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Abstract
4-Oxoquinolines are a class of organic substances of great importance in medicinal chemistry, due to their biological and synthetic

versatility. N-1-Alkylated-4-oxoquinoline derivatives have been associated with different pharmacological activities such as anti-

bacterial and antiviral. The presence of a carboxamide unit connected to carbon C-3 of the 4-oxoquinoline core has been associated

with various biological activities. Experimentally, the N-ethylation reaction of N-benzyl-4-oxo-1,4-dihydroquinoline-3-carbox-

amide occurs at the nitrogen of the oxoquinoline group, in a regiosselective way. In this work, we employed DFT methods to inves-

tigate the regiosselective ethylation reaction of N-benzyl-4-oxo-1,4-dihydroquinoline-3-carboxamide, evaluating its acid/base be-

havior and possible reaction paths.
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Introduction
Since the discovery of the antibacterial agent nalidixic acid, as a

byproduct from the synthesis of chloroquine, the medicinal

interest in 4-oxoquinolines as bioactive substances has expo-

nentially grown over the years. Nowadays, some of the most

important antibiotics used in the treatment of bacterial infec-

tions are 4-oxoquinoline derivatives, namely, ciprofloxacin,

levofloxacin, lomefloxacin and others [1,2]. Even though the

antibacterial profile has been the most common bioactivity as-

sociated with this class of substances [1], other types of phar-

macological activities have also been explored and were suc-
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Figure 1: Structures of some bioactive 4-oxoquinoline-3-carboxamide derivatives 1–4 with different bioactive profiles. Ki = binding affinity;
AHA = acetohydroxamic acid (standard urease inhibitor); SAHA = suberoylanilide hydroxamic acid (an FDA approved drug for cutaneous T-cell
lymphoma); NCIH460 = lung cancer cell line; HCT116 = colon cancer cell line; U251 = glioma cell line.

cessfully described by researchers around the world [3,4], such

as antiviral [5,6], antiplasmoidal [7,8], anticancer [9,10], and

trypanocide [11] activities. 4-Oxoquinoline-3-carboxamide de-

rivatives, more specifically, have shown to be a promising

structural scaffold for pharmacological profiles [12-22]. For ex-

ample, Pasquini and co-workers have studied the application of

N-adamantyl-4-oxoquinoline-3-carboxamide derivative 1 as

selective cannabinoid type 2 receptor ligand with agonistic

effect for analgesic response [13]. Abdullah and collaborators

described the synthesis and investigation of the bacteria urease

inhibitory activity for ciprofloxacin derivatives, including the

amide 2, which presented a remarkable IC50 value for urease

inhibition and was capable of inhibiting Proteus mirabilis

growth [14]. As another example, in a previous work we de-

scribed the synthesis and antiviral activity of some 4-oxoquino-

line acyclonucleosides 3a and 3b [15] and studies on their

anticancer activity are also underway. It is also worth

mentioning that derivative 4 presented an excellent inhibitory

profile for the enzyme hystone deacetylase (HDAC),

and anticancer activity for three cancer cell lines (Figure 1)

[16].

Although it is not a general rule for achieving a bioactive

profile, any groups attached to C-3 of the 4-oxoquinoline

moiety, especially those containing a hydrogen bond donor

group, such as a carboxyl, an acyl hydrazide or a carboxamide

group, may contribute to enhance the bioactivity. This fact

could be explained by the coplanarity induced by the C-4 car-

bonyl hydrogen bond interactions with biological targets [3] or

complexation with physiological metal cations such as magne-

sium and zinc [23].

Besides the derivatives 3a and 3b mentioned above, we have

been putting some effort on synthesizing different 4-oxoquino-

line-3-carboxamide derivatives as potential anticancer agents

[13]. The synthesis of such derivatives have been planned

considering that, once having obtained the 4-oxo-1,4-dihydro-

quinoline-3-carboxamide scaffold, accomplished through tem-

peratures above 200 °C, any derivatization afterwards should

maintain the N–H carboxamide group intact, in order to provide

the hydrogen bond donor group attached to C-3, which is

usually related to the bioactivity of such compounds (Figure 2)

[3,23].

