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Abstract
Determining the pKa values of various C–H sites in organic molecules offers valuable insights for synthetic chemists in predicting
reaction sites. As molecular complexity increases, this task becomes more challenging. This paper introduces pKalculator, a quan-
tum chemistry (QM)-based workflow for automatic computations of C–H pKa values, which is used to generate a training dataset
for a machine learning (ML) model. The QM workflow is benchmarked against 695 experimentally determined C–H pKa values in
DMSO. The ML model is trained on a diverse dataset of 775 molecules with 3910 C–H sites. Our ML model predicts C–H pKa
values with a mean absolute error (MAE) and a root mean squared error (RMSE) of 1.24 and 2.15 pKa units, respectively. Further-
more, we employ our model on 1043 pKa-dependent reactions (aldol, Claisen, and Michael) and successfully indicate the reaction
sites with a Matthew’s correlation coefficient (MCC) of 0.82.

1614

Introduction
Over the years, the ability to selectively break a C–H bond to
create new connections has attracted increasing interest [1].
While past methods allowed for C–H transformations in simple
molecules, recent synthetic protocols [2] enable selective C–H
activation and diversification in larger molecules. This has, for
example, attracted the pharmaceutical industry to implement
such C–H transformations to diversify different types of mole-
cules ranging from small drug-like molecules to intermediates
and lead compounds. Especially late-stage functionalization is a
promising emerging field that allows chemists to efficiently

explore the chemical space in complex molecules by
exchanging a C–H bond with different functional groups to
modify the biological activity of drugs [2]. However,
pinpointing which C–H bond is reacting can be challenging.

Grzybowski and co-workers recently addressed this gap by
predicting pKa values for C–H bonds in dimethyl sulfoxide
(DMSO) using a graph convolutional neural network (GCNN)
[3]. Using a mix of experimental and computed pKa data, they
achieved a mean absolute error (MAE) of 2.1 pKa units. Lee
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and co-workers also addressed this problem by creating a
general machine learning (ML) model using either a neural
network or XGBoost. They trained on experimental pKa values
in 39 solvents from the “internet Bond-energy Databank”
(iBonD). Thus, they could predict the lowest pKa value for a
wide range of molecules that contain bonds such as N–H, O–H,
C–H, S–H, and P–H. However, they reported a scarcity of non-
aqueous pKa values and achieved a MAE of 1.5 pKa units for
the solvent DMSO using XGBoost [4,5]. Unfortunately, neither
the Grzybowski group nor the Lee group have made their
models generally available to other users.

Inspired by the efforts of the Grzybowski group and the Lee
group, we have developed pKalculator, a quantum chemistry
(QM)-based workflow for the automatic computation of C–H
pKa values in DMSO. The computed C–H pKa values are then
used to generate training data for an ML model using
LightGBM [6]. The QM-based workflow and the ML model are
freely available under the MIT license.

Methods
Datasets
We compile a dataset of 732 experimental pKa values in DMSO
from two different sources, Bordwell [7] and iBonD [4]. The
Bordwell dataset contains experimental C–H pKa values in
DMSO from 419 molecules. For the iBonD database, we select
experimental C–H pKa values in DMSO for 313 molecules. As
the iBonD database only contains an image of each molecule,
we employ the “Deep Learning for Chemical Image Recogni-
tion” software (DECIMER v. 2.0), developed by Rajan and
co-workers [8-10]. While DECIMER converts molecular
images into SMILES, manual intervention is required to ensure
the SMILES string correctly represents the molecule. Finally, to
mirror the dataset by Roszak et al. [3], we also incorporate 43
heterocycles without experimental pKa values from Shen et al.,
leaving us with a dataset of 775 compounds [11]. This dataset
will be used to calculate QM pKa values using our QM work-
flow described in the next section.

We also create a dataset from Reaxys that contains 1043 pKa-
controlled reactions. These reactions include 584 aldol, 408
Claisen, and 51 Michael reactions. This dataset is used as an
out-of-sample dataset to see how well our ML model predicts
the reaction site. Additionally, we use six pharmaceutical inter-
mediates that undergo selective borylation to compare our QM
workflow and ML model with experimentally determined reac-
tion sites.

