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Abstract
Active learning allows algorithms to steer iterative experimentation to accelerate and de-risk molecular optimizations, but actively
trained models might still exhibit poor performance during early project stages where the training data is limited and model
exploitation might lead to analog identification with limited scaffold diversity. Here, we present ActiveDelta, an adaptive approach
that leverages paired molecular representations to predict improvements from the current best training compound to prioritize
further data acquisition. We apply the ActiveDelta concept to both graph-based deep (Chemprop) and tree-based (XGBoost) models
during exploitative active learning for 99 Ki benchmarking datasets. We show that both ActiveDelta implementations excel at iden-
tifying more potent inhibitors compared to the standard exploitative active learning implementations of Chemprop, XGBoost, and
Random Forest. The ActiveDelta approach is also able to identify more chemically diverse inhibitors in terms of their Murcko scaf-
folds. Finally, deep models such as Chemprop trained on data selected through ActiveDelta approaches can more accurately iden-
tify inhibitors in test data created through simulated time-splits. Overall, this study highlights the large potential for molecular
pairing approaches to further improve popular active learning strategies in low data regimes by enabling faster and more accurate
identification of more diverse molecular hits against critical drug targets.
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Introduction
Active learning is a powerful concept in molecular machine
learning that allows algorithms to guide iterative experiments to
improve model performance and identify the most optimal mo-
lecular solutions [1]. Many prominent studies have shown the
potential for active learning to accelerate and de-risk the identi-
fication of optimal chemical reaction conditions [2-4] and steer

molecular optimization for drug discovery [5-8]. Active
learning is particularly powerful during early project stages.
However, one major downside is that, at these early project
stages, only a very small amount of training data is available to
learn from [9] which can be insufficient to support the accurate
training of data-hungry machine learning models [10,11]
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Figure 1: Comparison of active learning approaches. (A) Classic exploitative active learning uses individual molecular representations to predict
absolute property values to select the most promising molecule from the learning set to add into the training set. (B) ActiveDelta learning uses paired
molecular representations to predict molecular property improvements from the currently best training compound to select the best molecule to add to
the training set that is predicted to improve the most compared to the currently best solution.

and thereby leading to potentially sub-optimal experimental
design due to an incomplete understanding of the underlying
structure–activity relationship and poor calibration of predic-
tive uncertainty. Additionally, model exploitation can lead to
analog identification, which can limit the acquired knowledge
and the scaffold diversity of selected hits [1].

We previously showed that leveraging pairwise molecular
representations as training data can support molecular optimiza-
tion by directly training on and predicting property differences
between molecules [12]. Compared to classic molecular
machine learning algorithms, which are trained to predict
absolute property values, such paired approaches are more well-
equipped to guide molecular optimization by directly learning
from and predicting molecular property differences [12-15] and
by cancelling systematic assay errors [12,15]. Beyond superior
performance in anticipating property improvements between
molecules, the molecular pairing approach shows particularly
strong performance on very small datasets by benefiting from
combinatorial data expansion through the pairing of molecules
[12,13]. Based on these findings, we hypothesized that we could
implement exploitative active learning campaigns based on a
molecular pairing approach (‘ActiveDelta’) to support rapid
identification of the most potent inhibitors across a wide range
of benchmark drug targets.

Active learning allows algorithms to guide iterative molecular
design by identifying the most valuable next experiment [1].
This can be done by selecting the compounds the model is most
uncertain of to improve model performance (‘explorative’)
[16,17], retrieving compounds with desired properties
(‘exploitative’) [18], or a combination of both (‘balanced’) [8].
Explorative active learning provides diverse chemical struc-
tures to support model learning while exploitative approaches

instead bias towards rapid identification of favorable com-
pounds. As such, explorative strategies may not propose as
many structures with desired characteristics and exploitative
strategies may not add much new knowledge for the model [1].
In pursuit of quickly finding potent leads with limited data, we
selected to pursue an exploitative active learning approach for
this study.

