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Electrochemical radical cation aza-Wacker cyclizations
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Abstract
Electrochemical or photochemical single-electron oxidation of bench-stable substrates can generate radical cations that offer unique
reactivities as intermediates in various bond-formation processes. Such intermediates can potentially take part in both radical and
ionic bond formation; however, the mechanisms involved are complicated and not fully understood. Herein, we report electrochem-
ical radical cation aza-Wacker cyclizations under acidic conditions, which are expected to proceed via radical cations generated by
single-electron oxidation of alkenes.
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Introduction
Activating bench-stable substrates is the first step to driving
bond formation and/or cleavage. Therefore, the discovery of
new modes for activation leads to reaction advancements. Elec-
trochemical [1-5] and photochemical [6-10] reactions that in-
duce single-electron reduction and oxidation are widely used in
modern synthetic organic chemistry [11-15]. Single-electron
oxidation of bench-stable substrates can generate radical cations
that offer unique reactivities as intermediates for various bond-
formation processes (also true for reduction). Because the reac-
tivities of radicals and ions are fundamentally different, their
creative use may pave the way for complementary bond forma-
tion. This merging is unique and such intermediates could
potentially take part in both radical and ionic bond formation.

However, the mechanisms involved can be complicated and are
not fully understood.

Alkenes and styrenes are representative radical cation precur-
sors that are widely used to realize the formation of unique
bonds. The respective radical cations are trapped by various
nucleophiles under radical and/or ion control, where kinetic
and/or thermodynamic effects are expected to be dominant.
Typical examples that clearly show the difference in such reac-
tivities are intramolecular cyclizations (Scheme 1). A radical
cyclization generates a five-membered ring with a less-stable
primary radical, while a six-membered ring with a secondary
cation is obtained through ionic cyclization. When such intra-
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molecular cyclizations are expected to proceed via radical
cations, there are several interpretations of the mechanisms
involved, since radical and ionic cyclizations are both possible.

Scheme 1: Radical and ionic intramolecular cyclizations.

In this context, electrochemical and photochemical aza-Wacker
cyclizations have provided interesting models for mechanistic
discussion (Scheme 2). For example, Moeller reported electro-
chemical reactions under basic conditions, which were pro-
posed to proceed via radicals [16-18]. Xu also reported electro-
chemical reactions via radicals, which were generated through
proton-coupled electron transfer [19]. On the other hand, Yoon
reported photochemical reactions under acidic conditions,
which were proposed to proceed via radical cations [20]. Since
electrochemical and photochemical aza-Wacker cyclizations
can offer ring systems that are difficult to construct through
state-of-the-art palladium-catalyzed methods, the mechanistic
understanding of these cyclizations would be of great help to
expand their synthetic utility. Described herein are electrochem-
ical aza-Wacker cyclizations under acidic conditions, which are
expected to proceed via radical cations.

Results and Discussion
The present work began by examining the electrochemical aza-
Wacker cyclization using the alkene 1 as a model (Table 1).
Based on the conditions reported by Yoon and Moeller, the
initial screening was carried out using tetrabutylammonium
triflate (Bu4NOTf)/1,2-dichloroethane (1,2-DCE) solution. Car-
bon felt (CF) was used as an anode instead of reticulated
vitreous carbon (RVC), with platinum (Pt) as a cathode. To our
delight, a constant-current condition at 1 mA was productive,
and the desired five-membered pyrrolidine 2 was obtained in
high yield (Table 1, entry 2). During the screening of condi-
tions, the addition of acetonitrile (CH3CN) was found to be
effective, probably due to the increased conductivity of the elec-
trolyte solution (Table 1, entry 1). The reaction did not take
place without electricity and most of the starting material was
recovered (Table 1, entry 3). The addition of trifluoroacetic acid
(TFA) was advantageous in terms of the reproducibility, which

Scheme 2: Electrochemical and photochemical aza-Wacker cycliza-
tions.
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Scheme 3: Scope of electrochemical aza-Wacker cyclization. Reaction conditions: the alkene (0.20 mmol), Bu4NOTf (0.1 M), TFA (1 equiv), CH3CN
(0.4 mL), and 1,2-DCE (3.6 mL). Yields reported here are isolated yields.

Table 1: Control studies for electrochemical aza-Wacker cyclization.a

Entry Deviation from the optimal
condition Yields of 2 + 3b

1 97 (0) + 0
2 no CH3CN 82 (0) + 0
3 no current 0 (75) + 0
4 no TFA 81 (3) + 0
5 AcOH instead of TFA 66 (5) + 0
6 constant potential at 1.8 V 74 (0) + 0
7c LiClO4/CH3NO2 0 (0) + 0
8c LiClO4/CH3NO2, no current 0 (0) + 96

aReaction conditions: alkene 1 (0.20 mmol), Bu4NOTf (0.1 M), TFA
(1 equiv), CH3CN (0.4 mL), and 1,2-DCE (3.6 mL). bDetermined by
NMR analysis. The recovered starting material is reported in paren-
theses. cLiClO4 (1 M) instead of Bu4NOTf (0.1 M).

was in good accordance with the observation reported by Yoon
(Table 1, entry 4). The use of acetic acid (AcOH) instead of
TFA gave a slightly lower yield of the five-membered pyrrol-
idine 2 (Table 1, entry 5). Although a constant-potential condi-
tion at 1.8 V was also productive, the constant-current condi-
tion gave better results (Table 1, entry 6). Previously, we re-
ported that lithium perchlorate (LiClO4)/nitromethane
(CH3NO2) solution was an effective medium to facilitate radical
cation reactions [21-25]. However, interestingly, it was not
productive for the electrochemical aza-Wacker cyclization
(Table 1, entry 7) and the six-membered piperidine 3, instead of
the five-membered pyrrolidine 2, was obtained in excellent
yield without electricity (Table 1, entry 8). Thus, it is proposed
that the electrochemical aza-Wacker cyclization under acidic
conditions proceeded via radical cations to give five-
membered pyrrolidine 2, while the six-membered piperidine 3
is formed through ionic cyclization under non-electrochemical
conditions.

