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Diketopyrrolopyrroles (DPPs) are a versatile group of dyes and pigments with valuable optoelectronic properties. In this work we

report the synthesis of highly fluorescent DPP derivatives through straightforward nucleophilic aromatic substitution reactions with

thiols and phenols. These nucleophilic substitutions occur at room temperature and manifest a remarkable selectivity for the 4-posi-

tion of the pentafluorophenyl groups. Both symmetrical (disubstitution) and non-symmetrical (monosubstitution) DPP derivatives

are formed in excellent overall yields. The optical properties of the newly synthesized compounds are also discussed. The new plat-

form may be useful for bioorthogonal chemistry.

Introduction

Diketopyrrolopyrroles (DPPs) are a class of organic pigments
discovered by serendipity in the 1970s [1,2]. Generally, N-un-
substituted DPP derivatives exhibit high melting points, low
solubility in most solvents, and strong absorption in the visible
region [3.4]. In turn, N-substituted DPP derivatives are soluble
in common organic solvents, exhibit large molar extinction
coefficients, Stokes shifts in the range of 10-70 nm and high
fluorescence quantum yields [5-7].

Due to their outstanding photophysical properties, DPP-based

dyes have been used in a wide range of applications, namely as

organic semiconductors [8], acceptors for organic solar cells
[9,10], as fluorescent probes [11-13], or as photosensitizers
for photodynamic therapy and antimicrobial photodynamic
therapy [14-17]. DPP derivatives with improved performance
or novel properties can be prepared by conventional chemical
modifications of simple DPP derivatives [3,18]. The most
frequently used transformations include: i) N-alkylation
with adequately functionalized alkyl groups [19-22], ii) N-aryl-
ation [23-25], and functionalization at the 3,6-di(het)aryl
groups via Suzuki—Miyaura [26-28] or Sonogashira [29-31]
reactions.
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In this study, we report a straightforward method to obtain a
diverse array of N-substituted DPP derivatives through a two-
step process. Firstly, the N-alkylation of Pigment Red 254 (DPP
1) is achieved using pentafluorobenzyl bromide, followed by a
nucleophilic aromatic substitution (SyAr) with thiols and
phenols. This approach is based on the well-established reactiv-
ity of perfluoroaromatic compounds in nucleophilic aromatic
substitutions [32-35]. By varying the reaction conditions and
the number of equivalents of the nucleophile, it is possible to
promote the substitution of one or more fluorine atoms. Nucleo-
philic substitution of fluorine atoms often necessitates harsh
conditions such as elevated temperatures, strong bases, or
strong nucleophiles, but our findings demonstrate that this

process can be conducted under remarkably mild conditions.

Results and Discussion

The initial step of our method involved the N-alkylation of DPP
1 with pentafluorobenzyl bromide (Scheme 1). Although a simi-
lar reaction had been previously reported for other DPP deriva-
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tives, the experimental conditions used (DMF, K,CO3, 120 °C,
2 h) resulted in very low yields (6-16%) for the formation of
N,N’-bis(pentafluorobenzyl)-DPP derivatives [36]. Changing
the base to NaH and performing the reaction at a lower temper-
ature, enabled to obtain DPP 2 in a reasonable yield (61%) and
allowed us to use it as a starting material for generating new
DPP derivatives through nucleophilic aromatic substitution

reactions with thiols and phenols.

The main objective of this study was to employ the N,N’-
bis(pentafluorobenzyl)-DPP 2 as an electrophile and investi-
gate its reactivity with thiols and phenols (Scheme 1). All SyAr
reactions were performed in dry DMF at room temperature, in
the presence of a base (K,COj3 or CspCOj3). Room temperature
was chosen due to the observed rapid degradation of the starting
material at elevated temperatures. The work described herein
allowed us to assess the potential of DPP 2 as a novel platform
for obtaining functionalized DPP derivatives. As anticipated, it
displayed reactivity with thiols and phenols through nucleo-
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Scheme 1: Synthesis of new diketopyrrolopyrroles via nucleophilic aromatic substitution.
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philic aromatic substitution at the pentafluorobenzyl groups,
yielding both symmetrical (disubstitution) and non-symmetri-
cal (monosubstitution) derivatives in satisfactory yields
(Scheme 1).

