -T/2. The
white areas are topologically trivial and the orange regions are
nontrivial. The values of V() and the inter-chain hopping ' are the
same as in Figure 5. (B) Evolution of the minimum quasiparticle gap
along the horizontal cut I' = 0.35 meV shown in the top panel. Note the
significant expansion of the low-field topological phase (see for com-
parison Figure 5), the large topological gap, and the low values of the
critical field.
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Figure 8: Dependence of the low-energy spectrum on the Zeeman
field for a finite triangular wire of length L = 2.25 pm and chemical
potential y = 5.4 meV. The parameters used in the top, middle, and
bottom panels correspond to Figure 3(I-A), Figure 3(I-B), and

Figure 6B, respectively.
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phase to a gapless superconductor, as already discussed in the
context of Figure 3. The high-field topological phase
(I'g > 0.7 meV) is characterized by a zero-energy Majorana
mode separated by a finite gap from finite energy excitations.
Applying a symmetry-breaking potential Vg (middle panel)
generates a low-field topological phase characterized by a small
bulk gap and a weakly stable, energy-split Majorana mode.
However, the stability of this topological phase can be signifi-
cantly enhanced by creating phase differences between the
parent superconductors (bottom panel). Note that in the middle
and bottom panels the second trivial phase (I' larger than about
0.35 meV and 0.45 meV, respectively) is characterized by sub-
gap states that can be viewed as pairs of overlapping, energy
split Majorana bound states (at each end of the wire). This result
suggests that coupling the nanowire to multiple parent super-
conductors and controlling their relative phases represents a
powerful scheme for enhancing the robustness of the topolog-
ical phase and tuning the system across a topological quantum
phase transition.

The low-energy spectra for p = —4.4 meV, i.e., those corre-
sponding to the (II) panels in Figure 4 and Figure 6, are shown
in Figure 9. In the top panel, note the presence of a gapless
superconducting phase, which is consistent with our conclu-
sions based on the results shown in Figure 4. Also note that the
high-field topological phase (I'y > 0.85 meV) supports two
finite energy sub-gap modes, in addition to the zero-energy
Majorana mode. Again, we can interpret these modes as pairs of
overlapping Majoranas. We conclude that in this phase the
hybrid system has three Majorana bound states at each end of
the wire, two Majorana modes acquiring finite energy and one
remaining gapless, consistent with a Z, topological classifica-
tion. Applying a symmetry-breaking potential (middle panel)
enhances significantly the stability of the low-field topological
phase and generates a second trivial phase (I'g > 0.9 meV) that
is gapped in the bulk, consistent with Figure 4. Remarkably,
this trivial phase supports a pair of zero-energy Majorana
modes at each end of the wire, which correspond to the mid-gap
states visible in the middle panel of Figure 9. This indicates the
presence of an additional “hidden” symmetry in the system,
which makes it an element of the BDI symmetry class [44].
This symmetry is broken in the presence of a superconducting
phase difference (bottom panel), when the sub-gap modes

acquire finite energy.

Symmetry and gapless superconducting

phases

The existence of the gapless superconducting phases (indicated
by the star in the top panels of Figure 2 and Figure 3) is a
consequence of the threefold rotation symmetry of the trian-

gular wire with V() = 0 and identical superconductors.
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Figure 9: Dependence of the low-energy spectrum on the Zeeman
field for a finite triangular wire of length L = 2.25 pm and chemical
potential y = -4.4 meV. The parameters used in the top, middle, and
bottom panels correspond to Figure 4(lI-A), Figure 4(l1-B), and
Figure 6C, respectively.

Breaking this symmetry automatically opens a (bulk) gap in the
spectrum. To illustrate this property we consider the system of
finite length L = 2.25 nm, with the other parameters correspond-
ing to Figure 2A, with chemical potential p = —5.4 meV (i.e.,
the blue vertical line there), and Veg(/) = 0, and we focus on
the gapless phase 0.36 < I'p < 0.58 meV. The low-energy spec-
trum is shown in Figure 10A, which is in fact a zoom into the
top panel of Figure 8. We consider now a small symmetry-
breaking potential, with the same proportions as in Figure 2B,
Figure 3(I-B), and middle panel of Figure §, but now ten
times weaker, i.e., Vegr = Vp(2, 0.5, =1, —1, —1, 0.5) with
Vo =33.3 peV. The potential opens a bulk gap that hosts a mid-
gap Majorana mode, as shown in Figure 10B. To emphasize
that the opening of a bulk gap is the result of breaking the three-
fold rotation symmetry, we also consider a system with vanish-
ing effective potential, Vee(¢) = 0, in which we break the
symmetry by coupling the wire to parent superconductors
having different bulk gaps, so that the proximity-induced
pairing potentials for the edges are Ay = 0.375 meV,
Az =0.300 meV, and A5 =0.300 meV. Here we do not consider
any relative phase between the superconductors. Again, a small
bulk gap opens in the (bulk) spectrum and a (nearly-zero) Majo-
rana mode emerges as a mid-gap state, as can be seen
Figure 10C.
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Figure 10: Low-energy spectra as a function of the Zeeman field for a finite triangular wire of length L = 2.25 pm and chemical potential

u =-5.4 meV. (A) Gapless superconducting phase in a system with threefold rotation symmetry, like in Figure 2A and Figure 3(I-A). (B) Applying a
symmetry-breaking Vg, ten times waker than in Figure 2B, a small bulk gap develops, like in Figure 3(I-B), that hosts a mid-gap Majorana mode. (C)
Symmetry broken by coupling the wire to different superconductors inducing edge pairing potentials Ay = 0.375 meV, A3 = 0.3 meV, and A5 = 0.3
meV. The filled (orange) region 0.36 < 'g < 0.58 meV represents the topological superconducting phase (of an infinite wire) in the presence of an

infinitesimally-small symmetry-breaking perturbation.

Another important general property of the Majorana modes
illustrated in Figure 10, panels (B) and (C), is the presence of
energy splitting oscillations [25,45]. In general, the energy split-
ting is caused by a finite overlap of the Majorana modes local-
ized at the opposite ends of the wire. The amplitude of the oscil-
lations depends on the Majorana localization length & [25],
which increases as the topological gap decreases, diverging in
the gapless limit. This behavior is illustrated in Figure 11. The
top panel represents the lowest-energy state corresponding to a
gapless system with threefold rotation symmetry (i.e., Vegr = 0),
which could be seen as a linear combination of Majorana modes
with an infinite characteristic lenghscale, & — . Introducing a
symmetry-breaking perturbation (V¢ # 0) opens a (bulk) topo-
logical gap that increases with increasing the effective potential.
In addition, in a finite system a midgap state emerges,
consisting of two (partially) overlapping Majorana modes local-
ized at the opposite ends of the wire. As clearly shown in
Figure 11, the characteristic length scale & of the Majorana
modes decreases as the amplitude V) of the symmetry-breaking

potential increases (i.e., as the topological gap increases).

We note that, from the perspective of quantum computation, the
zero-energy Majorana modes have to be i) well separated
spatially (to minimize the overlap and, consequently, the energy
splitting 8F) and ii) well separated in energy from all other low-
energy states (by a certain minimum quasiparticle gap AE). The
first condition ensures that the Majorana modes have non-
Abelian properties, while the second guarantees that the parity
of the low-energy Majorana sub-space is fixed (the presence of
other low-energy states would allow excitations from the Majo-
rana sub-space, which would change its parity and destroy any
quantum information stored in the Majorana system). If these

conditions are satisfied, the Majorana modes span a nearly-zero

|V,=16.67 peV|

|V,=33.33 peV|

| V,=66.67 peV |

Wave function |\P']? (a.u.)

0 0.5 1 L.5 2
Position (pum)

Figure 11: Position dependence of the lowest energy wave function
corresponding to a finite triangular wire of length L = 2.25 uym, chemi-
cal potential y = —5.4 meV, Zeeman field 'g = 0.45 meV, and
symmetry-breaking effective potential with amplitude Vq (see

Figure 10B). The thick (red) line represents the probability distribution
|¥1(x)|? along the edge ¢ = 1, while the filled (blue) line represents the
probability distribution along the edges ¢ = 3,5. With increasing the
amplitude of the symmetry-breaking potential the (bulk) topological gap
increases, which leads to the reduction of the characteristic length § of
the Majorana modes localized at the opposite ends of the wire.

energy subspace that can be used for storing and processing
quantum information. The characteristic timescale t for quan-
tum operations has to satisfy the condition 8E < i/t << AE. Of
course, the impossibility of satisfying this condition is manifest
in regimes characterized by small topological gaps, as 6E and

AE become comparable in the gapless superconductor limit.
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Effects of disorder

Another element that can compromise the topological protec-
tion of the Majorana subspace is the presence of disorder.
Generically, disorder induces low-energy sub-gap states, thus
reducing AE[46-50]. The effect of potential disorder on a topo-
logical phase realized in a triangular wire is illustrated in
Figure 12. Panel (A) shows the position dependence (along the
wire) of a typical disorder potential Vgis(x) considered in the
calculation. Next, we calculate the low-energy spectrum in the
presence of a disorder potential with a fixed profile but a
varying amplitude Vi, (see Figure 12B). As the disorder
strength increases, several low-energy states converge toward
zero-energy, so that the quasiparticle gap AE practically
collapses when the amplitude of the effective disorder potential
is larger than Vj,,x= 1 meV. To demonstrate that this is not an
accidental property of a specific disorder realization, we also
calculated the spectrum averaged over multiple disorder realiza-
tions (see Figure 12C). The qualitative features discussed above
are manifestly present. We note that “critical” disorder strength

ALI%FL iyl g
e U URIUA]
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Figure 12: (A) Position dependence of the normalized disorder poten-
tial along the edge ¢ = 3 of a triangular wire for a specific disorder real-
ization. The disorder profiles along the edges ¢/ = 1,5 (not shown) are
different, but characterized by similar qualitative features. In particular,
the characteristic length scale for the potential variations is 54 = 60 nm.
(B) Dependence of the low-energy spectrum on the amplitude Vo« of
the disorder potential for the disorder realization shown in panel (A).
(C) Low-energy spectrum averaged over 50 different disorder realiza-
tions as a function of Vijax. The parameters of the system are: wire
length L = 2.25 pm, chemical potential y = =5.4 meV, effective poten-
tial Vg = (0.67, 0.17, -0.33, —-0.33, -0.33, 0.17) meV, supercon-
ducting phases ¢4 =0, ¢3=T/2, 5= -T/2 and Zeeman field

g =0.35meV.
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associated with the collapse of the quasiparticle gap depends on
the characteristic length scale of the disorder potential, as well
as the topological gap of the clean system, larger gaps implying
an increased robustness against disorder.

The final point that we want to address concerns the structure of
the disorder-induced low-energy states. Specifically, we calcu-
late the spatial profiles of the three lowest-energy states marked
by red dots in Figure 12B. The results are shown in Figure 13.
We note that the Majorana modes (n = 1) are well localized near
the opposite ends of the wire and have most of the spectral
weight on the edges ¢ = 3,5 as a result of applying a bias poten-
tial Vegr( /). The disorder-induced states (n = 2,3) are localized
inside the wire and have most of their spectral weight on the
same edges, ¢ = 3,5. We conclude that the presence of disorder
induces low-energy localized states than can destroy the topo-
logical protection of the Majorana subspace. We note that
within a topological quantum computation scheme based on
qubits characterized by a finite charging energy [51,52], interac-
tion-mediated transitions between the Majorana modes and
disorder-induced localized states are possible even when the
spatial overlap of the two types of states is exponentially small.
Such transitions, which create low-energy quasiparticles, could
completely compromise the topological protection of the quan-
tum computation scheme.

n=1
5
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E n=2
[
=
k3
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2
% n=3
=
0 0.5 1 1.5 2

Position (um)

Figure 13: Spatial profiles of the three lowest energy states corre-
sponding to the red dots in Figure 12B. The thick (red) line represents
the profile along the edge 7 = 1, while the filled lines represent the
profiles along the edge ¢ = 3 (blue/light blue filling) and ¢ = 5 (dark
red/yellow filling).

Geometrical model of a prismatic shell
In this section we analyze the results of a finer-grained model of

triangular and square prismatic shells, based on a geometrical
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description [29]. First the two-dimensional Hamiltonian of a
single electron confined on the polygonal cross section is
discretized on a grid defined in polar coordinates and diagonal-
ized numerically [37,53]. The resulting low-energy eigenstates,
corresponding to corner localization, are further used as a basis
to find the eigenstates of the BAG Hamiltonian, assuming plane
waves in direction longitudinal to the prism. The basis includes
the spin and the isospin. The variable Zeeman energy is gener-
ated by a uniform magnetic field B longitudinal to the wire. In
addition we consider a relatively weak electric field £ trans-
verse to the wire as a technical tool to break the symmetry of
the polygon, indicated by the red arrows in Figure 14. This field
is equivalent with the chain dependent potential Ve /) intro-
duced before. First, a perfectly symmetric shell is experimental-
ly unrealistic from fabrication. Second, as already mentioned, in
a regular experimental setup external gates and other contacts
may affect the wire symmetries. Third, a generic electric field
can be seen as a tunable parameter that can change the topolog-
ical phase diagram.

(A) (B)

_1_.

Figure 14: A schematic cross section of the hybrid semiconductor-
superconductor experimental device incorporating a core—shell wire.
The core is shown in grey and the shell in yellow. The blue blocks
represent the superconductor metals attached to the wire. The lower
superconductors can have phases 6 relatively to the upper one
considered with zero phase. The red arrows indicate the electric field
included in our geometrical model. (A) In the triangular case it is
parallel to one side of the triangle. (B) In the square case it can be
either perpendicular or parallel to the superconductors.

We characterize the lateral size of the wire with the radius R of
a circle surrounding the shell, and with the shell thickness d. In
the present calculations we use R = 50 nm for both geometries,
but d = 12.5 nm for the triangular shell and d = 8 nm for the
square shell. These values are comparable to the dimensions of
the realistic core—shell nanowires mentioned in the experimen-
tal papers [32-36]. The material parameters of the shell are
chosen as for InSb. For these geometric parameters and with
megr = 0.014 the energy separation between the corner and side
states is about 41 and 38 meV for the triangular and square
case, respectively, meaning that for these parameters the low
energy physics can be very well described by the corner states.

Therefore we can use a Rashba SOC model similar to that of the
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planar electron gas, but on a cylindrical surface of radius R, i.e.,
transformed from Cartesian to polar coordinates [54]. Since the
sides of the triangular shell are unpopulated this model is quali-
tatively reasonable, and can lead to Majorana states. As
mentioned before a more elaborated microscopic description of
the SOC is beyond the scope of the present paper, and here we
simply adopt in the numerical calculations the coupling con-
stant of bulk InSb, of 50 meV/nm.

For a symmetric triangle the corner states have equal probabili-
ty distribution at each corner [37], whereas in the presence of a
weak electric field E, here corresponding to 0.22 mV across the
radius R, they separate. The wave functions still have some
exponential tails along the sides of the polygon, which are
equivalent to the inter-chain hopping introduced earlier. The
phase diagram shown in Figure 15A is obtained with a real
valued superconductor gap A = 0.5 meV, and can be compared
with Figure 2B (where all ¢, = 0). The fragmentation of the
phase boundaries in three dark lines reflects the presence of the
three corners (edges) of the prismatic wire. The boundaries ap-
proach each other when the aspect ratio of the triangle (d/R)
decreases, which results in reduced overlap of the wave func-
tions of the corner states [29].

The colors used indicate the minimum gap of the BdG spec-
trum at any wave vector k, on a logarithmic scale, so the repre-
sentation is complementary to the two-color scheme of
Figure 2B (or A). Here the topological phases can be identified
by the number of crossings of the dark lines. Along these lines
the gap closes at k = 0. Starting from any point outside the
boundaries one enters into a topological Majorana phase after
the first intercept of a dark line, then into the trivial phase after
the second intercept, and again into the topological phase after
the third intercept.

Next, in Figure 15B, we show the phase diagram obtained with
a complex valued superconductor gap, of constant modulus and
variable phases, which are zero at one corner and £n/6 at the
other corners (i.e., 0 = n/6 in Figure 14A). We obtain a splitting
(or anticrossing) of the phase boundaries at the former crossing
point, similar to that shown in Figure 6A, although now more
pronounced than in the chain model.

By further increasing the relative (angular) phase 6 to £n/2 the
boundaries of the quantum phase transitions become nearly
parallel, Figure 15C. This result can be interpreted as an in-
creased interaction between the corner states in the presence of
the phase shift 8 of the superconductors. Another consequence
of this phase shift is that the absolute gap of the BdG spectrum
decreases in some topological regions, as indicated by the

diffuse reddish regions, suggesting that some topological states
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Figure 15: Phase boundaries for the triangular wire in the corner-state
domain. The color code describes the minimum gap of the BdG spec-
tra for all wave vectors. The character of each phase can be identified
by counting the boundary crossings along a vertical line, starting at
zero magnetic field, i.e., topological or trivial for an odd or an even
number of crossings, respectively. Along these boundaries the gap
closes at k = 0. Starting from any point outside the (A) All supercon-
ductor phases are equal to zero. (B) Phases are: 0 at one corner and
+11/6 at the other corners, i.e., 8 = /6 in Figure 14A. (C) The same
phase distribution, with 6 = 11/2.

may become gapless. This tendency is consistent with the
results of the multiple chain model, compare Figure 4B with
Figure 6C.

As with the coupled-chains model, we also tested the effect of
using two superconductors with different gaps, for example by
reducing the gap parameter A of one or two superconductors by
one half, and using no relative phase, 6 = 0. The resulting phase
diagrams were qualitatively like those shown in Figure 15B,C,
although with lower energy gaps in the topological phases. This
indicates no particular gain by creating an asymmetry in this
way, compared to using the superconductors with the large gap

and creating the asymmetry via the relative phase 6.
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Finally, in Figure 16 we show the phase diagrams obtained with
the geometric model for the square shell profile. Here, in the
geometrical model, we use a particular setup for the square ge-
ometry, with only two superconductors. Unlike in the coupled-
chains model, in this case the superconductors are also
connected to the states localized on the sides of the polygon, if
those states would be populated, but this is not the case for the
chemical potentials used for Figure 16. First we note that we
obtain four phase boundaries, according to the presence of four
corner states. As for the triangular geometry the trivial or topo-
logical character of the phases is associated with odd or even
number of boundary crossings, respectively, when starting from
the outer regions. Therefore the central zone of the phase

diagrams is now topologically trivial. In Figure 16A we show

Magnetic field (T)

0.0-+ .
346

[
347
Chemical potential (meV)

Figure 16: Phase boundaries for the square wire in the corner-state
domain. The color code describes the minimum gap of the BdG spec-
tra for all wave vectors. The topological or trivial character of the
phases can be identified by the number of boundary crossings, as de-
scribed in the caption of Figure 15. (A) The superconductor phases
equal to zero. (B) The superconductor phases are zero and 6 = 11/2,
and the electric field perpendicular to the superconductors, see
Figure 14B. (C) Again 8 = 11/2, but with the electric field parallel to the
superconductors.

1523



the results with 0 = 0, i.e., no phase shift between the supercon-
ductors (Figure 14B). The electric field corresponds now to
60 mV per radius, and obviously the results do not depend on
the two orientation considered here if 6 = 0.

Remarkably, with a finite phase shift, here 6 = n/2, the phase
diagrams are different when the electric field is perpendicular,
Figure 16B, or parallel to the superconductors, Figure 16C, re-
spectively. In the perpendicular case the phase frontiers are
mostly changed in the central region, whereas in the parallel
case they are more affected in the low field part. In the first case
the corner states with phase 0 are separated energetically from
those with zero phase, but they still interact when they are all
grouped within or close to the superconductor gap. In the
second case the states with the same superconductivity phase
are separated, and the frontiers tend to become parallel.

Conclusion

In this work we have studied the phase diagram of core—shell
nanowires coupled with multiple parent superconductors using
a simplified tight-binding parallel-chain model. We found
that applying a potential that breaks the (intrinsic) rotation
symmetry of the wire does not modify the topology of the phase
diagram, but removes the gapless superconducting phases that
populate certain regions of the phase diagram and partially
stabilizes the topological superconducting phase. Remarkably,
finite phase differences between the parent superconductors
have dramatic effects. First, the topology of the phase diagram
is modified. In particular the “crossing points” that characterize
the phase diagram in the presence of a uniform supercon-
ducting phase disappear and, upon increasing the Zeeman field,
we have an alternance of trivial and nontrivial phases for all
values of the chemical potential. More importantly, the low-
field topological phase becomes stable for a wide range of
chemical potentials and the minimum critical field I'G can have
arbitrarily low values. We conclude that by controlling the rela-
tive phases of the parent superconductors coupled to the wire
one can stabilize the topological superconducting phase that
hosts the zero-energy Majorana modes and one can obtain a
powerful additional experimental knob for exploring a rich
phase diagram and observing potentially interesting low-energy
physics. Given the potential experimental significance of these
conclusions, we believe that a more detailed and systematic in-
vestigation of these effects, which is beyond the goal of the

present work, would be warranted.

