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The cross metathesis of 1,2-epoxy-5-hexene (1) with methyl acrylate and acrylonitrile was investigated as an entry to the synthesis
of polyfunctional compounds. The resulting cross metathesis products were hydrogenated in a tandem fashion employing the
residual ruthenium from the metathesis step as the hydrogenation catalyst. Interestingly, the epoxide ring remained unreactive
toward this hydrogenation method. The saturated compound resulting from the cross metathesis of 1 with methyl acrylate was
transformed by means of nucleophilic ring-opening of the epoxide to furnish a diol, an alkoxy alcohol and an amino alcohol in high

yields.

Introduction

Catalytic carbon—carbon double bond transformations by olefin
metathesis have significantly impacted organic and polymer
synthesis over the last two decades [1-3]. If early works focused
on ring-closing metathesis and ring-opening metathesis poly-
merization, progresses in catalysts performances [4,5] and
selectivity have enabled the achievement of more challenging

transformations such as cross metathesis reactions [6], stereose-

lective transformations [7] including the selective synthesis of
Z-olefins [8-11]. Recently, the cross metathesis of renewable
compounds with electron-deficient olefins was developed as a
straightforward way for the synthesis of difunctional com-
pounds suitable for polymer syntheses [12,13], fine chemicals
[14-17], or as key synthetic tool in multistep syntheses of com-

plex molecules [18-21]. Cross metathesis with functional
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olefins is of great interest as it offers the possibility for post-
transformation of the functional group. For example we have
shown that cross metathesis with acrylonitrile run in a tandem
fashion with hydrogenation delivered amine derivatives [22]
whereas the tandem cross metathesis/hydrogenation with
acrolein delivered the corresponding alcohols [23,24]. Nice
examples of cross metathesis/non-metathesis sequences have
also been reported by Andrade in 2011 [25].

In this article we present our results aimed at extending the
scope of sequential transformations including cross metathesis
to the synthesis of trifunctional compounds. Several examples
involving the cross metathesis of a commercially available
epoxide-containing olefin with methyl acrylate and acrylo-
nitrile and their subsequent transformations leading to multi-

functional building blocks are reported.

Results and Discussion

Cross metathesis reactions involving electron-deficient olefins
are generally challenging transformations as they are substrate-
dependent and therefore require optimization of experimental
parameters. For instance, while cross metathesis with methyl
acrylate turns out to be a rather straightforward transformation,
cross metatheses with acrylonitrile, acrylamides or acrolein are
much more demanding transformations [13,14,24]. We have
investigated the reactivity of 1,2-epoxy-5-hexene (1) with
methyl acrylate and acrylonitrile and further exploited the
versatility of the epoxide ring to prepare trifunctional mole-
cules by ring opening of the epoxide. To date, 1 has been
scarcely used in olefin cross metathesis transformations. In
some examples, Grela used 1 as a test substrate to evaluate the
efficiency of new catalysts [26], and Cossy prepared vinyl func-
tionalized oxazoles [27]. To our knowledge, the cross
metathesis of 1 with electron-deficient olefins has not been
reported. The cross metathesis of 1 with methyl acrylate was
thus investigated under various conditions of solvents, catalysts
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and concentration (Scheme 1). As required in cross metathesis
reactions of electron-deficient olefins, an excess of methyl acry-
late was employed and a temperature of 80 °C was necessary to
ensure high conversion. Reactions were carried out in dimethyl
carbonate (DMC), a solvent compatible with ruthenium olefin
metathesis catalysts [28] while being much greener than toluene
or dichloromethane commonly used in such reactions [29].
Based on our previous results and observations in various cross
metathesis reactions, the phosphine-free Hoveyda type second
generation Zhan catalyst-1B [30] was selected to conduct this
transformation. A recent study by Fogg rationalized the superi-
ority of the Hoveyda catalyst vs the Grubbs catalyst in cross
metathesis with acrylates showing that the phosphine could
interact with the electron-deficient olefin leading to catalyst

decomposition [31].

