Gold-catalyzed reaction of oxabicyclic alkenes with electron-deficient terminal alkynes to produce acrylate derivatives

  1. 1 ,
  2. 1 and
  3. 1,2,§
1Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 MeiLong Road, Shanghai 200237, People’s Republic of China,
2State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, People’s Republic of China
  1. Corresponding author email
§ Fax: 86-21-64166128
Guest Editor: F. D. Toste
Beilstein J. Org. Chem. 2013, 9, 1969–1976. https://doi.org/10.3762/bjoc.9.233
Received 12 Jul 2013, Accepted 10 Sep 2013, Published 01 Oct 2013
Full Research Paper
cc by logo

Abstract

Oxabicyclic alkenes can react with electron-deficient terminal alkynes in the presence of a gold catalyst under mild conditions, affording the corresponding addition products in moderate yields. When using alkynyl esters as substrates, the (Z)-acrylate derivatives are obtained. Using but-3-yn-2-one (ethynyl ketone) as a substrate, the corresponding addition product is obtained with (E)-configuration. The proposed mechanism of these reactions is also discussed.

Introduction

Oxabicyclic alkenes are common intermediates in organic synthesis since these compounds can be easily prepared and have a high reactivity for further transformations [1-8]. For example, they are often used to construct substituted tetrahydronaphthalene skeletons in the presence of metal catalysts such as Pd [9,10], Ir [11-15], Rh [16-21] and Cu [22]. However, their reactivity in the presence of gold catalysts has been rarely reported [23]. It is well known that gold catalysts have different catalytic abilities compared with other transition metals [24]. Moreover, gold-catalyzed chemical transformations have made significant progress during the last 5 years [25-56]. Many gold complexes have been proved to be efficient catalysts in C–C [33-48] bond or C–X (X = heteroatom) [49-56] bond forming reactions. Our group has a long-standing interest in gold-catalyzed C–C [57-61] or C–X bond [62-67] formation reactions. So far, we have reported a variety of gold-catalyzed intramolecular rearrangements with highly strained small rings for C–C or C–X bond formations [57-59,62-68]. Based on these previous findings, we envisaged that oxabicyclic alkenes could also react with electron-deficient alkynes in the presence of gold catalysts to generate a new C–C or C–O bond thereby releasing the oxabicyclic alkenes of their ring strain. In this paper, we report the formation of (Z)-acrylate derivatives in the gold catalyzed intermolecular reaction of oxabicyclic alkenes with electron-deficient terminal alkynes under mild conditions [69-76] (Scheme 1).

[1860-5397-9-233-i1]

Scheme 1: Gold-catalyzed reactions of oxabicyclic alkenes with electron-deficient terminal alkynes.

Results and Discussion

To generate a new C–O bond in the reaction of oxabicyclic alkene 1a with electron-deficient terminal alkyne 2a, we first used PPh3AuCl as a catalyst, AgSbF6 as an additive, and toluene as a solvent to examine the reaction outcome. Acrylate derivative 3a was formed with (Z)-configuration in 11% yield (Table 1, entry 1). In this reaction, naphthalen-1-ol was also obtained with 44% yield as the major product. The usage of IPrAuCl, dppb(AuCl)2, (p-FC6H4)3PAuCl, DPE-phos(AuCl)2, Me3PAuCl and Cy3PAuCl as gold catalysts did not significantly improve the yield of 3a (Table 1, entries 2–7). In these cases, the maximum yield of 3a was 34% when the gold complex Cy3PAuCl coordinated by an electron-rich phosphine ligand was used as a catalyst (Table 1, entry 7). In order to further improve the yield of 3a, we employed gold complex 6 (Figure 1) coordinated by a sterically bulky and electron-rich biaryl phosphine-type ligand as a catalyst, affording 3a in 40% yield (Table 1, entry 8). In the absence of AgSbF6, no reaction occurred (Table 1, entry 9). The usage of AgSbF6 as a catalyst produced naphthalen-1-ol (5) as the major product (Table 1, entry 10). Next, we further screened the reaction conditions with gold complex 6 as a catalyst. When using AgOTs or CF3CO2Ag as a silver additive, we did not obtain any of the desired products (Table 1, entries 12 and 13), whereas the usage of AgNTf2 as a silver additive afforded 3a in 32% yield (Table 1, entry 11). AgOTf was not an effective silver additive, giving 3a in 20% yield (Table 1, entry 14). Utilization of the already prepared electrophilic cationic phosphinogold(I) complexes XPhosAuNTf2 and XPhosAu(MeCN)SbF6 as gold catalysts slightly increased the yield of 3a to 33% and 45% yields, respectively (Table 1, entries 15 and 16). The examination of solvent effects revealed that toluene was the best solvent (Table 1, entries 17–22). Adding 4 Å MS into the reaction system, 3a was obtained in only 10% yield (Table 1, entry 23).

