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In this work, we report an efficient approach to 2-oxoazetidine-3-carboxylic acid derivatives based on a thermally promoted Wolff

rearrangement of diazotetramic acids in the presence of nucleophiles. The method allows easy variation of the substituent in the

exocyclic acyl group by introducing different N-, O-, and S-nucleophilic reagents into the reaction. The reaction of chiral diazo-

tetramic acids leads exclusively to trans-diastereomeric B-lactams. The use of variously substituted diazotetramic acids, including

spirocyclic derivatives, as well as a wide range of nucleophiles provides access to a structural diversity of medically relevant

2-oxoazetidine-3-carboxylic acid amides and esters.

Introduction

The importance of the B-lactam (azetidin-2-one) scaffold to me-
dicinal chemistry and drug design is self-evident. This four-
membered heterocycle is a key fragment of many antibiotics
[1], including penicillin and its analogues, as well as other phar-
macologically important molecules [2]. Therefore, the search
for new efficient and versatile methods for the preparation of
structurally diverse B-lactam derivatives is of great importance

and relevance.

Continuing the investigation of the reactivity and synthetic
potential of diazotetramic acids (1), we have recently shown
that these diazo reagents can act as precursors of f-lactam
ketenes 2 generated by a thermally promoted Wolff rearrange-
ment [3]. The interaction of such ketenes with nucleophiles of
different nature could serve as a source of libraries of struc-
turally diverse 2-oxoazetidine-3-carboxylic acid derivatives 3
(Scheme 1).
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Scheme 1: Synthetic routes to 2-oxoazetidine-3-carboxylic acid derivatives.

The 2-oxoazetidine-3-carboxylic acid derivatives (mainly
amides) exhibit various types of biological activity, among
which the following can be highlighted: inhibition of B-lacta-
mases [4,5], antitubercular properties [6], antiproliferative and
antibacterial activity [7], herbicidal properties [8,9], inhibition
of neutral amino acid transporter (SLC6A19) [10]. Hence,
developing new synthetic methods to create structurally diverse
2-oxoazetidine-3-carboxylic acid derivatives is a highly valu-
able endeavour that could have a positive impact on future drug

discovery.

Most synthetic approaches to amides and esters of 2-oxoazeti-
dine-3-carboxylic acids reported in the literature are based on
the construction of the B-lactam ring (Scheme 1). The main
methods include the [2 + 2] cycloaddition of acyl ketenes,
generated by various methods, with imines [11-14] and the
Wolff rearrangement of y-amino-a-diazo-p-ketoesters followed
by intramolecular cyclization [15,16]. Additionally, the
manganese(I1l)-promoted cyclization of N-alkenyl malon-
amides [17,18] and the Cu(l)-catalyzed reaction of propiolic
acid derivatives with nitrones (Kinugasa reaction) [19-21]
should also be mentioned, as well as intramolecular C—H inser-
tion using diazomonomalonamides under the action of various
catalysts which is a very efficient method for preparing
B-lactam esters [22-25].

At the same time, from the point of view of easy variation of

the substituent in the exocyclic acyl group (RX), a method
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allowing the introduction of this moiety at the last step of
the synthesis would be of great demand. We proposed that,
besides modifying the 2-oxoazetidine-3-carboxylic acids them-
selves, such an approach could involve diazotetramic acids,
subjected to thermal Wolff rearrangement, with various nucleo-
philes.

The application of the Wolff rearrangement in organic synthe-
sis as a route to generate ketenes is being actively investigated,
involving both acyclic and carbocyclic diazocarbonyl com-
pounds [26]. At the same time, the use of diazoheterocyclic
reagents (including diazotetramic acids) in this transformation,
with the formation of heterocyclic ring contraction products, is
represented in the literature only by isolated examples [27-31].
In addition, photoinitiation is mainly used, while the possibili-

ties of thermolysis remain virtually unexplored.

Herein, we report our findings obtained while investigating a
synthetic approach to 2-oxoazetidine-3-carboxylic acid deriva-
tives based on the thermally promoted Wolff rearrangement of
diazotetramic acids.

Results and Discussion

Diazotetramic acid derivatives 1 are available in a wide variety
using the techniques described previously [32]. The conditions
for their thermal decomposition were tested in a previous study
[3]. The reaction requires rather severe heating under micro-

wave irradiation (200 °C, chlorobenzene, sealed vial), ensuring
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complete conversion of the diazo compound in a rather short
time.