Thiols are excellent nucleophiles and generally react under mild
conditions, resulting in the substitution of the 4-F atom of the
pentafluorophenyl groups. In this case, reactions with thiols
were performed in dry DMF and K,CO3 was used as the base.
Three different thiols were tested: pyridine-4-thiol, pyridine-2-
thiol and 4-(acetylamino)benzenethiol. The reaction with pyri-
dine-4-thiol yielded a mixture of the di- and monosubstituted
compounds 3a and 4a in 51% and 23% yields, respectively.
Conversely, for the reaction with pyridine-2-thiol, exclusively
produced the disubstituted compound 3b in an 85% yield.
Furthermore, the reaction with 4-(acetylamino)benzenethiol led
to the selective formation of the disubstituted compound 3¢ in
53% yield.

Phenols are less nucleophilic than thiols and, depending on the
substitution pattern, a stronger base is often required to generate
the corresponding alkoxide, which is the effective nucleophile.
So, in this case, CspCO3 was employed as the base. The reac-
tion of DPP 2 with methyl 4-hydroxybenzoate yielded com-
pounds 3d and 4d in 56% and 14% yield, respectively. When
reacting with 4-(2,4,4-trimethylpentan-2-yl)phenol, the disubsti-
tuted compound 3e was obtained in 63% yield. In contrast to the
reaction with pyridine-4-thiol, which resulted in the S-substi-
tuted product 3a, the reaction with 4-hydroxypyridine led exclu-
sively to the formation of the pyridin-4-one-derived com-
pounds 3f and 4f, in 45% and 13% yield, respectively. The sub-
stitution occurred at the nitrogen atom rather than the oxygen

due to the preferential existence of 4-hydroxypyridine in the
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pyridin-4-one tautomeric form [37-39]. The structures of dyes
3a—f, 4a, 4d and 4f were unambiguously established through
their 'H, '3C and '°F NMR and mass spectra.

The 'H NMR spectra of the symmetrical compounds displayed
a characteristic signal for the N-CH, protons as a singlet at
approximately & 5.10 ppm. Signals of the 4-chlorophenyl
groups appeared as AB systems centred at around 8 7.9 ppm.
For the non-symmetrical derivatives, two singlets were ob-
served at approximately d 5.05 and 5.10 ppm, corresponding to
the protons of the N-CH,CgF5 and N-CH,CgF4XR groups, re-
spectively. All '9F NMR spectra confirmed the selective substi-
tution of the 4-fluorine atoms (in one or in two rings) by the
disappearance of the signal corresponding to the resonance of
those atoms. Mass spectra of compounds 3a—f, 4a, 4d and 4f
consistently displayed the protonated molecular ion [M + H]* as
the base peak.

The UV-vis and fluorescence spectra of DPP derivatives 3a—f,
4a, 4d and 4f in DMF are presented in Figure 1, and their pho-
tophysical properties are summarized in Table 1. These com-
pounds are highly fluorescent, and their UV-vis spectra are
very similar. These results indicate that substituents with differ-
ent functional groups can be attached to DPP 2 without signifi-
cant modification of their optical properties. The observed
Stokes shifts for dyes 3 and 4 averaged in the range of
60-70 nm. All compounds exhibited high fluorescence quan-
tum yields, ranging from 0.66 to 0.83, confirming their poten-
tial applications in fluorescence imaging, sensors, and optoelec-
tronic devices. A comprehensive discussion of the potential
uses of these fluorescent substances in areas such as materials
science, biology, or chemistry may provide a deeper under-

standing of their significance.
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Figure 1: (A) Absorption and (B) fluorescence spectra of compounds 3a—f, 4a, 4d and 4f, in DMF. Different concentrations of the compounds were

used to allow visualization of each spectrum.
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Table 1: Spectroscopic data for the new compounds (between 1 x 106 M and 4 x 103 M in DMF).

