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The Cannizzaro reaction has emerged as a versatile synthetic tool for the construction of functionalized molecules. Dating back to

the 19th century, this reaction, though initially used for the synthesis of an alcohol and acid functionality from aldehydes, has

henceforth proven useful to generate diverse molecular entities using both intermolecular and intramolecular synthetic strategies.

Immense applications in the synthesis of hydroxy acids and esters, heterocycles, fused carbocycles, natural products, and others

with broad substrate scope have raised profound interest from methodological and synthetic standpoints. The ongoing development

of reagents, solvents, and technologies for the Cannizzaro reaction reflects the broader trend in organic synthesis towards more sus-

tainable and efficient practices. The focus of this review is to highlight some recent advances in synthetic strategies and applica-

tions of the Cannizzaro reaction towards the synthesis of potentially useful molecules.

Introduction

The synthesis of functionalized molecules with structural com-
plexity has always been a challenge to synthetic chemists. The
Cannizzaro reaction, in its simplified form, focuses on the base-
induced disproportionation of two molecules of a non-enoliz-
able aromatic and/or aliphatic aldehyde (without an a-hydrogen
atom). These aldehydes undergo in the presence of concen-
trated alkali or other strong bases, a simultaneous oxidation and
reduction sequence of two aldehyde molecules, forming an
alcohol and an acid [1-4]. Since its discovery in 1853, the
Cannizzaro reaction has emerged as an important reaction in

synthetic organic chemistry with intermolecular, crossed, and

intramolecular versions as demonstrated by numerous applica-
tions. Notably, the Cannizzaro reaction has come across with
subtle developments and changes in base modifications leading
to compounds of potential interest [5,6]. The intermolecular
Cannizzaro reaction is a chemical process in which two mole-
cules of a non-enolizable aldehyde (2R!CHO) are dispropor-
tionated by a base to produce a carboxylic acid (R'CO,H) and a
primary alcohol (R!CH,OH). When a mixture of formaldehyde
(HCHO) and a non-enolizable aldehyde (RICHO) is treated
with a strong base, the latter is preferentially reduced to the
alcohol (R'CH,OH) while formaldehyde is oxidized to formic
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acid (HCO,H). Herein excess formaldehyde is used as a reduc-
tant. This variant is known as the crossed-Cannizzaro reaction.
On the other hand, an intramolecular Cannizzaro reaction
occurs when both aldehyde groups are present in a single mole-
cule. In this scenario, one aldehyde group is reduced to the cor-
responding alcohol, while the other is oxidized to a carboxylic
acid. The mechanistic pathway of the intramolecular, intermo-
lecular, and crossed-Cannizzaro reactions is well-known and is
depicted in Figure 1 [7-11]. As per contemporary mechanistic
understanding of this disproportionation reaction, it involves the
transfer of a hydride ion from a tetracoordinated intermediate
(B), which is formed upon hydroxide addition to the aldehyde
(A). The primary pathway of the reaction entails the rate-deter-
mining step of hydride ion transfer via either a linear or bent
transition state (C) to a second molecule of aldehyde furnishing

the corresponding alcohol (D) and acid molecule (E).

intermolecular Cannizzaro reaction:

H H OH" H H OH
+ +
R1/go R(&O R1><OH R1/§O
crossed-Cannizzaro reaction:
H H OH" H><H OH
+
o o OH o

intramolecular Cannizzaro reaction:

><CHO OH- R1>CCH20H
R N\_co,H

CHO

mechanism:

/\ OH
O

Figure 1: Types and mechanism of the Cannizzaro reaction.

Review

Modernization of the Cannizzaro reaction
Researchers have always aimed to improve the efficiency,
selectivity, and sustainability of reaction processes. The devel-

opment of reagents, solvents, and application of modern tech-
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nology frame the Cannizzaro reaction as an important synthetic

tool in organic synthesis.

Certain developments in the Cannizzaro reaction with regard to
reagents, solvents, and technologies are worth mentioning. Gen-
erally, the classical version of the Cannizzaro reaction is con-
ducted at elevated temperatures using stoichiometric amounts of
alkali metal hydroxides or other strong bases, commonly
NaOH, KOH, Ba(OH),-8H,0 or sodium ethoxide, etc. [12-18].
Such harsh conditions and the competitive formation of unde-
sired side products have been the major limiting factors for the
Cannizzaro reaction in the past several decades [19-22].

The base-mediated solvent-free Cannizzaro reaction was
achieved through various methods, such as by grinding reac-
tants in mechanochemical approaches and/or solid-supported
bases. Minimizing the use of hazardous solvents not only
reduces environmental impact but also simplifies product isola-
tion and purification and improves the overall sustainability of
the process [23,24]. However; specific reaction requirements

ensure efficient and selective utilization of solvents.

Marvi and Talakoubi carried out the Cannizzaro reaction [25]
using montmorillonite K-10 and KSF clays as recyclable and
heterogeneous catalysts to catalyze the Cannizzaro reaction by
1,4-diazabicyclo[2.2.2]octane under microwave irradiation and
solvent-free conditions giving the products in excellent yields
within seconds. The solid clay applied in the first cycle can be
recovered and reused in subsequent reactions. Reddy and
coworkers carried out the Cannizzaro reaction of aromatic alde-
hydes to the corresponding alcohols in high yields by crossed-
Cannizzaro reactions employing solid-supported KF-Al,O3 as
catalyst [26] under microwave irradiation using solvent-free

conditions.

