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Asymmetric organocatalyzed multicomponent reactions represent an important toolbox in the field of organic synthesis to build

complex scaffolds starting from simple starting materials. The Enders three-component cascade reaction was a cornerstone in the

field and a plethora of organocatalyzed cascade reactions followed. However, acetaldehyde was not shown as a successful reaction

partner, probably because of its high reactivity. Herein, we report the Enders-type cascade reaction using acetaldehyde dimethyl

acetal, as a masked form of acetaldehyde. This strategy directly converts acetaldehyde, nitroalkenes and enals into stereochemical-

ly dense cyclohexenals in good yield and excellent enantioselectivity.

Introduction

Multicomponent reactions (MCRs) are chemical processes that
involve three or more compounds, in which the product
contains all the atoms of the reagents, except for condensation
coproducts, such as water, hydrogen chloride or other small

molecules [1-3]. MCRs have a great advantage over the clas-

sical two-component reactions; they allow the construction of
complex molecular motifs in only one synthetic operational step
starting from simpler building blocks. For this reason, the use of
MCRs is appealing in the construction of natural or synthetic

products [2-5] or libraries of compounds [2], and is generally
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considered an advantage in organic synthesis for atom
economy, waste reduction and time saving. Cascade reactions
are defined as chemical processes in which two or more bond-
forming steps happen under identical reaction conditions, and
where a subsequent transformation takes place at the function-
ality obtained in the former bond-forming event. Cascade reac-
tions are valuable tools for streamlining the synthesis of struc-
turally complex molecules in a single operation and from
readily available substrates. Their combination with asym-
metric aminocatalysis [4,6-8] has recently led to innovative ap-
proaches for the one-step enantioselective preparation of stereo-
chemically dense molecules. Nowadays, organocatalytic
cascade processes provide a powerful tool for achieving molec-
ular complexity. Their synthetic potential has been demon-
strated by their application in the total synthesis of complex

natural compounds [2,4,9-12].

A remarkable example of an amino-catalyzed cascade process
was reported by Enders [11], a three-component cascade
reaction for the synthesis of polyfunctionalized cyclohexenes
bearing multiple stereocenters. The reaction is promoted by a

chiral secondary amine, which is capable of catalyzing each
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step of the process activating the substrates through enamine
and iminium ion catalysis towards a Michael/Michael/aldol
process. The ingenious crafting of the reaction lies in the selec-
tion of the reactivity of the different nucleophiles and electro-
philes present in the mixture, both as reagents and as intermedi-
ates. First, the chiral aminocatalyst 1 activates the saturated
aldehyde 2 via enamine intermediate A, which intercepts the
nitroalkene 3 in a Michael-type addition forming intermediate
B. Hydrolysis regenerates catalyst 1 that can then selectively
condense with the a,f-unsaturated aldehyde 4 to form chiral
iminium ion intermediate C. Iminium ion C reacts with inter-
mediate B in a further Michael-type reaction. The last step
involves the enamine intermediate which drives an intramolecu-
lar aldol condensation to form the final product 5. In this
elegant cascade process, catalyst 1 promotes three consecutive
carbon—carbon bond forming steps generating four stereogenic
centers with high diastereoselectivity and complete enantiocon-
trol (Scheme 1).

This elegantly designed example established a new direction in
asymmetric aminocatalysis, leading to an impressive growth of

methods based on organocascade processes [8,10,13-16]. The
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Scheme 1: Original triple organocatalytic cascade reaction developed by Enders.
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experimental simplicity of the strategy offers the potential of
rapidly increasing structural and stereochemical complexity
starting from readily available substrates. The scope of the
process was shown to be successful with aliphatic aldehydes 2,
aromatic nitroalkenes 3, and both aromatic and aliphatic unsatu-
rated aldehydes 4.

Given our recent interest in the use of a surrogate of acetalde-
hyde [17-19] to address the challenges of working with free
acetaldehyde, we wondered why the scope of this reaction did
not include acetaldehyde and questioned whether a three-com-
ponent triple cascade would indeed work employing this highly
reactive substrate. The use of acetaldehyde as a reagent has
always been challenging. The low boiling point and high
volatility pose a problem with its handling and safety. The small
steric hindrance gives rise to a high reactivity both as an elec-
trophile and as a pro-nucleophile, hampering chemoselectivity
(further to side reactions such as self-aldol condensations, poly-
merization and Tishchenko-type processes) and stereoselectivi-
ty [20]; the activation of acetaldehyde via aminocatalysis,
furthermore, suffers from a lack of proper steric hindrance for
the enantio-discrimination process. However, some methodolo-
gies enabling the use of acetaldehyde have been reported [20-
24].

