
License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/
licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that

individual graphics may be subject to special legal provisions.
The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms)

Supporting Information

for

Introducing third-generation periodic table descriptors for
nano-qRASTR modeling of zebrafish toxicity of metal oxide
nanoparticles

Supratik Kar and Siyun Yang

Beilstein J. Nanotechnol. 2024, 15, 1142–1152. doi:10.3762/bjnano.15.93

Content of the study in QMRF format

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://www.beilstein-journals.org/bjnano/terms
https://doi.org/10.3762%2Fbjnano.15.93


Quantitative Structure–Activity Relationship (QSAR) Model Reporting 

Format (QMRF) 

1. QSAR Model Identification 

1.1. QSAR identifier (title) 

Enhancing Nano-qRASTR Modeling of Zebrafish Toxicity of Metal Oxide Nanoparticles using 

Third-Generation Periodic Table Descriptors 

1.2 Other related models 

None 

1.3. Software coding the model 

BSS-MLR v2.1, MLRPlusValidation 1.3, RASAR-Desc-Calc-v2.0 

2. General information 

2.0 Abstract 

This study develops and enhances predictive models for zebrafish toxicity assessment of metal 

oxide nanoparticles (MONPs). By integrating traditional QSAR techniques with read-across 

approaches, the nano-qRASTR model addresses data gaps and improves the reliability of toxicity 

predictions. 

2.1. Date of QMRF 

26 July 2024 

2.2. QMRF author(s) and contact details 

Dr. Supratik Kar, Department of Chemistry, Kean University, skar@kean.edu  

2.3. Date of QMRF update(s) 

N/A 

2.4. QMRF update(s) 

N/A 

2.5. Model developer(s) and contact details 

Dr. Supratik Kar, Department of Chemistry, Kean University, skar@kean.edu  

2.6. Date of model development and/or publication 

2024 

2.7. Reference(s) to main scientific papers and/or software package 

 Kar, S.; Gajewicz, A.; Puzyn, T.; Roy, K.; Leszczynski, J. Ecotoxicol. Environ. Saf. 

2014, 107, 162-169. 

 De, P.; Kar, S.; Roy, K.; Leszczynski, J. Environ. Sci. Nano 2018, 5, 2742-2760. 

mailto:skar@kean.edu
mailto:skar@kean.edu


 Khan, K.; Khan, P. M.; Lavado, G.; Valsecchi, C.; Pasqualini, J.; Baderna, D.; Marzo, 

M.; Lombardo, A.; Roy, K.; Benfenati, E. Chemosphere 2019, 229, 8-17. 

 Yang, S.; Kar, S. Science of The Total Environment 2024, 907, 167991.  

 Banerjee, A.; Roy, K. Mol. Divers. 2022, 26, 2847-2862. 

2.8. Availability of information about the model 

The model is non-proprietary. Full description of the model algorithm, training, and test sets are 

available as supplementary material of the original research article. 

2.9. Availability of another QMRF for exactly the same model 

None 

3. Defining the endpoint - OECD Principle 1: "A DEFINED ENDPOINT" 

3.1. Species 

Zebrafish (Danio rerio) 

3.2. Endpoint 

Enzyme inhibition (%EI_Zebrafish) of zebrafish hatching enzyme (ZHE1) 

3.3 Comment on endpoint 

Zebrafish embryos are used to evaluate the toxicity of MONPs. The endpoint measures the 

percentage decrease in enzymatic activity of ZHE1. 

3.4. Endpoint units 

Percentage (%) 

3.5. Dependent variable 

%EI_Zebrafish 

3.6. Experimental protocol 

The experimental protocol followed OECD guidelines for toxicological studies in zebrafish 

embryos. All data are collected from literature as mentioned in the article. 

3.7. Endpoint data quality and variability 

Data quality was ensured through repeatability and reproducibility checks. The purity of test 

chemicals was maintained at high levels to ensure accurate correlations between structures and 

effects. All data are collected from literature as mentioned in the article. 

4. Defining the algorithm - OECD Principle 2: "AN UNAMBIGUOUS 

ALGORITHM" 

4.1. Type of model 

Equation-based, multiple linear regression (MLR) 

4.2. Explicit algorithm 

qRASTR model: 



%𝐸𝐼𝑍𝑒𝑏𝑟𝑎𝑓𝑖𝑠ℎ =  −2.01(±4.38) + 0.17(±0.06) ∗ (∑𝛼)2 + 5.10(±0.84) ∗ 𝑆𝐸(𝐿𝐾)

− 10.93(±5.83)  ∗ 𝐶𝑉𝑠𝑖𝑚(𝐿𝐾) 

4.3. Descriptors in the model 

∑α² (Summation of squared alpha), SE(LK) (Standard error of the response values), CVsim(LK) 

(Coefficient of variation of the similarity values) 

4.4. Descriptor selection 

Descriptors were selected using the Best Subset Selection (BSS) approach, evaluating all possible 

subsets of descriptors to determine the best combination. 

4.5. Algorithm and descriptor generation 

Descriptors were derived from periodic table properties and computed using the RASAR-Desc-

Calc-v2.0 tool. 