Classically during exploitative active learning, the machine
learning model is trained on the available training data and the
next compound to be added to the training dataset is selected
based on which compound from the learning set has the highest
predicted value [19] (Figure 1A). For ActiveDelta learning,
training data is paired to learn property differences between
molecules [12]. Then, the next compound is selected based on
which compound has the greatest predicted improvement from
the most promising compound currently in the training dataset
(Figure 1B).

For the first time, we here present the ActiveDelta concept and
evaluate the Chemprop-based [20] and XGBoost-based [21]
implementations of this learning strategy against standard
exploitative active learning [19] implementations of Chemprop
[20], XGBoost [21], and Random Forest [22] across 99 Ki
datasets with simulated time splits [23]. Across these bench-
marks, the ActiveDelta approach quickly outcompeted standard
active learning implementations, possibly by benefiting from
the combinatorial expansion of data during pairing which
enables the more accurate training of machine learning algo-
rithms. The ActiveDelta implementations also enabled the
discovery of more diverse molecules based on their Murcko
scaffolds, possibly due to the ability to learn property differ-
ences rather than exploiting analog identification. Finally, the
acquired data enabled the Chemprop algorithm to predict the
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most promising compounds more accurately in challenging
time-split test datasets. Taken together, we believe that the
ActiveDelta concept and extensions thereof hold large potential
to further improve popular active learning campaigns by more
directly training machine learning algorithms to guide molecu-
lar optimization and by combinatorically expanding small
datasets to improve learning.

Methods
Datasets
Datasets were obtained from Landrum et al. [23] which utilized
their simulated medicinal chemistry project data (SIMPD) algo-
rithm to curate and split 99 ChEMBL [24] Ki datasets with
consistent values for target id, assay organism, assay category,
and BioAssay Ontology (BAO) format into training and testing
sets to simulate time-based splits. Datasets were split into
training and test sets at an 80:20 ratio. Duplicate molecules
were removed. For initial active learning training dataset forma-
tion, two random datapoints were selected from each original
training dataset and the remaining training datapoints were kept
in the learning datasets (Supporting Information File 1, Figure
S1). The learning dataset is the pool of molecules that models
will select from during active learning [25]. Exploitative active
learning was repeated three times with unique starting data-
point pairs. Test sets were not used during active learning but
were used only in the test set evaluation of all algorithms.

Model architecture and implementation
To evaluate ActiveDelta with a deep machine learning model,
we used the previously established, two-molecule version of the
directed Message Passing Neural Network (D-MPNN)
Chemprop [20]. For our evaluation with tree-based models, we
selected XGBoost [21] with readily available GPU acceleration
[26]. Standard, single-molecule machine learning models were
implemented using the single-molecule mode of Chemprop
[12,27], XGBoost from the XGBoost library [22], and Random
Forest models as implemented in scikit-learn [28]. To improve
readability, we refer to our predictive pipeline consisting of our
molecular pair pre-processing approach and the established
two-molecule version of Chemprop as “ActiveDelta Chemprop”
(AD-CP) and the standard active learning implementation of
single-molecule Chemprop as “Chemprop”. Similarly, we refer
to our pairing approach applied to XGBoost as “ActiveDelta
XGBoost” (AD-XGB) and the standard single-molecule active
learning implementation of XGBoost as “XGBoost”.

The Chemprop-based models were implemented for regression
with default parameters and aggregation = ‘sum’ using the
PyTorch deep learning framework. For the single-molecule
Chemprop implementation, number_of_molecules = 1 while for
the ActiveDelta implementation number_of_molecules = 2 to

allow for processing of multiple inputs as described previously
[29]. We previously optimized the number of epochs for single
and paired implementations of Chemprop [12] and observed
convergence of performance by 5 epochs for the paired imple-
mentation and convergence by 50 epochs for the single-mole-
cule implementation. Based on these results, we set epochs = 5
for the ActiveDelta implementation and epochs = 50 for the
single-molecule active learning implementation of Chemprop.
XGBoost and Random Forest regression machine learning
models were implemented with default parameters and mole-
cules were described using radial chemical fingerprints
(Morgan Fingerprint, radius 2, 2048 bits, rdkit.org) when used
as inputs for these models. For the ActiveDelta implementation
of XGBoost, we used default parameters and concatenated the
fingerprints of each molecule in the molecular pairs to create
paired molecular representations.