In particular, the effect of electrostatic interactions on the prop-
erties of the normal electronic states in core—shell nanowires
can be important. The effect of interactions should be calcu-
lated using a Schrodinger—Poisson scheme, e.g., like in [55], to

take into account both the interface potential between the core
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and the shell, and the presence of the carrier density in the shell.
In addition, for Majorana devices, one should incorporate the
effects due to the presence of a parent superconductor, includ-
ing the work function difference between the superconductor
and the semiconductor, as well as the effects generated by gate-
induced electric fields. An efficient method for implementing
the Schrodinger—Poisson scheme in calculations using realistic
three-dimensional models of hybrid devices has been recently
proposed in [56]. We emphasize that, due to the corner and side
localization, the electron—electron interactions have nontrivial
effects [57], which can modify the proximity-induced supercon-
ductor gap and the phase diagram of the Majorana states [58-
65]. The calculation of the effective potential profile is also
essential for estimating the SOC in the nanowire. Therefore, ac-
counting for the electrostatic effects represents a key step
toward a quantitative theory of Majorana physics in core—shell

nanowires.
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Abstract
Background: A Majorana bound state is a superconducting quasiparticle that is the superposition of particle and hole with equal
amplitude. We propose a verification of this amplitude equality by analyzing the spatial Rabi oscillations of the quantum states of a

quantum dot that is tunneling-coupled to the Majorana bound states.

Results: We find two resonant Rabi driving energies that correspond to the energy splitting due to the coupling of two spatially
separated Majorana bound states. The resulting Rabi oscillating frequencies from these two different resonant driving energies are
identical for the Majorana bound states, while different for ordinary Andreev bound states. We further study a double-quantum-dot
setup and find a nonlocal quantum correlation between them that is mediated by two Majorana bound states. This nonlocal correla-

tion has the signature of additional resonant driving energies.

Conclusion: Our method can be used to distinguish between Majorana bound states and Andreev bound states. It also gives a
precise measurement of the energy splitting between two Majorana bound states.

Introduction

Majorana bound states are exotic non-Abelian quasiparticles in
topological superconductors [1-26]. The study of Majorana
bound states has attracted tremendous interest recently because
they constitute topological parity qubits. These qubits are
defined by the degenerate ground states of topological super-
conductors, and therefore are protected by the superconducting

energy gap [4,15]. They have a long coherence time and are
resistant to local decoherence sources [2,15,18,19]. Most impor-
tantly, the topological qubits can be topologically manipulated
by braiding the Majorana bound states [4,15,17]. These topo-
logical braiding operations set the foundation for topological

quantum computation [4,15], despite the fact that they are insuf-
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ficient to construct universal quantum gates for the topological
qubit [15,17,19,20].

A unique feature of the Majorana bound states is the self-conju-
gateness. In the language of second quantization, a self-conju-
gate quasiparticle means that the superposition of the electron
creation operators and electron annihilation operators are equal
[2,15,16]. This equality is the essential difference between the
Majorana bound states and the ordinary Andreev bound states.
Another unique feature of Majorana bound states is the expo-
nential protection [17-19], which states that the splitting energy
between two Majorana bound states exponentially decays as the
distance between them increases. The experimental verification
of these two properties helps the identification of Majorana

bound states in real systems.

Majorana bound states have been theoretically proposed in
several systems [5,6,9,13,20], while the experiments concen-
trate on semiconductors with spin—orbit coupling and the super-
conducting gap that is induced by the superconducting prox-
imity effect [19,21,24,25]. One promising candidate is the
hybrid system of a spin—orbit-coupling nanowire and a conven-
tional superconductor. Robust zero-bias conductance peak was
first reported in this system, which originates from the self-
conjugate nature of Majorana bound states and therefore was
wildly recognized as a signature. An exotic fractional Josephson
effect was also studied in the nanowire Josephson junctions,
where novel Shapiro steps and Josephson radiations have been
reported. Recently, the Coulomb blockade spectroscopy was
exploited on finite-size nanowire segments that form nanowire
islands with two Majorana bound states possibly existing at the
two ends of the island. The splitting energy between two Majo-
rana bound states is found to be decreasing exponentially when
the length of the island increases [24]. This exponential protec-
tion of zero-energy Majorana bound states stirs new excitement
in pursuing Majorana bound states.

Quantum dot has been proved to be a good probe to study the
Majorana bound states [3,7,27-38]. The quantum dots are zero-
dimensional systems that have controllable discrete energy
levels. The Rabi oscillation, a fundamental quantum phenome-
non in two-level quantum systems, may occur between the
states of the quantum dot when the quantum dot is periodically
modulated. In particular, the spatial Rabi oscillation between
two quantum dots has been proven to be useful for single-elec-
tron pumping. An attractive idea is to exploit the spatial Rabi
oscillation between the quantum dots and the Majorana bound
states [29] and to investigate the self-conjugateness and expo-
nential protection of Majorana bound states. In recent experi-
ments, a hybrid structure of a quantum dot and a one-dimen-

sional topological superconductor nanowire has been realized

Beilstein J. Nanotechnol. 2018, 9, 1527-1535.

[36]. This system attracts theoretical interest [7,37]. In this
context, it is interesting to study the spatial Rabi oscillation be-

tween the quantum dot and the topological nanowire.

In this work, we study the spatial Rabi oscillations between
quantum dots and a Majorana island. This system involves two
Majorana bound states that have an exponentially protected
small splitting energy. As shown in Figure 1a, one of the Majo-
rana bound states is coupled to the quantum dot with a single
electron tunneling through a potential barrier. The barrier is pro-
duced by a voltage gate, which is implemented between the
quantum dot and the Majorana island. If an ac voltage is applied
to the gate, the tunneling strength between the quantum dot and
the Majorana bound states will be driven periodically [39]. We
show that there are two resonant driving energies that induce
coherent spatial Rabi oscillations between the quantum dot and
the island. The difference between the two driving energies is
proportional to the exponentially protected splitting energy be-
tween two Majorana bound states. More importantly, the Rabi
frequencies connected to the two different resonant driving
energies are identical, which is a result of the self-conjugate-
ness of the Majorana bound states. For comparison, we show
the results when the Majorana bound state is replaced by an
Andreev bound state as shown in Figure 1b. We find that the
two Rabi frequencies at the different resonant driving energies
are now different. We also investigate the setup with two quan-
tum dots at each side of the island and calculate the resonant
driving energies for spatial Rabi oscillation. We show that the
two quantum dots exhibit nonlocal correlations when coupled
with Majorana bound states while the two dots have no correla-
tion when coupled with Andreev bound states, since two Majo-
rana bound states can form one single fermionic level while two

Andreev bound states are two distinct fermionic levels.

Figure 1: Schematics of a quantum dot tunneling-coupled to a nano-
wire island with (a) Majorana bound states, and (b) an Andreev bound
state. The Andreev bound state has a small excitation energy 8, which
is similar to the splitting energy between two Majorana bound states.
The effective coupling between the quantum dot and the Andreev
bound state has different electron and hole components T, and T,
due to the different electron and hole wave functions of the Andreev

bound state. In contrary, the effective coupling between the quantum
dot and the Majorana bound state has identical electron and hole com-
ponent T, due to the self-conjugateness of the Majorana bound states.
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Results and Discussion
Model

The hybrid system schematically illustrated in Figure 1 consists
of two parts, a quantum dot and a nanowire island, where Majo-
rana or Andreev bound states are present at the ends of the
island. Let us first consider the model for the quantum dot.
Realistic topological superconducting systems usually involve a
large Zeeman field, which in principle should break the spin
degeneracy and split the two spin-dependent levels with the
Zeeman energy. Therefore, it is reasonable to consider only
one-spin direction. Meanwhile, we consider a large Coulomb
blockade regime for the quantum dot, which corresponds to a
large Coulomb interaction. For this regime, additional electron
hopping to the quantum dot requires a large Coulomb energy,
which effectively reduces the quantum dot to only one relevant
energy level. The Hamiltonian of a minimal model for the quan-
tum dot is [3,7,27,38],

Hy=¢d'd, )

where ¢ is the excitation energy for the single energy level of
the quantum dot and d' represents the creation operator on the
energy level.

The Majorana island consists of a one-dimensional topological
superconductor such as a nanowire—superconductor hybrid
structure and a ferromagnetic chain, with zero-energy Majo-
rana bound states at the ends of the system. The wave functions
of the two Majorana bound states overlap with each other, in-
ducing an energy splitting that exponentially decays as the
length of the island increases. The low-energy physics of the
island can be described by an effective Hamiltonian [2,3],

Hg =—18ypywrs ()
where and yy; and )y represent the two Majorana bound states,
and o represents the exponentially protected splitting energy.
The quantum dot is coupled to one of the Majorana bound states
by electron tunneling through a potential barrier between the
dot and the Majorana island. This coupling can be described by
a tunneling Hamiltonian,

where 7 is the tunneling strength that is taken as a real number
for simplicity. Here we consider an oscillating tunneling
strength 7 = T + 2T coswt, with T being the static tunneling
strength, T the oscillating tunneling strength, and ® the oscil-

lating frequency for the tunneling strength. It can be produced
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by an ac gate voltage controlling the tunneling barrier [39].
When the driving frequency is at resonance, this oscillating
tunneling strength can induce a Rabi oscillation on the quantum
dot.

We write out the matrix form for the total Hamiltonian
Hy = Hy + Hs + Ht. We first define a new fermionic operator
1= (ym — iypmr)/2, which leads to

Hy =edta+s( gt —rtf)+r(a+at)(r+r1). @

Then we take the four eigenstates of the fermionic operators
|0>, deT|O>, fT|O>, and dT|O> as the basis states of the
Hilbert space, and express the Hamiltonian in this basis explic-
itly,

6 T 0 0

~ T ¢-6 0 0
Hy = s o7 | )

0 0 T e+d

This matrix is block diagonal due to the parity conservation of
the total system. We notice that the upper left and the lower
right 2 % 2 blocks have the same off-diagonal elements but dif-
ferent diagonal elements.

Now we consider the scenario that the nanowire island has an
Andreev bound state at the end instead of Majorana bound
states. From the mean-field Bogoliubov—de Gennes approach,
the general form for Andreev bound states is the quantum
superposition of electron and hole wave function, which in the

second quantization form writes as,

vh = [arfu)et (D +vime(r)] ©)

where ¢f(r) is the creation operator for the electron, j and v are
the electron and hole wave functions. For the sake simplicity
they are real numbers and the factor of 1/2 for describing super-
conducting quasiparticles is absorbed into p and v. We assume
the simplest wave function of delta equations since the Andreev
bound state is extremely localized at the end of the wire. Then
the Andreev operators can be written as v, = ucT +ve. With
this in mind, we can now study the Hamiltonian of the system
of a quantum dot and an Andreev bound state. It can be written
as Hy = Hq + Ht, + H, where the Hamiltonian for the Andreev
bound state, H,, is
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H, = S'YTAYA
= 8'(|“|2 e+ |V|2 cet + MVCTCT + VMCC) @)
= SCTC,

with & = 8'(Ju|2 — [v[2). Due to the particle-hole symmetry of the
superconducting system, we can always obtain another Andreev
bound state by defining a new operator vy, = yTA. This leads to
the excitation energy —3, which accounts for the negative
energy excitations observed in experiments [17,37]. The tunnel-
ing Hamiltonian between the Andreev bound state and the
quantum dot is,

Hry =T (d%ys +v}d) ©
= TH (ch+ch)+TV (chT +cd),

where we define 7, = uT and Ty = vT. Now we can establish a
basis for H, with eigenstates |0), chT|0>, CT|0> and d”O),
and rewrite in the matrix form,

0 T, 0 0

- T, e+6 0 O

Ba=lo o 5 1,f ©)
0 0 Tu €

It looks similar to Equation 5 but with one critical difference:
The off-diagonal terms in the upper left block and the lower
right block are now different because they contain electron and
hole wave functions, which are different for Andreev bound
states. We note that the Andreev bound state may have equiva-
lent particle and hole components (u4 = v4) for some spin direc-
tions. For this case, the matrices in Equation 5 and Equation 9
are identical if the energy level of the quantum dot is in the
same direction. However, the spin direction of the quantum
level on the dot can be reversed by inverting the Zeeman field.
Then the matrix for the Andreev bound state contains the elec-
tron and hole wave functions in the reverse spin direction and
must be different.

Spatial Rabi oscillations

Now we are ready to consider the spacial Rabi oscillations
where an electron oscillates between the quantum dot and the
bound states. For this purpose we solve the Schrodinger equa-
tion i2d¥ / df = Hyy o'W . The Hamiltonian is periodic in time,
therefore the equation is not exactly solvable. To obtain the
Rabi oscillations, we need to study the transition probability

from one state to the other under this time periodic Hamil-
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tonian. We take advantage of the Floquet theory, which
states that the solution of the Schrédinger equation for any time-
periodic Hamiltonian must satisfy ¥(7) = y(¢) e 2!, with
y(f) = y(t + (2n/®) a time-periodic function that has a Fourier
transformation () =zn\uneim’”. Let us first consider the
scenario of Majorana bound states where we can obtain a series
of secular equations by inserting the ansatz solution back into

the Schrédinger equation,

(D=no)y, =3 Hv, . (10)

where /=0, +1, and the Fourier transformed components of the

Hamiltonian H; are

8 Ty 0 0
Iy, e-6 0 0
HO = N
0 0 -5 T
0 0 T, e+d
an
071, 0 O
I 0 0 0
Hyy =
0 0 0 T
0 0 7, O

Now the problem of solving a time-dependent Schrodinger
equation is transformed to a problem of solving a set of time-in-
dependent secular equations [40]. Since v, is a vector with two
components, special care is needed when trying to solve the
secular equations. They should be rewritten as

D\Vn,a = Z(Hn—l,oc,ﬁ + m’)la,Bsnl )WI,B’
LB

with a,f =0, 1, 2, 3. Then, the secular equations can be viewed
as the eigenproblem for the infinite dimensional Floquet Hamil-
tonian [40],

HO +® Hleimt 0
Hg = H_ e H, Hye'™ (12)
0 H_le_imt HO -0

In this Floquet formalism, the transition probability between
any two states is written as

. 2
Py :Z‘(n,me“HF(f"O”O,a)‘ , (13)
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which could be calculated once we solve the eigenproblem for
the Floquet Hamiltonian.

In the Floquet Hamiltonian, the off-diagonal elements are be-
tween the nearest blocks. For the zero-order perturbation, we
first consider the transition between |0,a> and |i1,B>. Two
cases are studied: a = 0 with f =1 and o = 2 with B = 3. Then
we can extract a 4 X 4 matrix,

~ I, e=6-o 0 0
Hbare 0 0 -5 Tl ’ (14)
0 0 I £+0—

which of course can be divided into two relevant 2 x 2 matrices,

- o Ti
HU — 1 ,
bare (Tl S—S—CDJ

~ -3 T
L 1

H, = .
bare ETl a+8—co]

We can also include the second-order perturbation, which

(15)

slightly alters the diagonal elements of the 2 x 2 matrix,

gy 5+Am G
eff T, &e-8-w-Ay)
(16)
AL [0+ Aw T
eff ]1 8+6_(D—AM’ ’
where
2
A= | Hon,00] _ R+nE)2
M= —_
n,0. E0,0> _En,(x> £-28
and
Avr = T3+ 1722
M £+28

Now the transition probability is clear. Starting from an initial
state

ly(0)] = [g,O,

a0

2
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we would have a Rabi oscillation for

2
2 1 Iy .
|\|!0 (t)| :5—202 sm2 ,1,
. ' (17)
2 .
|\y1 (t)| = 202 sin’ o1,
('0}"
with
2
2 2
> .2 | € <T0+T1/2) ®
o, =T +|==0+—F—=>=—-—1| ,
(e-28) 2
or for
2
2 1 I7 .
|\|!2(t)| =5 12 smzcorrt,
2wy
2 (18)
2 .
|\ll3 (t)| = 5 12 sm2 1,
;.
with
I (T2 +T2/2) ® ’
(,03, :]124_ _+6+¥__
2 (e+20) 2

Clearly, there are Rabi oscillations at with two resonant driving
energies at
21 + T

£+28

0w=c*t20+

However, for both resonant driving energies, the Rabi
frequency is the same ®, = o, = T7. This is not a coincidence,
but is a result of the self-conjugateness of the Majorana bound
states.

Now we consider the scenario of Andreev bound states. With

the same Floquet approach, we can obtain the effective Floquet

Hamiltonians,

UA _[2A v

eff — g

V[ €+d-w—-A,
(19)

A _[OFAn R

eff — >

G e—o—Ay
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where
2
Ap :s+8+ﬂ
£€+0
and
2
AA' :8_6+(M]1)
-0

when we set Ty = 0. Clearly, we also have two resonant driving
energies. However, now we have different Rabi frequencies for
these two resonant driving energies, o, = v} and —o,» = puT7,
which are given by solving the Floquet Hamiltonians in Equa-
tion 19. The difference between the Rabi frequencies comes
from different particle and hole wave functions, p and v, for the
Andreev bound states.

We present numerical simulations for the hybrid system in
Figure 2. First, we show the largest oscillation amplitude on the
quantum dot as a function of the driving energy o in Figure 2a,
where the scenario for Majorana bound states and for Andreev
bound states present the same result. The two peaks represent
the two resonant driving energies. For the Majorana bound
state, the energy difference between these two peaks is propor-
tional to the splitting energy between the two Majorana bound
states at the ends of the island. Since the measurement of Rabi
oscillation is much more accurate than transport measurements,
the resonant driving energy provides a precise method to
measure the exponential decay of the splitting energy. The Rabi
oscillations of the occupation state of the quantum dot for Majo-
rana and Andreev bound states are presented in Figure 2b. We
find that the Rabi frequencies of the Majorana bound state are
identical as predicted by the analytic results based on the
Floquet theory. For comparison, we also present the Rabi
frequencies for the Andreev bound state. The Rabi frequencies
are different, reflecting the inequality of the electron and hole

components for the Andreev bound state.

The results presented in Figure 2 are the central results of our
work. We emphasize that these theoretical results can be
measured with existing experimental techniques. Our calcula-
tion gives the Rabi oscillations of the occupation states of the
quantum dot, which can be measured by probing the electron
occupation on the quantum dot. The measurement of the elec-
tron occupation state of the quantum dot has been achieved with
the single-electron transistor [27,41], which is a routine tech-
nique in the study of charge qubits based on quantum dots [42].

Finally, we note that our results are based on the minimal

models for the quantum dot, the Majorana bound state and the

Beilstein J. Nanotechnol. 2018, 9, 1527-1535.

L= P

500

t (11)

Figure 2: Numerical simulations of the Rabi oscillations. (a) The
maximum Rabi oscillation amplitude measured by the occupation prob-
ability of the quantum dot, as a function of the driving energy, where
the two peaks marks the resonant driving energies. (b) The Rabi oscil-
lation for the two resonant driving energies for the Majorana bound
state (upper panel) and the Andreev bound state (lower panel). We
see that the Rabi frequencies are identical for the Majorana bound
state while they are different for the Andreev bound state. Parameters
are takenase=J, Tp=0,0=0.1J, T4 =0.01J,0 = 0.2J, uT1 = 0.008J
and vT1 = 0.006J with the initial state W(0) =[(v2 /2),0,(v2 /2),0]" -

Andreev bound state. It is certainly helpful to consider more
sophisticated models for the quantum dot by including the
Zeeman energy and Coulomb energy explicitly, and more real-
istic models for the Majorana bound state and Andreev bound
state by exploiting the Bogoliubov—de Gennes Hamiltonian.
However, these works are beyond the scope of our current work

and belong to our plan of future works.

Correlation between quantum dots through
Majorana islands

Now we investigate the setup with two quantum dots on the two
sides of a nanowire island, as shown in Figure 3. In this setup,
nonlocal entanglement between quantum dots mediated by
Majorana bound states has been discussed [28]. It seems logical
to consider how this nonlocal entanglement influences the Rabi
oscillations. First, each quantum dot certainly has Rabi oscilla-
tions with a Majorana bound state or an Andreev bound state at
each end. However, we will show a more interesting correla-
tion between quantum dots mediated by two Majorana bound
states. This correlation does not occur for the Andreev bound
state. Let us first establish the Hamiltonian for the proposed
setup. The two quantum dots have the Hamiltonian
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where ¢; , are the energy for quantum dot levels, and dr 5 are

the creation operators on the quantum dot levels.

a) 81 in Vi 82 b) 81 vf vi. 82
T T|J1 Ty,

o ls s om

Y / E=0

Figure 3: Schematics of two quantum dots coupling with the nanowire
island with (a) two Majorana bound states and (b) two Andreev bound
states. The two Majorana bound states form a single energy level,
while the Andreev bound states form two energy levels.

The Hamiltonian for the Majorana bound states is the same as
in the previous section, which could be described by a fermi-
onic operator /1 = (ypr — iym)/2. The two quantum dots are
coupled with the Majorana bound states through the tunneling
Hamiltonian

Hyr =Ty (dy+dl )+ o (dy +df), @D

where T  are the tunneling strength between the left and the
right pair of quantum dot and Majorana bound state in the form
of T;  =2T"; cosw; »t. We can explicitly write down the total
Hamiltonian in the matrix form by defining basis functions
£y, dflo), afalrtlo), daflo), lo), dfrTlo), afajlo)
and d; f T|0>, where |0) is the vacuum state. We arrive at an
8 x 8 matrix that is block diagonal because the total fermionic
parity of the system is conserved. For simplify, we take the

even total parity, and get a 4 X 4 matrix,

5§ T 0 T,

Ti €] ) 1T2
Hyp = 22
M 0 —iTz €1 +82 +0 Tl ( )

iTz 0 Ti 82—6

Now let us look at the quantum dots coupling with two Andreev
bound states at the end of the nanowire island. Since Andreev
bound states are eigenstates of superconductors, there are, in
principle, four energy levels in the entire system. The Hamil-

tonian of the system cam be written as

Hy =Y sdid;+8cfe; + T, (afe, +cfa, )+ Ty (dfel +cid; ), 23)
i=1,2

where 7 represents the left/right side of each operator with
T;, = uT;, Ty = vT;. For this case, the system can be divided into
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left and right segments, which are uncoupled from each other.
For simplicity, we take the even parity of both sides, where the
basis states are chosen as |0>, dfc“O), d;dgcfc;m) and
d;rcg |0). Then the Hamiltonian can be reformed to a four by

four matrix:

0 Tlv 0 T2v
oo v Etdy T, 24
Al 0 Tzv 81 +82 +61 +62 Tiv '
L, 0 T, € +6;

We find that this matrix is very similar to the matrix of quan-
tum dots and Majorana bound states. However, there is the key
distinction that the left quantum dot and the right quantum dot
should be entirely uncoupled. We note that this matrix is differ-
ent from the one shown in Equation 22 even if p = v, since the
two Andreev bound states correspond to two superconducting
quasiparticles with a 4 x 4 Hilbert subspace, while the two
Majorana bound states gives a single superconducting quasipar-
ticle with a 2 x 2 Hilbert subspace.