4.6. Software name and version for descriptor generation 

RASAR-Desc-Calc-v2.0, BSS-MLR v2.1, MLRPlusValidation 1.3 

4.7. Chemicals/Descriptors ratio 

16 chemicals (training set) / 3 descriptors = 5.33 

5. Defining the applicability domain - OECD Principle 3: "A DEFINED 

DOMAIN OF APPLICABILITY" 

5.1. Description of the applicability domain of the model 

The model's applicability domain was defined using the leverage approach, identifying structural 

features, descriptor space, and response space for reliable predictions. 

5.2. Method used to assess the applicability domain 

Williams plot was used to assess the applicability domain, with leverage critical value identifying 

influential observations and outliers. 

5.3. Software name and version for applicability domain assessment 

MLRPlusValidation 1.3 

5.4. Limits of applicability 

The model is applicable to MONPs with similar structural and physicochemical properties to 

those in the training set. 

6. Defining goodness-of-fit and robustness (internal validation) – OECD 

Principle 4: "APPROPRIATE MEASURES OF GOODNESS-OF-FIT, 

ROBUSTNESS AND PREDICTIVITY" 

6.1. Availability of the training set 

The training set is available and attached as supporting information. 



6.2. Available information for the training set 

MONPs name, Descriptor values, Dependent variable values 

6.3. Data for each descriptor variable for the training set 

Available and attached as supporting information. 

6.4. Data for the dependent variable for the training set 

Available and attached as supporting information. 

6.5. Other information about the training set 

16 MONPs were selected based on their relevance and data availability. 

6.6. Pre-processing of data before modelling 

N/A 

6.7. Statistics for goodness-of-fit 

R² = 0.81, R2adjusted = 0.77 

6.8. Robustness - Statistics obtained by leave-one-out cross-validation 

Q²_LOO = 0.70 

6.9. Robustness - Statistics obtained by leave-many-out cross-validation 

N/A 

6.10. Robustness - Statistics obtained by Y-scrambling 

Average R² = 0.20 and Average Q² = -0.60 of random 100 models 

6.11. Robustness - Statistics obtained by bootstrap 

N/A 

6.12. Robustness - Statistics obtained by other methods 

N/A 

7. Defining predictivity (external validation) – OECD Principle 4: 

"APPROPRIATE MEASURES OF GOODNESS-OF-FIT, ROBUSTNESS 

AND PREDICTIVITY" 

7.1. Availability of the external validation set 

The external validation set (test set) is available and attached as supporting information. 

7.2. Available information for the external validation set 

MONPs name, Descriptor values, Dependent variable values 

7.3. Data for each descriptor variable for the external validation set 

Available and attached as supporting information. 

7.4. Data for the dependent variable for the external validation set 

Available and attached as supporting information. 



7.5. Other information about the external validation set 

8 MONPs were included for external validation (test set). 

7.6. Experimental design of test set 

Randomly selected from available MONPs data. 

7.7. Predictivity - Statistics obtained by external validation 

R² = 0.81, Q²F1 = 0.76, Q²F2 = 0.74 

7.8. Predictivity - Assessment of the external validation set 

The external validation set (test set) is representative of the training set’s descriptor and response 

space. 

7.9. Comments on the external validation of the model 

The model demonstrates high predictivity for an external validation (test set) comprising 8 

MONPs. 

8. Providing a mechanistic interpretation - OECD Principle 5: "A 

MECHANISTIC INTERPRETATION, IF POSSIBLE" 

8.1. Mechanistic basis of the model 

The model's mechanistic basis is the interaction of MONPs with biological systems influenced by 

their electronegativity, molecular bulk, and atomic radius. Incorporating third-generation 

descriptors enhances the predictive power of the nano-qRASTR model. MONPs with higher 

metal electronegativity may bind strongly to zebrafish, potentially interfering with cellular 

functions, but this can also mitigate oxidative stress and membrane disruption, reducing toxicity. 

Conversely, MONPs with larger atomic and crystal ionic radii have a lower surface area-to-

volume ratio, reducing cellular interactions and uptake, thus lessening toxicity. Larger atomic 

radii may prevent MONPs from penetrating cell membranes, decreasing potential damage. 

However, increased molecular bulk in MONPs can enhance toxicity by physically damaging cell 

membranes, triggering reactive oxygen species (ROS) production, and obstructing vital biological 

processes, leading to localized toxicity and accumulation within zebrafish, worsening toxicity. 

8.2. A priori or a posteriori mechanistic interpretation 

A posteriori mechanistic interpretation was conducted based on model results and descriptor 

analysis. 

8.3. Other information about the mechanistic interpretation 

Higher metal electronegativity and larger atomic radii decrease toxicity, while increased 

molecular bulk enhances toxicity through mechanisms like ROS production and cellular uptake. 

9. Miscellaneous information 

9.1. Comments 

The model shows significant improvements over previous nano-QSTR models and can be used to 

predict the toxicity of new MONPs before experimental testing. For the toxicity data gap of 

MONPs, 35 MONPs were collected as a true external set and predicted toxicity in zebrafish, with 



27 predictions within the Applicability Domain (AD), yielding a 77.14% reliability. For these 

MONPs, enzyme inhibition (%EI) ranged from 32.42% to 76.16%. Ta2O3 exhibited the highest 

toxicity, while V2O3 showed the least. Eight MONPs were deemed unreliable, falling outside the 

AD. 
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9.3. Supporting information 

Names of the MONPs, descriptor values, and response values for the training, external validation 

(test sets) and true external set are provided under supplementary material. 
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