In order to obtain an N1-alkylated-4-oxoquinoline derivative,

the aliphatic nucleophilic substitution reaction can be employed,

in which the 4-oxoquinoline nucleus acts as an azanucleophile,

reacting with different alkyl halides. This reaction leads to prod-

ucts with high yields, and no byproducts are isolated.

In this paper we discuss the regioselectivity of the N-ethylation

reaction of N-benzyl-4-oxo-1,4-dihydroquinoline-3-carbox-

amide (5). We correlate the experimental results with

theoretical calculations, and with this we propose different

hypotheses in the sense of better explaining the observed regio-

selectivity.

Results and Discussion
Synthesis
Intermediate 6 was synthesized through the Gould–Jacobs

method [24-26] and was first subjected to the carbonyl nucleo-

philic substitution reaction with benzylamine, according to a

procedure already described in the literature [15,16]. The isolat-
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Figure 2: Structural modifications on the 4-oxo-1,4-dihydroquinoline-3-carboxamide scaffold.

Scheme 1: Synthetic route for the preparation of 1-ethyl-4-oxoquinoline-3-carboxamide 7.

Scheme 2: Reaction steps and main transition state leading to compound 7.

ed carboxamide 5 was then treated with potassium carbonate

followed by a dropwise addition of bromoethane, as the alky-

lating agent. This synthetic strategy provided exclusively the

1-ethylated product 7 with a good overall yield (80%,

Scheme 1).

Previous treatment of 5 with potassium carbonate promotes the

establishment of an acid–base equilibrium, leading in situ to the

formation of its conjugate base 8. This anionic intermediate 8

acts as nucleophile and reacts with bromoethane (9) in a, proba-

bly, bimolecular mechanism, through a pentacoordinate transi-

tion state 10 as represented in Scheme 2.

The reaction occurs in a regioselective manner, without the for-

mation of any byproduct derived from the N-alkylation of the

amide group.

Structural characterization
Table 1 gives the nuclear magnetic resonance spectroscopic

data that allowed to confirm the structures of substances 5 and

7, and thus also confirmed the regioselectivity of the alkylation

reaction.

In the 1H NMR spectrum of derivative 5, it was possible to

readily assign the singlet at 8.78 ppm as related to the H-2 reso-

nance. The signal of hydrogen H-1 was not observed in the

spectrum. The double doublet at 8.26 ppm (J = 8.5 and 1.2 Hz)

was attributed to the H-5 hydrogen, while hydrogen H-8 was

assigned as the doublet signal at 7.69 ppm (J = 7.9 Hz).

Four sets of multiplets at 7.76–7.72 (1H), 7.48–7.44 (1H),

7.38–7.31 (4H) and 7.27–7.22 (1H) ppm were assigned to the

H-7, H-6, H-2'/6'/3'/5' and H-4' resonances, respectively. Finally
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Table 1: 1H NMR (DMSO-d6, 500.00 MHz) data of compounds 5 and 7, and the correlations observed from the 1H,1H-COSY and 1H,13C-HMBC
spectra.a

#H

5 (R = H) 7 (R = Et)

δ (ppm)
[m; nH; J (Hz)]

COSY
correlations

HMBC
correlations

δ (ppm)
[m; nH; J (Hz)]

COSY
correlations

HMBC
correlations

1 ud ud – – – –

2 8.78 [s; 1H] ud CONH; C-4; C-3;
C-8a 8.91 [s; 1H] – NCH2CH3; C-8a;

CONH; C-4

5 8.26 [dd; 1H; 8.5
and 1.2] H-6 C-4; C-7; C-8a 8.35 [dd; 1H; 7.9

and 1.8] H-6 C-7; C-8a; C-4

6 7.48–7.44 [m; 1H] H-5; H-7 C-4a; C-8; C-7 7.53 [t; 1H; 7.9] H-5; H-7 C-8; C-4a; C-7
7 7.76–7.72 [m; 1H] H-6 C-8a; C-5 7.86–7.81 [m; 1H] H-6; H-8 C-5; C-8a
8 7.69 [d; 1H; 7.9] * C-4a; C-6 7.89 [d; 1H; 8.5] H-7 C-6; C-4a; C-7