During active learning, standard approaches were trained on the
active learning training set, consisting of two datapoints during
the first iteration and increasing by 1 datapoint each subsequent
iteration of active learning (Supporting Information File 1,
Figure S1), and were then used to predict the absolute Ki value
of each molecule in the learning dataset. As such, each mole-
cule was processed individually, and predictions were made
solely upon the representation of a single molecule. The data-
point with highest predicted potency was then added to the
training set for the next iteration of active learning (Figure 1A).
Conversely, during ActiveDelta learning, training was per-
formed on the cross-merged training dataset to learn potency
differences between molecular pairs as described previously
[12]. Then, the single most potent molecule in the training set
was paired with every molecule in the learning set to create new
pairs for predictions on the learning data (Figure 1B). The
second molecule from the molecular pair with highest pre-
dicted potency improvement was added to the training set for
the next iteration of active learning, resulting in one molecule
being added to the active learning training dataset at each itera-
tion which as is commonly done in active learning except when
project constraints require batch selection [1]. This datapoint
would subsequently be cross-merged with all other training data
compounds for ActiveDelta model retraining. For all active
learning runs, analysis was repeated three times, each with a
random pair of starting molecules for statistical analysis.

Evaluation of model performance and t-SNE
analysis
To measure model performance during exploitative active
learning, we analyzed the models’ ability to correctly identify
the compounds within the top ten percentile of most potent
compounds in the learning set. For evaluations on external data,
we evaluated model performance after training each model on
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the 100 molecules this specific model selected during exploita-
tive active learning. The models were evaluated specifically on
their ability to correctly identify the top ten percentile of the
most potent compounds in the test sets and evaluations were
repeated three times with three distinct initial training datasets
to investigate the impact of distinct starting points.

The non-parametric Wilcoxon signed-rank test was performed
for all statistical comparisons following three repeats of active
learning. When presenting the number of the most potent com-
pounds identified by each approach across 3 repeats of the
99 datasets, averages and standard deviations are presented in
the text while averages and standard error of the mean are
presented in the plots. For plotting of chemical space, mole-
cules were represented by radial chemical fingerprints (Morgan
Fingerprint, radius 2, 2048 bits, rdkit.org). Principal component
analysis (PCA) was first performed to reduce the 2048 input
dimensions to 50 dimensions before t-distributed Stochastic
Neighbor Embedding (t-SNE) was applied to further reduce
these 50 dimensions to 2 dimensions. PCA and t-SNE were per-
formed with scikit-learn and plotted with matplotlib. Bar plots
were created in GraphPad Prism 10.2.0. Source code and
datasets used in this work can be downloaded from https://
github.com/RekerLab/ActiveDelta.

Results and Discussion
Identifying the most potent leads using active
learning on pairs
First, we evaluated how directly learning from and predicting
potency differences of molecular pairs affects adaptive learning
by directly comparing the performance of specific machine
learning algorithms when either applied to molecular pairs or in
a classic single-molecule mode. Specifically, we evaluated the
ability of the D-MPNN Chemprop and the gradient boosting
tree model XGBoost to adaptively learn on molecular pairs
using the ActiveDelta approach compared to their standard
active learning implementations in single-molecule mode
(Figure 1A). As our measure of success, we analyzed all the
models’ ability to identify the most potent compounds (top ten
percentile) during exploitative active learning. We cold-started
active learning by selecting only two random datapoints as
initial training data and allowed the models to iteratively select
the next molecule from the learning set that they predicted as
the most potent compound to add to their training data.