The quantum chemistry-based workflow
Following work by Ree et al. [12-15], we present a fully auto-
mated QM-based workflow for computing C–H pKa values. A

given SMILES string undergoes modifications to produce a list
of SMILES for each deprotonated C–H bond. We generate
min(1 + 3nrot, 20) conformers for each SMILES using RDKit
(v.2022.09.4) [16,17], where (nrot) represents the number of
rotatable bonds. Each conformer undergoes optimization in
dimethyl sulfoxide (DMSO, ε = 47.2) using GFN-FF-xTB [18]
and the analytical linearized Poisson–Boltzmann (ALPB) equa-
tion [19] as the implicit solvation model. We then remove
conformers with relative energies above 3 kcal/mol and select
unique conformers by taking the centroids of a Butina clus-
tering using pairwise heavy-atom root mean square deviation
(RMSD) with a threshold of 0.5 Å [16,20]. For more informa-
tion, refer to Supporting Information File 1, section “Selecting
unique conformers”.

Subsequently, we re-optimize the remaining conformers in
DMSO with GFN2-xTB [21] and the ALPB implicit solvation
model to identify the lowest-energy conformer. We then con-
duct re-optimization in ORCA (v. 5.0.4) [22,23], using the
dispersion D4-corrected DFT functional CAM-B3LYP [24,25],
the Karlsruhe [26,27] triple-ζ basis set, def2-TZVPPD, and the
conductor-like polarizable continuum model (CPCM) [28] as
the implicit solvation models. CAM-B3LYP is chosen as the
optimal functional based on a benchmark study that evaluates
the accuracy of different levels of theory, ranging from semiem-
pirical methods (xTB) [21] over composite electronic structure
methods (r2SCAN-3c) [29] to DFT methods (CAM-B3LYP)
[24,25]. All these methods are evaluated as single-point calcula-
tions or optimization and frequency calculations. For compre-
hensive details, refer to Supporting Information File 1, section
“Benchmark study - computational methods”. Hereafter, we
check the geometries for imaginary frequencies and use the
total thermal energy at 298.15 K. Following the approach of the
Grzybowski group [3], we compute the heterolytic dissociation
energy through the  di rect  deprotonat ion react ion,

;  see  Equat ion 1 .

(1)

For each set of deprotonated C–H sites in a molecule, we deter-
mine the minimum heterolytic dissociation energy ( ).
Hereafter, we assume a linear relationship between the experi-
mental pKa values and  as this assumption allows us to
derive the empirical constants a and b and correct any system-
atic errors; see Equation 2, where ΔG° is replaced by .
After retrieving the empirical constants a and b, we can deter-
mine the QM-computed pKa values for all deprotonated C–H
sites using Equation 2:

(2)
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Machine learning
The feature descriptor
Recent research shows that the atomic descriptors introduced by
Finkelmann et al. [30,31], using charge model 5 (CM5) atomic
charges [32], are a great representation of atoms in molecules
that can be used in combination with an ML model to predict a
variety of properties. These properties encompass the site of
metabolism [31,33], the strengths of hydrogen bond donors and
acceptors [34-36], and the regioselectivity of electrophilic aro-
matic substitution reactions [14]. Building on the methodology
from Finkelmann et al. [30,31] and Ree et al. [14], we utilize
the automated approach to compute CM5 atomic charges from
semiempirical tight-binding (GFN1-xTB [37]) calculations. We
modify the workflow to enhance the accuracy of the computed
CM5 atomic charges. Instead of generating a single random
conformer, we produce 20 random conformers from a SMILES
string and optimize the structure with molecular mechanics
force fields [38] using RDKit [16]. The CM5 atomic charges of
the lowest-energy conformer are then used to generate atomic
descriptors based on sorting the CM5 charges for a given atom
of the input SMILES string. Furthermore, we adjust the shell
radius from 5 to 6, improving the performance of the ML model
to predict pKa values as detailed in Supporting Information
File 1, section “The descriptor”.

