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Abstract
We report the synthesis and characterization of naphthalene and anthracene scaffolds end-capped by cyclic imides. The solid-state
structures of the N-phenyl derivatives, determined by X-ray crystallography, reveal changes in packing preference based on the
number of aromatic rings in the core. The optical and electronic properties of the title compounds compare favorably with other
previously described isomers and expand the toolbox of electron-deficient aromatic compounds available to organic materials
chemists.
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Introduction
Aromatic diimides are ubiquitous molecular scaffolds that have
served as the basis for robust polymers, supramolecular assem-
blies, and (opto)electronic materials. The vast majority of this
research has focused on 1,2,4,5-benzene (pyromellitic), 1,4,5,8-
naphthalene, and 3,4,9,10-perylene diimides. Beyond these,
researchers have demonstrated that translocating the cyclic
imides around the periphery of the aromatic core to yield differ-
ent structural isomers is effective for producing interesting new
materials. Ourselves and others have investigated 1,2,3,4-
benzene diimide, also known as mellophanic diimide [1], as a
building block for heteroacenes [2-5] and polyimides [6-8]. The

1,2,5,6- [9,10] and 2,3,6,7-naphthalene diimides (NDIs) have
been produced and utilized in electronically active polymers
(Figure 1). The linear extension of 1,4,5,8-naphthalene diimide
to produce tetracene [11] and hexacene [12] diimides, some
with interesting properties such as near-IR absorption, has been
achieved as well. Other efforts have demonstrated that
anthracene diimides (ADIs) can be tuned to achieve decent elec-
tron mobilities in electronic settings [13,14]. Although there
have been calculations conducted that suggest 6-membered
cyclic imides are more compelling than 5-membered cyclic
imides in organic electronic materials [15], the experimental ob-
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Figure 1: a) Structures of previously reported naphthalene and anthracene diimide isomers. b) The novel 1,2,3,4-naphthalene and -anthracene
diimides reported here.

servation of similar electron mobilities across different struc-
tural isomers of naphthalene and anthracene diimide [16]
confirms the need to experimentally evaluate the unstudied
isomers.

We became interested in the cata- (i.e. 1,2,3,4-) derivatization
of aromatic scaffolds because it can be exploited to stabilize the
longer (hetero)acenes. In contrast to cata-benzannulation, cata-
imide-annulation does not perturb aromaticity patterns and
further introduces inductive stabilization of frontier MO levels,
which has enabled the production of n-type organic thin-film
transistors from heteroacenes. Inspired by these results, we
sought to demonstrate the preparation of all-carbon scaffolds,
i.e., acenes, that are cata-annulated with cyclic imides. Here, we
communicate the successful synthesis of 1,2,3,4-NDIs and
-ADIs and the characterization of their physical properties.

Results and Discussion
Synthesis
The synthesis of the title compounds is shown in Scheme 1. To
obtain a naphthalene core with the requisite 1,2,3,4-tetracar-
bonyl derivatization pattern, we leveraged the cycloaddition of
1 equiv of aryne percursor 1 with 2 equiv of dimethyl
acetylenedicarboxylate (DMAD). Although this [2 + 2 + 2]
cycloaddition reactivity strategy has been reported under a
variety of aryne generation conditions [17-19], in our hands we
were only able to generate practical amounts of tetraesters 3
using the method reported by Peña et al. [18]. Hydrolysis of 3

with sodium hydroxide, followed by acidification with HCl,
yielded a mixture of carboxylic acids and anhydrides 5, as evi-
denced by 1H NMR spectroscopy (Figure S13 in Supporting
Information File 1). Gratifyingly, purification of these mixtures
was not necessary as they could be used directly for imidiza-
tion. Heating 5 with hexylamine or aniline in refluxing acetic
acid successfully led to the formation of the targeted aromatic
diimides bearing either N-hexyl (7-Hex) or N-phenyl (7-Ph)
substitutions in good yields. The same strategy was employed to
create the imide-capped anthracenes 8-Hex and 8-Ph.