The use of different phase-transfer reagents and catalysts such
as benzyltriethylammonium chloride, tetrabutylammonium bro-
mide and many others have had profound impacts on the
Cannizzaro reaction. Entezari and Shameli [27] studied the
effect of an ultrasonic wave on the Cannizzaro reaction cata-
lyzed by a phase-transfer catalyst in the presence of KOH as the
base. Canipelle et al. [28] put forward an improved Cannizzaro
disproportionation of 4-biphenylcarboxaldehyde into the corre-
sponding alcohol and carboxylic acid products employing
cyclodextrins as the phase-transfer agent. A Cannizzaro desym-
metrization reaction of tetraethylene glycol (TEG) was accom-
plished by Vida et al. [29] using a barium compound.

Different types of solvents were also applied for the Canniz-

zaro reactions. The use of aqueous or solvent-free conditions

has played pivotal roles in terms of environmental conscious-
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ness and a greener reaction [30,31]. Daemi et al. employed
polyurethane nanomicelles as an eco-friendly and efficient
polymeric ionic solvent [32]. Morooka et al. used supercritical
water for the catalys-free Cannizzaro-type reaction of acetalde-
hyde [33]. Thus, the originally developed Cannizzaro reaction
was subjected to numerous modified techniques, which estab-
lished the greener side of the reaction. The use of Lewis acid
catalysis in this regard [34-39] played a significant role, which
also suppressed the epimerization in the case of chiral mole-
cules. Among the various Lewis acid catalysts such as ytter-
bium triflate, ZrO,, Cu(OT),, MgBr;, LiBr, AICl3, Fe and Ru
catalysts have gained attention [40-43].

The Cannizzaro reaction has also found extensive use in the
synthesis of bioactive and drug molecules [44-46]. Moreover,
enzymatic transformations have been also observed for the syn-
thesis of a-hydroxycarboxylic acids [47]. They are also used in
the development of different nanoparticle preparations and
other reactions for synthesis of bioactive compounds [48-50].

Green synthesis methodologies, such as microwave-assisted
[51-53] and ultrasound-assisted reactions [54] are established
techniques in green chemistry due to their potential benefits in
terms of reduced reaction times, increased yields, and the ability
to perform reactions under milder conditions than traditional
methods. The Cannizzaro reaction, being a useful synthetic tool,
has also been explored in this regard. The Cannizzaro reaction
also finds extensive industrial use in synthesizing pentaerythri-
tol, a crucial intermediate in manufacturing of alkyd resins and
plasticizers [55]. The crossed-Cannizzaro reaction contributes
to polyol production for polyester resin synthesis. In the field of
fragrance and flavoring agents, it plays a vital role for the devel-

opment of unique sensory compounds [56,57].

The Cannizzaro disproportionation has also been observed in
several electrochemical transformations [58] and during the
electrocatalytic reduction of carbon dioxide [59]. A recent study
by Liu et al. witnessed a competing Cannizzaro reaction during
the electrochemical oxidation of furfural [60]. On the other
hand, 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) and
dihydroxymethylfuran (DHMF), obtained via the Cannizzaro
disproportionation of 5-(hydroxymethyl)furfural, were electro-
chemically oxidized to 2,5-furandicarboxylic acid (FDCA), a
monomer used for biopolymer production [61]. Other modifica-
tions include the use of ortho-substituted aromatic amines as a

base in the Cannizzaro reaction and others (Figure 2) [62].

The synthesis of several useful molecular entities [63,64] and
synthons of biologically relevant compounds, which include
prostaglandins [65], B-lactams [66,67], homatropine [68,69]

among many more [70] (Figure 3), reinforce the importance of
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solvent-free microwave-
Lewis acid reactions assisted
catalysis synthesis
X ﬂ OH /
H R/&O
2 /g Cannizzaro .
reaction
R™ ~O H “OH
cation id ultrasound-
templates soll rt d mediated
supporte synthesis
synthesis

Figure 2: Various approaches of the Cannizzaro reaction.

the Cannizzaro reaction. Modifications of both intermolecular
and intramolecular Cannizzaro reactions have been observed in
numerous methodologies, such as Lewis acid catalysis, desym-
metrization of symmetrical dialdehydes, synthesis of natural
products, and building blocks. These modifications constitute
the main highlight of this review. The use of modern technolo-
gy and newer strategies aiming towards industrial benefit is the
goal for the future [71,72]. Herein, we discuss recent advances
in the Cannizzaro reaction, focusing on the synthetic develop-
ments of natural products and important building blocks in the
last two decades.

Applications of the Cannizzaro reaction in

organic synthesis

The Cannizzaro reaction has been significantly important in
synthetic organic chemistry due to its ability to provide a conve-
nient route for the synthesis of alcohols and carboxylic acids
from aldehydes. This disproportionation reaction has evoked
numerous developments and applications. The Cannizzaro reac-
tion proved to be particularly valuable in cases where other
methods of oxidation or reduction might be challenging or
impractical. The present discussion focuses on some recent syn-
thetic advances and their application in biologically active com-

pounds.