Table 1: Initial screening of the reaction conditions.

[Graphic 1]
Entrya Au cat. Ag salt Solvent Yieldb (%) 3a
1c Ph3PAuCl AgSbF6 toluene 11
2 IPrAuCl AgSbF6 toluene 19
3 dppb(AuCl)2 AgSbF6 toluene trace
4 (p-FC6H4)3PAuCl AgSbF6 toluene 26
5 DPE-phos(AuCl)2 AgSbF6 toluene N.R.
6 Me3PAuCl AgSbF6 toluene N.R.
7 Cy3PAuCl AgSbF6 toluene 34
8 6 AgSbF6 toluene 40
9 6 toluene N.R.
10c None AgSbF6 toluene trace
11 6 AgNTf2 toluene 32
12 6 AgOTs toluene N.R.
13 6 CF3COOAg toluene N.R.
14 6 AgOTf toluene 20
15 XPhosAuNTf2 toluene 33
16 XPhosAu(MeCN)SbF6 toluene 45
17 XPhosAu(MeCN)SbF6 CH3CN trace
18 XPhosAu(MeCN)SbF6 CH3NO2 N.R.
19 XPhosAu(MeCN)SbF6 Et2O N.R.
20 XPhosAu(MeCN)SbF6 THF complex
21 XPhosAu(MeCN)SbF6 DCM 25
22 XPhosAu(MeCN)SbF6 DCE 28
23d XPhosAu(MeCN)SbF6 toluene 10

aThe reaction was carried out on a 0.2 mmol scale in solvent (1.0 mL). The ratio of 1a/2a was 1:2. bYield determined by 1H NMR by using 1-iodo-2-methoxybenzene (4) as an internal standard. cNaphthalen-1-ol (5) was the major product. d50 mg of 4 Å MS was added to the reaction system.

[1860-5397-9-233-1]

Figure 1: Gold complexes used in this reaction.

Since the yield of 3a was still low, we next tried to improve the yield of 3a by deploying different ligands, Ag salts, solvents and temperature. The results are summarized in Table 2. At first, we examined many other gold(I) phosphane complexes with dialkylbiarylphosphane ligands (Figure 1) by using AgSbF6 as an additive and toluene as a solvent. No reaction occurred when gold(I) phosphane complexes 8–10 (Figure 1) were used as catalysts under identical conditions (Table 2, entries 2–4). Furthermore, the usage of gold(I) phosphane complexes 7, 11, 13 and 14 (Figure 1) as catalysts gave 3a in 10–29% yields (Table 2, entries 1, 5, 7 and 8). Gold complex 12 (Figure 1) with an electron-rich biphenylphosphine ligand was identified as the best catalyst, giving 3a in 67% yield (Table 2, entry 6). We attempted to further optimize the reaction conditions by using SPhosAuCl 12 as a catalyst and AgNTf2 or AgSbF6 as an additive and obtained 3a in 66% and 67% yields, respectively (Table 2, entries 6 and 9). However, the use of AgOTf or AgBF4 as an additive afforded 3a in 37% and 11% yields, respectively (Table 2, entries 10 and 11). Employment of the prepared electrophilic cationic phosphinogold(I) complex SPhosAu(MeCN)SbF6 as a catalyst gave 3a in 78% NMR based yield and 67% isolated yield (Table 2, entry 12). The phosphinogold(I) complex SPhosAuNTf2 produced 3a in 53% yield under the standard conditions (Table 2, entry 13). The examination of solvent effects disclosed that toluene was the best solvent (Table 2, entries 14–16). Either increasing or decreasing the reaction temperature did not further improve the reaction outcome (Table 2, entries 17–20). Careful screening of the reaction conditions led to the conclusion that the reaction should be carried out in toluene at room temperature with SPhosAu(MeCN)SbF6 as the catalyst (Table 2, entry 12).