We numerically simulate the oscillations for the Majorana
bound states scenario and illustrate the maximum oscillation
amplitude for the occupation state of the left quantum dot in
Figure 4a. We find three lines of resonant driving energy.
The two vertical lines represent the resonant Rabi oscillation at
o] = g = 25, with a typical result shown in Figure 4c. They are
identical to the case of the single quantum dot and represents
the Rabi oscillation between the left quantum dot and the two
Majorana bound states, while leaving the right quantum dot

1
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w, ()
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Figure 4: The maximum occupation probability of the left quantum dot
for (a) Majorana bound states and (b) Andreev bound states. Panels
(c) and (d) give the detailed oscillation as a function of the time at two
specific parameters marked as circles on (a).
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uninvolved. There is one extra line that represents the resonant
Rabi driving energy at ®; + w, = €| + €. This resonant energy
involves both quantum dots, and therefore would be coming
from the nonlocal entanglement of the quantum dots. We
present a typical Rabi oscillation in Figure 4d. It is the higher-
order oscillations between the states |00) and |11), namely a
charge oscillation between the left and right quantum dots. This
is a nonlocal coherent charge transfer process between the
quantum dots mediated by the two Majorana bound states. For
comparison, we illustrate the results for quantum dot occupa-
tion mediated through Andreev bound states. We find that the
Rabi oscillations at ® ~ g + § still exist, however, the higher-
order oscillations disappear. This can be explained by the fact
that left and the right part of the setup are uncoupled. The extra
resonant driving energy for Majorana bound states is a result of
the nonlocal quantum dot correlation and can be used as a
signature for Majorana bound states.

Conclusion

We studied the spatial Rabi oscillation between quantum dots
and Majorana bound states in a topological superconducting
island. We demonstrate that the coupling energy between Majo-
rana bound states can be detected by investigating the resonant
driving energy for the Rabi oscillation. We also show that the
Rabi oscillating frequency carries the information of the elec-
tron and hole components, therefore can be used to differen-
tiate Majorana bound states and Andreev bound states. At the
two resonant driving energies, we find identical Rabi frequen-
cies for Majorana bound states and different Rabi frequencies
for Andreev bound states. We further study the case of two
quantum dots coupled through the island and show that the
Majorana bound states are able to create correlated higher-order

Rabi oscillations on the quantum dots.
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We show conceptually that the edge of a two-dimensional topological insulator can be used to construct a solid-state Stern—Gerlach

spin splitter. By threading such a Stern—Gerlach apparatus with a magnetic flux, Aharanov—Bohm-like interference effects are intro-

duced. Using ferromagnetic leads, the setup can be used to both measure magnetic flux and as a spintronics switch. With normal

metallic leads a switchable spintronics NOT-gate can be implemented. Furthermore, we show that a sequence of such devices can

be used to construct a single-qubit SU(2)-gate, one of the two gates required for a universal quantum computer. The field sensi-

tivity, or switching field, b, is related to the characteristic size of the device, r, through b = h/(2ngr2), with ¢ being the unit of elec-

tric charge.

Introduction

Two famous examples of the fundamental difference between
quantum mechanical and classical particles are provided
through the Stern—Gerlach (SG) experiment [1] and the
Aharanov—Bohm (AB) effect [2]. The SG experiment demon-
strates the peculiar behavior of the quantum mechanical spin,
teaching us that for any chosen axis the spin can be pointing
either up or down. Even more nonintuitive, the spin can also be
in a superposition of these two states, and thereby split in a SG
apparatus to travel along different paths [1]. The AB effect, on
the other hand, shows that the introduction of a magnetic vector

potential has important effects on the phase of the wave func-
tion. This is not merely a mathematical formality, but has
measurable consequences in interference measurements. When
a particle travels along two different paths that enclose a mag-
netic flux, it picks up different phases along the two paths, even
though the paths do not pass through the magnetic flux [2].

A topological insulator is a material with insulating bulk, but

with topologically protected helical edge states. Here we show

that it is possible to construct a solid state SG apparatus, or spin
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splitter, using the edge states in a two-dimensional topological
insulator (2D TI) [3-13]. The device consists of a small hole
drilled in the 2D TI, contacted by two leads. By threading a
magnetic flux through the hole an AB-like effect gives rise to
important interference effects, which allows for precise manipu-
lation of spin currents, as has already been noted in [14]. While
the ordinary AB effect arises because of interference in a single
complex number, the effects achieved here relies on modifying
the relative phase between the up and down components of the
spin. Thus, the effects we describe here can be classified as a
SU(2)-AB effects, while the ordinary situation corresponds to a
U(1)-AB effect.

While the AB effect recently has attracted some attention in 3D
TI [15-19], we here outline the concept for several concrete and
different applications of the SU(2)-AB effect in a 2D TI. More
specifically, we find that if using ferromagnetic leads, the
device can be used for sensitive measurements of magnetic field
strengths. The same setup can also be used to implement a spin-
tronic switch. Instead using normal metallic leads, we show that
a switchable spintronics NOT-gate can be constructed. Finally,
we also demonstrate how a sequential setup of normal-lead
solid-state SG spin splitters can be used to construct a single-
qubit SU(2)-gate, one of two gates required to construct a
universal quantum computer [20]. This also demonstrates the
full extent to which the effect is best thought of as a generaliza-
tion of the AB effect from U(1)-AB to SU(2)-AB.

Results
Setup

Consider the conceptual setup in Figure 1. The circular channel
around the hole forms an edge of the 2D TI and therefore hosts
helical edge states. We assume for simplicity that the spin-po-
larization axis is perpendicular to the plane of the TI. The
Hamiltonian describing the two counter-propagating edge chan-
nels is then simply given by

ih
Hy == 0,

1=-""0%
H, ="a,,

where arrows indicate the spin direction. In the ground state no
net current is carried from one side to the other. Since the
system is symmetric under a rotation of © around the z-axis or-
thogonal to the TI, even persistent currents are prevented. How-
ever, if a voltage is applied across the circuit, electrons can start
to flow from one side to the other, say from the left to the right.
This current will be proportional to the transfer matrix of the
states that are occupied at the left side, but unoccupied on the

right. We therefore begin by calculating this transfer matrix.
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Figure 1: A hole drilled in a 2D TI creates two edge channels (orange).
Leads (grey) are attached on each side of the hole, and a bias voltage
is applied across the circuit. The transport properties of the device can
be altered by threading a magnetic flux (blue arrow) through the hole,
as well as by choosing either ferromagnetic or normal leads. The circu-
lar shape is not essential, but is used to simplify calculations.

When considering processes that transfers electrons from the
left to the right, we can, because of the helicity of the edge
states, restrict ourselves to up-spins along the upper edge, and
down-spins along the lower edge. Further, we introduce the co-
ordinate x; = (2n — 0) and x, = 0 along the upper and lower
edges, respectively. The eigenvalue equations along the two
edges are then

HT\PTp =ih6xl‘}’¢p :E\PTp’
H»L\Pip =ihax2\1’¢p =E‘P¢p,

and the corresponding eigenstates can be written as
Ll i/
[¥5)=[o) "
Tp O >

[ip)=] o

We now thread a magnetic flux of magnetic field strength
B through the hole. To describe this we choose the vector
potential A=(B/2)ré, which translates into —(B/2)rx
and (B/2)rx, in the new (x1, x3)-coordinates. The addition of
this vector potential acts on the phase of the eigenstates accord-
ing to

|\PTp> = |:1}e_i(1’+q3r/2)xl/h ’

e

where ¢ is the unit of electric charge. It is therefore clear

that the transfer matrix that describes the transport of spins from
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the left side, x| = x» = 0, to the right side, x; = x, = rm, is given
by

7iqBr2n/2h 0

O=e /¢ 1
0 eiqBrzrc/Zh

We here note that ugder a gauge transformation 4—4 + A4’,
. n .
where A’ satisfies Io A'(0)d0 =0, the transfer matrix trans-

forms as

[iq]EA'(O)dO]
n
O 0Oe" °

We have confirmed that this additional phase drops out of all
physical quantities below, proving the gauge invariance of our
results, and we can therefore set A’ = 0. Similarly, the overall
phase in the above equation will drop out of all physical quanti-
ties. This also justifies us in not having specified the chemical
potential. Because, as long as the spectrum is described by the
same edge Hamiltonian, the only role of the chemical potential
is to determine around which momentum py the relevant excita-

tions are located.

Transfer between lead and edge channels
The total transfer matrix for the system will not only depend on
the transfer matrix that describes the motion around the hole,
but also on the matrices that describe the transfer processes be-
tween the leads and the circular edge. We will here assume that
this process preserves phase coherence between the states in the
leads and the TI edge states, and that it is described by a single
tunneling parameter #, which we for now set to # = 1 to indicate
perfect transmission between lead and edge. That is, the trans-
mission is described by the identity matrix, and therefore con-
tributes trivially to the total transfer matrix. However, we will in
what follows be interested in tilting the TI by an angle ¢ rela-
tive to the quantization axis of the leads. It is therefore neces-
sary to also let the total transfer matrix encode a change of basis
between the leads and the TI. For this purpose we define two
sets of coordinate axes, the laboratory axes x,y,z, and the TI
axes x',)",z". We choose to describe the electrons in the leads
with the coordinates in the laboratory frame, while the edge
states in the TI are described by the primed coordinates. It is
clear that Equation 1 refers to the transfer of states in the primed
basis. In particular, we choose the x,x"-axes along the direction
of motion of the electrons through the circuit, while the z,z'-axes
are chosen such that they coincide when ¢ = 0 and z’ is always
perpendicular to the TI. Explicitly, the x,y,z- and x',y",z'-coordi-
nates are related through

Beilstein J. Nanotechnol. 2018, 9, 1558-1563.

x'=x,
y'= ycos((p)—zsin((p),
z' = ysin(@)+zcos(9).

Using that spins transform according to

cos (%) sin [%) 0
U = D)
—sin (Ej e 10 cos (Bj
2 2

and simultaneously performing a gauge transformation
G = diag(1, i) to simplify the expressions below, the change of
basis from the x,y,z-basis to the x',)’,z’-basis for the spins is

o(g) (3

L=R"= . ?2)

ofg) g

We have here used L and R to denote the transformations from

given by

(SRES]
N |6

N |6
N |6

the unprimed to the primed coordinates, and the primed to the
unprimed coordinates, respectively. The symbols L and R are
chosen since they are applied at the left and right end of the
system, respectively. With these definitions we are now ready
to write down the complete transfer matrix for the system

T(B,r,¢)=ROL.

Here we have made explicit the dependence of T on the parame-
ters B and r on Equation 1, and of ¢ on Equation 2. The main
advantage of introducing the L and R matrices is that they allow
us to work in the laboratory frame alone. To calculate the prob-
ability that an incoming spin ¢ in the left lead is transferred to a
spin A in the right lead, we now simply need to calculate the
square of the corresponding matrix element

1o =[0I (8,10l

Measuring magnetic flux

As a first example of a concrete application, we consider a
system with fully spin-polarized ferromagnetic leads only con-
taining electrons with spin-up. Further, the SG spin splitter is
assumed to be oriented at an angle ¢ = /2, which forces the in-
coming spins to split equally into both channels. Because the

leads only conduct spin-up electrons, the only relevant matrix
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element for the scattering matrix is
Ty = <T|T[B r E)lT) = cos[—qBrznje_ipm/h
11 ) 2n '
The conductance is therefore given by

2 qBrzn

2h @

G= §|T‘M|2 = %cos

It is clear that the very strong dependence of the current on the
magnetic flux Br2n makes this setup ideal for measuring mag-
netic field strength, as a potential alternative to supercon-
ducting quantum interference devices (SQUIDs). The measure-
ment resolution is directly set by the radius of the hole in the TI.
This is of special interest because it provides a potential route
for high-resolution magnetic field measurements even at room
temperatures [21,22].

Logic spintronics gates

Next we note that the configuration in the previous section can
also be used as a spintronics switch, with voltage used to
encode 0 and 1. The two leads can be used as source and drain,
while the magnetic field is used as the gate. From Equation 3 it
is clear that a magnetic field strength B = (hn)/(qrz) corre-
sponds to “on” and “off” states for n even and odd, respectively,
and we therefore define the magnetic switching quantum

b="7% @
qr

An alternative way to encode 1 and 0 is to use the currents of
up- and down-spins, respectively. This requires normal leads
through which both up- and down-spins can be transported. We
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therefore consider the same configuration, but now evaluate all

four components of the transfer matrix 7(B, r, n/2):

2 .
TTT :T¢¢ = COS M eflprn/h

>

2
rm —
e 1prﬂ:/h.

Ti«T :_T'N« =sin

Similarly to the expressions above, the square of the transfer
matrices gives the transfer probability of the spin-polarized
currents. In particular, the off-diagonal matrix elements
Ty =-Tpy converts between up and down spin currents.
Therefore, the device relates the ingoing and outgoing spin
currents to each other through

R <[ 1 g
19 =T 10 |y P 1

Considering once again the special case B = (in)/ (qrz), with n
being an integer, the currents transforms according to

in yin
Jout yout _ IT ’Ii« even #,
T 1", oddn,

This means that the device can be switched between a normal
lead and a NOT-gate, simply by changing B by the switching
quantum in Equation 4.

Quantum computer gate

Having seen how a TI SG apparatus can be used to construct
classical logic gates for spintronics, we finally turn to possible
applications in quantum computing. It has been shown that a
universal quantum computer can be built using only two-qubit
CNOT-gates and single-qubit SU(2)-gates [20]. We here show

Figure 2: Three solid-state SG spin splitters in series, with the middle device at an angle /2 relative to the other two.
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that a SG TI spin-splitter provides a route for implementing the

latter of these two gates.

For this purpose we consider three sequential spin-splitters
connected by normal leads. The three devices are oriented as in
Figure 2, with the middle device oriented at an angle ¢, = /2,
while the first and the last spin splitter are at an angle
¢1 = ¢3 = 0. The total transfer matrix for the complete system is

then given by
Tue) :T(B3,r3,O)T(Bz,rz,ng(Bl,rl,O).

When evaluated, this expression can be written as

. 4% 0 [P/2 ¢ COS(%) Sin(%} PRIV S
2 2

where

The six physical parameters B;, r; are more than sufficient to
make the four parameters a, 1, B, and B3 independent of each
other. Moreover, when all these four parameters can be chosen
independently, it is possible to express any U(2)-matrix using
Equation 5 [20]. Thus, it is possible to implement any unitary
single-qubit gate, and in particular any SU(2)-gate, through the
use of three sequential solid-state SG spin splitters. In fact, the
overall U(1)-phase provided by the parameter a can be ignored
for reasons similar to those for which the U(1)-phase provided
by the gauge transformation 4—A + A’ can be ignored. This
phase would only be relevant if the incoming electron is further
split up into one part passing through the device, and one part
moving through another path joining only at the far right
outgoing lead.

In light of these results it is useful to think of the devices dis-
cussed here as exhibiting an SU(2)-AB effect. While the ordi-
nary AB effect arises as a consequence of interference in a
single U(1)-phase, these devices rely on a generalized SU(2)-
interference effect in the relative phase and amplitude of the up-
and down-components of the spin. To be able to create an arbi-
trary SU(2)-transformation, a sequence of three devices is

needed, while an individual spin splitter gives rise to a subset of

Beilstein J. Nanotechnol. 2018, 9, 1558-1563.

such SU(2)-transformations. Finally, we note that in this calcu-
lation we have omitted transfer matrices describing the propaga-
tion through the leads. We are justified in doing so because
these would be proportional to the identity matrix and therefore
only contribute to the irrelevant o phase.

Discussion

We would like to end with a few comments on some of the
assumptions made when deriving the above results. First of all,
the tunneling parameter ¢, which otherwise would have multi-
plied the L and R matrices was set to ¢ = 1. It is clear that the
zero-th order correction to deviations from ¢ =1 is to include the
factor # in front of all transmission coefficients, which shows
up as #* in the conductivity. The higher-order corrections would
come from particles that are reflected and travel an additional
time around the loop. While such terms can introduce correc-
tions to the interference pattern for intermediate field strengths,
they would not affect the result at multiples of the switching
quantum in Equation 4. The reason for this is that additional
circuits around the loop will only affect the relative phase be-
tween the up- and down-spins by multiples of 2z. Such interfer-
ence effect could also play a role for = 1 when ferromagnetic
leads are used, because the down spins at the right edge will be
completely reflected. In a standard Landauer treatment such re-
flected terms would have been taken into account through
reflection matrices in addition to the transmission matrix we
have derived, as was for example done in [14]. However, a 2D
TI is very special in this regard, because the reflected spins
travel back along the opposite edge from which it traveled
toward the exit lead. Since we are only interested in forward
propagation of up spins along one edge, and down spins along
the other, it is possible to add additional floating ferromagnetic
leads with opposite spin polarization to the forward propa-
gating modes to the two edges. This allows for reflected spins to
escape without affecting the forward propagating spins and
thereby we can suppress higher-order corrections.

We also mention that although the setup in Figure 2 might seem
difficult to realize in practice, the focus of this work is to
provide a conceptual setup and an explanation of the phenome-
non itself. In fact, the only reason the middle spin splitter is
tilted at an angle m/2 is to make its edge states have their spin-
polarization perpendicular to those of the other two. In practice
it would therefore be possible to have all three devices in the
same plane, if it is constructed out of two different types of 2D
TIs with perpendicular spin-polarization axes.

Conclusion
We have shown that the helical edge states of a 2D TI can be
utilized to construct a solid-state SG spin splitter that when

threaded by a magnetic flux gives rise to a generalized SU(2)-

1562



AB interference effect. With two ferromagnetic leads, the
device can be used to accurately measure magnetic flux, as well
as be used as a magnetic field gated spintronics switch. Instead
by using normal leads, a switchable spintronics NOT-gate can
be implemented, or when using three devices connected in se-
quence, a SU(2)-gate for quantum computing is achieved.
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Abstract

We present a theoretical analysis of the equilibrium Josephson current-phase relation in hybrid devices made of conventional
s-wave spin-singlet superconductors (S) and topological superconductor (TS) wires featuring Majorana end states. Using Green’s
function techniques, the topological superconductor is alternatively described by the low-energy continuum limit of a Kitaev chain
or by a more microscopic spinful nanowire model. We show that for the simplest S-TS tunnel junction, only the s-wave pairing
correlations in a spinful TS nanowire model can generate a Josephson effect. The critical current is much smaller in the topological
regime and exhibits a kink-like dependence on the Zeeman field along the wire. When a correlated quantum dot (QD) in the mag-
netic regime is present in the junction region, however, the Josephson current becomes finite also in the deep topological phase as
shown for the cotunneling regime and by a mean-field analysis. Remarkably, we find that the S—QD-TS setup can support @g-junc-
tion behavior, where a finite supercurrent flows at vanishing phase difference. Finally, we also address a multi-terminal S-TS-S ge-
ometry, where the TS wire acts as tunable parity switch on the Andreev bound states in a superconducting atomic contact.

Introduction

The physics of topological superconductors (TSs) is being
vigorously explored at present. After Kitaev [1] showed that a
one-dimensional (1D) spinless fermionic lattice model with
nearest-neighbor p-wave pairing (‘Kitaev chain’) features a
topologically nontrivial phase with Majorana bound states
(MBSs) at open boundaries, references [2,3] have pointed out

that the physics of the Kitaev chain could be realized in

spin—orbit coupled nanowires with a magnetic Zeeman field and
in the proximity to a nearby s-wave superconductor. The spinful
nanowire model of references [2,3] indeed features p-wave
pairing correlations for appropriately chosen model parameters.
In addition, it also contains s-wave pairing correlations which
become gradually smaller as one moves into the deep topolog-

ical regime. Topologically nontrivial hybrid semiconductor
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nanowire devices are of considerable interest in the context of
quantum information processing [4-12], and they may also be
designed in two-dimensional layouts by means of gate lithogra-
phy techniques. Over the last few years, several experiments
employing such platforms have provided mounting evidence for
MBSs, e.g., from zero-bias conductance peaks in N-TS junc-
tions (where N stands for a normal-conducting lead) and via
signatures of the 4n-periodic Josephson effect in TS-TS junc-
tions [13-25]. Related MBS phenomena have been reported for
other material platforms as well [26-30], and most of the results
reported below also apply to those settings. Available materials
are often of sufficiently high quality to meet the conditions for
ballistic transport, and we will therefore neglect disorder
effects.