CONH 10.43 [t; 1H] CONHCH2 CONH; CONHCH2 10.37 [t; 1H; 5.5] CONHCH2 CONHCH2
CONHCH2 4.58 [d; 2H; 6.1] CONH CONH; C-1'; C-2'/6' 4.58 [d; 2H; 5.5] CONH CONH; C-1'; C-2'/6'

2’/6’ and 3'/5' 7.38–7.31 [m; 4H] H-4' C-1'; C-4' 7.38–7.31 [m; 4H] H-4' *
4' 7.27–7.22 [m; 1H] H-2'/6'; H-3'/5' C-2'/6'; C-3'/5' 7.28–7.23 [m; 1H] H-2'/6'; H-3'/5' *

NCH2CH3 – – – 1.40 [t; 3H; 7.3] NCH2CH3 NCH2CH3

NCH2CH3 – – – 4.51 [q; 2H; 7.3] NCH2CH3
NCH2CH3; C-8a;

C-2
aud: undetected; *it was not possible to differentiate in the spectrum.

the triplet at 10.43 ppm and the doublet at 4.58 ppm,

were related to CONH and CONHCH2 resonances, respective-

ly.

As expected, the 1H NMR spectrum of derivative 7 has the

same signal pattern as that observed in the spectrum of

substance 5.

The H-2 resonance was assigned as the singlet at 8.91 ppm. The

signals at 8.35 ppm (dd, J = 7.9, and 1.8 Hz) and 7.89 ppm (d,

J = 8.5 Hz) were assigned to H-5 and H-8 resonances, respec-

tively. The triplet at 7.53 ppm (J = 7.9 Hz) was related to H-6

and three sets of multiplets at 7.86–7.81 (1H), 7.38–7.31 (4H)

and 7.28–7.23 (1H) ppm were attributed to H-7, H-2’/3’/5’/6’

and H-4’, respectively. The presence of the N-ethyl group was

confirmed by the quartet and the triplet at 4.51 ppm (J = 7.3 Hz)

and 1.40 ppm (J = 7.3 Hz), related to methylene (NCH2CH3)

and methyl (NCH2CH3) hydrogens, respectively. Also, as de-

scribed for derivative 5, the hydrogen of the (CONH) group

appeared as a broad triplet at 10.37 ppm (J = 5.5 Hz) and the

doublet at 4.58 ppm (J = 5.5 Hz) was assigned to the methylene

hydrogens (CONHCH2).

A same scale comparison between the 1H NMR partial spectra

for substances 5 and 7 is shown in Figure 3.

Derivatives 5 and 7 also had their structures confirmed by
13C-APT, COSY, HSQC and HMBC spectra.

In the COSY spectrum of 7, the correlations between the

hydrogen of the amide group (CONH) and of the benzylic

hydrogens (CONHCH2Ph) confirm again the occurrence of the

alkylation in the nitrogen of the oxoquinoline nucleus

(Figure 4).

From the HMBC spectrum of 7 it was observed that H-2 at

δ = 8.91 ppm shows long range correlation with the methylenic

carbon resonance for NCH2CH3 group at δ = 48.14 ppm (3JCH)

and that the respective methylenic hydrogens at δ = 4.51 ppm

are correlated with the carbon resonance for C8a at

δ  = 138.57 ppm (3JCH).  CONH  hydrogen signal at

δ = 10.37 ppm is correlated with the carbon resonance for

benzylic carbon at δ = 42.06 ppm (2JCH, Figure 5). These

data also confirm the regioselectivity of the N-ethylation reac-

tion.
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Figure 3: Same scale partial 1H NMR spectra of compounds 5 and 7 (DMSO-d6, 500 MHz).

Figure 4: 1H,1H-COSY spectrum of derivative 7 (DMSO-d6, 500 MHz).
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Figure 5: Partial HMBC spectrum of derivative 7 (DMSO-d6, 500 MHz).

Furthermore, adequate crystals of compound 7 were obtained

from a mixture of ethanol and DMSO, which allowed the unam-

biguous resolution of its structure as shown in Figure 6.

Figure 6: Asymmetric unit of product 7.