Table 2: Further screening of the reaction conditions.

[Graphic 2]
entrya Au cat. Ag salt solvent T (°C) Yieldb (%) 3a
1c 7 AgSbF6 toluene rt 11
2 8 AgSbF6 toluene rt N.R.
3 9 AgSbF6 toluene rt trace
4 10 AgSbF6 toluene rt N.R.
5 11 AgSbF6 toluene rt 10
6 12 AgSbF6 toluene rt 67
7 13 AgSbF6 toluene rt 20
8 14 AgSbF6 toluene rt 29
9 12 AgNTf2 toluene rt 66 (59)c
10 12 AgOTf toluene rt 37
11 12 AgBF4 toluene rt 11
12 SPhosAu(MeCN)SbF6 toluene rt 78 (67)c
13 SPhosAuNTf2 toluene rt 53
14 SPhosAu(MeCN)SbF6 DCM rt 49
15 SPhosAu(MeCN)SbF6 DCE rt 55
16 SPhosAu(MeCN)SbF6 CHCl3 rt 45
17d SPhosAu(MeCN)SbF6 toluene 0 50
18 SPhosAu(MeCN)SbF6 toluene 40 45
19 SPhosAu(MeCN)SbF6 toluene 10 59
20 SPhosAu(MeCN)SbF6 toluene 30 70

aThe reaction was carried out on a 0.2 mmol scale in solvent (1.0 mL) and the ratio of 1a/2a was 1/2. bYield determined by 1H NMR by using 1-iodo-2-methoxybenzene 4 as an internal standard. cIsolated yield in parentheses.

Having identified the optimal conditions, we next examined the substrate scope of this reaction. We found that only the usage of ethynylbenzene and dimethyl but-2-ynedioate as substrates did not afford any of the desired products (Table 3, entries 6 and 9). In all other cases, the reactions proceeded smoothly to give the desired products in moderate to good yields (Table 2, entries 1–5, 7 and 8). The introduction of electron-donating substituents on the benzene ring impaired the reaction outcome (Table 3, entries 1 and 7). Increasing the steric hindrance of the ester group improved the yields of 3 (Table 3, entries 4 and 5). The usage of but-3-yne-2-one (terminal alkyne ketone) 2i as a substrate gave the corresponding 3i with (E)-configuration in 48% yield (Scheme 2).

Table 3: Substrate scope of the reactions with SPhosAu(MeCN)SbF6 as a catalyst.

[Graphic 3]
entrya R1 R2, R3 Yieldb (%) 3
1 Me COOMe, H 3b, 42
2 F COOMe, H 3c, 66
3 Br COOMe, H 3d, 76
4 H COOEt, H 3e, 54
5 H COOt-Bu, H 3f, 84
6 H Ph, H trace
7 Me COOt-Bu, H 3g, 58
8 Br COOt-Bu, H 3h, 72
9 H COOMe, COOMe N.R.

aThe reaction was carried out on a 0.2 mmol scale in solvent (1.0 mL). The ratio of 1/2 was 1/2. bIsolated yield.

[1860-5397-9-233-i2]

Scheme 2: The reaction with terminal alkyne 2i as a substrate.

Since naphthalene-1-ol (5) was obtained in this reaction, we used naphthalene-1-ol (5) as a substrate and carried out the reaction under the optimal conditions to clarify whether the reaction proceeded through naphthalene-1-ol. The formation of 3a could not be observed, suggesting that naphthalene-1-ol is not the intermediate in this reaction (Scheme 3).

[1860-5397-9-233-i3]

Scheme 3: The reaction with naphthalen-1-ol (5) as a substrate.

