Supporting Information

for

Hierarchical heterostructures of Bi₂MoO₆ microflowers decorated with Ag₂CO₃ nanoparticles for efficient visiblelight-driven photocatalytic removal of toxic pollutants

Shijie Li*1, Wei Jiang1, Shiwei Hu1, Yu Liu1, Yanping Liu2, Kaibing Xu*3 and Jianshe Liu4

Address: ¹Key Laboratory of key technical factors in Zhejiang seafood health hazards Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China; ²Department of Environmental Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China; ³State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement, Donghua University, Shanghai, 201620, China and ⁴State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

Email: Shijie Li - lishijie@zjou.edu.cn; Kaibing Xu- xukaibing@dhu.edu.cn

* Corresponding author

Additional experimental data

S1

Figure S1: Tauc plots of Ag₂CO₃ and Bi₂MoO₆.

Figure S2: The photocatalytic degradation of MB over ACO/BMO-30.

Figure S3: Photocatalytic degradation of TC (100 mL, 20 mg·L⁻¹) over ACO/BMO-30,

Ag/Ag₂CO₃/Bi₂MoO₆, and Ag₂MoO₄/Bi₂MoO₆.

Figure S4: TOC removal during the photocatalytic reaction.

Figure S5: High-resolution XPS spectra of Ag 3d for ACO/BMO-30 after photocatalytic reaction.