In view of the large amount of published theoretical works on
the Josephson effect in such systems, let us first motivate the
present study. (For a more detailed discussion and references,
see below.) Our manuscript addresses the supercurrent flowing
in Josephson junctions with a magnetic impurity. By consid-
ering Josephson junctions between a topological supercon-
ductor and a non-topological superconductor, we naturally
extend previous works on Josephson junctions with a magnetic
impurity between two conventional superconductors, as well as
other works on Josephson junctions between topological and
non-topological superconductors but without a magnetic impu-
rity. In the simplest description, Josephson junctions between
topological and non-topological supeconductors carry no super-
current. Instead, a supercurrent can flow only with certain devi-
ations from the idealized model description. The presence of a
magnetic impurity in the junction is one of these deviations, and
this effect allows for novel signatures for the topological transi-
tion via the so-called @g-behavior and/or through the kink-like
dependence of the critical current on a Zeeman field driving the
transition. We consider two different geometries in various
regimes, e.g., the cotunneling regime where a controlled pertur-
bation theory is possible, and a mean-field description of the
stronger-coupling regime. We study both idealized Hamilto-
nians (allowing for analytical progress) as well as more real-

istic models for the superconductors.

To be more specific, we address the equilibrium current—phase
relation (CPR) in different setups involving both conventional
s-wave BCS superconductors (‘S’ leads) and TS wires, see
Figure 1 for a schematic illustration. In general, the CPR is
closely related to the Andreev bound state (ABS) spectrum of
the system. For S—TS junctions with the TS wire deep in the
topological phase such that it can be modeled by a Kitaev chain,
the supercurrent vanishes identically [31]. This supercurrent
blockade can be traced back to the different (s/p-wave) pairing
symmetries for the S/TS leads, together with the fact that MBSs
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have a definite spin polarization. For an early study of
Josephson currents between superconductors with different
(p/d) pairing symmetries, see also [32]. A related phenomenon
concerns Multiple Andreev Reflection (MAR) features in
nonequilibrium superconducting quantum transport at subgap
voltages [33-36]. Indeed, it has been established that MAR pro-
cesses are absent in S—TS junctions (with the TS wire in the
deep topological regime) such that only quasiparticle transport

above the gap is possible [37-44].

a) }\’S }\’TS
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Figure 1: Schematic setups studied in this paper. a) S-QD-TS geom-
etry: S denotes a conventional s-wave BCS superconductor with order
parameter Ae'WZ, and TS represents a topologically nontrivial super-
conducting wire with MBSs (shown as stars) and proximity-induced

order parameter Apefl 2. The interface contains a quantum dot (QD)
corresponding to an Anderson impurity, connected to the S/TS leads
by tunnel amplitudes Ag/ts (light red). The QD is also exposed to a
local Zeeman field B. b) S-TS—S geometry: Two conventional super-
conductors (S1 and S2) with the same gap A and a TS wire with prox-
imity gap A, form a trijunction. The order parameter phase of S1 (S2),
b1 =0/2 (0o =-0/2), is taken relative to the phase of the TS wire, and
tunnel couplings A2 connect S1/S2 to the TS wire. When the TS wire
is decoupled (A1 2 = 0), the S-S junction becomes a standard SAC with
transparency 7 determined by the tunnel amplitude tp, see

Equation 42.

There are several ways to circumvent this supercurrent blockade
in S-TS junctions. (i) One possibility has been described in
[43]. For a trijunction formed by two TS wires and one S lead,
crossed Andreev reflections allow for the nonlocal splitting of
Cooper pairs in the S electrode involving both TS wires (or the
reverse process). In this way, an equilibrium supercurrent will
be generated unless the MBS spin polarization axes of both TS
wires are precisely aligned. (ii) Even for a simple S-TS junc-
tion, a finite Josephson current is expected when the TS wire is
modeled as spinful nanowire. This effect is due to the residual
s-wave pairing character of the spinful TS model [2,3]. Interest-
ingly, upon changing a control parameter, e.g., the bulk Zeeman

field, which drives the TS wire across the topological phase
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transition, we find that the critical current exhibits a kink-like
feature that is mainly caused by a suppression of the Andreev
state contribution in the topological phase. (iii) Yet another pos-
sibility is offered by junctions containing a magnetic impurity
in a local magnetic field. We here analyze the S—QD-TS setup
in Figure la in some detail, where a quantum dot (QD) is
present within the S—TS junction region. The QD is modeled as
an Anderson impurity [36], which is equivalent to a spin-1/2
quantum impurity over a wide parameter regime. Once spin
mixing is induced by the magnetic impurity and the local mag-
netic field, we predict that a finite Josephson current flows even
in the deep topological limit. In particular, in the cotunneling
regime, we find an anomalous Josephson effect with finite
supercurrent at vanishing phase difference (¢(-junction behav-
ior) [45-47], see also [48-51]. The 2xn-periodic CPR found in
S—QD-TS junctions could thereby provide independent evi-
dence for MBSs via the anomalous Josephson effect. In addi-
tion, we compute the CPR within the mean-field approximation
in order to go beyond perturbation theory in the tunnel
couplings connecting the QD to the superconducting leads. Our
mean-field analysis shows that the ¢g-junction behavior is a
generic feature for S-QD-TS devices in the topological regime
which is not limited to the cotunneling regime.

In the final part of the paper, we turn to the three-terminal
S—TS-S setup shown in Figure 1b, where the S-S junction by
itself (with the TS wire decoupled) represents a standard super-
conducting atomic contact (SAC) with variable transparency of
the weak link. Recent experiments have demonstrated that the
many-body ABS configurations of a SAC can be probed and
manipulated to high accuracy by microwave spectroscopy [52-
54]. When the TS wire is coupled to the S—S junction, see
Figure 1b, the Majorana end state acts as a parity switch on the
ABS system of the SAC. This effect allows for additional func-
tionalities in Andreev spectroscopy. We note that similar ideas
have also been explored for TS-N-TS systems [55].

Results and Discussion

S—QD-TS junction

Model

Let us start with the case of an S—-QD-TS junction, where an
interacting spin-degenerate single-level quantum dot (QD) is
sandwiched between a conventional s-wave superconductor (S)
and a topological superconductor (TS). This geometry is shown
in Figure la. The corresponding topologically trivial S—-QD-S
problem has been studied in great detail over the past decades
both theoretically [56-63] and experimentally [64-69]. A main
motivation for those studies came from the fact that the QD can
be driven into the magnetic regime where it represents a spin-
1/2 impurity subject to Kondo screening by the leads. The
Kondo effect then competes against the superconducting bulk
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gap and one encounters local quantum phase transitions. By
now, good agreement between experiment and theory has been
established. Rather than studying the fate of the Kondo effect in
the S—QD-TS setting of Figure 1a, we here pursue two more
modest goals. First, we shall discuss the cotunneling regime in
detail, where one can employ perturbation theory in the
dot—lead couplings. This regime exhibits n-junction behavior in
the S-QD-S case [56]. Second, in order to go beyond the cotun-
neling regime, we have performed a mean-field analysis similar
in spirit to earlier work for S—QD-S devices [57,58].

The Hamiltonian for the setup in Figure 1a is given by

H:HS+HTS+HQD+H['LIH’ (])

where Hg/ts and Hqp describe the semi-infinite S/TS leads and
the isolated dot in between, respectively, and Hy,, refers to the
tunnel contacts. We often use units withe=7% =kg=1,and =
1/T denotes inverse temperature. The QD is modeled as an
Anderson impurity [36], i.e., a single spin-degenerate level of

energy &g with repulsive on-site interaction energy U > 0,

1
HQD= Ziso[n6—5J+UnTn¢—B-S, )

o=1,

where the QD occupation numbers are ng = d; ds = 0,1, with
dot fermion operators d; and dg; for spin o. Using standard
Pauli matrices o, , ., we define

Si=x,y,z = z, d; (Gi )GG' dg 3)
c,0

such that S/2 is a spin-1/2 operator. In the setup of Figure 1a,
we also take into account an external Zeeman field B = (By, B),
B,) acting on the QD spin, where the units in Equation 2 include
gyromagnetic and Bohr magneton factors. The spinful nano-
wire proposal for TS wires [2,3] also requires a sufficiently
strong bulk Zeeman field oriented along the wire in order to
realize the topologically nontrivial phase, but for concreteness,
we here imagine the field B as independent local field coupled
only to the QD spin. One could use, e.g., a ferromagnetic grain
near the QD to generate it. This field here plays a crucial role
because for B = 0, the S+QD part is spin rotation [SU(2)]
invariant and the arguments of [31] then rule out a supercurrent
for TS wires in the deep topological regime. We show below
that unless B is inadvertently aligned with the MBS spin polari-
zation axis, spin mixing will indeed generate a supercurrent.

The S/TS leads are coupled to the QD via a tunneling Hamil-
tonian [70],
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Hun=hs Y, Whdg+hqse ™®?Wldy +he,
o=T4

where yg and y are boundary fermion fields representing the S
lead and the effectively spinless TS lead, respectively. For the S
lead, we assume the usual BCS model [62], where the operator
y, annihilates an electron with spin ¢ at the junction. The TS
wire will, for the moment, be described by the low-energy
Hamiltonian of a Kitaev chain in the deep topological phase
with chemical potential p =0 [1,5]. The corresponding fermion
operator y at the junction includes both the MBS contribution
and above-gap quasiparticles [40]. Without loss of generality,
we choose the unit vector é, as the MBS spin polarization
direction and take real-valued tunnel amplitudes Ag/7s, see
Figure la, using a gauge where the superconducting phase
difference ¢ appears via the QD-TS tunneling term. These
tunnel amplitudes contain density-of-states factors for the
respective leads. The operator expression for the current
flowing through the system is then given by

2e

I= - O4H un - 5)

We do not specify Hg/rg in Equation 1 explicitly since within
the imaginary-time (t) boundary Green’s function (bGF)
formalism [40] employed here, we only need to know the bGFs.
For the S lead with gap value A, the bGF has the Nambu matrix
form [40]

g(0) =~(T.¥s (1) ¥{(0)) =BT "g(o),

kS g(w)z_imro + AT, ©

J \/m2+A2 ’

where the expectation value <...>0 refers to an isolated S lead, 7
denotes time ordering, o runs over fermionic Matsubara
frequencies, i.e., ® = 2n(n + 1/2)/p with integer n, and we define
Pauli (unity) matrices Ty, (To) in particle-hole space corre-
sponding to the Nambu spinor Wg. Similarly, for a TS lead with
proximity-induced gap A, the low-energy limit of a Kitaev
chain yields the bGF [40]

G(o)=

The matrices 1¢ , here act in the Nambu space defined by the

spinor Wrg. Later on we will address how our results change
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when the TS wire is modeled as spinful nanowire [2,3], where
the corresponding bGF has been specified in [43]. We empha-
size that the bGF (Equation 7) captures the effects of both the
MBS (via the 1/m term) and of the above-gap continuum quasi-
particles (via the square root) [40,71].

In most of the following discussion, we will assume that U is
the dominant energy scale, with the single-particle level located
at gg = — U/2. In that case, low-energy states with energy well
below U are restricted to the single occupancy sector,

my+ny =1, ®)

and the QD degrees of freedom become equivalent to the spin-
1/2 operator S/2 in Equation 3. In this regime, the QD acts like
a magnetic impurity embedded in the S-TS junction. Using a
Schrieffer—Wolff transformation to project the full Hamiltonian
to the Hilbert subspace satisfying Equation 8, H — Hc¢y, one
arrives at the effective low-energy Hamiltonian

Heyp =Hy+H;y, Hy=Hg+Hpg—B-S, ©)
with the interaction term
2
Hi = T Z (ngdgd;,nd +h.c.)
c,0’
2 .
= E Z (GSZT]LHG + Scnicnc) (10)
o=T/=t
2 ; 2A
+ Zand ning -==(sn+1),
o %}ncng o (Bn+1)

where Sy = Sy + iS, and on = chc, — 1. Moreover,
A= [nc,ng ]+ is the anticommutator of the composite bound-
ary fields

No = )\’S\PG + 66 ?kTSeid)/z\P. (11)

We note that A is real-valued and does not depend on ¢. Due to
the constraint (Equation 8) on the dot occupation, the last two
terms in Equation 10 do not contribute to the system dynamics
and we obtain

4
Hint = E ZVQGG'T]—’C—ST]G/ >

G, (12)
c 1

QGG :ESZ > chc :Esfc'
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A formally exact expression for the partition function is then
given by

_ ~[Paur,
Z:Tr|8n_0[e BHO'TTe Jods mt(r)} (13)

where H;, (1) = o Hime_rH0 with H, in Equation 9 and the
trace extends only over the Hilbert subspace corresponding to
Equation 8. We can equivalently write Equation 13 in the form

BF

Z=2, <Tre_ﬁW>0 =P,

B
W =B [deHiy (), (14)

0
_ —BHy _ ,~BFy
Zy=Tils,_,e = Pho,

where F is the free energy. The Josephson current then follows
as I =(2e/h) 0¢F, see Equation 5.

Cotunneling regime
We now address the CPR in the elastic cotunneling regime,

Aghtg < min{A,Ap,U}, (15)

where perturbation theory in Hjy is justified. We thus wish to
compute the free energy F(¢) from Equation 14 to lowest
nontrivial order. With Wy = <W>O, the standard cumulant
expansion gives

F—FO=WO—%(<W2>0—W02)+O(W)2. (16)

By virtue of Wick’s theorem, time-ordered correlation func-
tions of the boundary operators (Equation 11) are now
expressed in terms of S/TS bGF matrix elements, see

Equation 6 and Equation 7,

M (T (1) ¥ (0))
T T! = g 0
<Tmc( o (0)>° foo +85,¢7»%S<TT‘P(T)‘{’T(0)>0 "
and similarly
(o (I (0)) = 86, o3 (T¥ (1) ¥ 5 (0))

0 (18)

+ ei¢860'66,T7\‘%s <T1:\P (T)\P (O)>0
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Next we observe that 0, <Him >0 =0. As a consequence, the
¢-independent terms W and WO2 in Equation 16 do not contrib-
ute to the Josephson current. The leading contribution is then of
second order in Hjy,

B
()= ‘B_I%Idflde (THi (v1) Hi (%2)),
0

2B
=—%IdT1dT2g12(Tl -1)Gp(y-1) 19
0

xieY 6 (1.0, 1 ()21 (72)), +hes

with Q v in Equation 12 and the small dimensionless parame-
ter

4hqh
k=—3"T8 1, (20)
U
From Equation 6 and Equation 7, the bGF matrix elements
needed in Equation 19 follow as

)= A cos(o1)
g12() B%m’

A i A
Gy (1) = —Fp &mcor) = —Tpsgn(r).

(2]

Now |g12(1)] is exponentially small unless Alt| < 1. In particular,
g12(t) — —9(t) for A — . Moreover, for B < A with B = |B|,
the magnetic impurity (S) dynamics will be slow on time scales
of the order of 1/A. We may therefore approximate the
spin—spin correlators in Equation 19 by their respective equal-
time expressions,

tim (7,0,1(1)Q 4 1 (x2)), = Zsen( -~ )(S,51), - (22)

I hd’V)

Inserting Equation 21 and Equation 22 into the expression for
the supercurrent in Equation 19, the time integrations can be
carried out analytically.

We obtain the CPR in the cotunneling regime as

I(¢):Ixsin¢+1ycos¢,

2
ek“A, B
_ p ~x)y
Loy _TTta“h(BB)’

(23)
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with « in Equation 20. We note that while /(¢) is formally inde-
pendent of A, the value of A must be sufficiently large to justify
the steps leading to Equation 23. Remarkably, Equation 23
predicts anomalous supercurrents for the S-QD-TS setup, i.e., a
finite Josephson current for vanishing phase difference (¢ = 0)
[45,46,72]. One can equivalently view this effect as a @¢-shift in
the CPR, 1(¢) = I. sin(¢ + @g). An observation of this @g-junc-
tion behavior could then provide additional evidence for MBSs
(see also [47]), where Equation 23 shows that the local magnet-
ic field is required to have a finite B,-component with &,
defining the MBS spin polarization direction. In particular, if B
is aligned with é,, the supercurrent in Equation 23 vanishes
identically since s-wave Cooper pairs cannot tunnel from the S
lead into the TS wire in the absence of spin flips [31]. Other-
wise, the CPR is 2n-periodic and sensitive to the MBS through
the peculiar dependence on the relative orientation between the
MBS spin polarization (¢,) and the local Zeeman field B on the
QD. The fact that B, # 0 (rather than B, # 0) is necessary to
have ¢y # 0 can be traced back to our choice of real-valued
tunnel couplings. For tunable tunnel phases, also the field direc-

tion where one has ¢y = 0 will vary accordingly.

Noting that the anomalous Josephson effect has recently been
observed in S—-QD-S devices [73], we expect that similar exper-
imental techniques will allow to access the CPR (Equation 23).
We mention in passing that previous work has also pointed out
that experiments employing QDs between N (instead of S) leads
and TS wires can probe nonlocal effects due to MBSs
[12,16,74-78]. In our case, e.g., by variation of the field direc-
tion in the xy-plane, Equation 23 predicts a tunable anomalous
supercurrent. We conclude that in the cotunneling regime, the
n-junction behavior of S—-QD-S devices is replaced by the more

exotic physics of ¢gp-junctions in the S-QD-TS setting.

Mean-field approximation

Next we present a mean-field analysis of the Hamiltonian
(Equation 1) which allows us to go beyond the perturbative
cotunneling regime. For the corresponding S—QD-S case, see
[58,79]. We note that a full solution of this interacting many-
body problem requires a detailed numerical analysis using, e.g.,
the numerical renormalization group [60,61] or quantum Monte
Carlo simulations [59,63], which is beyond the scope of the
present work. We start by defining the GF of the QD,

Gy (7) =~(T.9 4 (5) ¥} (0)), ¥] =(af.dy.a] ~dy )T. 4)

Note that this notation introduces double counting, which
implies that only half of the levels are physically independent.
Of course, the results below take this issue into account.
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With the above Nambu bi-spinor basis, the mean-field Hamil-

tonian has the 4 x 4 matrix representation

87\ Ad Ay 0
AZ -, 0 oy
Hyr = * ’
Ay 0 8¢ Ad
0 ocz A; —&4 (25)

&r =gy —B, +U<I’l¢>, gL =€ +B, +U<I’l¢>,
oy = By+iB,~U(d[dy), Ay =U{d)dy).

The mean-field parameters appearing in Equation 25 follow by

solving the self-consistency equations

(1) =52 Gan(@) (1) =53 Gazn (o)

| ¢ | @ (26)
(aldn )= 5 36a13(0). (dydr) =5 26 ()
(O] [}
where the mean-field approximation readily yields
. -1

The self-energies Xg/Ts(®) due to the coupling of the QD to the
S/TS leads have the matrix representation

g g 0 0
- 0 0
¢ =T 821 &2 28)
0 0 g1 —&12
0 0 -g g»
and
Gll 0 O —G126i¢
0 0 0
L1 =I'1g 0 0 0 0 29
_G213i¢ 0 O G22

with the hybridization parameters I's/tg = }‘é/TS' The bGFs
g(®) and G(®) have been defined in Equation 6 and Equation 7,
respectively. Once a self-consistent solution to Equation 26 has
been determined, which in general requires numerics, the
Josephson current is obtained from Equation 5 as
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e <% det[G[;1 ((D):I

1(0)= B ® det[Ggl ((D)J

(30)

In what follows, we study a setup with A, = A and consider the
zero-temperature limit.

In order to compare our self-consistent mean-field results to the
noninteracting case, let us briefly summarize analytical expres-
sions for the U= 0 ABS spectrum in the atomic limit defined by
I's Ts < A. First we notice that at low energy scales, the self-
energy X = Xg + Xts, see Equation 28 and Equation 29, simpli-

fies to
2A _ _2A i
o L TS Is o L Ts®
T 0 0
3=~ 31
0 0 0 Ty
_2A i _ 2A
wltse’ 0 Ty < g

The ABS spectrum of the S—QD-TS junction then follows by
solving a determinantal equation, det[GJ ! (oo)} =0. One finds a
zero-energy pole which is related to the MBS and results from
the 1/ dependence of Xg(w). In addition, we get finite-energy
subgap poles for

[ 2
bo"er b() +4C0 (32)

i(DE Egclii,czii) —

2

Ol 2
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with the notation
by =67 +% +4T1gA+2T3 +2|ay [,
¢y =—4I'1gA (af + F% + |0Ld |2 )— S%Si
2 2 2 2
~(lotal? <73 ){jaaP -1 210, )

+8ATS 15 Re(age®).

(33)

In Figure 2, numerically exact results for the U = 0 ABS spec-
trum are compared to the analytical prediction (Equation 32).
We first notice that, as expected, Equation 32 accurately fits the
numerical results in the atomic limit, see the left panel in
Figure 2. Deviations can be observed for larger values of I'g 15/
A. However, as shown in the right panel of Figure 2, rather
good agreement is again obtained by rescaling Equation 32 with
a constant factor of the order of (1 + I's Ts/A). For finite B, we
find (data not shown) that the phase-dependent ABS spectrum
is shifted with respect to ¢ = 0. In fact, since the phase depen-
dence of the subgap states comes from the term Re(a deid’) in
the atomic limit, see Equation 25 and Equation 33, B), can be
fully accounted for in this limit by simply shifting ¢ — ¢ + @y.
We thereby recover the ¢g-junction behavior discussed before
for the cotunneling regime, see Equation 23.