Based on the previously established mechanistic model [23,77], we propose the following pathway for the formation of acrylate derivatives 3a and 3i (Scheme 4). In the presence of cationic phosphinogold(I) complex, a cationic intermediate A is formed by a regioselective opening of the oxygen bridge in substrate 1a. Intermediate A releases a proton to afford intermediate B. Intermediate B attacks methyl propiolate, which is activated by the gold catalyst, to generate gold vinyl complex C. In intermediate C, the ester group and the naphthalene ring are on the same side, yielding the final product 3a with (Z)-configuration via protodeauration. The alkyne ketone 3i is more electron-deficient and more reactive than methyl propiolate and it is more difficult to coordinate by the gold complex. Therefore, with alkyne ketone 2i as a substrate, intermediate B attacks non-coordinated alkyne ketone 2i in a cis-addition manner to generate gold vinyl complex D. In intermediate D, the carbonyl group and the naphthalene ring are on opposite sides, affording product 3i with (E)-configuration by protodeauration.

[1860-5397-9-233-i4]

Scheme 4: The proposed mechanism for Au(I)-catalyzed reaction.

Conclusion

In summary, we have developed a novel method to synthesize acrylate derivatives from oxabicyclic alkenes and electron-deficient terminal alkynes in toluene in moderate to good yields in the presence of the gold catalyst SPhosAu(MeCN)SbF6 under mild conditions. Efforts are in progress to elucidate the mechanistic details of this reaction and to disclose its scope and limitations.

Experimental

General remarks

Dichloromethane was freshly distilled from calcium hydride; THF and toluene were distilled from sodium under an argon atmosphere. 1H NMR, 13C NMR and 19F NMR spectra were recorded on a Bruker AM-400 spectrometer. Infrared spectra were recorded on a Perkin-Elmer PE-983 spectrometer with absorption in cm−1. Flash column chromatography was performed by using 300–400 mesh silica gel. For thin-layer chromatography (TLC), silica gel plates (Huanghai GF254) were used. Mass spectra were recorded by ESI, and HRMS were measured on a HP-5989 instrument.

General procedure for the reaction catalyzed by Au(I) catalysts

Into an oven-dried reaction flask under Ar gas protection was added oxabicyclic alkene (0.2 mmol), Au catalyst (0.001 mmol), methyl propiolate (0.4 mmol) and toluene (1.0 mL). The reaction mixture was stirred at room temperature normally overnight. After complete consumption of the starting materials, monitored by TLC, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography.

Supporting Information

Supporting Information File 1: Experimental procedures and characterization data of compounds.
Format: PDF Size: 499.2 KB Download

Acknowledgements

Financial support from the Shanghai Municipal Committee of Science and Technology (08dj1400100-2), the Fundamental Research Funds for the Central Universities, the National Basic Research Program of China (973)-2010CB833302, the Fundamental Research Funds for the Central Universities, and the National Natural Science Foundation of China (21072206, 20902019, 20472096, 20872162, 20672127, 20732008, 20821002, and 20702013) are gratefully acknowledged.