With the optimized conditions in hand, the scope of the electro-
chemical aza-Wacker cyclization was investigated (Scheme 3).
Various aryl sulfonamides 4–6 were compatible to give the
respective five-membered pyrrolidines, except for that
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Scheme 4: Mechanistic studies of aza-Wacker cyclization. A: Electrochemical (Bu4NOTf in CH3CN/1,2-DCE), B: non-electrochemical (LiClO4 in
CH3NO2).

possessing a 2-nitro group 7. As discussed later with cyclic vol-
tammetric studies, the electron density in the aryl rings does not
seem to have a significant impact on the reaction. While benzyl
sulfonamide 8 was productive under the optimized conditions,
unprotected amine 9 was not compatible. Although gem-
dimethyl groups installed at the tether should have a positive
impact on intramolecular cyclization, they were not essential for
the reaction (10).

In order to obtain mechanistic insight into the aza-Wacker
cyclization, differently substituted alkenes 11, 14 were pre-
pared and subjected to the reaction under electrochemical and
non-electrochemical conditions (Scheme 4). In the case
of the trisubstituted alkene 11, the six-membered anti-
Markovnikov product 12 was selectively obtained under elec-
trochemical conditions, while the five-membered Markovnikov
product 13 was obtained in good yield under non-electrochemi-
cal conditions. In the case of the tetrasubstituted alkene 14,
the five-membered pyrrolidine 15 was selectively obtained
under electrochemical conditions, while both the five-
membered pyrrolidine 16 and six-membered piperidine 17
were obtained in good mass balance under non-electrochemical
conditions. Although the detailed mechanism remains an
open question, the electrochemical aza-Wacker cyclizations
might be radical reactions rather than ionic ones, since the six-

membered piperidine was not obtained from the tetrasubstitut-
ed alkene 14.

Cyclic voltammetric studies have provided further mechanistic
insights into electrochemical aza-Wacker cyclizations. As re-
ported by Yoon, a trisubstituted alkene is oxidized at signifi-
cantly lower potential than aryl sulfonamides, suggesting that
the reactions were initiated by single-electron oxidation of the
alkenes. Although a drop in oxidation potential for the alkene
was observed when tethered to an aryl sulfonamide, as detailed
by Moeller, rapid intramolecular cyclization would be the key
[26-28]. We also measured cyclic voltammograms for aryl
sulfonamides with and without trisubstituted alkenes (Figure 1).
As described above, the electron density in the aryl rings does
not seem to have a significant impact on the reaction, since
alkenes possessing methyl 2, methoxy 5, and trifluoromethyl 6
groups were all high yielding. This observation was supported
by the cyclic voltammetric studies, namely, their oxidation
potentials were similar. This suggests that the reactions are initi-
ated by single-electron oxidation of alkenes instead of aryl
sulfonamides, leading to unique radical cation aza-Wacker
cyclizations. The cyclic voltammogram of the aryl sulfonamide
without a trisubstituted alkene provides clear-cut experimental
evidence of this, since the oxidation potential was recorded at a
much higher value.
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Figure 1: Cyclic voltammograms for aryl sulfonamides.

Conclusion
In conclusion, we have demonstrated that electrochemical aza-
Wacker cyclizations are enabled under acidic conditions, and
are expected to proceed via radical cations. Synthetic outcomes
and cyclic voltammetric studies suggest that the reactions are
initiated by single-electron oxidation of the alkenes instead of
the aryl sulfonamides. Although the detailed mechanism
remains an open question, the electrochemical radical cation
aza-Wacker cyclizations might be radical reactions rather than
ionic ones, since five-membered pyrrolidine formation is
preferred over six-membered piperidine formation. Further
mechanistic studies of the electrochemical radical cation aza-
Wacker cyclizations are underway in our laboratory.

Experimental
Electrochemical aza-Wacker cyclizations: The appropriate
alkene (0.20 mmol), TFA (0.20 mmol), and CH3CN (0.4 mL)
were added to a solution of Bu4NOTf/1,2-DCE (0.10 M,
3.6 mL) while stirring at room temperature. The resulting reac-
tion mixture was electrolyzed at 1 mA using a CF anode
(10 mm × 10 mm) and a Pt cathode (10 mm × 20 mm) in an
undivided cell with stirring. The solution was diluted with water
and extracted with dichloromethane. The combined organic
layers were dried over Na2SO4, filtered, and concentrated in

vacuo. Yields were determined by 1H NMR analysis using
benzaldehyde as an internal standard (Table 1). Silica gel
column chromatography (hexane/ethyl acetate) gave the corre-
sponding ring compounds.
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