As observed by us and other groups in cross metathesis
involving different substrates, double bond migration side-
reactions took place during this transformation. This side
reaction could be circumvented using benzoquinone [32]
as an additive to decrease the extent of double-bond
migration. As depicted in Table 1 (entries 1-4), 10 mol %
of benzoquinone were necessary to ensure a limited
amount (<10%) of side products resulting from double-bond
migration. However, addition of benzoquinone resulted in
slower reaction hence a catalyst loading of 2 mol % was neces-
sary to restore full conversion within 2 h (Table 1, entry 4). In
this case the product was isolated by distillation [33] in 69%
yield as the sole E-isomer [34]. The transformation was sensi-
tive to the concentration of the reagents and required a concen-
tration of 0.5 M to operate with full conversion. This character-
istic was previously observed in cross metathesis of fatty acid
methyl esters with methyl acrylate [13]. Finally, neither toluene
as solvent nor Hoveyda 2" generation catalyst have led to
improvements of the reaction performances (Table 1, entries 7
and 8).

MeO.C.__~ + NN cat MeozCM
) . O solvent, 80 °C, 2 h (6]
2 equiv 1, 1 equiv 2
MesNYNMes MesN_ NMes
Cl Cl
/Ru/_ RuZ=
cl (|) Q o’ |
< E_N\ <O Mes = 2,4,6-trimethylphenyl
Zhan-1B Hoveyda catalyst

Scheme 1: Cross metathesis of 1 with methyl acrylate.
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Table 1: Cross metathesis of 1 with methyl acrylate?.

Entry [1] (mol-L™") Cat. loading (mol %)
1 0.5 1
2 0.5 2
3 0.5 1
4 0.5 2
5 0.25 2
6 1 2
79 0.5 2
gh 0.5 2
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BQP (mol %) Conv. (%)° (yield %)d % isom.&
5 100 13

5 100 15 (18)f
10 95 7.6

10 100 (69) 7

10 95 8

10 100 10

10 100 8

10 90 11

a0.11 mL of 1 (1 mmol), 0.18 mL of methyl acrylate (2 mmol), BQ, DMC, catalyst, 2 h; Pbenzoquinone; cdetermined by gas chromatography using
dodecane as internal standard; Yisolated yield; ®determined by gas chromatography as ratio of ((isomerisation products)/(isomerisation products + 2))
x 100; freaction performed without benzoquinone; %in toluene; "Hoveyda 2" gen. catalyst.

Similarly, the cross metathesis of 1 with acrylonitrile was
conducted to furnish the bifunctional derivative 3 in 71% yield
as a mixture of stereoisomers. In that case, high conversions and
yields could only be obtained by means of slow addition of the
catalyst and high dilution (Scheme 2) [13]. As we already
observed, [13,14,22] together with other groups, [35,36] in
various cross metathesis reactions involving acrylonitrile, the
cross metathesis product 3 was obtained as a mixture of £

(minor) and Z (major) stereoisomers.

With these two compounds in hands, we turned our attention to
their post-metathesis transformations. First, we looked at the
hydrogenation of the carbon—carbon double bond in com-
pounds 2 and 3. Typically, there are several ways to perform the
hydrogenation of a carbon—carbon double bond resulting from a
cross metathesis reaction. A possibility consists in the Pd/C
catalyzed hydrogenation of the isolated product. This method
presents the advantage of being effective at room temperature
under a low hydrogen pressure [37,38]. However, such hydro-
genations are in general carried out on purified products but
more importantly in the present case, such conditions may result
in the carbon—carbon double bond hydrogenation accompanied
by ring opening of the epoxide leading to a mixture of primary
and secondary alcohols [39]. A second and more straightfor-
ward method consists in the tandem metathesis/hydrogenation
reaction where the residual ruthenium species arising from the