References

  1. Tsui, G. C.; Tsoung, J.; Dougan, P.; Lautens, M. Org. Lett. 2012, 14, 5542–5545. doi:10.1021/ol302646a
    Return to citation in text: [1]
  2. Mannathan, S.; Cheng, C.-H. Chem. Commun. 2013, 49, 1557–1559. doi:10.1039/C2CC38001C
    Return to citation in text: [1]
  3. Sawano, T.; Ou, K.; Nishimura, T.; Hayashi, T. Chem. Commun. 2012, 48, 6106–6108. doi:10.1039/C2CC31880F
    Return to citation in text: [1]
  4. Jack, K.; Fatila, E.; Hillis, C.; Tam, W. Synth. Commun. 2013, 43, 1181–1187. doi:10.1080/00397911.2011.626140
    Return to citation in text: [1]
  5. Endo, K.; Tanaka, K.; Ogawa, M.; Shibata, T. Org. Lett. 2011, 13, 868–871. doi:10.1021/ol102928q
    Return to citation in text: [1]
  6. Madan, S.; Cheng, C.-H. J. Org. Chem. 2006, 71, 8312–8315. doi:10.1021/jo061477h
    Return to citation in text: [1]
  7. Lautens, M.; Rovis, T. J. Org. Chem. 1997, 62, 5246–5247. doi:10.1021/jo971115x
    Return to citation in text: [1]
  8. Barluenga, J.; Rodriguez, F.; Alvarez-Rodrigo, L.; Zapico, J. M.; Fañanás, F. J. Chem.–Eur. J. 2004, 10, 109–116. doi:10.1002/chem.200305374
    Return to citation in text: [1]
  9. Ge, G.-C.; Mo, D.-L.; Ding, C.-H.; Dai, L.-X.; Hou, X.-L. Org. Lett. 2012, 14, 5756–5759. doi:10.1021/ol302586m
    Return to citation in text: [1]
  10. Huang, X.-J.; Mo, D.-L.; Ding, C.-H.; Hou, X.-L. Synlett 2011, 943–946. doi:10.1055/s-0030-1259716
    Return to citation in text: [1]
  11. Hu, J.; Yang, Q.; Yu, L.; Xu, J.; Liu, S.; Huang, C.; Wang, L.; Zhou, Y.; Fan, B. Org. Biomol. Chem. 2013, 11, 2294–2301. doi:10.1039/C3OB27382B
    Return to citation in text: [1]
  12. Hu, J.; Yang, Q.; Xu, J.; Huang, C.; Fan, B.; Wang, J.; Lin, C.; Bian, Z.; Chan, A. S. C. Org. Biomol. Chem. 2013, 11, 814–820. doi:10.1039/C2OB26775F
    Return to citation in text: [1]
  13. Cheng, H.; Yang, D. J. Org. Chem. 2012, 77, 9756–9765. doi:10.1021/jo3018507
    Return to citation in text: [1]
  14. Yang, D.; Long, Y.; Zhang, J.; Zeng, H.; Wang, S.; Li, C. Organometallics 2010, 29, 3477–3480. doi:10.1021/om100384q
    Return to citation in text: [1]
  15. Fan, B.-M.; Li, X.-J.; Peng, F.-Z.; Zhang, H.-B.; Chan, A. S. C.; Shao, Z.-H. Org. Lett. 2010, 12, 304–306. doi:10.1021/ol902574c
    Return to citation in text: [1]
  16. Tsui, G. C.; Dougan, P.; Lautens, M. Org. Lett. 2013, 15, 2652–2655. doi:10.1021/ol4009393
    Return to citation in text: [1]
  17. Tsui, G. C.; Ninnemann, N. M.; Hosotani, A.; Lautens, M. Org. Lett. 2013, 15, 1064–1067. doi:10.1021/ol4000668
    Return to citation in text: [1]
  18. Zhu, J.; Tsui, G. C.; Lautens, M. Angew. Chem., Int. Ed. 2012, 51, 12353–12356. doi:10.1002/anie.201207356
    Return to citation in text: [1]
  19. Tsui, G. C.; Lautens, M. Angew. Chem., Int. Ed. 2012, 51, 5400–5404. doi:10.1002/anie.201200390
    Return to citation in text: [1]
  20. Preetz, A.; Kohrt, C.; Drexler, H.-J.; Torrens, A.; Buschmann, H.; Lopez, M. G.; Heller, D. Adv. Synth. Catal. 2010, 352, 2073–2080. doi:10.1002/adsc.201000236
    Return to citation in text: [1]