Lewis acid-catalyzed intramolecular Cannizzaro
reaction

Wang et al. [73] depicted a highly enantioselective intramolecu-
lar Cannizzaro reaction of aryl and alkyl glyoxals 1a—h and
alcohol 2 using trisoxazoline (TOX) ligand (4)/copper catalysts
to furnish the requisite mandelic esters 3a—h in good yields
(greater than 90%) and high enantioselectivity. This was ob-
served in the wide substrate scope as represented in the table
below. The yields and selectivity were found to be superior
compared to bisoxazoline (BOX) ligands, which was attributed

to the steric bulk imparted by the ligand at the stereoinduction
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Figure 3: Representative molecules synthesized via the Cannizzaro reaction.

step. Increasing the steric size of the alcohol also contributed to
the increased enantioselectivity of the resultant product
(Scheme 1).

o Cu(OTf), (5 mol %) OH

J\/OH ligand 4 (6 mol %) H o
R * /L R
OH CH,Cly, rt /\’//

OH OiPr
1a-h 2 3a-h
R yield, ee
1a: -CgHs 98%, 96% ee
Oj 1b: p-OMe-CgH, 99%, 91% ee
NP e p-F-CgHa 99%, 96% ee
0] (0]
NN 1d: p-CN-CgH,  99%, 93% ee

1e. 0,p-di F-CgH; 94%, 98% ee
1f: napthalen-1-yl 99%, 94% ee
1g: thiophen-2-yl 99%, 90% ee

1h: cyclohexyl ~ 90%, 93% ee

Scheme 1: Intramolecular Cannizzaro reaction of aryl glyoxal hydrates
using TOX catalysts.

A one-pot oxidation—Cannizzaro reaction of aryl methyl ke-
tones to mandelic acid derivatives was observed in the pres-
ences of ytterbium triflate as the catalyst. The intramolecular
reaction sequence employed a SeO,/Yb(OTf); combination to
affect the in-situ oxidation of the aryl methyl ketones 5 to the
corresponding aryl glyoxal with concomitant rearrangement of
the aryl glyoxal to the target a-hydroxycarboxylic acid deriva-
tives 6, catalyzed by Yb(OTf)3. The simple process reflects the
generality of the methodology with yields ranging from
78-99% as represented below (Scheme 2) [34].

Morken and coworkers [36] set forth an intramolecular Lewis
acid-mediated Cannizzaro reaction of aryl glyoxals 7 at room
temperature using appropriate chromium or copper catalysts.
The strategy afforded moderate to good yields of Mandelic
esters 8 in the presence of Cr(ClO4)3 (Scheme 3).

They also extended the approach to study enantioselective
Cannizzaro reactions of similar substrates using a Cu bisoxazo-
line (A) [Cu(OTf),-PhBox] complex as the chiral catalyst, pro-
ducing the desired enantiomeric compounds in modest yields
and up to 33% ee (Scheme 4). The mechanistic transformation

of the aryl glyoxals is outlined below (Scheme 4), which depicts
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6b | X CO,H 97%
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OH
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OH
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=

Scheme 2: Intramolecular Cannizzaro reaction of aryl methyl ketones
using ytterbium triflate/selenium dioxide.

0 Cr(CI04)36H,0 oH

H_o , R)}(ouvr
R OH  iPrOH/CH,CI, I
2
7a—d 8a—d
R yield
%
7a ©/ 55%
%
b 84%
7c ©/ 64%
Cl

Scheme 3: Intramolecular Cannizzaro reaction of aryl glyoxals using
Cr(ClOy4)3 as catalyst.

the coordination of the hemiacetal B with the metal catalyst to
give C, followed by hydride transfer to form the metal-coordi-

nated Cannizzaro product D.

Beilstein J. Org. Chem. 2024, 20, 1376-1395.

o) Cu(QTf), OH
iPrOH/CH,Cl, :
Ao, R O
7 2 o\'>§/o 8 O
[ |
N N\)
Ph (A) Pn
R % catalyst vyield 8, ee
7a CgHs 10 57, 28% ee (R)
"5{
7c /©/ 10 68, 17% ee
cl
%
7e \_d 10 67, 33% ee
o o)
OH

Ho
c T
Scheme 4: Cu(ll)-PhBox-catalyzed asymmetric Cannizzaro reaction.

Another intramolecular asymmetric Cannizzaro reaction was re-
ported by Wu et al. where they applied a FeCl3-based chiral
catalyst with an N,N'-dioxide ligand [74]. The optimization of
the reaction conditions revealed the L-RaPr,—FeCl3 complex
being superior and delivering good to excellent results, thus
witnessing a broad substrate scope taking different glyoxal
monohydrates 1 and alcohols 10. Excellent yields and enantio-
selectivities of the intramolecular Cannizzaro version were ob-
served furnishing a wide range of alkyl and aryl mandelate
esters 9 and 3 (Scheme 5).