Initial experiments using p-anisidine as a nucleophile showed
that the target f-lactam derivative 3a could be obtained in high
yield (83%) after simple chromatographic separation of the
reaction mixture (Scheme 2). When the synthesis was carried

out using conventional heating in 1,2-dichlorobenzene (200 °C,

1 h), product 3a was obtained in slightly lower yield (75%), so
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further experiments were carried out using microwave activa-
tion. We then introduced various aromatic and aliphatic amines
as well as alcohols and mercaptans into the reaction. In order to
demonstrate the structural diversity of the compounds obtained,
a wide range of diazotetramic acids 1 of different structures was
used. It can be observed that the 5-monosubstituted diazo deriv-
atives, and especially those with no substituents in position 5,
form the target products in lower, often moderate yields (see

products 3i.j,n and 3r,s,t) compared to the 5,5-disubstituted
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Scheme 2: Scope of diazotetramic acids 1 thermolysis in the presence of various nucleophiles. PMP = p-methoxyphenyl, PCP = p-chlorophenyl,
PMB = p-methoxybenzyl, PFB = p-fluorobenzyl; reaction scale — 0.25 mmol; scaled-up (1.5 mmol) yield.
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(spirocyclic) analogues. This result may be related to the lower
stability of the less-substituted f-lactam derivatives under
thermolysis conditions. Additional alkyl substituents sterically
shield the ring and prevent an unwanted nucleophilic attack
leading to product degradation.

In reactions with alcohols and mercaptans, the corresponding
esters 3k—n,r and thioesters 30—q were successfully obtained in
moderate to high yields. The synthesis of compound 3k was ad-
ditionally carried out on a scaled-up experiment (1.5 mmol vs
0.25 mmol), allowing sufficient amounts to be obtained for
further modifications (vide infra). However, a marked decrease
in the yield (78% vs 96%) was observed upon scaling up.

In the case of products with two stereogenic centers (3r-t), the
formation of a single frans-diastereomer was observed. Accord-
ing to literature data, the vicinal coupling constants in the 3,4-
disubsituted B-lactam cycle have characteristic values for the
two diastereomers, lying in the intervals 5.5-6.0 Hz and
1.5-2.5 Hz for the cis and trans forms, respectively [33,34].
This makes it easy to assign the stereochemistry of the products
obtained. Additional confirmation was gained from X-ray anal-
ysis data for structure 3t (Scheme 2).

In some cases, we were unable to isolate the target product of
the reaction, which was either observed in trace amounts or was
not detected in the reaction mixture at all, making it extremely
difficult to interpret (Scheme 3). Negative results were ob-
served for dimethyl and tosylhydrazine, N-ethylpiperazine, and
B-methoxyethylamine. Attempts to obtain directly 2-oxoazeti-
dine carboxylic acid (or its decarboxylation product) or its
trifluoroethyl ester by running the synthesis with water or tri-
fluoroethanol were also unsuccessful. Acylation of the m-exces-
sive double bonds of N-alkylindole and dihydropyran by the in
situ-generated ketene, previously described using carbocyclic
diazodiketones [35] were also unsuccessful. Of the diazo-
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tetramic acids, only the spiro adamantane derivative 1m was not
able to form the desired B-lactam. These reactions gave com-

plex mixtures of unidentified products.

o N,
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Scheme 3: Negative results with several N-, O-, and C-nucleophiles
and with diazo reagent 1m.

The benzyl esters 3k and 3n were converted into the corre-
sponding acids 4a,b by hydrogenolysis under mild conditions,
which proceeded in quantitative yields (Scheme 4). It should be
noted that this method of preparing pB-lactam acids compares
favorably with the alkaline hydrolysis of their methyl and ethyl
esters, which does not always give high yields of the target
compounds. When stored individually or in solution at room
temperature, the acids 4 gradually decompose and undergo
decarboxylation and other accompanying processes. The exam-
ple of acid 4a demonstrates the possibility of easy amidation to
form new B-lactam derivatives 3s and 3t (Scheme 4).
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Scheme 4: Preparation of acids 4 by hydrogenolysis of benzyl esters and examples of acid 4a amidation.
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Conclusion

We have developed a straightforward access to 2-oxoazetidine-
3-carboxylic acid derivatives based on the thermally promoted
Wolff rearrangement of diazotetramic acids in the presence of
different nucleophiles. The proposed method allows easy varia-
tion of the substituent at the exocyclic carbonyl group by
preformed ring contraction and interaction of the intermediate
ketene with the selected nucleophile. Various aromatic and ali-
phatic amines as well as alcohols and thiols can be used as
nucleophiles. 5-Monosubstituted diazotetramic acids give ex-
clusively trans-diastereomeric f-lactam products. The use of
variously substituted diazotetramic acids, including their spiro-
cyclic derivatives, provides access to a new structural diversity
of medically relevant B-lactam derivatives. The possibility of
transforming the obtained benzyl esters into 2-oxoazetidine-3-
carboxylic acids and their subsequent amidation has been
demonstrated.
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