  21. Long, Y.; Zhao, S.; Zeng, H.; Yang, D. Catal. Lett. 2010, 138, 124–133. doi:10.1007/s10562-010-0383-3
    Return to citation in text: [1]
  22. Bos, P. H.; Rudolph, A.; Pérez, M.; Fañanás-Mastral, M.; Harutyunyan, S. R.; Feringa, B. L. Chem. Commun. 2012, 48, 1748–1750. doi:10.1039/C2CC16855C
    Return to citation in text: [1]
  23. Sawama, Y.; Kawamoto, K.; Satake, H.; Krause, N.; Kita, Y. Synlett 2010, 2151–2155. doi:10.1055/s-0030-1258528
    Return to citation in text: [1] [2]
  24. Brazeau, J.-F.; Zhang, S.; Colomer, I.; Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2012, 134, 2742–2749. doi:10.1021/ja210388g
    Return to citation in text: [1]
  25. Fortman, G. C.; Nolan, S. P. Chem. Soc. Rev. 2011, 40, 5151–5169. doi:10.1039/C1CS15088J
    Return to citation in text: [1]
  26. Sethofer, S. G.; Mayer, T.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 8276–8277. doi:10.1021/ja103544p
    Return to citation in text: [1]
  27. Rudolph, M. In Modern Gold Catalyzed Synthesis; Hashmi, A. S. K.; Toste, F. D., Eds.; Wiley: Weinheim, Germany, 2012; pp 331–362.
    Return to citation in text: [1]
  28. Hubbert, C.; Hashmi, A. S. K. In Modern Gold Catalyzed Synthesis; Hashmi, A. S. K.; Toste, F. D., Eds.; Wiley: Weinheim, Germany, 2012; pp 237–262.
    Return to citation in text: [1]
  29. Shapiro, N. D.; Toste, F. D. Synlett 2010, 675–691. doi:10.1055/s-0029-1219369
    Return to citation in text: [1]
  30. Liu, W.; Gust, R. Chem. Soc. Rev. 2013, 42, 755–773. doi:10.1039/C2CS35314H
    Return to citation in text: [1]
  31. Chi, Y.; Chou, P.-T. Chem. Soc. Rev. 2010, 39, 638–655. doi:10.1039/B916237B
    Return to citation in text: [1]
  32. Cheon, C. H.; Kanno, O.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 13248–13251. doi:10.1021/ja204331w
    Return to citation in text: [1]
  33. Benitez, D.; Tkatchouk, E.; Gonzalez, A. Z.; Goddard, W. A., III; Toste, F. D. Org. Lett. 2009, 11, 4798–4801. doi:10.1021/ol9018002
    Return to citation in text: [1] [2]
  34. Mauleón, P.; Zeldin, R. M.; González, A. Z.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 6348–6349. doi:10.1021/ja901649s
    Return to citation in text: [1] [2]
  35. Hashmi, A. S. K.; Hengst, T.; Lothschütz, C.; Rominger, F. Adv. Synth. Catal. 2010, 352, 1315–1337. doi:10.1002/adsc.201000126
    Return to citation in text: [1] [2]
  36. Kusama, H.; Karibe, Y.; Onizawa, Y.; Iwasawa, N. Angew. Chem., Int. Ed. 2010, 49, 4269–4272. doi:10.1002/anie.201001061
    Return to citation in text: [1] [2]
  37. Jurberg, I. D.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc. 2010, 132, 3543–3552. doi:10.1021/ja9100134
    Return to citation in text: [1] [2]
  38. Bolte, B.; Gagosz, F. J. Am. Chem. Soc. 2011, 133, 7696–7699. doi:10.1021/ja202336p
    Return to citation in text: [1] [2]
  39. Ye, L.; Wang, Y.; Aue, D. H.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 31–34. doi:10.1021/ja2091992
    Return to citation in text: [1] [2]
  40. Hashmi, A. S. K.; Braun, I.; Nösel, P.; Schädlich, J.; Wieteck, M.; Rudolph, M.; Rominger, F. Angew. Chem., Int. Ed. 2012, 51, 4456–4460. doi:10.1002/anie.201109183