The asymmetric intramolecular Cannizzaro reaction of an-
hydrous phenylglyoxal (7a) with alcohols was envisaged by
Ishihara et al. using chiral copper bis(oxazoline) (S,S-11) cata-
lysts to provide optically active mandelic acid esters 9 [75].
Among the different catalysts employed, Cu(SbFg), in the pres-
ence of 7-butanol and (S,S)-bis oxazoline (§,S-11), afforded the
desired product in 71% yield and 54% enantioselectivity. They
employed a double asymmetric induction with (+)/(—)-menthol
(12), and CuX, bis(oxazoline) catalyst where the correspond-
ing chiral mandelate ester 13 was obtained in 81% yield and
high selectivity (90% de) (Scheme 6). The proposed mecha-

nism of the reaction is depicted below.
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o H
OH L-RaPr,-FeCl3 (5 mol %) Q OB
R1U\/ + BUOH RO
OH CH,Cl,, 30 °C o}
1 9
R? yield (%) ee (%) R? yield (%) ee (%)
1a: Ph 93 93 1k: 4-NO,CgHy4 63 91
1i: 4-MeCgHy 94 94 1f: 2-naphthyl 99 92
1b: 4-OMeCgHs 90 95 1g: 2-thienyl 89 95
1j: 3-CICgH,4 95 93 1h: c-hexyl 97 91
1l: 1-adamantyl 87 95
(e} OH

L-RaPr,-FeCl3 (5 mol %) g

A O, R2oH
L o CH,Cly, 30 °C 5

1a 10a—e

R20OH

10a: EtOH

10b: iPrOH

10c: c-pentyl

10d: c-hexyl

10e: 1-adamantyl

L-RaPr,

OR,
3
product yield (%) ee (%)
3i: RZ= Et 71 75
3a: R2=iPr 66 81
3j: R2 = c-pentyl 88 86
3k: R2 = c-hexyl 62 84
31: R2= 1-adamantyl 52 96

Scheme 5: FeClz-based chiral catalyst applied for the enantioselective intramolecular Cannizzaro reaction reported by Wu et al.

Hong et al. developed an asymmetric iron catalyst with the aim
of expanding the platform of metal catalysis. Catalysts 14 and
15 proved to be effective in the transformation of glyoxal
monohydrates 1a and alcohol 2, to deliver mandelate esters 3a
in good yields and enantioselectivities via an enantioselective

intramolecular Cannizzaro reaction (Scheme 7) [76].

Lewis acid-catalyzed intermolecular Cannizzaro
reactions

Kim et al. succeeded in the transformation of aromatic alde-
hydes 16 to the corresponding alcohols 17 using ruthenium ca-
talysis in the presence of KOH and dioxane as solvent

(Scheme 8). The reaction proceeded with modest to good
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Scheme 6: Copper bis-oxazoline-catalysed intramolecular Cannizzaro
reaction and proposed mechanism.

(0] cat-l or cat- Il, CH,Cl,, OH
OH . molecular sieves, rt iP
Ph)ﬁ/ * IPron ield 96—99% Ph o
OH 2 yi — (]
1a 87% ee 3a O

_| (PFe)2

N CFS F3C SN
» |

N7 N
Mes(f\l\’l"u ..... ’l:e’,“\N//’C/Me Me\C\N':, l_ NI‘NMes
MesN\/’ \N\C\ ‘ \/NMes
2 CF, FiC N7
cat-1 14 cat-1115

Scheme 7: Chiral Fe catalysts-mediated enantioselective Cannizzaro
reaction.
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RuCly(=CHPh)(PCys),

Ar H Ar” "OH
16a-h KOH, dioxane, 80 °C, 24 h 17a-h
Ar yield
16a: Ph 59%
16b: 2-MeCgH,4 75%
16c: 3-MeCgHy 82%
16d: 4-OMeCgHy4 55%
16e: 2-BrCgH, 70%
16f: 2-naphthyl 75%
169g: 4-NO,CgH4 60%

16h: 2-thiophenyl 64%

Scheme 8: Ruthenium-catalyzed Cannizzaro reaction of aromatic
aldehydes.

yields, in the range of 40-82%, and depicts the Cannizzaro
reaction in the transfer hydrogenation process [35].

A facile room temperature Cannizzaro reaction protocol was
established by Abaee et al. employing magnesium bromide
etherate and triethylamine in dichloromethane [77]. The meth-
odology afforded smooth transformation of aromatic aldehydes
16 to the corresponding alcohols 17 and carboxylic acids 18 in
good yields (>80%). They also extended the methodology to
dialdehydes such as phenylglyoxal (7a) and phthalaldehyde
(16m),
reaction to afford a-hydroxy acids and derivatives thereof
(Scheme 9).

achieving an intramolecular version of the

They also devised a similar intermolecular Cannizzaro protocol
using LiBr as the catalyst to achieve an analogous dispropor-
tionation of aromatic aldehydes 16 to the respective alcohols 17
and acids (18)/esters (19). The reaction proceeded with more
than 85% yield in all cases with clean conversion to the prod-
ucts (Scheme 10) [78].