The safety and handling problems associated with acetaldehyde
can be solved by synthetic equivalents that can be generated in
situ through different paths. Some examples are represented by
vinyl acetate [25], silyl vinyl ethers [26], ethanol, pyruvic acid,
(E)-3-chloroacrylic acid, 2,4,6-trimethyl-1,3,5-trioxane
(paraldehyde) [24,27], and acetaldehyde dimethyl acetal (6)
[17-19]. On the basis of a long-term project based on masked
reagents, our group has previously demonstrated the feasibility
of the addition of a masked acetaldehyde 6 to nitroalkene deriv-
atives with low reagent excess and high enantioselectivity; this

a) bicomponent Enders
cascade using acetaldehyde

b) structural analogue
bicomponent Enders cascade
using unsaturated aldehydes
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reaction represents the first step in the Enders triple cascade cat-
alytic cycle.

The use of acetaldehyde in a two-component cascade reaction
was previously reported by Enders [27]; however, the scope of
this reaction is limited to cyclohexene carbaldehydes bearing a
methyl group on the C-6 atom (Figure 1a). On the other hand,
these structural motifs can also be synthesized via the condensa-
tion of two equivalents of an enal and nitromethane (Figure 1b),
although in this case C-4 and C-6 present the same substituent
[28]. Interestingly, to the best of our knowledge, the use of
acetaldehyde in the original Enders triple cascade reaction has
not been explored despite its synthetic value. Indeed, this
protocol would enable a wide structural variability in the syn-
thesis of 3-substituted cyclohexene carbaldehydes (Figure 1c).

Results and Discussion

In order to explore the feasibility of the triple cascade reaction
with acetaldehyde (2a) as a substrate, we tested the original
reaction conditions reported by Enders using frans-p-nitro-
styrene (3) and trans-cinnamaldehyde (4) as the other sub-
strates (Table 1, entry 1). The reaction proved to yield the
desired product, indicating that the catalytic system may indeed
be applicable. Lowering the amount of organocatalyst 1 to
10 mol % (Table 1, entry 2) resulted in a decrease of both yield

and selectivity.

Based on the results obtained (Table 1, entry 2) and the reac-
tion conditions developed in our previous work [17], we tried to
introduce 6 as an acetaldehyde equivalent, adding water in the
reaction system and Amberlyst-15 as a catalyst to accelerate the
hydrolysis process (Scheme 2).

To our delight, 6 as an acetaldehyde surrogate allows a slightly
better yield with doubled selectivity, measured as the ratio be-

c) this work

Figure 1: Approaches based on the original Enders cascade reaction to access trisubstituted cyclohexene carbaldehyde derivatives.
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Table 1: Enders reaction with acetaldehyde.?

<_)L‘6Fh
0 N Ph 0

H
XN 1 OTMS N
+ +
toluene, rt, 24 h Ph
2a 3a 4a 5a":5a"
dr = 50:50
Entry 1 (mol %) eeP (%) Conversion® (%) Yield® (%) Selectivityd (%)
1 20 99 91 43 48
2 10 99 95 33 35

aReaction conditions: 3 (0.5 mmol, 1 equiv), 2a (0.6 mmol, 1.2 equiv), 4 (0.525 mmol, 1.05 equiv) were added to a solution of 1 (0.05 mmol, 0.1 equiv)
in toluene (0.625 M wrt limiting reagent) and allowed to stir for 24 hours at room temperature. ®Determined by chiral HPLC analysis.
CCalculated by 'H NMR using triphenylmethane as an internal standard. Ratio between yield and conversion.
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Scheme 2: Acetaldehyde dimethyl acetal (6) as an acetaldehyde surrogate to effect a triple organocatalytic cascade reaction.

tween yield and conversion (Table 2, entry 1). This means that  vent screening (see Supporting Information File 1) did not
the productivity of the reaction using 6 is superior, since far  reveal any better alternative to toluene. The use of chloroform

more substrate was converted into the desired product. A sol- (Table 2, entry 2), as in our previous report [17], showed an
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Table 2: Selected optimization reaction conditions.?

Entry Deviation from above eeP (%)
1 none 99
2 CHCl3 99
3 0.25M 99
4 0.5M 99
5 1M 99
6 0.25M,48 h 99

Beilstein J. Org. Chem. 2023, 19, 1243-1250.