Crystallography
Despite exhaustive efforts, we were unable to obtain single
crystals of 7-Hex and 8-Hex; these compounds formed poly-
crystalline bundles that are fragile and insufficient for obtain-
ing diffraction data. Fortunately, single crystals of the N-phenyl
compounds were successfully grown by slow evaporation of
CH2Cl2/MeOH solutions and characterized by X-ray crystallog-
raphy. 7-Ph crystallizes in the Pbcn space group into a solvent
superstructure of π-stacked columns of 7-Ph. The imide groups
are pointed in alternating directions within a stack. While this
may occur in part as a consequence of the steric demands of the
N-phenyl groups, there are also C–H···π interactions between
phenyl groups of adjacent π stacks, with the closest Ph centroid
to H distance being 2.613 Å (Figure 2a). Additionally, the
middle carbonyl oxygens are in short contact (2.376 Å) with the
7- and 8-H atoms of the naphthalene in the adjacent molecule
(Figure 2a).
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Scheme 1: a) Synthesis of the 1,2,3,4-naphthalene and -anthracene diimides. Conditions: i) CsF/Pd2(dba)3/MeCN; ii) NaOH/H2O/THF, then HCl;
iii) R-NH2/AcOH. b) X-ray crystal structures of 7-Ph and 8-Ph.

Figure 2: Superstructures for a) 7-Ph and b) 8-Ph as determined by X-ray crystallography. Representative C=O···H–C and C–H···π interactions are
indicated in teal and magenta, respectively. Top-down views of π-stacking modes in c) 7-Ph and d, e) 8-Ph. Hydrogen atoms have been removed for
clarity in c–e. Atom color code: C = tan, H = white, Cl = green, N = blue, and O = red.

On the other hand, 8-Ph crystallizes in the Pbca space group
with two molecules of interest along with one molecule of
CH2Cl2. Pairs of 8-Ph molecules are π-stacked together with
their imide groups oriented in opposing directions (Figure 2d)

in a fashion analogous to that observed for 7-Ph (Figure 2c).
These pairs, however, are then infinitely packed such that adja-
cent 8-Ph molecules are aligned in the same direction to create
an AA–BB stacking pattern, unlike the more common
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Figure 3: a) Absorption and b) emission spectra of the compounds dissolved in CH2Cl2.

A–B–A–B stacking pattern found for 7-Ph. Additionally, it is
worth observing that the π-interaction involving two 8-Ph mole-
cules pointed in the same nominal direction is not linearly
aligned, but is instead twisted by 19°. This angle, likely
enforced by the sterics of the phenyl groups, may be an interest-
ing approach to inducing helical turns in supramolecular assem-
blies derived from the title compounds.

Despite this different packing mode within the stack, the inter-
stack interactions exhibited by 8-Ph are similar to those found
in 7-Ph. Although there are still observable C–H···π interac-
tions and C=O···H–C interactions between stacks, they appear
to be weaker, as evidenced by the longer interaction distances
and interceding incorporation of CH2Cl2 (Figure 2b). Further-
more, in 8-Ph the interstack C=O···H–C interaction is skewed
such as to involve only one C=O, compared to the symmetric
dual-contact that is seen for 7-Ph.

Optical and electronic characterization
The absorption spectra of the diimides dissolved in CH2Cl2 are
depicted in Figure 3a. All of these compounds exhibit broad
absorption bands. 7-Hex has more well-defined features with
λmax = 391 nm while 7-Ph has a slightly longer wavelength
absorption with λmax = 398 nm. A similar trend is observed for
8-Hex and 8-Ph, with λmax = 489 and 499 nm, respectively.
These absorption features are roughly comparable to other
naphthalene and anthracene diimides that have been reported in
the literature. The emission profiles of all four compounds are
shown in Figure 3b. While N,N’-dibutyl-1,4,5,8-naphthalene
diimide has low fluorescence intensity (Φ = 0.006) [20], 7-Hex
emits more efficiently with Φ = 0.41. Interestingly, 7-Ph has
nearly no emission intensity, as evidenced by the low signal-to-
noise ratio in the data and a near-zero quantum yield when

excited at 400 nm. This fluorescence quenching is likely related
to non-radiative emission that is observed for N-phenyl-substi-
tuted imides [21]. It is possible this effect is more significant for
7-Ph than 8-Ph because the naphthalene core is less conforma-
tionally locked than the anthracene scaffold.