As can be seen in Figure 6, attached to the central oxoquinoline

ring is an ethyl substituent bonded to N1 and the carboxamide

group is attached to C3. The solid-state structure confirms the

regioselectivity of the reaction.

It is important to note from the crystalline structure that the

intramolecular hydrogen bond between the hydrogen of the

amide group, CON–H, and the carbonyl oxygen (C-4),

promotes coplanarity between the oxoquinoline nucleus and the

CONH moiety of this amide group connected to C-3, as ex-

pected.

An additional crystallographic description and the full one-

dimension spectra of compound 7 are available in Supporting

Information File 1.

Theoretical data
Two main approaches were considered to better understand the

reactivity of substrate 5 and, consequently, the regioselectivity

of the reaction: quantification of the acidity of the N–H units

and comparative analysis of the possible reaction paths.
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Scheme 3: Deprotonation of 5 forming 8a and 8b, followed by reaction with bromoethane leading to products 7 and 11.

Scheme 4: Acid–base equilibria considered for the data displayed in Table 2.

Table 2: Main thermodynamic data obtained from the acid–base equilibria considered (kcal·mol−1).

gas phase H2O DMSO

ΔH ΔG ΔH ΔG ΔH ΔG

equilibrium I −156.756 −154.456 −18.877 −19.458 −20.082 −21.349
equilibrium II −115.211 −112.130 4.147 3.333 3.297 2.474

Acidity of the N–H units
A first possibility to rationalize the reactivity of carboxamide 5

was its deprotonation to produce a nucleophilic species which

would then attack the bromoethane to produce the derivatives 7

or 11. Therefore, we considered the deprotonation of both the

oxoquinoline core and the carboxamide N–H sites, followed by

the alkylation of the respective anion 8a and 8b, providing two

possible products 7 and 11, from which the results obtained

could be compared (Scheme 3).

The acidity of both carboxamide and oxoquinoline N–H sites

were compared in gas and condensed phase using water and

DMSO. The solvent effects were included according to the

polarized continuum solvation model (IEFPCM) [27,28]. The

presence of the base used in the synthesis was also taken into

consideration within both equilibria (Scheme 4 and Table 2).

From these results, only equilibrium I, referring to the deproton-

ation of the oxoquinoline N–H presented negative values of ΔH

and ΔG in all cases, characterizing the reaction as an exother-

mic one and favorable to the formation of the respective conju-

gate base, under such conditions. Deprotonation of the carbox-

amide hydrogen CON–H (equilibrium II), only presented nega-

tive values of ΔH and ΔG when considering gas phase and,

even so, such values were not as significant as those from equi-

librium I. Considering water and DMSO, the reaction becomes
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Scheme 5: Charge dispersion due to resonance effects for both deprotonated species.

Table 3: Activation energies and enthalpies of both oxoquinoline and carboxamide N-ethylation reaction in different media (kcal·mol−1).

gas phase H2O DMSO

αa Ea ΔH αa Ea ΔH αa Ea ΔH

oxoquinoline 159.82° 14.6 −7.3 160.57° 11.0 −25.4 160.60° 11.4 −24.7
carboxamide 162.59° 9.8 −19.9 162.37° 9.5 −31.8 162.44° 9.5 −31.7

aN–C–Br bond angle at the transition state.

endergonic, suggesting that the carboxamide N–H site is not

acidic enough for the deprotonation reaction using potassium

carbonate as a base.

These results are in agreement with the analysis of the stability

of the conjugate bases due to structural electronic effects. The

oxoquinoline conjugate base presents a great stability, since it

promotes a greater dispersion of the negative charge due to the

two conjugated carbonyls (C-4 and CONH) and the adjacent ar-

omatic system. At least nine main resonance structures involved

in charge dispersion can be identified for this species. The

carboxamide conjugate base, on the other hand, has its charge

dispersed by only two main resonance structures due to the

adjacent carbonyl, being therefore, less stable (Scheme 5).