    Return to citation in text: [1] [2]
  41. Barluenga, J.; Sigüeiro, R.; Vicente, R.; Ballesteros, A.; Tomás, M.; Rodríguez, M. A. Angew. Chem., Int. Ed. 2012, 51, 10377–10381. doi:10.1002/anie.201205051
    Return to citation in text: [1] [2]
  42. Mukherjee, P.; Widenhoefer, R. A. Chem.–Eur. J. 2013, 19, 3437–3444. doi:10.1002/chem.201203987
    Return to citation in text: [1] [2]
  43. Alcarazo, M.; Stork, T.; Anoop, A.; Thiel, W.; Fürstner, A. Angew. Chem., Int. Ed. 2010, 49, 2542–2546. doi:10.1002/anie.200907194
    Return to citation in text: [1] [2]
  44. Francos, J.; Grande-Carmona, F.; Faustino, H.; Iglesias-Sigüenza, J.; Díez, E.; Alonso, I.; Fernández, R.; Lassaletta, J. M.; López, F.; Mascareñas, J. L. J. Am. Chem. Soc. 2012, 134, 14322–14325. doi:10.1021/ja3065446
    Return to citation in text: [1] [2]
  45. Yang, J.; Zhang, R.; Wang, W.; Zhang, Z.; Shi, M. Tetrahedron: Asymmetry 2011, 22, 2029–2038. doi:10.1016/j.tetasy.2011.12.004
    Return to citation in text: [1] [2]
  46. Wang, W.; Yang, J.; Wang, F.; Shi, M. Organometallics 2011, 30, 3859–3869. doi:10.1021/om2004404
    Return to citation in text: [1] [2]
  47. Liu, L.; Wang, F.; Wang, W.; Zhao, M.; Shi, M. Beilstein J. Org. Chem. 2011, 7, 555–564. doi:10.3762/bjoc.7.64
    Return to citation in text: [1] [2]
  48. Wang, F.; Li, S.; Qu, M.; Zhao, M.-X.; Liu, L.-J.; Shi, M. Beilstein J. Org. Chem. 2012, 8, 726–731. doi:10.3762/bjoc.8.81
    Return to citation in text: [1] [2]
  49. Melhado, A. D.; Brenzovich, W. E., Jr.; Lackner, A. D.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 8885–8887. doi:10.1021/ja1034123
    Return to citation in text: [1] [2]
  50. Shapiro, N. D.; Shi, Y.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 11654–11655. doi:10.1021/ja903863b
    Return to citation in text: [1] [2]
  51. Tkatchouk, E.; Mankad, N. P.; Benitez, D.; Goddard, W. A., III; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 14293–14300. doi:10.1021/ja2012627
    Return to citation in text: [1] [2]
  52. Teng, T.-M.; Liu, R.-S. J. Am. Chem. Soc. 2010, 132, 9298–9300. doi:10.1021/ja1043837
    Return to citation in text: [1] [2]
  53. Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 15372–15375. doi:10.1021/ja208150d
    Return to citation in text: [1] [2]
  54. Wang, Y.-M.; Kuzniewski, C. N.; Rauniyar, V.; Hoong, C.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 12972–12975. doi:10.1021/ja205068j
    Return to citation in text: [1] [2]
  55. Handa, S.; Slaughter, L. M. Angew. Chem., Int. Ed. 2012, 51, 2912–2915. doi:10.1002/anie.201107789
    Return to citation in text: [1] [2]
  56. Pérez-Galán, P.; Delpont, N.; Herrero-Gómez, E.; Maseras, F.; Echavarren, A. M. Chem.–Eur. J. 2010, 16, 5324–5332. doi:10.1002/chem.200903507
    Return to citation in text: [1] [2]
  57. Zhu, Z.-B.; Shi, M. Chem.–Eur. J. 2008, 14, 10219–10222. doi:10.1002/chem.200801370
    Return to citation in text: [1] [2]
  58. Lu, B.-L.; Wei, Y.; Shi, M. Chem.–Eur. J. 2010, 16, 10975–10979. doi:10.1002/chem.201001433
    Return to citation in text: [1] [2]