Compound Absorption Amax (nM) Loge (M~ cm™)
3a 460 415
4a 460 4.11
3b 461 417
3c 461 4.25
3d 457 4.43
4d 459 4.46
3e 460 4.03
3f 456 4.33
4f 458 4.32

Emission Amax (M) Stokes shift (cm™")  ®f (DMF)2
521 2545 0.69
522 2582 0.68
524 2608 0.83
525 2644 0.78
522 2687 0.73
521 2593 0.72
522 2547 0.71
523 2809 0.83
524 2750 0.66

3Excitation at 436 nm. N,N’-Dibenzyl-DPP was used as the fluorescence quantum yield reference: ®g = 0.88, in chloroform [40].

Conclusion

In conclusion, novel DPP derivatives were synthesized through
the reaction of a N,N’-bis(pentafluorobenzyl)-DPP with thiols
and phenols. The nucleophilic aromatic substitution reactions
took place under exceptionally mild experimental conditions,
and the resulting compounds were isolated in reasonable yields.
The newly synthesized compounds display high fluorescence
quantum yields and moderate Stokes shifts, which are crucial
attributes for their potential application in diverse fields, partic-
ularly in biological or technical applications. Additionally, it is
crucial to highlight the chemical versatility of compound 2,
which allows the attachment of various functional units without
significantly altering its optical properties. This versatility holds
significant promise in the design and synthesis of innovative
molecules tailored for specific purposes. This study not only
contributes to the expansion of accessible N-substituted DPP
derivatives but also reveals that such transformations can be
achieved with outstanding efficiency and environmental sensi-

tivity by employing mild reaction conditions.

Experimental
Chemicals and instrumentation

The reagents used in this work were purchased from Merck Life
Science (Algés, Portugal) or TCI Europe N.V. (Belgium) and
were used as received. Pigment Red 254 was purchased from
TCI Europe N.V. The solvents were used as received or
distilled and dried by standard procedures. Analytical thin-layer
chromatography (TLC) was carried out on precoated sheets
with silica gel (Merck 60, 0.2 mm thick). Preparative TLC was
carried out on 20 cm X 20 c¢m glass plates precoated with a layer
of silica gel 60 (0.5 mm thick) and activated in an oven at
100 °C for 12 h. Melting points were determined with a Biichi
B-540 apparatus. NMR spectra were recorded on a Bruker DRX
300 Avance operating at 300.13 MHz (for 'H NMR), at
75.47 MHz (for '3C NMR) and 282 MHz (for 'F NMR).

Deuterated chloroform (CDClj3) was used as the solvent and

tetramethylsilane (TMS) as the internal reference. The chemi-
cal shifts (8) are expressed in parts per million (ppm) and the
coupling constants (J) in hertz (Hz). UV-vis spectra were re-
corded on a Shimadzu UV-2501PC spectrophotometer using
DMF as the solvent. The emission spectra were recorded with a
Jasco FP-8300 spectrofluorometer using DMF as the solvent.
Mass spectra were recorded using a Micromass Q-TOF-2TM
mass spectrometer and CHCl3 as the solvent. The NMR,
absorption and emission spectra of the new compounds are
shown in Supporting Information File 1.

Synthesis
3,6-Bis(4-chlorophenyl)-2,5-bis(pentafluorobenzyl)-
2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (2)

A suspension of DPP 1 (1 g, 2.8 mmol) and NaH (11.2 mmol)
in DMF (60 mL) was stirred at 0 °C under a nitrogen atmo-
sphere for 30 min. At this temperature, and under vigorous stir-
ring, a solution of pentafluorobenzyl bromide (1.7 mL,
11.2 mmol) in DMF (8 mL) was added dropwise. The mixture
was stirred for 24 h at room temperature and then it was diluted
with CH,Cl, and water. The organic layer was separated and
washed with water and brine. The product was isolated by
column chromatography on silica gel using CH;Cl, as the
eluent. Yield: 61%; mp: 278-280 °C; IH NMR (300 MHz,
CDCl3) d (ppm) 7.62-7.66 (m, 4H), 7.47-7.52 (m, 4H), 5.03 (s,
4H); 13C NMR (75 MHz, CDCls) & (ppm) 161.7, 147.2, 138.01,
129.8, 129.6, 125.6, 110.0, 29.7; 'F NMR (282 MHz, CDCl3)
d (ppm) —138.11 to —138.29 (m, 4F), —149.90 (t, J = 21.4 Hz,
2F), —=157.63 to —157.91 (m, 4F); ESIMS m/z: 717.0 (M + H*,
100%).