Data preparation and hyperparameter optimization
Building on the procedure outlined by Ree et al. [14], we
employ the Optuna framework (v. 3.3.0) [39] to identify
optimal hyperparameters for LigthGBM regression and classifi-
cation models [6]. Specifically, the Bayesian optimization tech-
nique utilizing the tree-structured Parzen estimator is applied
for hyperparameter space exploration. For the regression task,
the target value are the QM-computed pKa values. For the
binary classification task, which aims to predict the site with the
lowest QM-computed pKa value, labels are assigned in the
following manner: ‘1’ for the lowest QM-computed pKa value
(true site) and ‘0’ for all other QM-computed pKa values. As
there is sometimes a slight variation between the pKa value and
the other pKa values, we also introduce a tolerance where a pKa
value within +1 pKa units or +2 pKa units of the lowest pKa
value is accepted as ‘1’ to account for these variations, see Sup-
porting Information File 1, section “Machine learning models”
for more information. Further, given the significant imbalance
between the two classes (with ‘0’s far outnumbering ‘1’s), the
hyperparameter scale_pos_weight is invoked during hyperpara-
meter optimization. Finally, we establish a “null model” for the
classification task, wherein all sites are predicted as ‘0’.

The dataset with QM-computed pKa values (775 compounds;
3910 pKa values) is initially split randomly by compound into a
training set (80%; 620 compounds; 3121 pKa values) and a

held-out test set (20%; 155 compounds; 789 pKa values). For
each ML model, we carry out a fivefold randomly shuffled
cross-validation. Within each fold, the original training set is
further split randomly into a new training set (90% of the orig-
inal training set) and a validation set (10% of the original
training set). This allows us to evaluate different models and
estimate their performance. Hereafter, each ML model is trained
on our original training set and tested against the held-out test
set. Finally, we select the best-performing ML model.

Results and Discussion
Computing pKa values
From section “The quantum chemistry-based workflow” above,
we can determine the empirical values a and b in Equation 2.
For each set of deprotonated sites in a molecule, we extract the
computed  value and fit it against the experimental pKa
values. Hereafter, we convert the computed  to QM-com-
puted pKa values using Equation 2. We then inspect outliers that
exceed an absolute pKa unit difference of 5 pKa units between
the experimental pKa value and the QM-computed pKa value.
We choose an absolute pKa unit difference of 5 pKa units to
ensure that the QM-computed pKa is well above the error that is
to be expected on the level of theory we are using (CAM-
B3LYP). The observed outliers typically result from one of the
following reasons: (i) calculation errors concerning the ex-
pected minimum pKa site, (ii) discrepancies between literature
structures and database structures, (iii) mislabeled experimental
pKa values, or (iv) extrapolated pKa values. Notably, the extra-
polated pKa values correspond to compounds beyond the scale
measurable in DMSO (pKa ≥ 35) because of the autoprotolysis
of DMSO (pKa(DMSO) = 35) [40,41]. For more information
regarding finding and removing outliers, see Supporting Infor-
mation File 1, section “Finding outliers”. After multiple itera-
tions, we identified 695 molecules to have reliable experimen-
tal pKa values and computed  values. The values for the
computed  are then fitted against the experimental pKa
values, leaving us with empirical constants a and b; see
Figure 1. We now use the derived linear regression to convert
all computed ΔG° values into QM-computed pKa values for our
whole dataset (775 compounds). These values are used as target
values for the ML part.