When comparing the deep machine learning implementations,
we observed interesting patterns. AD-CP initially underper-
formed compared to the single-molecule implementation of
Chemprop, potentially due to the increased complexity of
learning and predicting potency improvements between molecu-

lar pairs compared to simply identifying analogs of the most
promising compound identified so far. However, AD-CP
quickly caught up and rapidly (after 35 active learning itera-
tions) outcompeted the single-molecule active learning imple-
mentation of Chemprop. We statistically compared the perfor-
mance differences of the models at 100 and 200 active learning
iterations to assess their differences. We noted that AD-CP
identified a statistically significantly larger fraction of the top
ten percentile of most potent compounds compared to single-
molecule Chemprop after 100 iterations of active learning (61%
vs 45%, +6.3 leads per dataset on average, p = 2e − 33,
Figure 2A and Supporting Information File 1, Table S1). This
improved performance extended out to 200 iterations where
AD-CP had identified almost 90% of the most potent inhibitors
(88% vs 79%, +4.3 leads per dataset on average, p = 4e − 19,
Supporting Information File 1, Table S1). This data overall sug-
gests that, while the learning from and predicting of molecular
pairs might be more challenging with very limited data
(<35 datapoints), the pairing rapidly enables combinatorial
training data expansion that allows the more effective usage of
deep neural networks for the identification of the most potent
compounds from limited training data until almost all hits in the
learning set are selected.

A slightly different pattern emerged when comparing the tree-
based implementations. AD-XGB and XGBoost initially
selected similar numbers of the most potent molecules, poten-
tially attesting to the more robust training of tree-based models
on very small datasets irrespective of whether using single mol-
ecule or paired tasks. After 13 iterations, AD-XGB started
consistently outperforming XGBoost. We again compared per-
formance statistically after 100 and 200 iterations. We noted
that AD-XGB was selecting a significantly larger fraction of the
most potent molecules at 100 iterations (62% vs 59%, +1.0
leads per dataset on average, p = 0.001, Figure 2B and Support-
ing Information File 1, Table S1) and at 200 iterations (88% vs.
86%, +0.8 leads per dataset on average, p = 0.02, Supporting
Information File 1, Table S1). While this difference was not
nearly as stark as for the deep neural networks, the identifica-
tion of an additional lead per project might still provide tangible
benefits in risky real-world drug development applications
where each additional lead might provide an alternative path-
way to mitigate toxicities or other compound liabilities. This
further attests to the power of our pairing approach and shows
that tree-based machine learning models can also benefit from
the pairing to identify the most potent inhibitors in adaptive
learning campaigns.

When comparing the performance of the tree-based and the
deep neural network-based ActiveDelta approaches, we ob-
served that AD-CP and AD-XGB showed no statistically signif-
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Figure 2: The ActiveDelta approach improves exploitative active learning performance. (A–C) The percentage of the top ten percentile most potent
molecules (‘hits’) in the learning set identified over 100 iterations of active learning by (A) AD-CP and Chemprop (CP), (B) AD-XGB and XGBoost
(XGB), and (C) Random Forest (RF) and random selection (Random). (D) Bar charts of the average number of identified hits of each approach at
100 iterations across all the 99 benchmarking tasks. (E–G) The number of unique scaffolds in hits selected over 100 iterations of active learning.
(H) Bar charts of the average number of unique scaffolds identified by each approach at 100 iterations across all 99 benchmarking datasets. Average
and standard error of the mean for three replicates across 99 Ki datasets after starting with two random datapoints is presented.

icant difference at 100 iterations (p = 0.2, Figure 2A,B, and
Supporting Information File 1, Table S1) or 200 iterations
(p = 0.7, Supporting Information File 1, Table S1). This sug-
gests that the improved performance of the active learning
campaigns is largely driven by the pairing and can be imple-
mented with various underlying, established machine learning
algorithms.

