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Abstract
A synthesis route to access triazole–pyrazole hybrids via triazenylpyrazoles was developed. Contrary to existing methods, this route
allows the facile N-functionalization of the pyrazole before the attachment of the triazole unit via a copper-catalyzed azide–alkyne
cycloaddition. The developed methodology was used to synthesize a library of over fifty new multi-substituted pyrazole–triazole
hybrids. We also demonstrate a one-pot strategy that renders the isolation of potentially hazardous azides obsolete. In addition, the
compatibility of the method with solid-phase synthesis is shown exemplarily.
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Introduction
Nitrogen-containing heterocycles are central scaffolds in medic-
inal chemistry and are incorporated in most small-molecule
drugs [1,2]. We are interested in feasible strategies to synthe-
size nitrogen-rich heterocyclic scaffolds that can extend the cur-
rently available libraries with new drug-like molecules. Our
past work on pyrazoles [3-6] and triazoles [7-11] motivated us
to search for suitable and versatile strategies to explore access

to triazole–pyrazole hybrids. Triazole–pyrazole hybrids, partic-
ularly non-fused heterocycles of this class, have not been inves-
tigated systematically. Selected known derivatives (Figure 1,
1–4) inhibit the serine-threonine kinase ERK3 [12] or the
cholera-causing bacterium Vibrio cholerae [13], show antimi-
crobial properties [14], and can act as P2X7 antagonists, a re-
ceptor involved in neuroinflammation and depression [15].
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Figure 1: Biologically active pyrazole–triazole hybrids 1–4: inhibitory effect on cholera bacteria [13], antimicrobial properties [14], P2X7 antagonists
(depression) [15] and ERK3 inhibition [12].

Scheme 1: Literature-reported synthetic routes to pyrazole–triazole hybrids: synthesis of azides 7 or 8 from amines and organohalides and subse-
quent CuAAC to larger heterocyclic systems 9 or non-substituted amine products 10; Sakai reaction of α-ketoacetal 11 for the synthesis of N-substi-
tuted derivative 13 [14,16-19].

Pyrazolyltriazoles are most easily obtained via the copper-cata-
lyzed azide–alkyne cycloaddition (CuAAC) from pyrazolyl
azides (7 and 8). These are usually accessed from the respec-
tive amines or organohalides (5 and 6, Scheme 1) [14,16-18].
Few examples of triazole–pyrazole hybrids, such as 13, have
also been synthesized through a modified Sakai reaction [19], a
reaction cascade involving the elimination of an azole [20] or in
the n-butyllithium-mediated reaction with alkyl halides [21]. So
far, the literature-reported methods are most often limited to
N-unsubstituted pyrazoles or triazoles and pyrazoles being
fused to a second (hetero)cycle; the synthesis of promising

multi-substituted structures such as 1 has not yet been de-
scribed systematically.

Results and Discussion
Triazenes have previously been established as versatile interme-
diates and linkers for conventional and solid-phase synthesis
[22-25] that can be considered as protected diazonium salts [3].
According to the previous work [3], triazenylpyrazoles could
serve as azide sources and thus as building blocks for synthe-
sizing pyrazolyltriazoles by CuAAC reactions. To find a
feasible approach to pyrazolyltriazoles of type 1 with a highly
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Table 1: Synthesis of triazenylpyrazoles 15a–d and functionalization to N-substituted triazenylpyrazoles 17a–r and 18a–r. Conditions i: 1) BF3·OEt2,
isoamyl nitrite, THF, −20 °C, 1 h, 2) diisopropylamine, THF/pyridine/acetonitrile, −20 °C to 21 °C, 17 h; Conditions ii: 1) HClaq (6 M), NaNO2, 0 °C to
5 °C, 1–2 h, 2) diisopropylamine, 0 °C to 21 °C, 16 h. X = F, Br, I.

R1 R2 Compound Yield 17 [%] Compound Yield 18 [%]

H C 17a 59 18a 18
H D 17b 34 18b 28
H M 17c 40 18c 40

5-Me C 17d 23 18d 29
5-Me J 17e 58 18e 12
5-Me K 17f 64 18f 19
5-Me L 17g 61 18g 9

4-CO2Et C 17h 44 18h 40
4-CO2Et H 17i 37 18i 63
4-CO2Et I 17j 35 18j 65
4-CO2Et D 17k 41 18k 59

4-CN A 17l 35 18l 58
4-CN B 17m 70 18m 22
4-CN C 17n 58 18n 39
4-CN H 17o 51 18o 46
4-CN E 17p 59 18p 40
4-CN F 17q 53 18q 45
4-CN G 17r 54 18r 41

substituted scaffold, we decided to explore the benefits of a
modification of the triazene-protected pyrazole core. In the next
step, a cycloaddition of the gained synthesized azidopyrazoles
with different alkynes was to be conducted.