  59. Jiang, M.; Liu, L.-P.; Shi, M.; Li, Y. Org. Lett. 2010, 12, 116–119. doi:10.1021/ol902593f
    Return to citation in text: [1] [2]
  60. Zhang, D.-H.; Yao, L.-F.; Wei, Y.; Shi, M. Angew. Chem., Int. Ed. 2011, 50, 2583–2587. doi:10.1002/anie.201006969
    Return to citation in text: [1]
  61. Huang, L.; Yang, H.-B.; Zhang, D.-H.; Zhang, Z.; Tang, X.-Y.; Xu, Q.; Shi, M. Angew. Chem., Int. Ed. 2013, 52, 6767–6771. doi:10.1002/anie.201302632
    Return to citation in text: [1]
  62. Shi, M.; Liu, L.-P.; Tang, J. Org. Lett. 2006, 8, 4043–4046. doi:10.1021/ol0614830
    Return to citation in text: [1] [2]
  63. Dai, L.-Z.; Qi, M.-J.; Shi, Y.-L.; Liu, X.-G.; Shi, M. Org. Lett. 2007, 9, 3191–3194. doi:10.1021/ol0713640
    Return to citation in text: [1] [2]
  64. Tian, G.-Q.; Shi, M. Org. Lett. 2007, 9, 4917–4920. doi:10.1021/ol702341a
    Return to citation in text: [1] [2]
  65. Dai, L.-Z.; Shi, M. Chem.–Eur. J. 2008, 14, 7011–7018. doi:10.1002/chem.200701954
    Return to citation in text: [1] [2]
  66. Zhang, Z.; Shi, M. Chem.–Eur. J. 2010, 16, 7725–7729. doi:10.1002/chem.201000628
    Return to citation in text: [1] [2]
  67. Lu, B.-L.; Shi, M. Chem.–Eur. J. 2011, 17, 9070–9075. doi:10.1002/chem.201100862
    Return to citation in text: [1] [2]
  68. Lu, B.-L.; Dai, L.; Shi, M. Chem. Soc. Rev. 2012, 41, 3318–3339. doi:10.1039/C2CS15295A
    Return to citation in text: [1]
  69. Nasiri, F.; Malakutikhah, D. Monatsh. Chem. 2011, 142, 807–812. doi:10.1007/s00706-011-0514-6
    Return to citation in text: [1]
  70. Kabir, M. S.; Namjoshi, O. A.; Verma, R.; Lorenz, M.; Phani Babu Tiruveedhula, V. V. N.; Monte, A.; Bertz, S. H.; Schwabacher, A. W.; Cook, J. M. J. Org. Chem. 2012, 77, 300–310. doi:10.1021/jo201948e
    Return to citation in text: [1]
  71. Tellam, J. P.; Kociok-Köhn, G.; Carbery, D. R. Org. Lett. 2008, 10, 5199–5202. doi:10.1021/ol802169j
    Return to citation in text: [1]
  72. Fan, M.-J.; Li, G.-Q.; Li, L.-H.; Yang, S.-D.; Liang, Y.-M. Synthesis 2006, 2286–2292. doi:10.1055/s-2006-942437
    Return to citation in text: [1]
  73. Mohrig, J. R.; Rosenberg, R. E.; Apostol, J. W.; Bastienaansen, M.; Evans, J. W.; Franklin, S. J.; Frisbie, C. D.; Fu, S. S.; Hamm, M. L.; Hirose, C. B.; Hunstad, D. A.; James, T. L.; King, R. W.; Larson, C. J.; Latham, H. A.; Owen, D. A.; Stein, K. A.; Warnet, R. J. Am. Chem. Soc. 1997, 119, 479–486. doi:10.1021/ja962631s
    Return to citation in text: [1]
  74. Yavari, I.; Souri, S.; Sirouspour, M.; Djahaniani, H.; Nasiri, F. Synthesis 2005, 1761–1764. doi:10.1055/s-2005-865359
    Return to citation in text: [1]
  75. Sarrafi, Y.; Sadatshahabi, M.; Alimohammadi, K.; Tajbakhsh, M. Green Chem. 2011, 13, 2851–2858. doi:10.1039/C1GC15625J
    Return to citation in text: [1]
  76. Zhou, W.; Zhang, Y.; Li, P.; Wang, L. Org. Biomol. Chem. 2012, 10, 7184–7196. doi:10.1039/C2OB25969A
    Return to citation in text: [1]
  77. Lautens, M.; Fagnou, K. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5455–5460. doi:10.1073/pnas.0307271101
    Return to citation in text: [1]