The utility of neutral y-alumina has been exploited as a poly-
meric Lewis acid catalyst in the Cannizzaro reaction of similar
aromatic aldehydes 16. The conversion to the respective aro-
matic alcohols 17 and carboxylic acids 18 was efficient as re-
flected in the modest to very good yields in each case
(Scheme 11). The reaction proceeded under microwave condi-
tions without the use of any base affording the desired Canniz-
zaro products [79].
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H MgBr,-Et,0 H e}
EtsN, CH,Cl,
Ar/go — ArJ\OH * Ar)J\OH
16 17 18
substrate products yield substrate products yield
GHO CHZ0H COH CHO CH,OH CO,H
91% | X | X | X 82%
N N =N
16i 17i 18a 16k 17k 18k
CHO CH,0OH COzH
ws% { oo { dguon { d~cop 0%
[:t] [j:] [:tj o~ TCHO g~ ~CH0H 5~ ~COH
NO, NO; NO, 161 171 18l
16g 179 189
CHO CH,0OH CO,H
CHO o
85% @ 92%
O
CHO
OMe OMe OMe 16m 17m
16d 17d 18d
CHO CH,0OH COzH
P00 1
88% = OMe 85%
o) OH
Cl Cl Cl
7a 17n

16j 17j 18j

Scheme 9: MgBro-Et,O-assisted Cannizzaro reaction of aldehydes.

0 1. LiBr, EtgN, rt o}
L 2H0 o~ PN
Ar” H ——————— Ar” OH + Ar” "OH
16 17 18
16a: Ar = C(;H5 90%

16d: Ar = p-OMeCgH, 85%
16g: Ar = p-NO,CgHy  98%

o 1. LiBr, EtsN, rt o
2. MeOH
Ar)J\H ——————— A" _OH + Ar)]\OMe
16 17 19

16a: Ar = CgHs 97%
160: Ar = m-OMeCgHs  98%
16p: Ar = m-FCgH, 98%
16j: Ar = p-CICgH, 96%
16q: Ar = B-naphthyl 94%

Scheme 10: LiBr-catalyzed intermolecular Cannizzaro reaction of
aldehydes.

An analogous Cannizzaro disproportionation was achieved by
Sharifi et al. [80] where they made use of a catalyst system
comprising AICl3/Et3N in dichloromethane, transforming dif-
ferent aliphatic and aromatic aldehydes 16 to their end products.
A wide variety of substrates were tested, using stoichiometric
amounts of AICl3 and transformed in good to excellent yields to
the corresponding alcohols 17 and acids 18 (Scheme 12).

Santilli et al. demonstrated a dehydrogenative protocol for the
synthesis of carboxylic acids 21 from primary alcohols 19 em-
ploying a ruthenium p-cymene complex (20) in the presence of
a suitable hydroxide [81]. Both primary aliphatic alcohols and
benzylic alcohols delivered fruitful results. However, the reac-
tion of benzyl alcohols was found to proceed within shorter
reaction times and much higher yields compared to aliphatic
alcohols. This process presumably involves a Cannizzaro reac-

tion during the conversion of the benzyl alcohols and the inter-
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CHO COOH
X Al,O3 X
I + o
XX MW 2
16 R 17 R 18 R
substrate yield % substrate yield %
(product) (product)
CHO CHO
@\ 95 © 57
NO
2 Br
CHO
CHO
82 | N 57
~
NO, N
CHO
- CHO
95 | 76
/
NO,
Cl

N
CHO CHO
@\ 86 © 90
OMe

Scheme 11: y-Alumina as a catalyst in the Cannizzaro reaction.

o AICI3 (1.0 equiv) fe)
EtzN (0.5 equiv)
R)kH RTOH + R)I\OH
CH,Cly, rt 17 18
16
R yield % R yield %

W,
|\ 86
7

79

88

72

Scheme 12: AICl3-mediated Cannizzaro disproportionation of alde-
hydes.
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mediate aldehyde reacts with the hydroxide under the Canniz-
zaro conditions to give the desired product (Scheme 13). The

mechanistic pathway for the transformation is represented in

Figure 4.
1/ - \
iPr/N\(N\iPr
Ru-Cl
~cl
OH %
P 20 M
R PCys-HBF,, KOH, R21 a_(I)1H
19a-h toluene, 110 °C
substrate yield % substrate yield %

19a: R=4-MeCgH, 88  19e ©MOH 72

OH
19b: R=4-CICeH, 82  19f E>_/ 69
19¢: R = 4-OMeCgH, 60 19g /YOH 88

19d: R = 4-SMeCgH, 67 19h " oH 71

Scheme 13: Ru—N-heterocyclic carbene catalyzed dehydrogenative
synthesis of carboxylic acids.

Desymmetrization via intramolecular Cannizzaro
reaction

Vida et al. reported the intramolecular Cannizzaro reaction of
dialdehyde 23, synthesized from tetraethylene glycol (TEG) 22.
The dialdehyde 23 underwent a clean desymmetrization to form
the hydroxy carboxylic acid derivative 24. The reaction was
mediated by BaZ* which perfectly bound the TEG and allowed
the aldehyde functionalities to be placed in the appropriate
vicinity for the reaction to take place in appreciably good yields
(84%). The barium cation template is the key for the reaction,
as is the base concentration for effective hydride transfer
(Scheme 14) [29].