The 3-(3,3-diisopropyltriaz-1-en-1-yl)-1H-pyrazole precursors
15a–d were synthesized according to previously reported proce-
dures [3,26,27] via the generation of a diazonium salt from
aminopyrazoles 14a–d followed by the addition of diisopropyl-

amine, either in a one-pot synthesis or in two consecutive steps
(Table 1). Subsequently, different aliphatic and aromatic sub-
stituents were attached to the pyrazole nitrogen by nucleophilic
substitution with suitable organohalides 16 and cesium
carbonate [3]. Due to the pyrazole tautomerism [28], the forma-
tion of two possible regioisomers, 17 and 18, was anticipated
and could be confirmed experimentally. Depending on the em-
ployed halide 16, the distribution of the obtained products
varied. A considerable excess of the dominating isomer with
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Scheme 2: Synthesis of pyrazolyl azides 19a–v via cleavage of the protecting triazene moiety. For compounds 19a–h, 19p, 19r, 19t and 19u, reac-
tion times of 3–16 h were suitable. The reactions to 19o and 19v were stirred for 3 d; for 19q and 19s, reaction times of 7 d were necessary.

yields of up to 70% could be obtained in some cases (see 17f or
17m), whereas the isomers were isolated in a 1:1 ratio for com-
pounds 17c or 17h. A strong trend towards regioisomer 17 as
the main product was observed for substituted phenyl residues,
presumably due to the higher steric hindrance (see 17e–g). The
results for benzylic residues differed depending on the benzylic
residue's functional groups and the pyrazole substitution pattern.
For starting materials 15a and 15d, an excess of product 17 was
usually observed. With the ester-functionalized triazene 15c and
m-substituted benzylic reagents, regioisomer 18 was the
predominant product (see 18i and 18j). In total, 13 groups could
be attached to the different triazenylpyrazoles, yielding 18 prod-
ucts (see Table 1).

In analogy to reported procedures for cleavage of polymer-
bound triazenes [23], we attempted to develop the first protocol
for synthesizing pyrazolyl azides 19 from triazenylpyrazoles.
Initial experiments with TFA and trimethylsilyl azide at
0–25 °C in DCM failed for 4-substituted pyrazoles; the forma-
tion of the target products was only observed when
5-methylpyrazoles such as 15b were used. Therefore, a modi-
fied procedure was applied, heating the triazenes to 50 °C. This
optimization allowed for the isolation of the corresponding
azides 19a–v in yields of 51% to quantitative (Scheme 2),
usually with durations of 3–16 h. Longer reaction times were
necessary for some CN-substituted triazene derivatives (19o,
19q, 19s, 19v), especially in combination with electron-with-
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Scheme 3: Synthesis of pyrazole–triazole hybrids via CuAAC and ORTEP diagrams of triazole products 21sd and 21vg with the thermal ellipsoids
shown at 50% probability. NaAsc = sodium ascorbate.

drawing functional groups. The developed procedure could only
be used to convert isomer 17. Triazene compounds with the
regioisomeric form 18 could not be reacted (see Supporting
Information File 1, Scheme S1) even after extended reaction
times, only starting material was reisolated, presumably due to
the increased stability of isomer 18 towards acids. This corre-
sponds with the results for the previously reported triazene
cleavage to diazonium intermediates and subsequent cycliza-
tion to triazine derivatives [3].

In the next step, the obtained pyrazolyl azides were reacted with
different aromatic and aliphatic alkynes 20a–h in a copper-cata-
lyzed azide–alkyne cycloaddition (CuAAC). All attempted
reactions could be conducted under standard conditions using
copper sulfate and sodium ascorbate in THF/water (depicted in
Scheme 3 and Figure 2). For selected derivatives, 21sd and
21vg, crystals suitable for single-crystal X-ray diffraction could
be obtained and confirmed the product structure with the
presumed regioisomer (Scheme 3).

A library of over 50 triazole products 21aa–vg was successful-
ly synthesized with yields ranging from 28% to quantitative,
combining four different pyrazole-carbon substitutions and 14
pyrazole-nitrogen substitutions with eight different residues on
the to-be-formed triazole (see Figure 2). It could be observed
that the cycloaddition proceeds least efficiently with pyrazoles
that are not substituted on the nitrogen. The reaction of pyra-
zolyl azides 19e and 19j with phenylacetylene gave the prod-
ucts 21ed and 21jd with yields of 57% and 28%, whereas

substituted derivatives (e.g., 19g or 19n) resulted in yields of
over 90% (21gd or 21nd) using the same alkyne. The different
substitution patterns on the 4- or 5-position of the pyrazole (R1)
do not clearly influence the reaction's efficiency. Although the
reactions of ethyl 3-azido-1H-pyrazole-4-carboxylate (19j)
resulted in lower yields of the triazole products 21ja–jh com-
pared to pyrazolyl azides 19a, 19e, and 19o, this trend is not
continued in the results of the N-substituted carboxylate deriva-
tives 19k–n. The effect of the alkyne depends on the substitu-
tions on the pyrazole, and no general trend is visible – reactions
with electron-poor, electron-rich as well as sterically demanding
alkynes give high product yields, depending on the respective
pyrazole. The functionalization of the NH-unsubstituted deriva-
tive 21jd via copper-catalyzed cross-coupling [29] with an elec-
tron-rich aryl substituent was exemplarily conducted to further
expand the scope of possible products (see Scheme S2, Support-
ing Information File 1).