We next turn to self-consistent mean-field results for the phase-
dependent ABS spectrum at finite U. Figure 3 shows the spec-
trum for the electron—hole symmetric case gy = —U/2, with other
parameters as in the right panel of Figure 2. For moderate inter-
action strength, e.g., taking U = A (left panel), we find that com-

Figure 2: Phase dependence of the subgap spectrum of an S—QD-TS junction in the noninteracting case, U = 0. The TS wire is modeled from the
low-energy limit of a Kitaev chain, and we use the parameters B, = 0, By = B, = B/JE, €0 =0, Ap = A, and I's = I'tg = I'. From blue to yellow, the color
code indicates increasing values of the spectral density. The left (right) panel is for ' = 0.045A and B = 0.1A (I = B = 0.5A). Solid curves were ob-
tained by numerical evaluation of Equation 30. Dashed curves give the analytical prediction (Equation 32). In the right panel, the energies resulting

from Equation 32 have been rescaled by the factor 1 + [/A.
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2

ol

Figure 3: Phase-dependent ABS spectrum from mean-field theory for S-QD-TS junctions as in Figure 2 but with U > 0 and g = —U/2. We put A = A,
By, =0, and I's = I'ts = I". The color code is as in Figure 2. The left panel is for U= A, I' = 0.5A, and By = B, = B/~[2 with B = 0.5A [cf. the right panel

of Figure 2]. The right panel is for U = 10A, ' = 4.5A, B, = 15A, and B, = 0.

pared to the U = 0 case in Figure 2, interactions push together
pairs of Andreev bands, e.g., the pair corresponding to Eﬁf’i) in
Equation 30. On the other hand, for stronger interactions, e.g.,
U = 10A (right panel), the outer ABSs leak into the continuum
spectrum and only the inner Andreev states remain inside the
superconducting gap. The ABS spectrum shown in Figure 3 is
similar to what is observed in mean-field calculations for
S—QD-S systems with broken spin symmetry and in the mag-
netic regime of the QD, where one finds up to four ABSs for
U < A while the outer ABSs merge with the continuum for
U > A [79]. Interestingly, the inner ABS contribution to the free
energy for U = 10A is minimal for ¢ = m, see right panel of
Figure 3, and we therefore expect n-junction behavior for B, = 0
also in the regime with U > A and B > A. We notice, howev-
er, that changing the sign of B, would result in zero junction be-
havior. We interpret the inner ABSs for U > A as Shiba states
with the phase dependence generated by the coupling to the
MBS. Without the latter coupling, the Shiba state has ¢-inde-
pendent energy slightly below A determined by the scattering
phase shift difference between both spin polarizations [80].

As illustrated in Figure 4, the CPR computed numerically from
Equation 30 for different values of I's /A, where By has been
inverted with respect to its value in Figure 3, results in zero
junction behavior. This behavior is expected from Equation 23
in the cotunneling regime, and Figure 4 shows that it also
persists for I's 7g > A. In contrast to Equation 23, however, the
CPR for I's 1g > A differs from a purely sinusoidal behavior,
see Figure 4. Moreover, for B), # 0, we again encounter ¢g-junc-
tion behavior, cf. the inset of Figure 4, in accordance with the
perturbative result in Equation 23. Our mean-field results

suggest that gg-junction behavior is very robust and extends

also into other parameter regimes as long as the condition
By # 0 is met.

-0.2
—TI/A=45
04 T/IA=8 1
—TI/A=10
06! —TI/A= 12.5 | ‘ |
0 0.5 1 ¢lr 1.5 2

Figure 4: Main panel: Mean-field results for the CPR of S-QD-TS
junctions with different I'/A values, where we assume A, = A, U = 104,
gg=-U2,Tg=T1g=T,B=15A, and B, = 0. Main panel: For B, = -B
and By, = 0. Inset: Same but for B, = =By = B/\/E, where @g-junction
behavior occurs.

Next, Figure 5 shows mean-field results for the critical current,
I, =maxy|/(¢)], as function of the local magnetic field B,
and otherwise the same parameters as in Figure 4. The main
panel in Figure 5 shows that /. increases linearly with
B, for small B, < A, then exhibits a maximum around B, = I,
and subsequently decreases again to small values for
B, » max{I's 1s5,A}. On the other hand, for a fixed absolute
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value B of the magnetic field and B}, = 0, the critical current also
exhibits a maximum as a function of the angle 05 between B
and the MBS spin polarization axis (é,). This effect is illus-
trated in the inset of Figure 5. As expected, the Josephson cur-
rent vanishes for 05 — 0, where the supercurrent blockade argu-
ment of [31] implies /, = 0, and reaches its maximal value for
0p = /2.

Figure 5: Main panel: Mean-field results for the critical current I vs
local magnetic field scale By in S—-QD-TS junctions. Parameters are as
in the main panel of Figure 4, i.e., U= 104, g = -U/2, and By ; = 0.
From left to right, different curves are for [/A = 4.5, 8, 10 and 12.5.
Inset: I; vs angle 85, where B = B (sinf,0,cos6g) with B = 15A.

Spinful nanowire model for the TS

Model

Before turning to the S-TS-S setup in Figure 1b, we address the
question of how the above results for S—QD-TS junctions
change when using the spinful nanowire model of [2,3] instead
of the low-energy limit of a Kitaev chain, see Equation 7. In
fact, we will first describe the Josephson current for the elemen-
tary case of an S—TS junction using the spinful nanowire model.
Surprisingly, to the best of our knowledge, this case has not yet
been addressed in the literature.

In spatially discretized form, the spinful nanowire model for TS
wires reads [2,3,43]

Hryg = %Z[\P;}I\Pj + (‘ij‘l’jﬂ + h.c.)} ,
J

~ 34
h=(2t-p)t,60+V, 10, +A,T,00 , G4

t =—i1,6( +ia1,0, ,
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where the lattice fermion operators c;, for given site j with spin

polarizations ¢ = 1,] are combined to the four-spinor operator

‘Pj = (CjT’cji’CL’_ch)T'

The Pauli matrices 1y, (and unity 7o) again act in Nambu
space, while Pauli matrices o, . and oq refer to spin. In
the figures shown below, we choose the model parameters in
Equation 34 as discussed in [43]. The lattice spacing is set to
a = 10 nm, which results in a nearest-neighbor hopping
t = K2/(2m*a?) = 20 meV and the spin—orbit coupling strength
o =4 meV for InAs nanowires. The proximity-induced pairing
gap is again denoted by A, the chemical potential is p, and the
bulk Zeeman energy scale V), is determined by a magnetic field
applied along the wire. Under the condition

V. >vE=ul+A2,

(35

the topologically nontrivial phase is realized [2,3]. As we
discuss below, the physics of the S-QD-TS junction sensi-
tively depends on both the bulk Zeeman field V, and on the
local magnetic field B acting on the QD, where one can either
identify both magnetic fields or treat B as independent field. In
any case, the bGF G (o) for the model in Equation 34, which
now replaces the Kitaev chain result G(o) in Equation 7, needs
to be computed numerically. The bGF G has been described in
detail in [43], where also a straightforward numerical scheme
for calculating G (w) has been devised. With the replacement
G—G, we can then take over the expressions for the Josephson
current discussed before. Below we study these expressions in
the zero-temperature limit.

S—TS junction

Let us first address the CPR for the S-TS junction case. The
Josephson current can be computed using the bGF expression
for tunnel junctions in [40], which is a simplified version of the
above expressions for the S-QD-TS case. The spin-conserving
tunnel coupling A defines a transmission probability (trans-
parency) 7 of the normal junction [40,43]. Close to the topo-

logical transition, the transparency is well approximated by

4(0/t)
2’ (36)

1667



where ¢ =20 meV is the hopping parameter in Equation 34. We
then study the CPR and the resulting critical current /. as a
function of 7 for both the topologically trivial (V, < V) and
the nontrivial (V, > V) regime, see Equation 35.

In Figure 6, we show the ¥, dependence of the critical current /.
for the symmetric case A = Aj,. In particular, it is of interest to
determine how /. changes as one moves through the phase tran-
sition in Equation 35. First, we observe that /. is strongly
suppressed in the topological phase in comparison to the topo-
logically trivial phase. In fact, /. slowly decreases as one moves
into the deep topological phase by increasing V. This observa-
tion is in accordance with the expected supercurrent blockade in
the deep topological limit [31]: /. = 0 for the corresponding
Kitaev chain case since p-wave pairing correlations on the TS
side are incompatible with s-wave correlations on the S side.
However, a residual finite supercurrent can be observed even
for rather large values of V. We attribute this effect to the
remaining s-wave pairing correlations contained in the spinful
nanowire model (Equation 34). Second, Figure 6 shows kink-
like features in the /.(V,) curve near the topological transition,
V. = V{. The inset of Figure 6 demonstrates that this feature
comes from a rapid decrease of the ABS contribution while the
continuum contribution remains smooth. This observation sug-
gests that continuum contributions in this setup mainly origi-
nate from s-wave pairing correlations which are not particular-

ly sensitive to the topological transition.

0.16

0.12

0.04

5.2
VX (meV)

Figure 6: Main panel: Critical current /; vs Zeeman energy V, for an
S—TS junction using the spinful TS nanowire model (Equation 34) for
Ap =A=0.2meV, p =5 meV, and different transparencies 7 calcu-
lated from Equation 36. All other parameters are specified in the main
text. Inset: Decomposition of / for 7 = 1 into ABS (dotted-dashed)
and continuum (dashed) contributions.

In Figure 7, we show the CPR for the S—-TS junction with
7T =1 in Figure 6, where different curves correspond to differ-
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ent Zeeman couplings ¥, near the critical value. We find that in
many parameter regions, in particular for 7 < 1, the CPR is to
high accuracy given by a conventional 2n-periodic Josephson
relation, /(¢) = I, sin¢. In the topologically trivial phase, small
deviations from the sinusoidal law can be detected, but once
one enters the topological phase, these deviations become
extremely small.

Figure 7: CPR for the S—TS junction with 7 = 1 in Figure 6, for differ-
ent bulk Zeeman fields Vy (in meV) near the critical value
V¢ =5.004 meV.

S—QD-TS junction with spinful TS wire: Mean-field
theory

Apart from providing a direct link to experimental control pa-
rameters, another advantage of using the spinful nanowire
model of [2,3] for modeling the TS wire is that the angle be-
tween the local Zeeman field B and the MBS spin polarization
does not have to be introduced as phenomenological parameter
but instead results from the calculation [43]. It is thus interest-
ing to study the Josephson current in S-QD-TS junctions where
the TS wire is described by the spinful nanowire model. For this
purpose, we now revisit the mean-field scheme for S—QD-TS
junctions using the bGF G (o) for the spinful nanowire model
(Equation 34). In particular, with the replacement G—G, we
solve the self-consistency equations (Equation 26) and thereby
obtain the mean-field parameters in Equation 25. The resulting
QD GF, G4(o) in Equation 27, then determines the Josephson
current in Equation 30. Below we present self-consistent mean-
field results obtained from this scheme. In view of the huge pa-
rameter space of this problem, we here only discuss a few key
observations. A full discussion of the phase diagram and the

corresponding physics will be given elsewhere.
The main panel of Figure 8 shows the critical current /. vs

the bulk Zeeman energy V, for several values of the

chemical potential pi, where the respective critical value VS in

1668



Equation 35 for the topological phase transition also changes
with p. The results in Figure 8 assume that the local magnetic
field B acting on the QD coincides with the bulk Zeeman field
Vy in the TS wire, i.e., B = (V,0,0). For the rather large values
of I's s taken in Figure 8, the I vs ¥ curves again exhibit a
kink-like feature near the topological transition, Vy = V. This
behavior is very similar to what happens in S—TS junctions with
large transparency 7 , cf. Figure 6. As demonstrated in the inset
of Figure 8, the physical reason for the kink feature can be
traced back to a sudden drop of the ABS contribution to /., when
entering the topological phase ¥, > V. In the latter phase, I,
becomes strongly suppressed in close analogy to the S-TS junc-
tion case shown in Figure 6.

0.35

0.30 ¢

0.25}

0.201

(m A)

0015
0.10}

0.057

V, (meV)

Figure 8: Main panel: Critical current /; vs Zeeman energy V, for
S—QD-TS junctions from mean-field theory using the spinful TS nano-
wire model (Equation 34). Results are shown for several values of the
chemical potential p (in meV), where we assume U = 104, g = -U/2,
Ap=A=0.2meV, s =2lts =94, and B = (V,,0,0). Inset: Detailed
view of the transition region V, = VXc for y =4 meV, including a decom-
position of /¢ into the ABS (dotted-dashed) and the continuum (dashed)
contribution.

In Figure 8, both the QD and the TS wire were subject to the
same magnetic Zeeman field. If the direction and/or the size of
the local magnetic field B applied to the QD can be varied inde-
pendently from the bulk magnetic field Ve, applied to the TS
wire, one can arrive at rather different conclusions. To illustrate
this statement, Figure 9 shows the /. vs B, dependence for
B = (0,0,B;) perpendicular to the bulk field, with ¥, > ¥ such
that the TS wire is in the topological phase. In this case,
Figure 9 shows that /, exhibits a maximum close to B, ~ I". This
behavior is reminiscent of what we observed above in Figure 5,
using the low-energy limit of a Kitaev chain for the bGF of the
TS wire. Remarkably, the critical current can here reach values
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close to the unitary limit, /. ~ eA//i. We note that since B, does
not drive a phase transition, no kink-like features appear for the
1.(B;) curves shown in Figure 9. Finally, the inset of Figure 9
shows that for B perpendicular to V,é,, where V, > VS for the
parameters chosen in Figure 9, the ABSs provide the dominant
contribution to the current in this regime.

0.3

0.25¢

0.2

0.15¢

i A)

)

017

0.05

B

meV)

L

Figure 9: Main panel: Mean-field results for /; vs B, in S—-QD-TS junc-
tions for several values of Ts=T'ts =T (in meV) and y = 4 meV. The
bulk Zeeman field Vy = 5 meV along €, (where V, > V¢ for our param-
eters) is applied to the spinful TS wire, while the QD is subject to the
local magnetic field B = Bzéz. All other parameters are as in Figure 8.
Inset: Decomposition of /. into ABS (dotted-dashed) and continuum
(dashed) contributions for ' = 1.6 meV.

S—-TS-S junctions: Switching the parity of a
superconducting atomic contact

Model

We now proceed to the three-terminal S—TS-S setup shown in
Figure 1b. The CPR found in the related TS—S-TS trijunction
case has been discussed in detail in [43], see also [44]. Among
other findings, a main conclusion of [43] for the TS—S-TS ge-
ometry was that the CPR can reveal information about the spin
canting angle between the MBS spin polarization axes in both
TS wires. In what follows, we study the superficially similar yet
rather different case of an S—TS-S junction. Throughout this
section, we model the TS wire via the low-energy theory of a
spinless Kitaev chain, where the bGF G(®) in Equation 7
applies.

One can view the setup in Figure 1b as a conventional super-
conducting atomic contact (SAC) with a TS wire tunnel-
coupled to the S—S junction. Over the past few years, impres-
sive experimental progress [52-54] has demonstrated that the

ABS level system in a SAC [81] can be accurately probed and
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manipulated by coherent or incoherent microwave spectrosco-
py techniques. We show below that an additional TS wire, cf.
Figure 1b, acts as tunable parity switch on the many-body ABS
levels of the SAC. As we have discussed above, the supercur-
rent flowing directly between a given S lead and the TS wire is
expected to be strongly suppressed. However, through the
hybridization with the MBS, Andreev level configurations with
even and odd fermion parity are connected. This effect has
profound and potentially useful consequences for Andreev
spectroscopy.

An alternative view of the setup in Figure 1b is to imagine an
S—TS junction, where S1 plays the role of the S lead and the
spinful TS wire is effectively composed from a spinless
(Kitaev) TS wire and the S2 superconductor. The p- and s-wave
pairing correlations in the spinful TS wire are thereby spatially
separated. Since the s- and p-wave bands represent normal
modes, they are not directly coupled to each other in this
scenario, i.e., we have to put A, = 0. We discuss this analogy in
more detail later on.

We consider a conventional single-channel SAC (gap A)
coupled via a point contact to a TS wire (gap Ap), cf. Figure 1b.
The superconducting phase difference across the SAC is
denoted by ¢=¢; —¢,, where <|>j is the phase difference be-
tween the respective S arm (j = 1,2) and the TS wire. In prac-
tice, the SAC can be embedded into a superconducting ring for
magnetic flux tuning of ¢. To allow for analytical progress, we
here assume that A, is so large that continuum quasiparticle ex-
citations in the TS wire can be neglected. In that case, only the
MBS at the junction has to be kept when modeling the TS wire.
However, we will also hint at how one can treat the general

case.

For the two S leads, boundary fermion fields are contained in
Nambu spinors as in Equation 6,

> (37)

where their bGF follows with the Nambu matrix g(®) in Equa-

tion 6 as

g7 (@)=g " (o) +b;7. (38)

We again use Pauli matrices 1, ,, . and unity 7y in Nambu space.
The dimensionless parameters b; » describe the Zeeman field
component along the MBS spin polarization axis, see below.

Since above-gap quasiparticles in the TS wire are neglected
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here, the TS wire is represented by the Majorana operator
y = vT, with y2 = 1/2, which anticommutes with all other
fermions. We may represent y by an auxiliary fermion f, where
the index reminds us that the MBS spin polarization points
along é,,

(A

(39

The other Majorana mode y' = —i(qu —fg)/\/f, which is
localized at the opposite end of the TS wire, is assumed to have
negligible hybridization with the W ; spinors and with 7.
Writing the Euclidean action as S = Sy + Siun, we have an

uncoupled action contribution,

B
So = Z J‘dtdr"l’s’j(t)g]_»l(r—r')‘I’S’j(t')
J=L20

8 (40)
1
+E£dt v(1)o.y(7).

The leads are connected by a time-local tunnel action corre-
sponding to the tunnel Hamiltonian

Htun = to (T;l’tzeirz(b/zq’s’z +h.C.)
A , (41)
j ( /2 )

+ — ¥’ e h.c.]y.

/=le'2*/E a

Without loss of generality, we assume that the tunnel ampli-
tudes ¢y and A1 », see Figure 1b, are real-valued and that they
include density-of-state factors again. The parameter #; (with
0 <ty < 1) determines the transparency 7 of the SAC in the
normal-conducting state [36], cf. Equation 36,

41

T:ﬁ.
(1+t0)

(42)

Note that in Equation 41 we have again assumed spin-
conserving tunneling, where only spin-1 fermions in the SAC
are tunnel-coupled to the Majorana fermion vy, cf. Equation 4.

At this stage, it is convenient to trace out the s, spinor field.
As a result, the SAC is described in terms of only one spinor
field, ¥ = ¥g 1, which however is still coupled to the Majorana
field y. After some algebra, we obtain the effective action
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F(0)K (o) ¥ (7)
1
_6 o a ,
B +(DT (‘C) 2 (T T ) T (D(T/)
2 ’
Sett =Idrdr’ _‘kgP¢gz (t-7) P )
0 — }Llel¢l/26(,c_ T,)
B |
" “pe®2 2y o2, (1-7)
PO(7)+he.

where the operator Py = (19 + 1,)/2 projects a Nambu spinor to
its spin-1 component. Moreover, we have defined an effective

GF in Nambu space with frequency components

K (0)=g (0) -3¢ g, (0)e =21, (44)

and the TS lead has been represented by the Majorana—Nambu

spinor

(45)

We note in passing that Equation 43 could at this point be
generalized to include continuum states in the TS wire. To that
end, one has to (i) replace ® — (y, y")7, where v is the bound-
ary fermion of the effectively spinless TS wire, and (ii) replace
8(t — 1')0y — G 1(t — 1) with G in Equation 7. Including bulk
TS quasiparticles becomes necessary for small values of the
proximity gap, A, < A, and/or when studying nonequilibrium
applications within a Keldysh version of our formalism.

In any case, after neglecting the above-gap TS continuum quasi-
particles, the partition function follows with Se¢r in Equation 43
in the functional integral representation

Z= J‘D[‘?,\P,y]e_seff = Prlo6), (46)

As before, the Josephson current through S lead no. j then

follows from the free energy via

Ij = (2e/h)8¢jF.
The supercurrent flowing through the TS wire is then given by

Its =~ +1), (47)

Beilstein J. Nanotechnol. 2018, 9, 1659-1676.

as dictated by current conservation.

Atomic limit

In order to get insight into the basic physics, we now analyze in
detail the atomic limit, where A represents the largest energy
scale of interest and hence the dynamics is confined to the

subgap region. In this case, we can approximate A+ ~A.

After the rescaling

in Equation 43, we arrive at an effective action, Sepr — Sy, valid

in the atomic limit,

lya o 0, +Acos(¢/2)1,
B2 +rAsin(¢/2)t, + B, T
Sat=jdr (8/2)7, + B0 , (48)
1
0

+EG=ZN(7LG\PI, ~hey

where r =+/1-7T is the reflection amplitude of the SAC, see
Equation 42. We recall that ¥ =(\|JT,\4/1 )T, see Equation 37.
Moreover, we define the auxiliary parameters

My =gy f(1+7)A 262,
by =—dof(1-r)A 2e7 422

B, =(1+Trb1 +1_Trb2jA.

(49)

The parameters b 5 in Equation 38 thus effectively generate the
Zeeman scale B, in Equation 49.

As a consequence of the atomic limit approximation, the action
Sat in Equation 48 is equivalently expressed in terms of the
effective Hamiltonian

Hy= Y oB¥iw,+ (8 AVR] b

G:T,»L:i

1 ; (50)
+E§(kG‘PG —h.c.)y ,
where we define
S (¢)=A[cos(¢/2)—irsin(¢/2)]. (51
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For a SAC decoupled from the TS wire and taken at zero field
(B, =0), the ABS energy follows from Equation 50 in the stan-
dard form [62]

E4(0)=[34]=a\1-Tsin? (4/2).

We emphasize that H, neglects TS continuum quasiparticles as

(52)

well as all types of quasiparticle poisoning processes. Let us
briefly pause in order to make two remarks. First, we note that
the Majorana field

Y=(f¢+.fg)/\/5,

see Equation 39, couples to both spin modes vy in Equation 50.
The coupling A| between y and the spin-| field in the SAC, |,
is generated by crossed Andreev reflection processes, where a
Cooper pair in lead S2 splits according to W;,T\V;,i - f{rwh,
plus the conjugate process. Second, we observe that Hy; is
invariant under a particle-hole transformation, amounting to the
replacements vy  —> \yl and f3 - f;, along with B, —» — B,
and ¢j — 21 — ¢j.