%Pp“h

9 OTMS <|3
1 (10 mol %) X
Amberlyst-15 (10 mol %) Ph
H,0 (6 equiv)
toluene (0.1 M), rt, 24 h
5a':5a"
dr = 50:50
Conversion® (%) Yield® (%) Selectivityd (%)
61 40 66
54 43 79
72 35 48
93 39 42
88 35 40
79 44 56

@Reaction conditions: 3 (0.1 mmol, 1 equiv), 6 (0.2 mmol, 2 equiv), 4 (0.1 mmol, 1.05 equiv), H>O (0.6 mmol, 6 equiv), and Amberlyst-15 (10 mol %)
were added to a solution of 1 (10 mol %) in 1 mL of solvent (0.1 M) and allowed to stir for 24 hours at room temperature. ®PDetermined by chiral HPLC
analysis. °Calculated by 'H NMR using triphenylmethane as an internal standard. 9Ratio between yield and conversion.

improvement on selectivity, however, toluene was chosen as a
more benign solvent. After further optimization of the acidic
resin, stoichiometry, concentration, temperature, and reaction
time (see Supporting Information File 1), we identified the best
reaction conditions that yield the desired product in 44% yield,
over 48 h (Table 2, entry 6). Unfortunately, side products and
unwanted reactions do not allow to have a higher yield. All
reactions provide the product in >99% ee, which is expected for
a process which involves two consecutives stereoselective reac-
tions. The control of the diastereomeric ratio is, however, diffi-
cult to attain as demonstrated by an extensive screening and is
always near 50:50 without significant deviations changing the
reaction conditions. On the contrary, the use of aldehydes other
than acetaldehyde generates higher control [11]. It was previ-
ously shown that the first stereogenic center formed in the
presented cascade process is formed with high control [17].
Therefore, the second carbon—carbon bond forming step, i.e.,
the organocatalyzed Michael addition of the nitronate to the
o,B-unsaturated iminium ion, should be tackled to improve the
diastereocontrol. All efforts to discriminate the two faces of the
nitroenolate during the addition proved unproductive during the
optimization, therefore, a potential epimerization was envis-
aged during the course of the reaction, but this hypothesis was
discarded after further experimentation; submitting the two iso-
lated diastereomers to the reaction conditions did not show any
change. A slight improvement in the dr was found by exposing
the mixture of the diastereomers to a strong basic environment

(--BuOK/MeOH) to force the formation of secondary nitronates.

However, it could not be improved to synthetically interesting
values. The observed diastereomeric ratio is, therefore, the
direct result of the second Michael addition reaction, as previ-
ously reported [29], and no post-process epimerization event

could be found.

With the best conditions in our hand, we evaluated the scope of
our triple cascade reaction enabled by masked acetaldehyde. As
highlighted in Figure 2, the reaction proceeded smoothly
regardless of structural and electronic variations of both sub-
strates, giving access to a variety of complex cyclohexenals. Al-
though the scope is limited to aromatic nitroalkenes and enals,
the yields are good considering the complexity of the domino
process that involves highly reactive partners, and the ees are
consistently very high. Finally, albeit there is low diastereocon-
trol, the diastereomers can be easily separated by simple flash

chromatography.

Conclusion

An unprecedented methodology for the synthesis of 4,6-disub-
stituted S-nitrocyclohexene carbaldehydes with three contigu-
ous stereogenic centers using acetaldehyde as one of the reac-
tion components of an Enders cascade reaction has been de-
veloped. The masked form of acetaldehyde, which is hydro-
lyzed in situ using Amberlyst-15 as an acid catalyst, instead of
directly using acetaldehyde allows for higher yields and fewer
byproducts. Using mild reaction conditions, it was possible to

obtain a variety of functionalized cyclohexene carbaldehydes in
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Ph o)
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H oTMms N
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Figure 2: Scope of the cascade reaction using 6 as an acetaldehyde equivalent. Reaction conditions: 3 (0.5 mmol, 1 equiv), 6 (1 mmol, 2 equiv), 4
(0.525 mmol, 1.05 equiv), H2O (3.0 mmol, 6 equiv), and Amberlyst-15 (10 mol %) were added to a solution of 1 (10 mol %) in 2 mL of solvent (0.25 M)
and allowed to stir for 48 hours at room temperature. Yields of isolated compounds are given. Diastereomeric ratio (dr) determined by 'H NMR analy-
sis. Enatiomeric excess (ee) determined by chiral HPLC analysis.

good yields and very high enantiomeric excesses. Unfortu-  difficult to control, leading to a mixture of two diastereomers.
nately, the developed methodology is currently limited to aro-  Current efforts in our laboratories are addressing these chal-
matic substrates and the formation of one stereocenter is lenges.
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