We next evaluated how the paired approaches were performing
overall compared to standard, single-molecule active learning
implementations. AD-CP outcompeted all standard implementa-
tions at 100 iterations (p < 0.002, Figure 2A–D and Supporting
Information File 1, Table S1) except for XGBoost over which it
showed a statistically nonsignificant improvement (p = 0.3,
Figure 2A–D and Supporting Information File 1, Table S1)
while AD-XGB outcompeted all standard implementations at
100 iterations (p < 0.001, Figure 2A–D and Supporting Infor-
mation File 1, Table S1). By 200 iterations, both models using
the ActiveDelta approach selected more of the most potent
leads than any standard single-molecule active learning ap-
proach (p < 0.04, Supporting Information File 1, Table S1).
These results highlight how a paired approach can allow models

to rapidly learn in low data regimes to outcompete standard
active learning implementations in identifying the most potent
compounds. It also suggests that the Chemprop-based imple-
mentation requires more data than the tree-based implementa-
tion to outcompete some tree-based standard approaches, poten-
tially hinting at the larger data requirements for deep neural
networks even when combinatorially expanding datasets
through pairing.

Chemical diversity in molecular selection
Beyond their ability to identify the most potent inhibitors, we
sought to determine how these approaches sampled chemical
space. When analyzing the scaffold diversity of hits (i.e., the
number of unique Murcko scaffolds in the set of molecules
selected by the different approaches whose Ki values are within
the top ten percentile of the most potent compounds in the com-
plete learning set), AD-CP selected more distinct hit scaffolds
than Chemprop (Figure 2E, p = 5e − 25 at 100 iterations) but
AD-XGB’s increase in distinct hit scaffolds selected was not
statistically significant compared to XGBoost (Figure 2F,
p = 0.1 at 100 iterations). In absolute numbers (Figure 2E–H),
AD-CP selected 14.0 ± 5.6 (average and standard deviation)
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distinct scaffolds (59.3% of all scaffolds within the hits),
AD-XGB selected 13.8 ± 5.4 (59.2%), XGBoost selected
13.4 ± 5.9 (56.6%), Random Forest selected 12.5 ± 6.1 (53.1%),
Chemprop selected 10.9 ± 5.2 (47.0%), and random selection
selected 8.1 ± 2.4 (36.0%). AD-CP, AD-XGB, and XGBoost
showed no statistically significant differences, but all
three approaches outperformed all other approaches at
100 iterations.

When analyzing the scaffold diversity of all selected com-
pounds to understand the chemical diversity of the complete
training data and not just the hits, random selection had the
highest scaffold diversity of all selection strategies, while
AD-CP had the most diverse scaffold selection of all active
learning approaches, followed by Chemprop, Random Forest,
AD-XGB, and XGBoost (p < 0.0001 at 100 iterations, Support-
ing Information File 1, Figure S2). As such, AD-CP not only
finds the most chemically diverse hits, with potential to create
multiple lead series to enable further development of distinct
scaffolds, but this approach also enriches the scaffold diversity
of “negative” training data to improve future compound selec-
tion. Although the deep learning-based ActiveDelta models
were not able to identify a larger number of hit compounds than
the tree-based ActiveDelta implementations here, a deep
learning approach appears to be more advantageous to identify
more diverse hits by selecting a greater number of distinct scaf-
folds during exploitative active learning.

Analyzing chemical trajectories
We next investigated how these models traversed chemical
space using t-SNE analysis based on radial chemical finger-
prints of molecules selected during active learning. For this
analysis, we selected the most representative dataset based on
similar hit retrieval rates for each algorithm on this dataset
compared to the average performance of each algorithm
(CHEMBL232-1, Alpha-1b adrenergic receptor). Admittedly,
chemical selection trends across datasets are variable, and, as
such, the following discussion is not universal but instead is a
representation of the overall expected behavior of the algo-
rithms. In the first learning iterations, AD-CP traversed chemi-
cal space broadly and jumped between clusters (Figure 3A).
During 16–30 iterations, AD-CP showed a balanced behavior
with equal numbers of jumps and staying within a cluster. After
30 iterations, AD-CP had identified all the relevant clusters of
active compounds and largely stayed within these clusters to
rapidly identify potent inhibitors. In contrast, Chemprop was
more targeted at the beginning and exploited the one cluster
where it could find potent inhibitors (Figure 3B). After that,
Chemprop traveled more broadly and was not able to identify
all clusters of potent inhibitors even after 45 iterations of
learning. As expected, random selection thoroughly sampled

chemical space since it is not constrained, consistently jumping
between clusters (Figure 3C).