We next notice that with ng = WWg = 0.1 and np= £ = 0.1,

the total fermion parity of the junction,

7)t :(_l)llf‘+n¢+n¢ Zil,

ot

(53)

is a conserved quantity, [ 7,

analysis to the even-parity sector 7, = +1, but analogous

Hy]- = 0. Below we restrict our

results hold for the odd-parity case. The corresponding Hilbert
subspace is spanned by four states,

o) = (1) (1) () 10, s

where (4, n, np) € {(0,0,0), (1,1,0), (1,0,1), (0,1,1)} and |0) is
the vacuum state. In this basis, the Hamiltonian (Equation 50)
has the matrix representation

0o 8 /2 AL
8, 0 A2 -ay)2
Heg (01,02 ) = . .
at (01,02) an f2 7%/2 B, 0 (55
A J2 -xpf2 0 B,
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The even-parity ground state energy, Eg )= min(e), follows as
the smallest root of the quartic equation

det (M, —€)=0. (56)

In order to obtain simple results, let us now consider the special
case Ay = 0, where the TS wire is directly coupled to lead S1
only, see Figure 1b. In that case, we also have A|= 0, see Equa-
tion 49, and Equation 56 implies the four eigenenergies +e.
with

1/2
Eﬁ + Bz2 +%|7‘T |2

_1 (57)
R B8 (24 2)

with iy =} (1+r)A/2, see Equation 49. The ground-state
energy is thus given by EGe = —¢g,4. Since E¢ depends on the
phases ¢ only via the Andreev level energy E4(¢) in Equa-
tion 52, the Josephson current through the SAC is given by

(58)

Note that Equation 47 then implies that no supercurrent flows
into the TS wire.

Next we observe that in the absence of the TS probe (A; = 0),
the even and odd fermion parity sectors of the SAC,
Psac =(—1)nT+n¢ =1, are decoupled, see Equation 55, and
Equation 57 yields E(Ge) = —max(E 4, |B,|). Importantly, the
Josephson current is therefore fully blocked if the ground state
is in the Pgyc = —1 sector, i.e., for [B;| > E4(¢). For A; # 0,
however, Pspc is not conserved anymore. This implies that
the MBS can act as parity switch between the two Andreev
sectors with parity Pgyc = 1. Near the level crossing point at

. . 2
E4 = |B,|, i.e., assuming ‘Ei—Bzz <<‘7”T‘ < Eﬁ+Bzz, we

obtain

1/2
(Eﬁ +B? ixl\/z(nr)A(Ei +B§)j , (59)

1
£y = —
2

which implies a nonvanishing supercurrent through the SAC
even in the field-dominated regime, |B,| > E4. The MBS there-
fore acts as a parity switch and leaves a trace in the CPR by

lifting the supercurrent blockade.
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Another interpretation

Interestingly, for A, = ¢, = 0, the S—=TS-S setup in Figure 1b
could also be viewed as a toy model for an S-TS junction,
where the TS part corresponds to a spinful model. In that
analogy, the Nambu spinor g | stands for the S lead while the
spinful TS wire is represented by (i) the Nambu spinor ¥s »
which is responsible for the residual s-wave pairing correla-
tions, and (ii) by the MF y (or, more generally, by the Kitaev-
chain spinless boundary fermion y) which encodes p-wave
pairing correlations. Moreover, 7y and A should now be under-
stood as spin-conserving phenomenological tunnel couplings
acting in the s—s and s—p wave channels, respectively. The
phase difference across this effective S—TS junction is ¢ = ¢,
and the net S-TS tunnel coupling is given by 7»:1/1‘5 +7»12 .
Putting A; = 0 in the topologically trivial phase of the TS wire,
the Josephson current carried by Andreev states in the s—s
channel is blocked when the ground state is in the odd parity
sector of the SAC. For A # 0, the MBS-mediated switching be-
tween odd and even parity sectors will now be activated and
thereby lift the supercurrent blockade.

Conventional midgap level

A similar behavior as predicted above for the MBS-induced
parity switch between Py = £1 sectors could also be ex-
pected from a conventional fermionic subgap state tunnel-
coupled to the SAC. Such a subgap state may be represented,
e.g., by a single-level quantum dot in the Coulomb blockade
regime. In particular, for a midgap (zero-energy) level with the
fermion operator d, the Hamiltonian H, in Equation 50 has to
be replaced with

In the even total parity basis (Equation 54), the matrix represen-
tation of the Hamiltonian is then instead of Equation 55 given
by

0 &, 0 0

Sy 0 AL Mg

Hat (61502) = . (1)
0 A B 0
0 -2 0 -B,

Assuming [Ay| = [A|| = A, Equation 56 then yields the eigenener-
gies +¢; with
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1/2
1 Ef, +BZ2 +222

€L =—F=
T2 i\/(Eﬁ - B2+ 402 (Ef + B2 422

. (62)

Remarkably, the ABS spectra in Equation 62 and Equation 57
are rather similar for A% = max(Ei,Bzz). However, the MBS
will automatically be located at zero energy and thus represents

a generic situation.

Conclusion

We close this paper by summarizing our main findings. We
have studied the Josephson effect in different setups involving
both conventional s-wave BCS superconductors (S leads) and
topologically nontrivial 1D p-wave superconductors (TS leads)
with Majorana end states. The TS wires have been described
either by a spinless theory applicable in the deep topological
regime, which has the advantage of allowing for analytical
progress but makes it difficult to establish contact to experimen-
tal control parameters, or by a spinful nanowire model as sug-
gested in [2,3]. We have employed a unified imaginary-time
Green’s function approach to analyze the equilibrium proper-
ties of such devices, but a Keldysh generalization is straightfor-

ward and allows one to study also nonequilibrium applications.

For S—TS tunnel junctions, we find that in the topological phase
of the TS wire, the supercurrent is mainly carried by above-gap
continuum contributions. We confirm the expected supercur-
rent blockade [31] in the deep topological regime (where the
spinless theory is fully valid and thus no residual s-wave pairing
exists), while for realistic parameters, a small but finite critical
current is found. To good approximation, the Josephson current
obeys the usual 2zn-periodic sinusoidal current—phase relation.
The dependence of the critical current on the bulk Zeeman field
driving the TS wire through the topological phase transition
shows a kink-like feature at the critical value, which is caused

by a sudden drop of the Andreev state contribution.

The supercurrent blockade in the deep topological phase could
be lifted by adding a magnetic impurity to the junction, also
allowing for the presence of a local magnetic field B. Such a
magnetic impurity arises from a spin-degenerate quantum dot
(QD), and we have studied the corresponding S—QD-TS prob-
lem for both the spinless and the spinful TS wire model. Based
on analytical results valid in the cotunneling regime as well as
numerical results within the mean-field approximation, we
predict @p-junction behavior (anomalous Josephson effect) for
the current—phase relation when the TS wire is in the topolog-

ical phase.
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As a final example for devices combining conventional and
topological superconductors, we have shown that S—-TS-S
devices allow for a Majorana-induced parity switch between
Andreev state sectors with different parity in a superconducting
atomic contact. This observation could be useful for future
microwave spectroscopy experiments of Andreev qubits in such
contacts.
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The classification of topological states of matter in terms of unitary symmetries and dimensionality predicts the existence of

nontrivial topological states even in zero-dimensional systems, i.e., systems with a discrete energy spectrum. Here, we show that a

quantum dot coupled with two superconducting leads can realize a nontrivial zero-dimensional topological superconductor with

broken time-reversal symmetry, which corresponds to the finite size limit of the one-dimensional topological superconductor.

Topological phase transitions corresponds to a change of the fermion parity, and to the presence of zero-energy modes and disconti-

nuities in the current—phase relation at zero temperature. These fermion parity transitions therefore can be revealed by the current

discontinuities or by a measure of the critical current at low temperatures.

Introduction

Since the discovery of the quantum Hall effect [1,2] and the the-
oretical prediction of Majorana bound states in triplet supercon-
ductors [3], a whole new class of novel electronic phases has
been theoretically described and experimentally realized,
namely, the class of topologically nontrivial states of matter
[4-7]. Topological states of matter can be classified in terms of
the antiunitary symmetries and dimensionality of the Hamil-

tonian [7-10]. Analogously to the periodic table of chemical ele-

ments in chemistry, this classification has been a general guide
to the discovery of novel topological phases in solid-state
physics. Moreover, it predicts the existence of nontrivial topo-
logical states even in zero dimensions, i.c., in a system with

discrete energy spectrum.

A very important class of topological states of matter are topo-

logical superconductors: These materials support Majorana
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zero-energy modes at the edges of the system [11-13], which
have been proposed as the building block of topological quan-
tum devices [14-20]. The simplest realization of a topological
superconductor is the well-known Kitaev chain [3], which can
be implemented in a one-dimensional system proximized by a
conventional superconductor in the presence of a magnetic field
and spin—orbit coupling [21-25]. Moreover, topological super-
conductors exhibit very distinct features in their transport prop-

erties and in particular in their Josephson current [26-49].

In a recent work [50], we have studied the short-size limit of a
one-dimensional (1D) topological superconductor with broken
time-reversal and chiral symmetries. In this limit, the system
turns zero-dimensional (0D), i.e., its energy spectrum is a finite
set of discrete energy levels. This 0D superconductor exhibits
topological phase transitions that correspond to variations of the
fermion parity and to the occurrence of zero-energy modes that
are a linear combination of particle and hole states [50]. These
fermion parity transitions can be revealed by discontinuities in
the Josephson current—phase relation (CPR) in the zero-temper-

ature limit.

Here we describe the simplest realization of such a 0D topolog-
ical superconductor, i.e., a quantum dot [51-54] coupled with
two superconducting leads in a magnetic Zeeman field, forming
a superconductor—quantum dot—superconductor (SC-QD-SC)
Josephson junction. Zero-energy modes and the corresponding
CPR discontinuities and ground-state parity crossings [55-61]
have been recognized as precursors of Majorana modes in the
long-wire limit [27,50], and of Floquet-Majorana modes real-
ized in driven quantum dots [62,63]. We will analytically derive
and discuss the spectrum and the Josephson current of the dot,
which agrees with the universal prediction for zero-dimen-
sional systems described in our previous work [50]. This allows
us to reinterpret in terms of topological states the different
regimes of the dot, which are already discussed in the literature
[34,64-68]. We will analyze in detail the relation between the
topological properties of the groundstate, the zero-energy
modes, and the corresponding CPR discontinuities. We will
show that, in this system, a topologically nontrivial state can be
induced by a finite Zeeman field that breaks the time-reversal
symmetry, even without a finite spin—orbit coupling. The result-
ing topological transitions coincide with a change of the
fermion parity (topological invariant) and can be identified by
discontinuities in the CPR and by a measure of the critical cur-
rent at low temperatures.

Results and Discussion
Effective model

We consider a semiconducting quantum dot in a magnetic field

B and coupled with two superconducting leads, as shown in
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Figure 1. We assume that the only effect of the magnetic field is
the lifting of the spin degeneracy via the Zeeman effect, and we
neglect orbital effects of the field. Moreover, we assume that
the level spacing of the dot is larger than the Zeeman energy B
and larger than the Coulomb interaction U within the dot.
Therefore we neglect the contribution of higher energy levels
and take into account only the levels € + B of the Kramers
doublet closest to the Fermi energy. Here, € is the energy level
of the dot in absence of Zeeman field, which can be modified
by controlling the gate voltage. This system can be described by
a superconducting Anderson impurity model

H=Hqp+ ), Hi+H,,

i=L,R M
where the dot Hamiltonian is given by
21 ld d
- i . %t i e
HQD—s[dT dJ L’JJrB[d? dJ 5. LIJ
@
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where d T, I and d4, d) are the creation and annihilation opera-
tors of the electrons in the dot, np = dT T and n) = di 1 the
number operators, € = B the two-energy levels of the dot,
and U the onsite Coulomb repulsion. We assume hereafter that
e=h=1

e+ B
Ae19/2 — A/

@&

Figure 1: An SC—QD-SC Josephson junction realized by a two-level
quantum dot in a magnetic field B and electric gate € coupled with two
superconducting leads. The two energy levels are respectively € + B.
The dot is coupled to the superconducting leads via tunneling junc-
tions with transparency t. The Josephson current /,, through the dot
depends on the gauge-invariant phase difference ¢ between the two
superconducting leads.

The Hamiltonians of the two superconducting leads i = L, R are

given by
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where CL.,T, Clt’l., | and Ci,it>Ck il Are the creation and annihi-
lation operators of electrons in the superconducting lead i = L, R
and with momentum Kk, € is the bare electron dispersion with
respect to the Fermi level e = 0, A the magnitude of the super-
conducting gap, and ¢; the phase of the superconducting gap in
the two leads, respectively. Here we assumed a standard BCS
s-wave pairing and the same bare electron dispersion in the two
superconducting leads. In the following we furthermore assume
that the bare electron dispersion varies in the interval [-D,D]
and that the density of states is pg = 1/(2D) with 2D the total
bandwidth.

The tunneling between the dot and the leads is described by the
tunnel Hamiltonians, which read

dy
H,, = tZ[c;m Clt,i,i]{di}rh'c" “®

where ¢ = t; = tp is the transparency of the dot-lead tunneling.
We assume that the junction is symmetric and that the tunnel-
ing amplitudes do not depend on the electron momenta (wide

band limit approximation).

In the limit of a large superconducting gap, i.e., when the gap
is larger than the characteristic frequencies of the quantum dot,
the degrees of freedom of the leads can be effectively inte-
grated out [34,64-68]. In absence of interactions (U = 0) the
system can be described by an effective Hamiltonian that reads
[34,64,65,67,68]

®)

+
=
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where ¢ = op — ¢, is the gauge-invariant phase difference be-
tween the two leads, and where
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=4t pg arctan (%j 6)

is the effective local superconducting pairing induced by the
leads on the dot [64,65]. The Hamiltonian (Equation 5) can be
written in the Bogoliubov—de Gennes formalism as

e+ Bo,

—T'cos(¢/2)io,,

[ cos(/2)io,

Hy =¥
eff —S—BGZ

¥, 1)

where W =[df,d],d,.d] and ¥ =[d,.d|,d],d]]" are the
Nambu spinors describing the electron—hole pairs in the dot.
Notice that our definition of Nambu spinor differs from [64,65],
but it will allow us to define the topological invariant using the
same formalism used in 1D superconductors.

The spectrum of this effective Hamiltonian is a set of four

single-particle states corresponding to two pairs of particle—hole
symmetric Andreev levels +£4 and +£| with

Er =Ey+B, ®

Ey =Ey-B, ©)

with

E,= \/82 +T2 cos? (¢/2),

which correspond to the eigenstates described by the operators
dTT | defined by the Bogoliubov transformation

—p

N ud}{ +vd,, (10)
gj =udI _VdT’ (11)
where
u= /(1+8/E(p)/2, (12)
v= (l—s/E(P)/2, (13)
2 _

The Bogoliubov factors satisfy the properties u? + v
ur — v = &/Eq, and uv = Tlcos(¢/2)|/(2E¢).

s
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Now we generalize the Hamiltonian (Equation 7) to the case of
finite interaction U > 0. A tedious but elementary calculation
gives (ny — 1/2)(ny — 1/2) = (myp —1/2)(ny —1/2) where
m =JTT07T and nj =c?fa7¢ are the number operators corre-
sponding to the eigenstates of the effective Hamiltonian. There-
fore the Hamiltonian in the presence of Coulomb interaction U
> 0 can be written in diagonal form as

u)_ _ _ —
H :(E(p _7j<nT +n¢)+B(nT —n¢)+UnTn¢, (14)
up to a numerical phase-independent constant.
The Hamiltonian eigenstates comprise the vacuum |00>, the two

single-particle states |01) and |10}, and the two-particle state
[11) with energies

Ey =0, (15)
E, =E,-U/2-B, (16)
Ep =E,-U/2+B, (17

Eyy =2E,. (18)

Each of these particle states corresponds to a hole state by parti-
cle-hole symmetry. The groundstate energy of the supercon-
ducting condensate is given by the sum of the single-particle
energy levels [69], which yield in this case

EGS(‘P):|E(|)_U/2_B|+|E¢_U/2+B|> (19)

whereas the Josephson current at zero temperature is defined as
Iy = =0pEGs(¢). Notice that for small couplings U/2 < [gl,|T,
the only effect of the interaction is to shift the energy of the
single-particle levels. For this reason, if the conductance from
the dot to the superconductor is relatively large (high dot—lead
transparency) and one can consider the effect of interactions as
a small perturbation. Therefore, the ground-state properties,
such as the topological invariant and the Josephson current at
zero temperature, are not affected in the case where U/2 < ¢ and
U/2 <T, as long as the particle-hole gap remains open and the

Andreev levels do not cross.
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In absence of interactions U = 0, the only possible ground states

are those with energies

2F for ETEi« >0,
ECS(@):{ ?

(20)
2B for EAE| <0,

which correspond, respectively, to the cases where the two
single-particle levels E4 and £ have the same sign or opposite
sign. We will show that the ground state with energy 2E, is
topologically trivial and has a finite Josephson current, whereas
the ground state with energy 2B is topologically nontrivial and

has a Josephson current that vanishes at zero temperature.

The phase diagram of this system has been already discussed in
the literature [34,64-68]. Since we consider here only the weak
interacting case, we will not discuss the 0—n transition driven by
the presence of strong interaction. A more thorough discussion
of the role of interactions on the 0D topological transition and
on the ensuing m-phase will be addressed in a following
research paper. Therefore, we will discuss hereafter only quan-
tum phase transition in the regime of weak interactions in
systems which can be described by Equation 7 or Equation 14
for U= 0. Our findings cannot be applied to 0—r transitions and
to other kinds of quantum phase transitions that may be eventu-
ally present in this system, beyond the topological one we dis-
cussed.

The particle—hole gap and gapless points

The particle-hole gap, i.e., the difference between the particle
and hole levels closest to the Fermi level, closes if |B| = E,,.
If one defines the two threshold fields B, = |¢| and
Bmax =Ve> + T2 | one can verify that the spectrum is gapped
for both small |B| < By, and large |B| > B, Zeeman fields.
For intermediate fields Bpjn < |B| < Bmax, the energy gap closes
at specific values of the gauge-invariant phase ¢ = ¢ * where

)
¢* = arccos(—1) withk:1+2(8—28),
r

@1

where [A| < 1 if Byin < |B| < Bmax- We will show that these
gapless points define a topological phase transition in the
system that corresponds to the appearance of discontinuous
drops in the CPR of the junction.

Figure 2 shows the single-particle energy spectrum of the

system, i.e., the four particle-hole symmetric Andreev levels

+E| and +£Ej, as a function of the gauge-invariant phase differ-
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Figure 2: Energy spectrum of a two-level quantum dot coupled with two superconducting leads (SC—QD-SC junction), consisting of a set of four
Andreev levels, i.e., two single-particle levels +E; (blue curves) and +E, (red curves), as a function of the gauge-invariant phase difference ¢ be-
tween the two superconducting leads. We take € = 2[/3 and U = 0. The three panels correspond to different values of the Zeeman field: (a) small
fields |B| < Bmin, (b) intermediate fields Bmin < |B| < Bmax, With the particle-hole gap closing at the gapless points +¢* (see Equation 21), and (c) large
fields |B| > Bmax-

ence ¢@. As one can see, the energy spectrum is gapped for small
|B| < Bmin and large |B| > Bax Zeeman fields, respectively, in-
dependently from the phase difference ¢. At intermediate fields
Biin < |B] < Bmax, the particle-hole gap closes at the gapless
points +¢* that satisfy Equation 21. One can verify that the
effect of a small Coulomb interaction U/2 < |g|, [I'| is a shift of
the threshold fields By, and By.x and of the value of the
phases +¢* where the gap closes.

Topological invariant

This simple 0D two-level system can realize a topologically
nontrivial state that breaks time-reversal symmetry while
preserving particle—hole symmetry. This topologically
nontrivial state can be seen as the 0D limit of a 1D topological
superconductor, and as the minimal model for the system
described in [50]. In fact, for finite Zeeman energies (B # 0)
and superconducting pairing (I' > 0), the system is in the
Altland—Zirnbauer [7-10] symmetry class D (particle-hole
symmetry, broken time-reversal and chiral symmetries). This
class is characterized in 0D by a Z, topological invariant that is
defined in the non-interacting case U = 0 as the fermion parity
of the ground state [50,70] P =sgn pf(Hg11,), i.€., as the sign
of the Pfaffian of the Hamiltonian in Majorana representation
(14 is the first Pauli matrix in the particle-hole space). The
fermion parity labels the topological inequivalent ground states
as a function of the gauge-invariant phase ¢, i.e., the trivial state
P =1 (even parity) and nontrivial state P = —1 (odd parity). The
fermion parity of the 0D topological quantum dot described by
Hamiltonian (Equation 7) can be evaluated analytically. The
square of the Pfaffian of a matrix is equal to the determinant,
which is equal to the product of its eigenvalues, and therefore
one has pf (Hefflrx)2 = det(Hgyit,) = det(Hegp) = E%Ef due to
particle—hole symmetry. A direct calculation of the Pfaffian
indeed shows that pf(Hegi1,) = E4E| and therefore

-T 0 T
¢ P

P, =sgn(ErEy )= sgn(qu) - B? ) =sgn(L+coso), (22)

where we used the definition of A given in Equation 21. This
equation is a special case of Equation 2 of [50]. Notice that if
B = 0 the time-reversal symmetry is unbroken and the ground
state is trivial £, = sgn(qu,) =1 as expected. As anticipated, the
ground state with energy 2E, is topologically trivial, since in
this case E4E| > 0, whereas the ground state with energy 2B is
topologically nontrivial, since in this case one has E4E| < 0.
Therefore, the inversion of the lowest-energy Andreev level
corresponds to a topological transition to the nontrivial state.
The fermion parity defines the topological phase space of the
system, and is completely determined by the gauge-invariant
phase ¢ and by the adimensional quantity A, as shown in
Figure 3. Moreover, since P = sgn[E4E ], the condition Py, =0
corresponds to the gapless points ¢ = £¢* where zero-energy
modes occur (solid line in Figure 3).