General procedure for the nucleophilic aromatic
substitution reactions

The reactions of DPP 2 with thiols and phenols were carried out
in dry DMF, at room temperature, and in the presence of

K;»CO3 or CspCOj3. Once the starting DPP was completely con-
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sumed (after 2—-3 hours with thiols and 56 hours with phenols),
the reaction mixtures were diluted with CH,Cl, and water. The
organic layer was then separated and washed with brine and
water. The products were isolated by preparative TLC using
CH,Cly/hexane mixtures as the eluent.

Compound 3a. Yield: 51%; mp 274-276 °C; IH NMR (CDCls,
300 MHz) 6 (ppm) 8.43 (AA’XX’, J = 6 Hz, 4H), 7.68
(AA’BB’,J =8.7 Hz, 4H), 7.51 (AA’BB’, J = 8.7 Hz, 4H), 6.91
(AA’XX’, J = 6 Hz, 4H), 5.15 (s, 4H); 19F NMR (282 MHz,
CDCl3) & (ppm) —153.53 to —153.65 (m, 4F), —162.60 to
—162.73 (m, 4F); ESIMS m/z: 899.1 (M + H*, 100%).

Compound 4a. Yield: 23%; mp 269-273 °C; IH NMR
(300 MHz, CDCl3) & (ppm) 8.45 (AA’XX’, J = 6.3 Hz, 2H),
7.70-7.64 (m, 4H), 7.52 (AA’BB’, J = 8.7 Hz, 4H), 7.07
(AA’XX’, J = 6.3 Hz, 2H), 5.15 (s, 2H), 5.05 (s, 2H); !3C NMR
(125 MHz, CDCl3) & (ppm) 161.7, 149.7, 147.6, 146.95, 145.9,
138.1, 129.9, 129.6, 125.6, 121.1, 109.9, 109.7, 34.9, 34.5;
I9F NMR (282 MHz, CDCl3) & (ppm) —126.79 to —126.90 (m,
2F), -135.53 to —153.81 (m, 2F), —137.99 to —138.50 (m, 2F),
~149.74 (t, J = 21.3 Hz, 1F), —157.60 to —157.78 (m, 2H);
ESIMS m/z: 802.3 (M + H*, 100%).

Compound 3b. Yield: 85%; mp 270-272 °C; IH NMR
(300 MHz, CDCl3) d (ppm) 8.3-8.32 (m, 2H), 7.68 (AA’BB’,
J = 8.7 Hz, 4H), 7.55 (ddd, J = 8.1, 7.4, 1.9 Hz, 2H), 7.49
(AA’BB’, J = 8.7 Hz, 4H), 7.15-7.02 (m, 4H), 5.13 (s, 4H);
13C NMR (125 MHz, CDCl3) & (ppm) 161.8, 155.5, 150.0,
147.3, 137.9, 137.1, 129.9, 129.5, 125.8, 121.7, 121.1, 116.4,
110.0, 35.1; '9F NMR (282 MHz, CDCl3) & (ppm) —127.66 to
—127.79 (m 4F), —138.03 to —138.25 (m, 4F); ESIMS m/z:
899.0 (M + H*, 100%).

Compound 3c. Yield: 53%; mp 252-256 °C; 'H NMR
(300 MHz, DMSO-dg) 5 (ppm) 10.08 (s, 2H), 7.78 (AA’BB’,
J =8.7 Hz, 4H), 7.55-7.61 (m, 8H), 7.22 (AA’BB’, J = (8.7 Hz,
4H), 5.09 (s, 4H), 2.03 (s, 6H); '3C NMR (125 MHz, DMSO) 5
(ppm) 169.1, 164.7, 161.2, 147.3, 139.9, 136.7, 131.6, 130.9,
130.6, 129.5, 126.4, 125.4, 120.4, 120.1, 109.3, 31.3, 24.5;
19F NMR (282 MHz, DMSO-dg) 8 (ppm) —131.31 to —131.54
(m, 4F), —=137.94 to —138.07 (m, 4F); ESIMS m/z: 1011.0
(M + H*, 100%).