Similar to AD-CP, AD-XGB exhibited broader initial search by
jumping between clusters during the first learning iterations and
identified a relevant cluster of potent compounds (Figure 4A).
During 16–30 iterations, AD-XGB stayed within this relevant
cluster until after 30 iterations where it sampled more widely
again to quickly identify another relevant cluster that it stayed
within to rapidly identify additional potent inhibitors. XGBoost
initially showed more targeted behavior where it exploited one
cluster and then broadly searched during 16–30 iterations to
discover another relevant cluster (Figure 4B). Random Forest
immediately exploited the one cluster where it could find po-
tent inhibitors, but after searching more widely it did not iden-
tify any other clusters of potent inhibitors by 45 iterations of
learning and instead focused on a cluster that did not contain
any of the most potent molecules (Figure 4C). Altogether, these
results highlight how the ActiveDelta approach can guide
models to navigate diverse clusters of distinct chemistries
(Figure 2E–H) by learning effectively from the initial phases of
wide investigations over chemical space instead of focusing on
analog identification to effectively traverse chemical space
(Figure 3 and Figure 4) to identify the most potent leads
(Figure 2A–D).

For an additional global analysis across all datasets instead of
focused on the representative dataset, we calculated the average
Tanimoto similarities of the top molecule selected by each
model compared to its respective nearest neighbor in the
training data using three different molecular representations
(Morgan Fingerprints, MACCS Keys, and Atom Pair Finger-
prints) during the initial iterations of active learning (1–15,
16–30, and 31–45) across all 99 benchmarking datasets with
three repeats (Supporting Information File 1, Table S2).
Random selection consistently selected the least similar mole-
cules of all approaches (p < 0.005) as expected. Of all active
learning approaches, AD-CP consistently selected the least sim-
ilar molecules (p < 0.005). Conversely, Random Forest consis-
tently selected the most similar molecules of all approaches
(p < 0.005). AD-XGB consistently selected less similar mole-
cules than XGBoost (p < 0.005) and initially selected more sim-
ilar molecules than Chemprop (p < 0.005), but later selected
less similar molecules compared to Chemprop (p < 0.005). Both
MPNN-based models (AD-CP and Chemprop) somewhat
trended towards selecting compounds with higher similarities
with increasing iterations while Random Forest somewhat
trended towards less similar compounds. Random selection,
XGBoost, and AD-XGB exhibited no consistent trends as itera-
tions advanced. Ultimately, AD-CP and AD-XGB consistently
selected more diverse compounds than their base models
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Figure 3: D-MPNN-based model navigation of chemical space. T-SNE of a representative dataset (CHEMBL232-1, Alpha-1b adrenergic receptor)
highlighting molecules identified in the first 45 iterations for (A) AD-CP, (B) Chemprop (CP), and (C) random selection (Random). Top ten percentile
most potent compounds are shown as stars and identified compounds are highlighted in yellow. The number of times a model ‘jumps’ from one cluster
to another is shown in the inlet with a green bar while the times it ‘stays’ in the same cluster is shown with a light blue bar. Arrow gradient towards
darker grey indicates increasing iteration number.

(Chemprop and XGBoost, respectively, Supporting Informa-
tion File 1, Table S2) while also identifying more of most po-
tent compounds (Figure 2D) during active learning – further
highlighting how the ActiveDelta approach can guide models to
rapidly identify more chemically diverse hits while also
collecting more diverse training data to augment model know-
ledge for future compound selection.