At small Zeeman fields |B| < By (i.€., A > 1), the system is in
the topologically trivial state with even fermion parity P =1 for
any value of the phase ¢. At large fields |B| > By, instead (i.e.,
A < —1), the system realizes the topologically nontrivial state
with odd fermion parity P = —1 for any value of the phase ¢.
However, for intermediate Byi, < |B| < Bmax (i-€., |A] < 1)
topological transitions occur at the gapless points £¢* (see
Equation 21). In this case the system realizes the trivial or in the
nontrivial state (even or odd parity), respectively, for |p| < ¢*
and |p| > ¢* in the interval ¢ €[-m, ], as one can see in
Figure 3. The two gapless points +¢ * therefore correspond to a
quantum phase transition where the fermion parity of the
ground state changes from trivial to nontrivial. Note that for
|B| = Bin and for |B| = Byax (i-€., |A| = 1) no topological transi-
tion occurs, and the system is, respectively, in the trivial or
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B max

Figure 3: Topological phase space of a 0D topological supercon-
ductor realized by a quantum dot coupled with two superconducting
leads (SC—QD-SC junction). The system realizes, respectively, a
trivial state P = 1 for small Zeeman fields |B| < Bmin (.., A > 1), and a
nontrivial state P = -1 for large fields |B| > Bpax (i-€., A <-1). The
Josephson current vanishes in the nontrivial state. Topological transi-
tions coincides with the occurrence of zero-energy modes at

+@* = tarccos(-A) (solid line) for intermediate fields Bpin < |B| < Bmax
(i.e., || <1). In this case the system is in its trivial P = 1 and nontrivial
P = -1 state respectively for |(|)| < @ * within the interval @ e [-1,T1].

nontrivial gapped state with the exceptions of the single gapless
point * =1 or ¢ * = 0, respectively.

The particle-hole gap can also close in absence of a Zeeman
field if € = 0. For B =¢ =0 (which gives A = 1) the gap closes at
¢*=n. In this case the time-reversal symmetry is unbroken, and
the system is gapped and topologically trivial for any value of
the phase ¢ # 7.

The topological phase space derived in the case of a supercon-
ducting quantum dot is universal for the class of zero-dimen-
sional superconductors. It coincides in fact with the topological
phase space in Figure 2a of [50], where it was derived in the
more general case of a zero-dimensional quantum system
(short-size regime) with an arbitrary number of energy modes.
The topological phases can be defined also in the case of small
Coulomb interactions as long as the particle-hole gap remains
open. In this case in fact the topological invariant cannot
change, since the phase with small interaction U > 0 can be
transformed with the non-interacting phase U = 0 by a smooth
transformation without closing the gap.

It is important to note that in the 0D case (differently from the
1D case) topological states can be realized without spin—orbit

coupling. This is because topological states in the symmetry
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class D are enforced by the presence of the superconducting
coupling (particle-hole symmetry) and the Zeeman field (which
breaks the time-reversal symmetry). The gap opening, in this
case, is guaranteed in general by the gap induced by finite size
effects or eventually by interactions.

Josephson current—phase discontinuities

In our previous work [50], we have found the general relation
between the topological invariant of a 0D topological supercon-
ductor and the discontinuities of the Josephson current—phase
relation (CPR). The topological phase transition between the
trivial (P = 1, even fermion parity) and the nontrivial state
(P =—1, odd fermion parity) corresponds to the emergence of a
discontinuity in the Josephson CPR at zero temperature. In this
case, the current is proportional to the phase-derivative of the
total energy of the superconducting condensate [69,71], which
is given by the sum of the positive energy levels |E4| + |E)|.
Hence, the Josephson current is equal to —20,E, in the trivial
groundstate with energy Egs(@) = 2Ej, whereas it vanishes in
the nontrivial groundstate with energy Egs(9) = 2B (see Equa-
tion 20). The CPR at zero temperature is therefore given by

2 .
Iy =~(1+R,)d,E, =(1+P(P)F4S—Ef:q’. 3)
In the topologically trivial state (P = 1) at low fields |B| < Bpin,
the two energy levels £} and E| contribute equally to the
Josephson current and one has I, = —20,E,. However, when the
fermion parity changes, one of the energy level crosses the par-
ticle-hole gap, and its contribution to the current changes its

sign.

Therefore, in the topologically nontrivial state (P = —1) at high
fields |B| > Bpax the Josephson current in Equation 23 vanishes
since the contributions from the two energy levels £y and E|
cancel each other. Moreover, as one can see from Equation 23,
for intermediate fields Bpin < |B| < Bmax, (i.€., |A| < 1) the
CPR exhibits a discontinuity between the trivial state with
1= i2F25in(p*/[4Eq,*] to the nontrivial one with / = 0 at the
gapless points £¢ * which is equal to

T2

Al = 24
2|B|

>

which is a special case of Equation 3 of [50]. The discontinuity
is a consequence of the crossing at zero-energy of the lowest-
energy level with linear phase dispersion. The discontinuity in
Equation 24 can be also calculated directly using Equation 3 of

[50], which can be rewritten as
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|Pdet (Her )|

(25)

=p*

where pdet(H.gr) is the pseudodeterminant of the Hamiltonian
(the product of nonzero eigenvalues). The square root of the
pseudodeterminant is in this case just the product of the
positive eigenvalues (due to particle-hole symmetry). Since
the system has only two non-negative single-particle energy
levels |Ey| = |B + Eg+| and |E|| = |B — E+/, and one of these two
energy levels vanishes at gapless points £¢* since in this case
|B| = |Ey+|, the denominator of Equation 25 is equal to the
nonzero positive energy level given by |B| + |Ey+| = 2|B|, which
yields /| pdet(Hug) | = 2|Bl, which leads via Equation 25 to
Equation 24.

Figure 4a shows the CPR of the SC-QD-SC junction for differ-
ent choices of the Zeeman field B at zero temperature, calcu-
lated directly from Equation 23. At low fields |B| < Bp;p (i.e.,
A > 1) the system is topologically trivial (P = 1) and the CPR is
smoothly oscillating without any discontinuity. At large fields
|B| > Bmax (i.€., A < —1), the system is topologically nontrivial
(P =—1) and the Josephson current vanishes due to the oppo-
site contribution of the two Andreev levels. At intermediate
fields Byin < |B|] < Bmax instead (i.e., |A| < 1), discontinuities
appear at the transition points between the trivial and nontrivial
topological states (gapless points +¢*). The emergence of a
discontinuous drop coincides with a change of the fermion
parity and to the presence of zero-energy states closing the par-
ticle-hole gap. Since the energy levels of the system depends

(a)
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smoothly on the phase @, gapless points are the only points
where the CPR can be discontinuous. At finite temperatures,
CPR discontinuities are smoothed out by the effect of thermal
fluctuations. However, such discontinuities can be revealed,
e.g., by the presence of spikes in the phase-derivative of the
CPR at low temperatures [50].

Hence, if time-reversal symmetry is broken (B # 0), current
discontinuities correspond to the presence of zero-energy modes
and to a change in the topological invariant. These signatures
are topologically robust against small perturbations, such as
disorder. This means that these discontinuities and the associat-
ed zero-energy modes cannot be removed by the presence of,
e.g., disorder or interactions, if these perturbations are small
compared to the effective local pairing I and Zeeman energy B.
The only effect of these small perturbations is in fact to produce
a shift of the gapless point @*—@*+8A/v1-A2 where the
topological transition and zero-energy modes occurs. Disconti-
nuities in the Josephson CPR are still present in the interacting
case [65] at zero temperature. As shown in [50], the correspon-
dence between CPR discontinuities and fermion parity transi-
tions relies only on the presence of a broken time-reversal
symmetry that removes the spin degeneracy and on the fact that
in this case the closing of the particle—hole gap correspond to a
change of the topological invariant.

On the other hand, if time-reversal symmetry is unbroken, cur-
rent discontinuities are still present if B=¢ =0 (where A =1). In
this case, the CPR exhibits a single discontinuous drop Al =T/2
at the gapless point ¢* = &, according to Equation 24. This case
reproduces the well-known current—phase discontinuity of a

0.5
0.4
= 0.3
~
0.2
0.1

r
B €

Figure 4: (a) Josephson CPR of the SC-QD-SC junction for different choices of the Zeeman field B in the limit T—0 (Equation 23) in units of the criti-
cal current of the trivial branch. We take € = 2I'/3. Depending on the Zeeman field, different regimes are realized: At small fields |B| < Bmn (i.e, A> 1,
dotted line) the current is smoothly oscillating as a function of the phase ¢ and the system is topologically trivial (P = 1). At large fields |B| > Bpyax (i.€.,
A < -1, not shown) the current vanishes and the system is topologically nontrivial (P = -1). At intermediate fields By, < |B| < Bmax (i-€., |\| <1, solid
lines), discontinuous drops appear at the transition points between the trivial and nontrivial topological states. Current discontinuities correspond to
the variations of the fermion parity and to the presence of zero energy modes. (b) Critical current of the SC—QD-SC junction as a function of the
Zeeman field at zero temperature (solid line) with € = 2I/3. (c) Critical current of the SC-QD-SC junction as a function of the electric gate € at zero
temperature (solid line) with B = 4I'/3. In both cases, the critical current drops from a finite value in the trivial state (P =1 and A > 1) to zero in the
nontrivial state (P = -1 and A < —1). In the transition regions Bmi, < B < Bmax (b) and B2 —T'2 < |¢] <|B] (c), the trivial and nontrivial states alternate at
different phases @. As one can see, when the system approaches its nontrivial state P = —1, the critical current coincides with the magnitude of the

discontinuous drop A/ (green dots) given in Equation 24.
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quantum point contact [71]. However, in this case the disconti-

nuity does not correspond to a topological transition.

The presence of a small Coulomb interaction does not affect the
Josephson current at zero temperature in the trivial and non-
trivial branches of the CPR, since the energy shift U/2 of the
Andreev levels do not depend on the phase o.

Critical current

The topological transition can be probed also by a measure of
the critical current of the junction. The critical current is defined
as the maximum current of the junction up to the phase /., = max
Iy. In the trivial state at low fields |B| < By, (i.e., A > 1) the
critical current is finite. Since the CPR is continuous in this
case, the maximum of the current coincides with the local
maximum of the current where its phase-derivative vanishes
0Oply = 0. In the limits e—0 and e—=I" for example, the current
reaches its maximum at ¢ =7 or at ¢ =t/ 2, which gives criti-
cal currents of [, = I'/2 and I, =T2/(4ye? +T2/2), respec-
tively. In the nontrivial state at large fields |B| > B,y instead
(A < —1) the current vanishes and one has /. = 0. However, at
intermediate fields Bpyi, < |B| < Bmax (i-€., [A| < 1) trivial and
nontrivial states alternate in the interval ¢ €[—m, ], and the
CPR has discontinuities. Because the CPR is not continuous,
the maximum of the current may coincide either with the local
maximum Iq, of the current where 0/, = 0, or with the current
at the discontinuity /,+ = Al. More precisely, the critical current
coincides with the maximum between these two values
I, = max(| I |, Al'|). The case I, = |Al| occurs, for instance,
when the system approaches its nontrivial state at large fields
|B|—=Bmax- Therefore for fields |B| < Byax the critical current
coincides with the current discontinuity /., = Al. This regime can
be obtained either by a measure of the critical current by
varying the magnetic field, or by varying, e.g., the energy level
€ in a constant field B.

Figure 4b shows the critical current of the junction as a func-
tion of the Zeeman field. As one can see, the critical current is
finite in the trivial P = 1 state when |B| < By, (i.e., A > 1), and
drops to zero in the nontrivial P = —1 state when |B| > Bpax
(i.e., L < —1) state. The drop of the critical current is smooth in
the intermediate region where By < |B| < Bmax (1-€., | < 1).
Analogously, Figure 4c shows the critical current of the
junction as a function of the electric gate ¢ at constant field B.
The smooth transition is obtained for intermediate values
JB%2-T? < ¢ < |B| the Zeeman field varies in the range
Bmin < |B] < Bmax, where we remind that B, = |¢| and
Biax = Je? + T2 . In the intermediate region, when the system
approaches its nontrivial state, the critical current coincides with
the magnitude of the discontinuous drop /. = |Al] (dots in the

figures). Hence, a measure of the critical current at low temper-

Beilstein J. Nanotechnol. 2018, 9, 1705-1714.

ature can be used to indirectly probe the magnitude of the
discontinuous drop and the existence of topological phase tran-
sitions and zero-energy modes even when a direct measure of
the CPR is not accessible [72]. It is reasonable to speculate that
the current discontinuities may indicate a topological transition
also in the interacting case.

Conclusion

We have shown that a quantum dot coupled with two supercon-
ducting leads can realize a 0D topological superconductor with
broken time-reversal symmetry. In this system, topological
phase transitions between trivial and nontrivial states corre-
spond to discontinuities in the Josephson CPR at low tempera-
tures and to the presence of zero-energy modes. This simple
model, which can be treated analytically, fully confirms the
results obtained in a more general model in [50].

The topological phase transitions and the ensuing current
discontinuities are robust, in the sense that cannot be removed
by small perturbations. A direct measure of the CPR [71,73-75]
or of the Josephson radiation [38,76,77] at low temperatures can
reveal the presence of such discontinuities. Moreover, the pres-
ence of the topological transition can be probed indirectly by a
measure of the critical current of the junction as a function of
the Zeeman field or gate voltage.
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Majorana modes emerge in non-trivial topological phases at the edges of specific materials such as proximitized semiconducting

nanowires under an external magnetic field. Ideally, they are non-local states that are charge-neutral superpositions of electrons and

holes. However, in nanowires of realistic length their wave functions overlap and acquire a finite charge that makes them suscep-

tible to interactions, specifically with the image charges that arise in the electrostatic environment. Considering a realistic three-

dimensional model of the dielectric surroundings, here we show that, under certain circumstances, these interactions lead to a

suppression of the Majorana oscillations predicted by simpler theoretical models, and to the formation of low-energy quantum-dot

states that interact with the Majorana modes. Both features are observed in recent experiments on the detection of Majoranas and

could thus help to properly characterize them.

Introduction

Semiconducting nanowires with strong spin—orbit interaction,
such as InAs or InSb, are becoming ideal systems for the artifi-
cial generation of topological superconductivity [1-3]. In addi-
tion to its fundamental interest, such nanowires that may host
Majorana bound states (MBSs) at their ends or interfaces [4,5]
constitute promising platforms for Majorana-based quantum
computing devices [6-9]. Progress in fabrication techniques has
allowed to induce a hard superconducting gap in InAs [10] or

InSb [11] nanowires with epitaxially deposited Al layer. More-

over, last-generation devices exhibit a very low degree of
disorder, which allows them to almost reach the ballistic limit
[12-14].

In spite of these advances, the experimental signatures of MBSs
in the nanowire devices deviate significantly in several aspects
from the theoretical predictions of minimal models. This is the
case, for instance, regarding the behavior of the subgap conduc-

tance through the proximitized nanowire, which has been
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addressed in several experiments [10,12-19]. In a long wire (the
length of which is much greater than the induced coherence
length) the presence of MBSs manifests itself in the appearance
of a zero-bias conductance peak the width of which is con-
trolled by the normal-state conductance [20]. However, for
typical wire lengths explored in actual experiments, which are
of the order of a few micrometers, it is expected that the overlap
between MBSs located at both ends of the wire gives rise to
conventional Andreev bound states that deviate from zero
energy, leading to an oscillatory pattern in the low-bias conduc-
tance as a function of Zeeman field, chemical potential or wire
length [21-23]. Conspicuously, in most of the available experi-
mental data the emergence of a robust zero-bias conductance
peak is observed above some critical Zeeman field without the
expected oscillatory pattern [12,19,24,25]. Several mechanisms
have been proposed to account for the reduction or lack of
oscillations, such as smooth confinement [21,26-28], strong
spin—orbit coupling [29], position-dependent pairing [30],
orbital magnetic effects [31], Coulomb repulsion among the
carriers in the nanowire [22], or the presence of the normal

drain lead connected to the hybrid wire [32].

Another source of Majorana oscillation suppression was put
forward by some of us in a recent work [33]. The key realiza-
tion is that MBSs in a finite-length wire posses a finite charge,
typically distributed uniformly along the wire [34], which can
be susceptible to electrostatic interactions with the surrounding
medium. We considered the case of a grounded parent super-
conductor, thus avoiding the effect of a charging energy associ-
ated to the Cooper pairs, and showed that, in such case, a
residual effect of interactions may arise from the image charges
induced in the electrostatic environment of the nanowire. Using
a simple model for the induced potential we concluded that, in
typical experimental setups, interactions would lead to pinning
of the MBSs to zero energy around parity crossings and, thus, to
more robust zero-bias conductance peaks than predicted by the
non-interacting models.

The aim of the present work is to test the validity of the predic-
tions of [33] for the case of more realistic calculations of the in-
duced electrostatic potential, taking into account the actual
three-dimensional (3D) geometry as well as the effect of nearby
metallic leads. We consider the geometry depicted in Figure la,
where a nanowire of rectangular cross section lies on an insu-
lating substrate (typically SiO;) and is contacted to a thin super-
conducting (SC) layer on one of its faces and to two bulk
normal leads at both ends, separated by thin insulating barriers.
In Figure 1a we indicate the characteristic dielectric constants of
each region, which are relevant for the calculation of the
induced potential through Poisson’s equation (discussed

below). Our aim is to solve this equation together with the
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Bogoliubov—de Gennes equation for determining self-consis-
tently the charge density p(x) along the nanowire. For this
purpose we derive a generalized method of image charges that
allows us to calculate the induced potential under rather general
conditions, taking into account a 3D electrostatic environment
as the one shown in Figure la.
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Figure 1: (a) Schematic representation of the setup analyzed in the
present work. A nanowire of rectangular cross section (green) lying on
an insulating substrate (grey) and in contact to a thin metallic layer in
one of its faces (light blue), corresponding to the parent supercon-
ductor, and two normal metal leads at its ends (orange) separated by
tunnel barriers (brown). Typical values for the dielectric constants for
each region are indicated. (b) Low-energy spectrum as a function of
the chemical potential p for a wire of thickness W= 100 nm and
length L = 1 um. Other parameters are the spin—orbit coupling

a =20 nm-meV, the induced pairing energy A = 0.3 meV and the
Zeeman energy Vz = 2 meV. Electrostatic environment-induced zero-
energy pinned regions between Majorana oscillations are indicated in
red. Quantum-dot levels (in blue), occurring at the edges of the wire
due to the interaction with the bulk contacts, anticross with Majorana
levels and remove their zero-energy pinning.

We find two main effects coming from this interaction, which
are exemplified in Figure 1b. One is, as stated before, the
suppression of Majorana oscillations around parity crossings
(zero-energy crossings where the total fermion parity of the
wire changes), both as a function of the Zeeman energy /7 and
the chemical potential p of the wire. This effect is produced
because, at each parity crossing, a finite Majorana charge Oum
enters the wire from the reservoir in an abrupt fashion. If the
electrostatic screening is smaller inside the wire than in the
reservoirs, a repulsive interaction is produced between the in-

coming charge and its images, preventing its entrance. This
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translates into finite regions in parameter space (in red in
Figure 1b) where Majorana modes are pinned to zero energy
within a finite range of V7 or p proportional to the Majorana
charge Oy and the strength of the interaction. This was already
shown in [33] but for a simplified dielectric profile where the
presence of the superconducting shell had been ignored. We
here include it and find that the size of the pinned regions
decreases but the pinning effect is still present under certain
conditions that we discuss in detail below. Moreover, we
explain the incompressible behavior of the electron liquid
within these pinned regions in terms of the Majorana wave
functions and their charge.

Another important effect of the electrostatic environment unex-
plored before is the creation of deep potential wells at the ends
of the wire close to the bulk metallic electrodes. These wells,
obtained explicitly here through the self-consistent calculation,
are similar to the confinement potentials typical of quantum
dots. Localized quantum dot-like energy levels in these regions
disperse with magnetic field (or chemical potential) and appear
below the induced gap in the wire spectrum (in blue in
Figure 1b). In the topological regime, dot-like levels interact
with Majorana states, anticrossing them when they approach
zero energy. Similar phenomena were observed in some experi-
ments [14,19], and have been likely found on other occasions
but discarded by experimentalists looking for the simpler
picture. Interestingly, it has been shown that the shape of these
anticrossings can be used to quantify the degree of non-locality
of the Majorana wave functions [35,36], a prediction that has
been experimentally demonstrated recently [25]. Here, we show
that if the interaction between dots and Majorana levels occurs
in a pinning region, Majorana levels are forced to depart from
zero energy, revealing the existence of a finite wave function
overlap between them in spite of their zero energy. We analyze
this behavior again in terms of the wave functions of Majorana
state and dot and their charge.