Reaction paths analysis
The paths for the SN2 N-alkylation reaction of both deproto-

nated species (oxoquinoline and carboxamide N–H units) using

bromoethane were obtained. It is worth highlighting that for

each of the media considered, the N–C–Br bond angle (α) on

the transition states were slightly higher for the carboxamide

group (Table 3).
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Table 4: Transition states associated with both reaction paths.

oxoquinoline N-ethylation carboxamide N-ethylation

transition state
representation

gas phase

These results are consistent with the one previously found. As

already shown, the oxoquinoline conjugate base is more stabi-

lized when compared to the carboxamide one. Such verification

is, for example, justified by the analysis of the electronic

effects, as shown in the Scheme 5. Precisely because it is more

unstable, the carboxamide conjugate base is a more reactive

nucleophile and, therefore, associated with a lower energy

barrier for the nucleophilic substitution reaction. Table 4 illus-

trates the optimized geometry for the transition states for each

possible reaction path.

The comparison of the two possible reaction paths shows that

although N-ethylation of the carboxamide site is associated with

a lower energy barrier, addition of solvent stabilizes the transi-

tion state of the reaction through the oxoquinoline anion more

than that corresponding to the carboxamide. Again the differ-

ence between the solvents is insignificant. It is consistent to

deduce that a conjugate base resulting from deprotonation of the

carboxamide would be much more nucleophilic than that of

oxoquinoline, since from the acidity predictions, the oxoquino-

line conjugate base is much less energetic than that of the

carboxamide unit. If the latter species were also formed in the

reaction medium, it would probably react faster and more

exothermically than the nucleophile from the oxoquinoline

nucleus. Since experimentally, this is not observed, it can be

concluded that only the N–H site of oxoquinoline undergoes de-

protonation. That is, the conjugate base of the carboxamide is

not generated in the process.

Observing the predicted N–C–Br (α) angle in the calculated

transition states, none of the optimized geometries provided the

expected 180° angle for nucleophilic bimolecular substitution.

In this regard, the transition state of the reaction with the

carboxamide conjugate base provided a value of the N–C–Br

bond angle about 2o greater than that of the reaction with the

oxoquinoline anion, in all cases considered. There was no sig-

nificant difference for the N–C–Br angles when polar solvents

were considered implicitly, however, it is noteworthy that a

small approximation toward the 180° bond angle was observed

for the transition state involving the nucleophile coming from of

oxoquinoline.

These results indicate that the regioselectivity observed must

occur due to the thermodynamics on the deprotonation step,
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Table 4: Transition states associated with both reaction paths. (continued)

H2O

DMSO

leading exclusively to the oxoquinoline conjugate base as the

reactive nucleophile.

Conclusion
In conclusion, we studied the regioselectivity of the N-ethyla-

tion reaction of N-benzyl-4-oxo-1,4-dihydroquinoline-3-carbox-

amide (5). Three approaches were explored in order to under-

stand the experimental results. The deprotonation of the N–H

sites and the analysis of molecular orbitals corroborate the

hypothesis that regioselectivity is a result of the higher acidity

of the N–H hydrogen of the oxoquinoline, when compared to

that of the carboxamide group. Because of this, the treatment

with the base produces the reactive intermediate, the conjugate

base resulting from the deprotonation of the oxoquinoline

core, probably exclusively, which acts as the nucleophile in

the SN2 reaction with bromoethane. These results are

in agreement with the analysis of the reaction pathways from

which we concluded that if the conjugate base of the carbox-

amide group were formed in the reaction medium, the

SN2 reaction would most likely occur in this site, since this

reaction would be the kinetic and thermodynamically most

favored one.

Experimental
General
All reagents and solvents were purchased from Merck & Co

(Kenilworth, New Jersey, USA) and used without further purifi-

cation. Melting points were measured with a Fisher–Johns

apparatus. NMR spectra were recorded on a Varian spectrome-

ter operating at 500 MHz (1H) and 125 MHz (13C), using

DMSO-d6 as the solvent. Chemical shifts were reported in parts

per million (ppm) relative to the internal standard tetramethyl-

silane (TMS). Hydrogen and carbon NMR spectra were typical-

ly obtained at room temperature. The two-dimensional experi-

ments were conducted using standard Varian Associates auto-

mated programs for data acquisition and processing. Both the

starting material 5 [16] and the ethylated product 7 [29] have

already been described in the literature. Substance 5 was syn-

thesized through a known procedure [15,16]. The ethylation

procedure is described below.
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Procedure for the preparation of N-benzyl-1-ethyl-4-
oxo-1,4-dihydroquinoline-3-carboxamide (7)
In a round bottom flask, 1.0 g (3,6 mmol) of N-benzyl-4-oxo-