Extrapolation to external data
Motivated by the strong ability of ActiveDelta models to effec-
tively navigate the learning spaces, we next sought to see how
readily models trained on the selected molecules by active
learning could generalize to new data. We used splits that were
generated to mimic real-world medicinal chemistry project data
sets [23] such that the external data simulates learning from
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Figure 4: Tree-based model navigation of chemical space. T-SNE of a representative dataset (CHEMBL232-1, Alpha-1b adrenergic receptor) high-
lighting molecules identified in the first 45 iterations for (A) AD-XGB, (B) XGBoost (XGB), and (C) Random Forest (RF). Top ten percentile most po-
tent compounds are shown as stars and identified compounds are highlighted in yellow. The number of times a model ‘jumps’ from one cluster to
another is shown in the inlet with a green bar while the times it ‘stays’ in the same cluster is shown with a light blue bar. Arrow gradient towards darker
grey indicates increasing iteration number.

historic data to predict undiscovered “future” compounds
instead of simply being selected from a separate cluster based
on chemical similarity (Supporting Information File 1, Figure
S4). We evaluated all the models’ performances after training
on the 100 molecules they each selected from the learning set

during exploitative active learning on the task of identifying
novel hits (i.e., correctly predicting the top ten percentile of the
most potent compounds in the test sets). Across three repeats,
AD-CP correctly identified 41.3% ± 18.5 novel hit compounds
in the test set on average, AD-XGB identified 40.0% ± 18.9,
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XGBoost identified 40.0% ± 20.4, Random Forest identified
37.9% ± 20.4, and single-molecule Chemprop identified
27.9% ± 18.7. AD-CP showed a significant improvement over
Chemprop (p = 2e − 21), but AD-XGB showed no statistically
significant difference compared to XGBoost (p = 0.9), possibly
driven by the good performance of XGBoost alone. AD-CP was
the only approach to correctly identify 100% of the hits within a
test dataset while Random Forest peaked at 89%, AD-XGB and
XGBoost peaked 88%, and Chemprop peaked at 83% of
correctly identified hits.

In terms of chemical diversity of the novel hits identified in the
test set, AD-CP identified 3.3 ± 1.7 (42.5%) of the distinct scaf-
folds of the novel hit compounds, XGBoost identified 3.2 ± 1.7
(41.4%), AD-XGB identified 3.1 ± 1.6 (40.6%), Random Forest
identified 2.9 ± 1.7 (37.9%), and Chemprop identified 2.2 ± 1.5
(28.5%). Similar to hit identification, AD-CP showed a signifi-
cant improvement over Chemprop (p = 8e − 24) but AD-XGB
showed no statistically significant difference compared to
XGBoost (p = 0.7). To further evaluate the ability of the algo-
rithms to select diverse hits, we evaluated the Tanimoto simi-
larity of their top selected hits compared to their nearest neigh-
bors in the training data. AD-CP selected the molecules least
similar to the training set (0.83 ± 0.16, p = 0.0003, Supporting
Information File 1, Table S3), followed by Chemprop
(0.85 ± 0.15, p = 1e − 10, Supporting Information File 1, Table
S3), XGBoost (0.89 ± 0.11, p = 0.01, Table S3), and then
Random Forest (0.90 ± 0.10, Supporting Information File 1,
Table S3) and AD-XGB (0.90 ± 0.11, Supporting Information
File 1, Table S3). Random Forest and AD-XGB exhibited no
statistically significant difference from each other (p = 0.2, Sup-
porting Information File 1, Table S3). The increased diversity in
selection from the deep models, that was heightened for our
paired approach, highlights how methods that allow for appro-
priate application of complex models in low data regimes may
expand the breadth of molecular predictions based on limited
knowledge. Taken together, this data suggests that the
Chemprop-based AD-CP is particularly powerful at building
models that can generalize to new datasets and thereby will
provide medicinal chemists with options to change utilized
chemistries later in the project while utilizing knowledge gener-
ated from other molecules. Its ability to identify the most
diverse scaffolds in hits will also make it a most useful tool to
provide medicinal chemists with various lead series for further
optimization.