The paper is organized as follows: in the following section we
provide insight into the theoretical model used to treat interac-
tions. In the next section we analyze the case in which the influ-
ence of the bulk normal leads can be neglected, recovering the
pinning effect found in [33] for a repulsive electrostatic envi-
ronment. However, we focus here on the electrostatic environ-
ment effects on the Majorana wave function, rather than on its
spectral properties. In the next section we study the effect of in-
cluding the bulk normal leads of Figure la, finding that they
give rise to the formation of quantum dot-like bound states. We
further analyze the interplay of such states with the MBSs.
Finally, we present the conclusions of our work. The robust-
ness of the pinning effect is analyzed in detail in Section 4 of

Supporting Information File 1.
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Model and Theoretical Approach

We model the electronic states along the proximitized Rashba
nanowire of length L using the following single-channel Hamil-
tonian [4,5]

H = [T (M)W ()

n o ()
H=|-———F—F-u+ed(x) oyt (1)
2m" ox? :
. 0 % A
—ioo T, a+ 70T, +Ac T,

where ¥T = (\V;,\VI,\VT,\N) is a Nambu bi-spinor, yy, | (x) are
electron annihilation operators, and ¢ and t are the Pauli
matrices in spin and Nambu space, respectively. The model is
defined by setting the parameters m*, u, o, ¥z and A, corre-
sponding to the effective mass, the chemical potential, the
spin—orbit coupling, the Zeeman energy caused by an external

magnetic field, and the induced SC pairing potential, respective-
ly.

In Equation 1, we also include the electrostatic potential ¢(x)
felt by charges in the nanowire, which can be decomposed as
O(x) = ¢y () + ¢ (x), where ¢, is the potential that arises
from the free charges inside the nanowire, while ¢, corre-
sponds to the potential created by bound charges that emerge in
the electrostatic environment. We compute the electrostatic
potential using Poisson’s equation

¥ [e()¥()] = (p(7)), @

where &(7) is the non-homogeneous dielectrical permittivity of
the entire system and (p(7)) is the quantum and thermal aver-
age of the charge density of the nanowire obtained with Equa-
tion 1. The intrinsic part ¢;,(x) of the potential satisfies an
analogous equation with a uniform ¢ equal to that of the nano-
wire. The geometry depicted in Figure 1a is taken into account
through a piecewise &(7) function where each material is char-
acterized by a different dielectric constant, so that &(7) changes
abruptly at the interfaces. Then, assuming that the charge densi-
ty in the nanowire is located along its symmetry axis (x-axis),
we obtain the electrostatic potential ¢ (x) using the method of
image charges, as explained in detail in Section 1 of Supporting
Information File 1. More precisely, ¢, is given by

by ()= ety (x.6) (),

where Vi (x,x) is a kernel determined in order to satisfy the
proper boundary conditions. We find analytical expressions
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for Vy(x,x). They are simple but rather lengthy and are given in
Supporting Information File 1 for two different cases:
neglecting the effect of the bulk normal leads at the wire ends
and including it. The results for these two cases are analyzed in
the following sections.

The obtained potential ¢(x) on the nanowire axis should
be plugged back into Equation 1. The combined
Poisson—Schrodinger problem must then be iterated until it
achieves self-consistency. As shown in [33], the ¢;,(x) part of
the electrostatic solution (i.e., the intrinsic electron—electron
interaction part of the problem), treated at the Hartree—Fock
level, has a negligible effect on the low-energy spectrum in the
topological regime. We may therefore concentrate only on the
self-consistency with ¢, (x). In Section 2 of Supporting Infor-
mation File 1 we explain in detail the self-consistent numerical
method used to compute the electrostatic potential profile as
well as the eigenvalues and eigenvectors of Equation 1. For
completeness, in Section 3 of Supporting Information File 1 we
also show the effect of including the intrinsic interaction from
O;nt (%), proving that its effect is small and that the main contri-
bution stems from ¢y,.

In the following calculations, we consider the dielectric con-
stants shown in Figure 1a. For the dielectrics materials, i.e., the
wire, the substrate and the surrounding medium, we use typical
values [37] of € =17.7, ¢4=13.9 and ¢, = 1, respectively. For the
metallic leads we assume that, because they are bulky, they
screen external electric fields perfectly, i.e., eyy—). This may
not be the case for the SC shell, the capability of which for
screening external electric fields may be weaker due to its small
thickness and the unavoidable presence of disorder [38]. If this
is the case, it is then characterized by a finite effective dielec-
tric permittivity which depends on the SC shell width as well as
its composition, as we show in Section 1 of Supporting Infor-
mation File 1. Some experiments [39] have reported that for
ultrathin metallic layers (ca. 5-10 nm) it is of the order of
ggc =~ 100. For these values, as we show in the next section, we
find a repulsive environment, i.e., an environment the effective
permittivity of which is smaller than that of the wire so that the
bound charges that arise at the interfaces have on average the
same sign as the free charges. We consider in Section 4 of Sup-
porting Information File 1 the generality of our results as a
function of the dielectric constant of the SC and the location of
the charge density within the nanowire section. Below, in
Figure 4c we show that, when the charge density is fixed at the
center of the wire, as egc becomes larger the dielectric environ-
ment turns into an attractive one and the pinning effect is even-
tually lost. This, however, strongly depends on the location of
the charge density. If, as pointed out in [40], it happens to be
close to the SC shell, the screening effect is larger and the
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pinning is suppressed. Nevertheless, as we analyze below in
Figure 4e, even if egc—, the pinning effect remains when the
wave function is located further away from the SC.

Results and Discussion

Results without bulk normal leads

It is convenient to start by analyzing the simpler case in which
we neglect the effect of the bulk normal leads in the induced
potential ¢,. As an example we consider a nanowire of width W
=100 nm, length L = 1 um and the following choice of realistic
parameters: m* = 0.015m,, o = 20 nm'meV, A = 0.3 meV,
p=10.5 meV and 7= 10 mK. These could correspond, for ex-
ample, to an InSb nanowire in contact to an Al superconducting
shell [14], but similar results are obtained for InAs wire param-
eters [19]. For an infinite wire, a schematic representation of the
energy bands is shown in Figure 2a in the absence and in the
presence of a Zeeman field. At zero temperature, the occupied
states below the Fermi level are those between the horizontal
dashed line and the band bottom. Apart from a small contribu-
tion coming from the spin—orbit energy, the position of the band
bottom is controlled by the chemical potential of the wire p, the
Zeeman energy V7 and the induced potential energy e . The
magnetic field lowers the band bottom, charging the wire,
whereas the induced potential energy, coming from electro-
static repulsion, tends to compensate that trend. In the finite-
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Figure 2: Majorana nanowire subject to interactions from the electro-
static environment (ignoring the influence of the bulk normal leads at
its ends). (a) Schematic of the dispersion relation of the nanowire in
the absence and in the presence of a Zeeman field. (b) Self-consistent
induced potential energy ed,(x) along the length of the wire for in-
creasing values of the Zeeman splitting. Wire parameters as in

Figure 1b and with p = 0.5 meV. (c) Energy difference between the
Fermi level and the band bottom at the center of the nanowire, Vz +
- ed,(L/2), and (d) total charge Qo of the nanowire as a function of Vz
for the non-interacting (dashed) and interacting (solid line) cases. Red
curves highlight parameter regions for which there is interaction-in-
duced zero-energy pinning in the spectrum.
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length wire, the evolution of the induced potential profile along
the nanowire length (x-axis) for different Zeeman fields is
shown in Figure 2b. As can be observed, the induced potential
tends to expel charge from the center of the wire, where it is
positive, while it bends downwards at its ends. On the other
hand, the evolution of the potential with Zeeman field exhibits a
step-like behavior with regions where it increases linearly with
V7 (red curves), screening the magnetic field effects, and
regions where it remains almost constant as }; increases
(grey curves). This causes the electron fluid to behave in an
incompressible or compressible manner, respectively. This
different behavior can be clearly seen in Figure 2¢c where the
electrochemical potential at the center of the wire, given by
Vz + n— edy(L/2), is plotted as a function of the Zeeman split-
ting, both in the presence and absence of interactions.

The effect of this peculiar evolution of the electrostatic poten-
tial has direct consequences on the spectral properties of the
wire, as we analyze below in Figure 4, but for comparison, let
us first see what happens in the non-interacting case. The spec-
trum of the wire is shown in Figure 3a. There we can observe
the emergence of low-energy subgap states for 7, > \/Az + uz ,
corresponding roughly to the critical field for the bulk topolog-
ical transition. We also obtain the typical energy oscillations
produced by overlapping Majorana wave functions due to the
finite length of the wire [21-23]. More insight can be obtained
by analyzing the evolution of the total charge of the wire
Oot = I()de (p(x)) as well as the Majorana charge Qy, the
absolute value of which is given by

(©)

0 0.25
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L
|QM| :|Q+1 _Q—1| = ejdqu () ug (x). 3)
0

Here, Q. are the charges corresponding to the even/odd
lowest-energy eigenstates .1, and ug R are the electron compo-
nents of the Majorana wave functions yp = y4; + y—; and
YR = —1(y+1 — y—1). The total charge increases in general with
magnetic field but, for finite length wires, it does so by jumping
abruptly a quantity equal or smaller than e at each parity
crossing (where the Majorana oscillations cross zero energy and
the electron parity of the wire changes from even to odd or vice
versa), as shown in Figure 2d, dashed curve. This abrupt change
in charge is actually injected into the fermion state created by
the two overlapping Majoranas and is given by |Qy| at the
parity crossings. The (oscillatory) evolution of |Qy| with the
magnetic field is given in Figure 3b. Strikingly, |Om| is
maximum at the parity crossing, where the energy is zero, and
goes to zero at the oscillation cusps. As the length of the wire
approaches to infinity, Oy approaches zero (not shown).
Indeed, the finite value of Q) at the parity crossings is a direct
measurement of the Majorana overlap, as shown in [33]. Note
that the Majorana overlap is defined similarly to the right-hand
side of Equation 3, but with the absolute value inside the inte-
gral.

The behavior of the Majorana wave functions is illustrated in
Figure 3c—f. The probability density for the left and right Majo-
rana wave functions exhibits an overall decay towards the

0.5 0.75 1 0 0.25 0.5 0.75 1
x/L x/L

S
=05
S
00 1 2 3 4 5
0 0.25
VZ (meV)

0.5 0.75

o

0.25 0.5 0.75 1
x/L x/L

Figure 3: Majorana wave functions in the non-interacting case: Energy levels (a) and the absolute value of the Majorana charge Qy (b) as functions
of the Zeeman energy. Panels (c—f) show the wave-function probability profiles of the two lowest-energy states in the Majorana basis at selected
values of the Zeeman field within the topological region. When the splitting is maximum (green circles and yellow triangles) the left and right Majorana
wave-function oscillations are out of phase, whereas when the splitting is zero (orange square) they are in phase.

2175



center of the wire controlled by the length & ~ ivg / A and an
oscillatory pattern controlled by Ag[41,42]. Moreover, the num-
ber of oscillations that fit in L increases by one with Zeeman
field at each parity crossing. Interestingly, we observe that the
left-right oscillatory patterns are out of phase for the cases
where the splitting of the MBSs is maximum (Figure 3c,e. This
minimizes the left-right wave function overlap and the Majo-
rana charge goes to zero. On the other hand, the oscillations are
in phase (Figure 3d) when the energy splitting is zero, at the
parity crossings, producing a maximum in |Qyf and overlap. Al-
though the Majorana wave functions are more strongly located
at the wire edges, we note that the charge density of this fermi-
onic state is uniform across the wire [34] and, thus, it is
uniformly affected by the interaction with the environment

when this is present.

When interactions with the image charges occur, the single-
point parity crossings as a function of V7 in the spectrum are
replaced by extended regions where the subgap states remain
pinned at zero energy, indicated by the red lines in Figure 4a.
The abrupt jumps in Q¢ in the non-interacting case are
replaced by a linear increase with increasing values of V7 at
which zero-energy pinning occurs, see Figure 2d. This is a
consequence of the repulsive environment that inhibits the
entrance of charge in the wire where the electron liquid behaves
in an incompressible manner. On the other hand, the Majorana
charge remains basically constant at the pinning plateaus, as
shown in Figure 4b. The finite value of Oy in these regions in-
dicates that zero-energy does not imply absence of overlap be-
tween the left and right Majorana states. This is actually a
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common misconception that we would like to point out here.
The Majorana overlap, which is a measurement of the degree of
non-locality of the two Majorana wave functions, mostly
depends on the length of the nanowire (and to a lesser extent on
other parameters, such as the induced superconductor gap and
the Rashba coupling), but it is not necessarily correlated to the
Majorana energy splitting. Different mechanisms can reduce
this splitting, such as interactions with the environment as
studied here, smooth potential or gap profiles [21,26-28,30], or
orbital magnetic effects [31], and still leave the Majorana
overlap unaffected. The behavior of the Majorana wave func-
tions in this case is illustrated in Figure 4c—f. In the pinning
regions the Majorana wave functions remain practically frozen
and in phase. This in turn explains why |Qy| is maximum in

these regions.

The generality of these results is analyzed in Section 4 of Sup-
porting Information File 1. There we show how the width of the
pinning plateau evolves with V7 when we change the chemical
potential, the dielectric permittivity or the width of the SC shell,
and the aspect ratio of the nanowire section. We find that
pinning remains for any chemical potential, while it vanishes
when the attractive contribution of the SC shell becomes domi-
nant over the dielectric repulsion.

Effect of bulk normal leads

In this section we analyze the effect of including the bulk
normal leads in the calculation of the induced potential ¢y,.
Figure 5a illustrates the evolution of ¢, with increasing Zeeman
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Figure 4: Same as Figure 3 but for the interacting case (without leads). In the pinned regions the Majorana wave functions remain in-phase as a func-
tion of the Zeeman field and the Majorana charge (b) freezes at its local maximum value (in red), instead of continuing the oscillation as in the non-

interacting case (dashed curve).
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but including the normal contacts. While in the central region of
the wire a similar repulsive step-like evolution with ¥y is found
(corresponding to compressible/incompressible electron fluid
behavior), significant attractive regions appear at the wire ends
produced by the metallic character (eyy—) of the adjacent
leads. As we discuss below, these attractive regions give rise to
the formation of quantum-dot (QD)-like bound states that may

interact with the low energy subgap states of the Majorana wire.

(a) » (b) »

0 1 2 3 4 5 0 1 2 3 4 5

VZ (meV) V_, (meV)

z

Figure 5: Majorana nanowire subject to interactions from the electro-
static environment (including the influence of the bulk normal leads at
its ends). (a) Self-consistent induced potential energy edy,(x) along the
length of the wire for increasing values of the Zeeman splitting. The
same wire parameters as in Figure 2 were used. Note that the main
effect of the bulk normal leads is to create confining potential wells at
the wire edges. (b) Barrier-like potential energy profile used to mimic
the self-consistent solution. Spectra of the Majorana nanowire as a
function of V7 in the (c) interacting case and in the (d) non-interacting
case but using the potential profile model of (b). (e, f) Evolution of the
total charge Qyot with Zeeman spilitting for the two previous cases, re-
spectively. Red color indicates incompressible electron fluid behavior
as before, while blue color indicates QD-like behavior due to the
metallic contacts.

The evolution of the spectral properties and of the total charge
Oyot 1n this case are shown in Figure Sc and Figure 5e. On one
hand, we observe that the pinning plateaus around each parity
crossing (in red) are still present although with a smaller width.
On the other hand, the main effect of the presence of the attrac-
tive potential regions is the appearance of four additional
energy levels (two per contact, in blue) that approach zero
energy for a value of V7 of about 2.5-3.0 meV. At the same
time we observe a rather abrupt decrease in the total wire charge

Beilstein J. Nanotechnol. 2018, 9, 2171-2180.

(of roughly 2e), see Figure Se. We can associate these addition-
al levels with QD-like bound states arising in the attractive
regions of the induced potential that anticross with the Majo-
rana levels when their energies are on resonance [35,36,43,44].

To demonstrate the validity of this interpretation we show in
Figure 5d and Figure 5f, respectively, the spectral properties
and the total charge evolution for an isolated wire with a simple
double potential well taken to mimic the effect of the electro-
static environment, shown in Figure 5b. Notice that in this case
we do not attempt a self-consistent calculation but rather
include the Zeeman field as a rigid shift of the two spin bands
(like in the non-interacting case but with an inhomogeneous
potential profile). Although the zero-energy pinning is not
captured by this model, one can clearly observe the presence of
four levels coming down towards zero energy for a value of V7
of about 2.5-3.0 meV, as in the interacting case. The presence
of these states is a consequence of the renormalization of the
topological phase transition due to the electrostatic potential

(either {y, or Opyqq):

2 A2
VZC:\/(H_eq)b,ﬁxed) +A7, )

which is not constant along the wire because ¢, (or {gyeq)
depend on x. For the shown values of V', only the central part
of the wire is in the topological regime (V; > VZC ), correspond-
ing to an effectively shorter Majorana wire, whereas the outer
parts are trivial (V7 < VZC ), corresponding to two effective QDs
attached to it. Specific details of how QD levels interact with
Majorana nanowire ones can be found in [35,36,43-45].

Further information about the nature of the low-energy states at
Vz= 3 meV is provided in Figure 6 where we plot the wave-
function probability profiles (in the Majorana basis) of the low-
energy states around the QD—Majorana levels anticrossing. For
simplicity, we consider only the case of the potential barrier
model. At the anticrossing, the Majorana and dot states merge
and cannot be really told apart, but we will refer to the two
lowest in energy as Majorana levels and to the other two as dot
levels. As can be observed, at the anticrossing the Majorana
levels (green circle) leak into the QD regions leaving the central
(topological) part practically void. Conversely, the two dot-like
states (immediately above in energy, orange squares) penetrate
and delocalize along the wire. When the Zeeman field increases
and the QD and Majorana levels are detuned, the dot states
depart from low energy (pink rhombus) and from the topolog-
ical part of the wire, whereas the usual overlapping behavior of
the MBSs is recovered but with the Majoranas bound to the
effective topological edges (yellow triangle). The absolute value

of the Majorana charge as a function of V' is shown in
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Figure 6: Evolution with Zeeman field of the spectrum (a) and the absolute value of the Majorana charge Qy (b) for the barrier-like potential model of
Figure 5b. Panels (c) and (e) show the wave-function probability profile (in the Majorana basis) of the two lowest-energy states at the Vz values indi-
cated in (a). Panels (d) and (f) show the same but for the second and third energy states (QD-like states). At the QD—Majorana levels anticrossing, the
Majorana wave function leaks into the dot regions leaving the topological region of the wire practically void. This is manifested in |Qy| by two consecu-

tive zeros, one per dot level (around Vz = 2.5 meV).

Figure 6b, calculated considering only the two lowest-energy
states (as before). At the anticrossing the Majorana charge oscil-
lation is distorted, see blue region, but the area below the curve
is conserved. The missing charge in Figure 5b does not come
from the Majorana states, but from the dot states. At the anti-
crossing region, the two QD states (one per potential well) that
were occupied (below the Fermi level) move upwards in energy
as the Zeeman field increases and cross the Fermi level,
emptying themselves. This is why in the blue regions of
Figure 5e,f the total charge of the wire does not increase at the
corresponding parity crossing, but instead decreases loosing
effectively twice the charge of an electron e.

Finally, we would like to point out that, when the dot levels
anticross the Majorana levels in a pinning region, the Majorana
states detach from zero energy. This can be seen in Figure 5¢
and Figure 1b. The reason is that, although in the pinning
regions the Majorana energy is zero, their wave function
overlap is not. It is actually maximum, as explained when
discussing Figure 4. Each QD acts as a local probe (one couples
to the left topological region of the wire, the other to the right).
If the length of teh wire were large (much bigger than the coher-
ence length), left and right Majoranas would be disconnected
from each other, and a local probe coupled to one of them
would not be able to change its energy or perturb it. This is
actually the core manifestation of their topological protection.
However, when the length of the wire is finite and the Majo-
ranas overlap, each QD couples to both Majoranas at either end

and their energies are modified. The typical shapes of the anti-
crossing were recently analyzed and can be used to quantify the
degree of Majorana non-locality [35,36].

Conclusion

In this work we have studied the low-energy characteristics of
Majorana nanowires while including their interaction with a
realistic 3D electrostatic environment. This is done by solving
self-consistently the Bogoliubov—de Gennes equation together
with the Poisson’s equation. Typically, the total charge of the
wire in equilibrium with the reservoirs increases with magnetic
field (or the chemical potential of the wire). However, if the
electrostatic screening is smaller inside the wire than at the
contacts, a repulsive interaction arises that leads to zero-energy
pinning around parity crossings in the spectrum of the wire.
While the screening due to the parent SC shell tends, in general,
to reduce this pinning effect, we find that it still persists
depending on the quality of the SC layer and the location of the
charge density within the nanowire. The pinning mechanism
could help explain the precise shape of the Majorana oscilla-
tions (or lack thereof) observed in some d//dV experiments,
which exhibit substantial deviations from the predictions of
simple models for finite length wires.

On the other hand, and more importantly, the self-consistent
solution of the electrostatic potential varies nonhomogeneously
along the wire. It is relatively flat in the central region but, due
to the screening from the left/right metallic contacts, it becomes
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strongly negative at the edges. This creates potential wells that
confine QD-like states at the ends of the wire, which appear in
the spectrum as discrete states within the induced gap that
disperse with Zeeman energy or chemical potential. These QD
levels interact with the Majorana states in a specific way which
is strongly dependent on the Majorana wave function, and par-
ticularly on its degree of spatial non-locality. The pinning
mechanism and the coupling to QD-like states compete against
each other, so that the pinned zero-energy plateaus may become
lifted at resonance with the dot states, thus revealing their elec-
trostatic origin (as opposed to true wave function non-locality).

Supporting Information

Supporting Information File 1

Calculational details.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-9-203-S1.pdf]
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