1,4-dihydroquinoline-3-carboxamide (5), 1.4 g (10.1 mmol) of

potassium carbonate and 10.0 mL of dimethyl sulfoxide

(DMSO) were added and stirred at room temperature for

15 minutes. 1 mL (13.4 mmol) of bromoethane was added and

the mixture was kept under 80 °C for 24 hours. The system was

allowed to reach room temperature and the mixture was poured

in ice and water. The solid was filtered and washed with water.

No further purification process was necessary. Compound 7

was obtained as a white solid in 91% yield; mp 136–137 °C;
1H NMR (500 MHz, DMSO-d6) δ 10.37 (t, J = 5.5 Hz, 1H,

CONH), 8.91 (s, 1H, H-2), 8.35 (dd, J = 7.9 and 1.8 Hz, 1H,

H-5), 7.89 (d, J = 7.9 Hz, 1H, H-8), 7.86–7.81 (m, 1H, H-7),

7.53 (t, J = 7.9 Hz, 1H, H-6), 7.38–7.31 (m, 4H, H-2’/H-6’ and

H-3’/H-5’), 7.28–7.22 (m, 1H, H-4’), 4.58 (d, J = 5.5 Hz, 2H,

CONHCH2), 4.51 (q, J = 7.3 Hz, 2H, NCH2CH3), 1.40 (t,

J = 7.3 Hz, 3H, NCH2CH3); 13C NMR (125 MHz, DMSO-d6)

δ 175.37 (C-4), 164.10 (CONH), 147.70 (C-2), 139.36 (C-1'),

138.57 (C-8a), 132.87 (C-7), 128.28 (C-3'/5' or C-2’/6’), 127.21

(C-2'/6' or C-3’/5’), 127.19 (C-4a), 126.72 (C-4’), 126.17 (C-5),

124.83 (C-6), 117.12 (C-8), 110.87 (C-3), 48.14 (NCH2CH3),

42.06 (CONHCH2), 14.33 (NCH2CH3).

X-ray diffraction measurement
Single crystal X-ray diffraction data of derivative 7 were

collected on a Bruker D8 Venture diffractometer at room tem-

perature, using a microfocus X-ray source using Mo Kα radia-

tion (λ = 0.71073 Å). The crystal was mounted on a Kappa

goniometer. Reflections were collected at room temperature,

using a PHOTON 100 detector, which uses a CMOS sensor.

Data collection and cell refinement were performed with the

Bruker Instrument Service APEX2 v4.2.2 [30], and the data in-

tegration was carried out using SAINT [31]. Empirical multi-

scan absorption correction, using equivalent reflections, was

performed with the SADABS program [32]. The structure solu-

tions, using direct methods, were performed with the SHELXS-

2013. The Full-matrix least-squares refinements based on F2

were performed with the SHELXL-2013 program packages [33]

using the WinGX software interface [34]. Anisotropic parame-

ters were refined to all non-hydrogen atoms. Hydrogen atoms

positions were constrained to neutral diffraction distances

values [35]. The crystallographic table was mounted using the

OLEX2 software [36].

Computational details
All the calculations were carried out with the Gaussian 09 soft-

ware package [37] considering the absence (gas phase) and the

presence of two implicit solvents (water and DMSO), using the

polarized continuum solvation model (IEFPCM) [27,28]. All

computations were done with the DFT functional B3LYP

[28,38-41] and the 6-31+G(d) basis set [42,43], as implemented

in the Gaussian 09 suit of programs. All geometries were fully

optimized and then characterized as minima on the potential

energy surface (no negative eigenvalue in the Hessian second

order matrix) [28,38-41].

Supporting Information
Supporting Information File 1
X-ray crystallographic data and copies of NMR spectra for

compound 7.

[https://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-15-35-S1.pdf]
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