They also extended the scope of the intramolecular Cannizzaro
reaction to ethylene glycol units of different chain lengths
ranging from 2-5 (25, 26, and 27), by varying the aromatic sub-
stitution in the ortho, meta and para-positions and finally ob-
tained the desymmetrized products 28, 29, and 30 in good to
excellent yields (Scheme 15). This has been effectively depicted
in the proposed strategy where the metal ion acts as the binding
cation template for the intramolecular desymmetrization
(Scheme 15) [82].

A similar highly efficient intramolecular Cannizzaro reaction of

calix[4]arene dialdehydes was observed by Galli et al. where

the 1,3-distal cone 35 significantly responded to Cannizzaro
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= iPr—N<_N=ipr
~N N—; R
iPr ‘\HIPI' TS H Ru-——o-H
H----- Ru=—OH 0\/
/] 7
(0]
PCY3 PCy3
Ha
\ Q
o N__N
— iPr Y& iPr
ipr-N NﬁiPr H Ru=—o-H
7 |
H, Ru=——0H 0
O/ ’
/= PCys PCys
€]
h)
o iPr Y &ﬁéPr
OH ® H——Ru—0
4 iPr=N\ N=ipr OH /|
H (e
H Ru—~0H |
| o PCys

PCy3

Figure 4: Proposed catalytic cycle for the dehydrogenation of alcohols.

disproportionation, forming the hydroxy acid product 38, using
a strong base [83]. On the other hand, the analogous 1,2-vicinal
isomer 36 and the monoaldehyde 37 failed to produce any
fruitful results. This difference in reactivity was referred to the
relative positions of the formyl groups in the respective isomers
where the geometry of the 1,3-distal dialdehyde 35 was confor-
mationally favorable for the intramolecular hydride attack to
take place leading to the formation of the product (Scheme 16).

1. TsCl, CH,Cl,
30% NaOH

H2+ )J\O

Symmetrical crown ethers having two aldehyde groups 3942
were functionalized and desymmetrized by Rouser et al. using
an intramolecular Cannizzaro reaction to give the correspond-
ing unsymmetrical acid—alcohol substituted crown ether deriva-
tives 43-46. Good to excellent yields of the desymmetrized
Cannizarro products 43—46 were obtained using Ba(OH), as the
base, thus effecting efficient desymmetrization of crown ether
dialdehydes (Scheme 17) [84].

CHO

HO\</\O>/\/OH
3

tetraethylene glycol
22

NaOH, CH;CN

Ba(OH)Z/HZO

HO,C

Scheme 14: Intramolecular desymmetrization of tetraethylene glycol.

2. 4-hydroxybenzaldehyde

(j"%oi@

ot
4
OHC

23

CH,OH
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Scheme 15: Desymmetrization of oligoethylene glycol dialdehydes.

Synthesis of natural products and pharmaceuticals
Exploring intramolecular Cannizzaro reaction: The Canniz-
zaro reaction is a versatile synthetic tool with applications in the
synthesis of natural products, fine chemicals, and pharmaceuti-
cals. Its ability to introduce carboxylic acid functionalities and
facilitate functional group interconversions makes it a valuable
method for chemists engaged in the design and synthesis of
diverse organic compounds. A selection of applications is
depicted herein.

Mehta et al. established a highly selective intramolecular

Cannizzaro reaction while accomplishing the synthesis of the

bicyclic core structure of proposed ottelione A (47) [85].
Commencing from the Diels—Alder adduct 48, an enzymatic
desymmetrization of the reduced diol 49 formed the enan-
tiopure 50 (ee >99%). A cascade of reaction sequences deliv-
ered the tetracyclic cage compound 51. Acetal opening in 51
afforded the keto-aldehyde 52 which underwent an intramolecu-
lar Cannizzaro reaction to give the trihydroxy acid 53, finally
cyclizing to the lactone diol 54, elaboration of which led to the
desired target (Scheme 18).

An interesting application of the intramolecular Cannizzaro

reaction was demonstrated by the group of Schmalz in the total
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Scheme 16: Intramolecular Cannizzaro reaction of calix[4]arene dialdehydes.
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OHC\C[O o o O:©/CHO HOZC\C[O o o OD/CHZOH
O o 0o O
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Scheme 17: Desymmetrization of dialdehydes of symmetrical crown ethers using Ba(OH)z.
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o NaBH4 vinyl acetate,
; CeCl;37H,0 lipase PS, THF
H MeOH, 0 °C ee >99%
(0]
48

53
intramolecular Cannizzaro

core structure of ottelione A

Scheme 18: Synthesis of ottelione A (proposed) via intramolecular Cannizzaro reaction.

synthesis of the marine antibiotic pestalone [86]. They
observed a facile isomerization of the pestalone derivatives
55/57 into the intramolecular lactone derivatives rac-56a,b
which features a Cannizzaro-Tishchenko-type reaction
representing analogous derivatives related to pestalachloride A.