metathesis step serve as the hydrogenation catalyst [13,22-
24,40]. In general, this protocol requires higher temperature and
pressure but it does not need additional costly catalyst and it can
be performed without isolation of the intermediate olefin hence
saving time and energy-consuming work-up procedures [41].
To the best of our knowledge, such a tandem procedure has not
been applied to an epoxide containing olefin. Compound 2 was
prepared as described here above (Scheme 1) and the reaction
mixture was directly transferred into a high pressure reactor
without any work-up. Remarkably, following the hydrogena-
tion step carried out under 20 bar of hydrogen at 50 °C, the
'H NMR of the crude reaction mixture revealed the presence of
the epoxide moiety without any traces of alcohol. This tandem
procedure delivered the saturated compound 4 in a satisfactory
53% vyield for two steps (Scheme 3). The tandem cross
metathesis of 1 with acrylonitrile followed by hydrogenation of
the intermediate compound 3 was conducted similarly. In this
case a higher hydrogen pressure (45 bar) was necessary to
reduce the carbon—carbon double bond. Nevertheless, under
these conditions, the epoxide-containing product 5 was isolated
in a satisfactory 46% yield for two steps without any traces of
alcohol detected in the crude 'H NMR of the reaction.

With this protocol secured, we turned our attention to the syn-
thesis of useful polyfunctional building blocks. Thus far, the
post-transformation of the electron- deficient olefin cross

Zhan cat. 1B
2 mol %
slow addition
NC &
& + /\/\(]O g/\/\<$
DMC NC
2 equiv 1,1 equiv 80°C.2h 3 (E/Z = 2:8)
[0.05 M] conv.: 100%
yield: 71%

Scheme 2: Cross metathesis of 1 with acrylonitrile.
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Zhan cat. 1B
MeOC. = + /\/\(] 2mol % MeOQCM m, MeOgC\/\/\d
. ‘1t © DMC O] 17h,50°C 0o
equiv ,[O.qu\ljll]v 80°C,2h 2, not isolated 4,Y =53%
Zhan cat. 1B
2 mol %
low addition Ho, 45 bar
NCZ v g AN 2
. ) DMC N 0 17 h, 50 °C I
2 equiv 1, 1 equiv 80°C,2h 5, Y =46%
[0.05 M] 3, not isolated

Scheme 3: Tandem cross metathesis/hydrogenation.

metathesis partner has received attention for the synthesis of
polymer precursors. For instance, we have reported the reduc-
tion of the nitrile functional group into primary amine [22] and
the reduction of the formyl group into alcohol [23,24]. Herein,
we focused on the post-transformation of 4 by ring-opening of
the epoxide moiety. The diol 6, methoxy alcohol 7 and amino
alcohol 8 were thus prepared by reacting 4 with water, sodium
methoxide and aniline, respectively (Scheme 4). The synthesis
of 6 proceeded cleanly and did not require any purification
procedure (see Supporting Information File 1). Similarly, the
synthesis of 7 proceeded cleanly and delivered a single regio-
isomer 7 in quantitative yield. Finally, the amino alcohol 8 was

also obtained as a single regioisomer in 61% yield (Scheme 4).

Conclusion

We have shown through selected examples that cross metathesis
of an epoxide containing olefin with electron-deficient olefins
constitutes a versatile entry towards trifunctional building
blocks by ring-opening of the epoxide. We have shown that the
tandem cross metathesis/C=C hydrogenation yielded the hydro-
genated compound without altering the epoxide moiety that was
further efficiently transformed into a 1,2-diol, a 1,2-alkoxy

alcohol and a 1,2-amino alcohol. This strategy opens the way
for numerous potential transformations involving the epoxide
but also the functional group of the electron-deficient olefin. In
particular, lactones should be accessible by intramolecular
trans-esterification from 6, 7 and 8, as well as cyclic amines by
intramolecular cyclization involving primary amine resulting
from hydrogenation of the nitrile functionality in 5. All these

aspects will be further developed in our group.

Supporting Information

Supporting Information File 1

Full experimental details and characterizations.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-11-201-S1.pdf]
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Scheme 4: Trifunctional compounds obtained by ring-opening of epoxide 4.
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