Machine learning models for predicting C–H
pKa values
To learn and predict C–H pKa values, we train a LightGBM
regression model with our generated dataset containing
QM-computed pKa values (775 compounds; 3910 pKa values).
Hereafter, we correlate and compare the ML-predicted pKa
values and the QM-computed pKa values and achieve a MAE
and a RMSE of 1.24 and 2.15 pKa units, respectively, for the
held-out test set (155 compounds; 789 pKa values), as illus-
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Figure 1: Correlating computed  values and experimental pKa
values for 695 compounds. r: Pearson correlation coefficient;
ρ: Spearman’s rank correlation coefficient; MAE: mean absolute error;
RMSE: root mean squared error. QM calculations were carried out at
the CAM-B3LYP/def2-TZVPPD CPCM(DMSO)//GFN2-xTB
ALPB(DMSO) level of theory.

trated in Figure 2. When zooming in on the ML-predicted pKa
values that are not correlating well with the QM-computed pKa
values, we find C–H sites that are either bridgeheads or where
the negative charge is stabilized by resonance. This may be due
to the nature of the chosen descriptor vector based on sorted
CM5 atomic charges as it may not take into account, for exam-
ple, steric strain and charge delocalisation. We discuss this
further in Supporting Information File 1, section “Outliers for
the test set”.

We then compare our ML model with previously reported ML
models for predicting pKa values, namely, the GCNN C–H pKa
predictor by Roszak et al. [3] and the XGBoost pKa predictor by
Yang et al. [5]. Roszak et al. [3] used a mix of experimental
data (414 compounds) [7], manually curated DFT data
(212 compounds), and previously reported DFT data (194 C–H
sites) [11]; they obtained a MAE of 2.18 pKa units for their test
set. Yang et al. [5] used filtered entries from the iBonD dataset,
comprising 15338 compounds and 19397 pKa values across 39
solvents [5]. As they not only predict C–H pKa values, we
cannot compare our result with their best ML model. However,
they also report a holistic six-solvent (HM-6S) XGBoost model
in DMSO (9.3% of the data), which most likely contains the
majority of C–H pKa values. For this XGBoost model, they
achieved MAE and RMSE values of 1.53 and 2.35 pKa units,
respectively. A comparison between our ML model, the GCNN

Figure 2: ML-predicted pKa values vs QM-computed pKa values of the
held-out test set (155 compounds; 789 pKa values). r: Pearson correla-
tion coefficient; ρ: Spearman’s rank correlation coefficient; MAE: mean
absolute error; RMSE: root mean squared error. All predictions were
made using the best ligthGBM regressor. All calculations were carried
out at the CAM-B3LYP/def2-TZVPPD CPCM(DMSO)//GFN2-xTB
ALPB(DMSO) level of theory.

model of Roszak et al., and the model of Yang et al. is shown in
Table 1. While a direct comparison with these studies is not
feasible because of differing datasets, our model surpasses
Roszak et al.’s GCNN model by a MAE of 0.94 pKa units and
outperforms Yang et al.’s HM-6S model by a MAE of 0.29 pKa
units.

Table 1: Comparing different ML models for predicting pKa values.
Mean absolute error (MAE) and root mean squared error (RMSE) are
provided in pKa units.

Method MAE RMSE

LGBM (this work) 1.24 2.15
GCNN [3] 2.18 —
XGBoost HM-6S (DMSO)a [5] 1.53 2.35

aHM-6S: Table 7 in their paper.

Predicting the lowest C–H pKa value
Now that we can fairly accurately predict pKa values with our
LightGBM regressor, another use case is to be able to identify
the C–H site with the lowest pKa value to predict the site of
reaction. For this purpose, we treat the task as a binary classifi-
cation and train both a LightGBM classifier and a LightGMB
regressor. As described earlier in section “Data preparation and
hyperparameter optimization”, the QM-computed pKa values
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Table 2: Test set performance metrics: comparison between a LightGBM classifier and a LightGBM regressor for binary classification of the lowest
pKa site. Reaxys performance metrics: comparison between a LightGBM classifier and a LightGBM regressor for binary classification of the reaction
site in Reaxys. The best model is marked in bold.a