The mechanistic transformation could be illustrated

schematically following the transformation from 58
to 61 through the intermediates 59 and 60. The natural
pestalone 62 when subjected to a photo-induced
transformation leads to pestalalactone (rac-63), involving
a photo-induced Cannizzaro-Tishchenko sequence
(Scheme 19).

n-BuLi, MgBr,-Et,0
THF, =78 °C, 30 min OR

DMF, -78 °C to rt

MeO OMe
rac-56a/b
R = Me (14%)
R =H (37%)
o R% 6‘ R
L N s M
cho N > | %5
| AN B — | AN Nu R ——
AF Y
R
58 59

hv, DMSO, rt
80%

Scheme 19: Intramolecular Cannizzaro reaction for the synthesis of pestalalactone.

LiSEt, DMF

70 °C

pestalalactone (63)
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An efficient synthetic strategy for nigricanin was accomplished
by Abe et al. wherein they utilized the intramolecular Canniz-
zaro reaction as a key step for desymmetrization of the crucial
dialdehyde intermediate 65 [87]. The sequence of transformat-
ions commencing from the aldehyde 64 afforded the desym-
metrized biaryl derivative 66 and proceeded towards the final
natural product 67 (Scheme 20).

1. KOH (excess), EtOH
MeO

2. TMSCHN,, MeOH
93%

nigricanin (67)

Scheme 20: Synthetic strategy towards nigricanin involving an intra-
molecular Cannizzaro reaction.

Applying crossed-Cannizzaro reaction: Mondal and coau-
thors demonstrated an efficient application of the aldol/crossed-
Cannizzaro reaction in the construction of the spiro-f-lactone
ring while targeting the spiro-f-lactone-y-lactam ring of
oxazolomycin and lazollamycin [88]. Proceeding towards the
requisite fragment they envisaged a series of crucial diastereo-
selective transformations arriving at the precursor 69 to the
Cannizzaro reaction commencing from 68. The primary
hydroxymethyl functionality in 69 was oxidized to the corre-
sponding aldehyde 70, which was subsequently treated with
37% aqueous formaldehyde and NaOH, to result in a mixture of
the gem-hydroxymethyl derivative 72 and the carbamate 71
which led to the spiro-f-lactone core 73 (Scheme 21).

An expedient use of the Cannizzaro reaction was exemplified in
the noteworthy enantioselective synthesis towards the indole
alkaloids 16-epivellosimine, (+)-polyneuridine, and (+)-macu-
sine A as reported by Cook and coworkers [89]. This was effec-
tively worked out from p-(—)-tryptophan via the common inter-

mediate, (+)-vellosimine (74). The protocol reflected the stereo-

Beilstein J. Org. Chem. 2024, 20, 1376-1395.

LIy
o N IBX, DMSO i—g

N~ N~
Bn Boc OH Boc O
68 69 70

HCHO, 2 N NaOH

THF/H,O 7:1, 1t

55%

4 N NaOH,
THF/MeOH 1:2, rt

Scheme 21: Spiro-B-lactone-y-lactam part of oxazolomycins via aldol
crossed-Cannizzaro reaction.

controlled formation of the C-16 quaternary center in 76 created
via an intermolecular crossed-Cannizzaro reaction of 75, gener-
ated from 74, using 37% aqueous formaldehyde. The quater-
nization proceeded in excellent yield (92%) and formed the diol
717, after the removal of the Boc-protecting group, where the
prochiral hydroxymethyl groups ultimately paved the way

towards the natural products (Scheme 22).

Bernhardson and coworkers developed a simple scalable route
towards ertugliflozin (80), a C-glycoside containing a bicyclic
ketal motif. The method illustrates the potent use of an aldol-
crossed-Cannizzaro reaction to form the quaternarized pentol 79
from the aldehyde 78 in 94% yield and >99.8% purity after
recrystallization. This symbolizes the efficient applicability of
the Cannizzaro reaction for the synthesis of medicinally useful
molecules (Scheme 23) [90].

The Cannizzaro reaction has also been applied to the prepara-
tion of mandelic acid-based synthons, which gain potential
importance in the synthesis of prostaglandins, cephalosporins,
and homatropine [65-69].

Synthesis of useful scaffolds

Burroughs et al. developed an intramolecular Cannizzaro-based
cascade synthesis for the construction of 8-membered
cycloocta-2,5-dienones [91]. The initial formation of the
organolithium species 82 formed by acetylide addition to the
ortho-substituted bromoaldehyde 81, was subjected to halogen

exchange and transmetalation to the organocuprate 83. The
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Scheme 22: Synthesis of indole alkaloids via aldol crossed-Cannizzaro reaction.

OEt

aldol-cross-Cannizzaro HO

20 equiv (CH,0),,, EtONa HO
EtOH, 55 °C

TMSO™

79 ertugliflozin (80)

Scheme 23: Aldol and crossed-Cannizzaro reaction towards the synthesis of ertuliflozin.

latter undergoes an Sn2’ addition to the propargyl chloride 84
and the resulting allene intermediate 85 undergoes an intramo-
lecular Cannizzaro-type hydride transfer via 86 to produce the
8-membered cyclized target 87 in good yield (70%)
(Scheme 24).