We also investigated the scope and limitations of a one-pot
reaction for the triazene cleavage and subsequent CuAAC with
the model compound 17e (see Scheme 4). When conducting the
two reaction steps back-to-back in a one-pot setup, a decrease in
yield from 86% over two steps (96% and 90%) to 59% of
impure product was observed. This is presumably caused by
incomplete conversion of the in situ-generated alkyne to the tri-
azole. The decrease of TFA/TMS-N3 in the reaction or the addi-
tion of an increased amount of alkyne further deteriorated the
results. Therefore, we introduced a straightforward evaporation
step after completion of the triazene cleavage to remove the
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Figure 2: Synthesized triazole–pyrazole hybrids 21aa–vg.
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Scheme 5: Solid-phase synthesis of azidopyrazole 19g and triazole–pyrazole hybrid 21gd by immobilization of aminopyrazole 14b on benzylamine-
substituted Merrifield resin 22, NH-functionalization and cleavage. Reaction conditions: a) BF3∙Et2O, isoamyl nitrite, THF/pyridine (9:1), −20 °C to
21 °C, 12 h, b) Cs2CO3, DMSO, 120 °C, 2–3 d, c) TFA, TMS-N3, DCM, 25 °C, 12 h, d) 1. TFA, TMS-N3, DCM, 0–50 °C, 12 h; 2. alkyne, THF/H2O,
CuSO4, sodium ascorbate, 16 h, 50 °C.

residual reagents. The final product 21gd could be isolated in
quantitative yield with this technique, avoiding additional
purification steps for the azide intermediate without any losses
in product formation.

Scheme 4: One-pot synthesis of triazole–pyrazole hybrid 21gd. aOne-
pot setup yielded 21gd with unknown impurities; bwith an additional
evaporation step after the triazene cleavage, a quantitative yield of the
target product 21gd was achieved.

The developed procedure was exemplarily transferred to solid-
phase synthesis. In quantitative yields, 5-methyl-1H-pyrazol-3-
amine (14b) was immobilized on benzylamine resin 22

(Scheme 5). For this purpose, a diazonium intermediate was
generated from the pyrazoloamine with BF3∙Et2O and isoamyl
nitrite accordingly to the liquid phase synthesis of 15b. The
subsequent functionalization of resin 23 to the phenyl-substi-
tuted derivative 25 was carried out using the nucleophilic sub-
stitution procedure reported above with yields of 63–76%. The
anticipated formation of a second regioisomer could not be con-
firmed due to the limited analytical methods available for com-
pounds on solid supports. The cleavage to obtain azidopyrazole
19g was achieved with a total yield of 37% over all steps,
comparable to the total yield of 45% for the stepwise synthesis
in the liquid phase. This indicates a material loss due to the non-
reactive regioisomer formation in the previous step and a non-
quantitative cleavage process. In analogy to the one-pot experi-
ments in solution, a one-pot cleavage from the resin combined
with the CuAAC reaction to the triazole–pyrazole hybrid was
conducted exemplarily and gave the target product 21gd in 30%
yield.

The solid-phase reaction route allows for roughly equally high
overall yields compared to the solution synthesis. It offers the
additional benefits of chemistry on solid support: straightfor-
ward purification of the resin-bound intermediates by washing
steps and a high throughput that allows for faster derivatization.
Further research is necessary to establish a protocol for the
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cleavage of 4-substituted pyrazoles, as the corresponding azides
analogous to 19j–v could not be obtained from immobilized
triazene precursors.

Conclusion
A synthesis route to access substituted triazole–pyrazole
hybrids from triazenylpyrazoles has been established and
applied to obtain a library of over 50 new triazole–pyrazole
hybrids. The selective N-functionalization of the triazene-pro-
tected pyrazoles was conducted, and the cleavage of
triazenylpyrazoles to the corresponding azides was described
for the first time with regioisomer 17, whereas regioisomer 18
is acid-insensitive and cannot be converted. The azides were
reacted to the respective triazole product in a CuAAC reaction;
this step could also successfully be conducted in a sequential
one-pot approach from the triazenylpyrazole precursor. The de-
veloped protocol was adapted for solid-phase synthesis to
demonstrate the applicability of triazenylpyrazoles as immobi-
lized building blocks.
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