Test set performance metrics Reaxys performance metrics
method ACC MCC PPV TPR TNR NPV ACC MCC PPV TPR TNR NPV

null modelb 0.80 0 0 0 1.00 0.80 0.87 0 0 0 1.00 0.87
classifier 0.97 0.92 0.97 0.90 0.99 0.98 0.92 0.70 0.64 0.85 0.93 0.98
regressor 0.99 0.97 0.97 0.98 0.99 1.00 0.96 0.82 0.84 0.84 0.98 0.98

aACC: accuracy; MCC: Matthew's correlation coefficient; PPV: precision/positive predictive value; TPR: recall/true-positive rate; TNR: specificity/true-
negative rate; NPV: negative predictive value. bAll predicted pKa values are “0” to highlight the imbalance of the dataset.

are translated into binary values, with ‘1’ representing the
lowest QM-computed pKa value and ‘0’ representing other
QM-computed pKa values. The performance metrics for the test
set demonstrate that the regression model (MCC of 0.97)
outperforms the classification model (MCC of 0.92) when used
as a binary classifier, as seen in Table 2.

Now we train a LightGBM classifier and a LightGMB regressor
for the entire dataset (775 compounds; 3910 pKa values) of
QM-computed pKa values to assess the generalization capa-
bility of our ML models. We use an out-of-sample dataset of
1043 pKa-dependent reactions from Reaxys, containing 584
aldol, 408 Claisen, and 51 Michael reactions. These reactions
are chosen because they all involve a deprotonation step, and
the C–H site with the lowest pKa value is most likely the site of
the reaction. We also use these reactions for comparison with
Roszak et al. [3], who evaluated their GCNN model against
12873 pKa-controlled reactions, including aldol, Claisen and
Michael reactions, and correctly predicted the reacting site with
an accuracy of 90.5%. Our out-of-sample set is also used to see
how well our ML models predict the site of reaction using the
lowest ML-predicted pKa value.

To understand the result for the out-of-sample set, we show
three different reactions in Scheme 1. The first step of the reac-
tion shown in Scheme 1a is an aldol reaction where the depro-
tonation occurs at the least substituted C–H site next to the ke-
tone (black arrow). Our ML model predicts a pKa value of 24.7
for the experimental site of reaction. Also, our ML model
predicts that the reaction site should be at the highlighted circle.
For this site, the ML model predicts a pKa value of 16.4. It is
generally accepted that the most substituted C–H site next to a
ketone will form the more stable carbanion (thermodynamic
anion), whereas the least substituted carbanion will be the least
stable carbanion (kinetic anion). This can generally be con-
trolled by the type of base used. For the reaction in Scheme 1a,
n-BuLi is commly used, which is known to lead to the kinetic
anion. Because our ML model relies on the principle of lowest

energy, it predicts the site with the lowest pKa value as the site
of reaction (thermodynamic carbanion) and does not account for
the type of base used.

Going to Scheme 1b, we look at a Claisen reaction where the
experimental site of reaction occurs at the least substituted ke-
tone. Our ML model predicts the pKa value here to be 20.5;
however, the lowest ML-predicted pKa value is 4.2. Again, the
ML model correctly predicts the most stable carbanion (lowest
pKa value), but other factors come into play when synthesizing
compounds.

Last, we have an example of the Michael reaction in
Scheme 1c. Here, both the experimental site of reaction and the
ML-predicted site of reaction match. Our ML model predicts
the lowest pKa value to be 12.5, whereas the second lowest
ML-predicted pKa value is 21.9 (the least substituted C–H next
to a ketone). For more information, see Supporting Information
File 1, section “Outliers for Reaxys”.

When we evaluate our ML models on the whole out-of-sample
set, we again find that the regression model (MCC of 0.82)
outperforms the classification model (MCC of 0.70) when used
as a binary classifier as seen in Table 2. While a direct compari-
son cannot be made between Roszal et al.’s results [3] and ours,
we find our result to outperform theirs with an accuracy of 0.96.
In general, it is surprising that the LightGBM regressor outper-
forms our LightGBM classifier as Ree et al. [14] have shown
the opposite to be true for electrophilic aromatic substitutions.
However, our regression model serves a dual function, that is, it
accurately predicts pKa values and identifies the reaction site.