Huang et al. set up a clean crossed-Cannizzaro-aldol reaction
strategy of isatin derivatives 88 and 90 with paraformaldehyde
under microwave irradiation to furnish 3,3-disubstituted oxin-
dole derivatives 89a—h and 91a-d [92]. The representative
3-hydroxymethyloxindole adducts with varying substituents (R!
and R?) were obtained in good to excellent yields witnessing the
feasibility of the methodology (Scheme 25). The mechanism
depicting the proposed strategy for the Cannizzaro-aldol trans-
formation involves an initial Cannizzaro reaction between para-
formaldehyde and the isatin substrate, followed by an aldol
transformation to the final product.

Bruckner and coworkers synthesized pyrrole-modified porphy-
rin ring systems from secochlorin bisaldehydes, representing an
interesting application of the intramolecular Cannizzaro reac-
tion. Subjecting the bisaldehyde 92 to basic conditions

CHO QL
@ =—TMS % CuBr-SMe,
Br n-BulLi T™S
Br
81 82
OLi Ph OLi
/C|
N Z 84 A
A
T™S —._ TMS
CuL Sp2 Ph
83 85
. t O
Intra-
TMS
molecular
- TSSTMS | — OO
i — Ph
Cannizzaro Ph
86 87

Scheme 24: Synthesis of cyclooctadieneones using a Cannizzaro
reaction.
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EtOH, MW,

MeO

Me Me
8% 77% 89f 88%

OH
MeO

N N
Me Bn Me
89g 84% 89h 87% 91a 84% 91b 81% 91¢c 90% 91d 78%
mechanism
O K,COs, EtOH OB on
MW, 100 °C
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N N
( )R R
isatin (A .
aldol reaction,
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OH
HO o© Base oo A @gOH
(6]
H™ "H H™ H N
Cannizzaro reaction, HCHO as reductant h

Scheme 25: Microwave-assisted crossed-Cannizzaro reaction for the synthesis of 3,3-disubstituted oxindoles.

using Et4NOH, formed the product 93 in 36-59% yield along
with the overoxidized compound 95, and the dimer 94 as by-
products. However, upon reaction with methanol under acidic
conditions, the product 93 and the dimer 94 underwent a
smooth transformation to the methyl acetal in high yields.
Similar exposure of the nickel(II) complex 96 to the same
basic conditions resulted in the formation of the Cannizzaro
adduct hemiacetal Ni(II) complex 97 in 56-65% yield
predominantly with the byproduct 98 in less than 5% yield
(Scheme 26) [93].

Schmalz and coworkers transformed 2-formylarylketones 99
into 3-substituted phthalides 100, as evidenced by the per-O-
methylated derivative of pestalone, a marine natural substance.
Either in a Cannizarro-Tishchenko-type reaction with nucleo-
phile catalysis (NaCN) or under photochemical conditions
(DMSO, 350 nm), the transformation often proceeds without
any problems in DMSO (Scheme 27) [94].

Two isomeric bislactones 4,6,10,12-tetrahydro-4,12-dioxo-5,11-
dioxadibenzo[ef,k/]heptalene (103a) and 4,6,10,12-tetrahydro-
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aqg. Et4NOH
THF

97 56-65%

Scheme 26: Synthesis of porphyrin-based rings using the Cannizzaro reaction.

X = |
X X—
o X
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yield yield yield vyield yield yield yield
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Scheme 27: Synthesis of phthalides and pestalalactone via Cannizarro—Tishchenko-type reaction.
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CH,OH CH,OH
CO,H CO,H
HQ () - HQ ()

H

Scheme 28: Synthesis of dibenzoheptalene bislactones via a double intramolecular Cannizzaro reaction.

4,10-dioxo-5,11-dioxadibenzo [efkl]heptalene (103b) were syn-
thesized [95] as chiral and atropisomeric molecules via double
intramolecular Cannizzaro reaction of 1,1'-biphenyl-2,2',6,6'-
tetracarboxaldehyde (101) (Scheme 28).

Conclusion

The Cannizzaro reaction is one of the oldest reactions in organic
chemistry for the synthesis of acid and alcohol functionalities
through disproportionation reaction of non-enlizable aldehydes.
Apart from the conventional methods, several modern modifica-
tions using mild and sustainable reagents, solvents, advanced
instrumental techniques, and catalysts in both intramolecular
and intermolecular versions of the reaction have made the
Cannizzaro reaction an important tool for the synthesis of
diverse molecules containing alcohol, acid, ester, and amide,
etc. functionalities. The vast area of synthetic venture high-
lights the significance of this reaction, as exemplified here, in
some of the most recent advances of this reaction during the last
two decades. Proper utilization of Lewis acid catalysis, desym-
metrization of symmetrically remote dialdehyde molecules,
synthesis of bioactive natural products like oxazolomycin, otte-
lione A, pestalalactone, nigricanin and other useful molecules of
potential interest such as oxindoles, cyclooctadienones,
mandelic acid derivatives have been represented. The high
yielding methodologies, emphasizing different greener perspec-
tives, are evident in every case and reflect the inner potential of
the Cannizzaro reaction in accomplishing the synthesis of a
diverse series of molecular entities. Being the first of its kind,
this review presents a comprehensive outlook of the Canniz-
zaro reaction in several aspects. The application of this highly
valuable reaction to the functionalization of bioactive mole-
cules with improved synthetic conditions, will broaden its use in

the future.

COHM  ch,0H OCH2 Ho,¢
102a 102b
+
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