Compound 3d. Yield: 56%; mp 249-251 °C; 'H NMR
(300 MHz, CDCl5) & (ppm) 8.02 (AA’XX’, J = 9 Hz, 4H), 7.68
(AA’BB’,J = 8.7 Hz, 4H), 7.52 (AA’BB’, J = 8.7 Hz, 4H), 6.88
(AA’XX’, J = 9 Hz, 4H), 5.11 (s, 4H), 3.90 (s, 6H); °F NMR
(282 MHz, CDCl3) & (ppm) —138.23 to —138.35 (m, 4F),
—149.59 to —149.96 (m, 4F); ESIMS m/z: 981.0 (M + H*,
100%).
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Compound 4d. Yield: 14%; mp 255-257 °C; I'H NMR
(300 MHz, CDCl3) & (ppm) 8.02 (AA’XX’, J = 9 Hz, 2H),
7.67-7.59 (m, 4H), 7.52-7.44 (m, 4H), 6.88 (AA’XX’, J =
9 Hz, 2H), 5.10 (s, 2H), 5.03 (s, 2H), 3.92 (s, 3H); 1°F NMR
(282 MHz, CDCl3) & (ppm) —138.14 to —138.37 (m, 4F),
-149.82 to —150.01 (m, 3F), —157.70 to —157.85 (m, 2F);
ESIMS m/z: 849.0 (M + H*, 100%).

Compound 3e. Yield: 63%; mp 262-265 °C; 'H NMR
(300 MHz, CDCl3) & (ppm) 7.66 (AA’BB’, J = 8.7 Hz, 4H),
7.47 (AA’BB’, J = 8.7 Hz, 4H), 7.28 (AA’BB’, J = 9 Hz, 4H),
6.75 (AA’BB’, J = 9 Hz, 4H), 5.09 (s, 4H), 1.70 (s, 4H), 1.34
(s, 12H), 0.70 (s, 18H); '3C NMR (125 MHz, DMSO) & (ppm)
161.7, 154.7, 147.3, 145.8, 137.9, 129.9, 129.4, 127.4, 125.8,
114.8, 109.8, 57.0, 38.2, 34.5, 32.3, 31.8, 31.6; 19F NMR
(282 MHz, CDCl3) & (ppm) —139.07 to —139.30 (m, 4F),
~150.36 to —150.46 (m, 4F); ESIMS m/z: 1089.2 (M + H*,
100%).

Compound 3f. Yield: 45%; mp 253-255 °C; Iy NMR
(300 MHz, CDCl3) 8 (ppm) 7.69 (AA’BB’, J = 8.7 Hz, 4H),
7.55 (AA’BB’, J = 8.7 Hz, 4H), 7.25-7.21 (m, 4H), 6.48 (d, J =
8.1 Hz, 4H), 5.12 (s, 4H); !°F NMR (282 MHz, CDCl3) &
(ppm) —137.72 to —137.84 (m, 4F), —145.60 to —145.71 (m,
4F); ESIMS m/z: 867.1 (M + H*, 100%).

Compound 4f. Yield: 13%; mp 248-250 °C; I'H NMR
(300 MHz, CDCl3) & (ppm) 7.73-7.58 (m, 4H), 7.58-7.46 (m,
4H), 7.28-7.25 (m, 2H), 6.53 (d, J = 7.8 Hz, 2H), 5.10 (s, 2H),
5.04 (s, 2H); 13C NMR (125 MHz, DMSO) & (ppm) 177.7,
161.2, 147.4, 141.8, 136.9, 131.1, 130.9, 129.6, 126.3, 118.0,
109.4, 34.9, 34.5; 19F NMR (282 MHz, CDCl3) & (ppm):
-135.56 to —135.69 (m, 2F), —138.23 to —138.34 (m, 2F),
~144.36 to —144.49 (m, 2F), —149.67 (t, J = 20.8 Hz, 1F),
~157.53 to —157.84 (m, 2F); ESIMS m/z: 792.1 (M + H™,
100%).

Supporting Information

Supporting Information File 1

TH NMR, 13C NMR and '°F NMR spectra; MS, UV-vis
and emission spectra.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-20-169-S1.pdf]
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