Discussion
Coinciding with increased enthusiasm for machine learning
methods to support drug discovery [30,31], expanded use of
adaptable laboratory automation [16,32,33] will help support
adaptive learning methods like active machine learning to

become a cornerstone technology to guide molecular optimiza-
tions and discovery [20,34,35]. The ActiveDelta approach for
active learning may efficiently guide optimization pursuits by
prioritizing the most promising candidates for subsequent eval-
uation and could be directly integrated into robotic chemical
systems to generate more potent leads through iterative design.
Beyond pharmaceutical design, we expect these methods to be
easily deployable for other chemical endeavors to support mate-
rial design and prioritization.

Although pairwise methods like ActiveDelta exhibit increased
computational costs during active learning given the combinato-
rial expansion of training data (Supporting Information File 1,
Figure S3), these extra datapoints benefit the deep models’ abil-
ities to learn the underlying structure–activity relationships
more accurately and readily identify the most potent com-
pounds of interest with novel scaffolds. In addition, as active
learning is typically conducted for smaller datasets and in early
project stages, we foresee that this combinatorial data expan-
sion will be feasible for most active learning pipelines. Further-
more, as real-world experimentation often provides a larger
bottleneck than computation, the use of more complex compu-
tational architectures with improved hit retrieval rates in place
of faster, but less effective, architectures should continue to be a
good choice for most real-world projects. In the future, subsam-
pling techniques may be employed to reduce computational
costs and even potentially improve performance for paired ap-
proaches. For example, it has been shown that similarity-based
pairing during training compound generation for Siamese neural
networks can significantly improve model efficiency [36]. Ad-
ditionally, active learning-based subsampling is an autonomous
and adaptive approach that has been shown to improve model
performance for classification tasks [37]. As the current
implementation relies on exhaustive pairing of molecules,
it is optimally suited for smaller datasets but allows for
data-hungry deep learning models to more adequately
learn from limited data amounts. Future work should evaluate
the potential of non-exhaustive pairing and subsampling
strategies to allow for more efficient application of this
method to larger datasets, compare against standard active
learning implementations of existing methods that contrast mol-
ecules, such as Siamese neural networks [36,38-43], and apply
the ActiveDelta approach to these models. Additionally, an
adaptive approach that begins with an exhaustive pairing ap-
proach in low data regimes and incorporates increasing rates of
subsampling as dataset size increases would be worth investi-
gating.

Given the general notion of tree-based models’ robustness to
training on smaller datasets [44], AD-CP’s ability to outcom-
pete standard implementations of tree-based models by only
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100 iterations shows particular promise for the application of
deep models for low data active learning that are typically par-
ticularly troublesome for data-hungry deep learning models
[9,10]. This improved performance was maintained when ex-
trapolating to external datasets that were generated to mimic the
differences between early and late compounds from true phar-
maceutical optimization projects [23], indicating the generaliz-
ability of this approach.

Conclusion
Applied to exploitative active learning, the ActiveDelta ap-
proach leverages paired molecular representations to predict
molecular improvements from the best current training com-
pound to prioritize molecules for training set expansion. Here,
we have shown that this approach allows both tree-based and
deep learning-based models to rapidly learn from pairwise data
augmentation in low data regimes to outcompete standard active
learning implementations of state-of-the-art methods in identi-
fying the most potent compounds during exploitative active
learning (Figure 2A–D) while selecting more diverse com-
pounds (Figure 2E–H). Our t-SNE analysis suggests that
ActiveDelta models will be initially forced to traverse chemical
space more broadly to learn property differences between mole-
cules rather than simply identifying analogs of promising hits
(Figure 3 and Figure 4) by learning on a pairwise transformat-
ion of chemical space. The deep models using this approach
also more accurately identified hits in external test sets gener-
ated through simulated temporal splits, indicating the
ActiveDelta approach’s applicability and generalizability to
novel chemical structures that would likely be encountered
during medicinal chemistry projects. We believe that
ActiveDelta and other pairwise approaches show particular
promise for adaptive machine learning when training data
hungry neural networks on limited data and can serve as accu-
rate platforms to guide lead optimization and prioritization
during drug development.

Supporting Information
Supporting Information File 1
Supplementary figures and tables.
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