As is expected for aromatic diimides, the title compounds
undergo reversible chemical reduction processes, as determined
by cyclic voltammetry in CH2Cl2 solvent (Figure 4). There are
two factors at play. The imide substitution is impactful as the
N-phenyl derivatives are roughly by 100 mV easier to reduce
than the N-hexyl analogs. The anthracene scaffold also lends
itself to a more facile reduction process, with an approximately
150 mV shift of the event toward more positive potentials for
8-R vs 7-R. When compared to other structural isomers, aro-
matic diimides with 5-membered cyclic imides tend to be
slightly harder to reduce than those with 6-membered cyclic
imides (Table 1). Overall, however, the cata-annulation does
not lead to substantially different electrochemical behavior,
which is encouraging because we had anticipated that the
deflection away from planarity caused by adjacent placement of
cyclic imides might adversely affect extent of π-delocalization.

As part of our previous work constructing heteroacenes bearing
cata-imide groups, we investigated the 9,10-diaza analog of
compound 8-Hex (9, Figure 5). It is interesting to note that the
all-carbon scaffold in 8-Hex results in a narrower bandgap than
that of 9, with Δλmax = 85 nm. This difference can be attributed
to a significantly higher HOMO level in 8-Hex arising from
having fewer electronegative atoms in the aromatic backbone.
For the same reasons, compound 9 is a superior electron
acceptor by 0.36 V. These trends confirm the value of back-
bone atom substitution for fine-tuning molecular properties.
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Table 1: Summary and comparison of optical and electronic properties.

E½ (V vs Fc/Fc+)a

E2r
(V)

E1r
(V)

λmax
b

(nm)
λem
(nm)

Eg
c

(eV)
LUMOd

(eV)
HOMOe

(eV)
Φ

7-Hex −1.83 −1.33 391 450 2.82 −3.5 −6.3 0.41
7-Ph −1.74 −1.23 398 519f 2.64 −3.6 −6.2 <0.01
1,2,5,6-NDI [9] −1.20g −3.6
1,4,5,8-NDI [22] −1.51 −1.10 370 3.18 −3.7 −6.9 0.006 [20]
8-Hex −1.66 −1.19 489 575 2.15 −3.6 −5.7 0.20
8-Ph −1.56 −1.09 498 595 2.07 −3.5 −5.6 0.04
1,9,5,10-ADIh [14] −1.40g −1.10g 480 525 2.2 −3.8 −6.0
2,3,6,7-ADI [13] −1.69
9 [2] −1.30 −0.76 404 2.56 −4.2 −6.8

aUnless otherwise noted, ca. 1 mM analyte in CH2Cl2, 0.1 M Bu4NPF6. bUnless otherwise noted, longest wavelength absorption maxima of analyte in
CH2Cl2 solution. cOptical bandgap estimated from absorption onset. dLUMO estimated from reduction onset. eHOMO = LUMO − Eg. fLow intensity
emission. gEstimated from graphical data. hPhCl solvent.

Figure 4: Cyclic voltammograms of the compounds collected on
ca. 1 mM solutions of the analyte in CH2Cl2 with 0.1 M Bu4NPF6 as
electrolyte. The major y-axis tick mark spacing corresponds to 5 μA.

Figure 5: Structural formula of 9, the diaza-analog of compound 8-Hex
that was reported previously [2].

Conclusion
In conclusion, we have demonstrated the facile construction of
two new aromatic diimide scaffolds: 1,2,3,4-naphthalene and
-anthracene diimides through a cycloaddition approach to
construct the aromatic backbone prior to imide formation. The
physical characterization of the title compounds indicates that
they are optically and electronically similar to previously re-
ported naphthalene and anthracene diimides, absorbing/emit-
ting light in the visible region and readily undergoing one-elec-
tron-reduction processes. As such, this work opens the possibili-
ty of incorporating the 1,2,3,4-naphthalene and -anthracene
diimide motifs as productive building blocks in imide-based
organic materials.
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