Prediction of aryl C–H borylation sites
In the previous section, we showed that our ML model is able to
predict the reaction site for pKa-dependent reactions. Now, we
test the ML model on a more complex reaction type, namely,
borylation reactions. Caldeweyher et al. [45] presented a work-
flow to predict the iridium-catalyzed borylation site of aryl C–H
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Scheme 1: Predicting the reaction site for three different reactions from the out-of-sample dataset from Reaxys. (a) Aldol reaction, Reaxys reaction
ID: 9947221 [42]; (b) Claisen reaction, Reaxys reaction ID: 3402137 [43]; (c) Michael reaction, Reaxys reaction ID: 29819768 [44]. Arrow: experimen-
tal site; teal filled circle: ML-predicted lowest pKa.

bonds (SoBo) [45] and experimentally validated their approach
using six pharmaceutical intermediates from medicinal chem-
istry programs. In the article, they state that ”Iridium catalysts
ligated by bipyridine ligands catalyze the borylation of the aryl
C–H bonds that are most acidic and least sterically
hindered…”[45]. For this reason, we tested both our QM work-
flow and the ML model to see how well they identify the reac-
tion site when only considering the lowest aromatic C–H pKa
value; see Figure 3. For both methods, we identify the possible
site of reaction if the pKa value is within 1.5 pKa units of the
lowest pKa value. This is slightly different from our previous
approach. However, because of the higher complexity of the
reaction and the similarity of aromatic C–H sites, we purposely
allow the QM workflow and the ML model to assess more sites
as ‘1’ or true site. When the pKa value is within 1.5 pKa units,
we also ensure that we are within the range or the uncertainty of
the QM-computed pKa values, which have a MAE of 1.48, as
discussed in section “Computing pKa values”.

For compound 1, the ML model predicts two low-pKa sites, in-
dicated by filled circles, of which none corresponds to the ex-
perimentally observed site of borylation, indicated by the arrow.

However, the QM workflow predicts the correct site as the
black ring indicates. Overall, the QM workflow accurately
predicts four of the six borylation sites, although, in the case of
compounds 2 and 6, there are additional sites with nearly iden-
tical pKa values. In the case of compound 3, most chemists
would expect the pKa of pyrazole C–H sites to be considerably
lower than those on the benzene ring, suggesting that factors
other than pKa determine the site of borylation for this com-
pound. In the case of compound 5, the most likely explanation
is that the site with the lowest QM-computed pKa value is steri-
cally hindered compared to the experimentally observed site of
borylation. The ML model predicts three borylation sites
correctly, but, in the case of compound 5, there are two addi-
tional sites with low pKa values. One failure is for compound 3,
where the QM workflow also fails; however, for compounds 1
and 4, the ML model fails, while the QM workflow accurately
predicts the site of borylation. This indicates that these com-
pounds are not well represented in the training set.

Conclusion
We introduce pKalculator, an automated QM-based workflow
that computes C–H pKa values with a MAE of 1.48 and a
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Figure 3: Predicting the site of borylation for a set of six experimentally reported borylation reactions [45]. Arrow: major experimental site/prediction by
SoBo; black ring: QM-computed lowest pKa + 1.5; teal filled circle: ML-predicted lowest pKa + 1.5.

RMSE of 1.81 when correlating with experimental pKa values.
We use this method to generate training data for an atom-based
regression model that delivers fast and relatively precise predic-
tions with MAE and RMSE values of 1.24 and 2.15, respective-
ly, when correlating with QM-computed pKa values. Both
methods are freely available under the MIT license. Our work-
flow can function as a filtering tool for computer-aided synthe-
sis planning for the synthesis of various pKa-dependent reac-
tions (aldol, Michael, and Claisen), evidenced by its accurate
predictions of reaction sites for 1043 reactions (MCC of 0.82).
Looking ahead, we aim to explore more reactions that depend
on C–H pKa values, further enhancing the utility of pKalculator
for synthetic chemists. Future iterations will consider factors
such as a more extensive and diverse training set, as well as
steric hindrance and base reactivity, ensuring even more precise
predictions for reaction sites.
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