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Synthesis and reactivity of the di(9-anthryl)methyl radical
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Abstract
The di(9-anthryl)methyl (DAntM) radical was synthesized and investigated to elucidate its optical, electrical properties, and reactiv-
ity. The generation of the DAntM radical was confirmed by its ESR spectrum, which showed two broad signals. The unpaired elec-
tron is primarily localized on the central sp2 carbon and slightly delocalized over the two anthryl moieties. Although the DAntM
radical undergoes dimerization in solution, the radical still remains even at 190 K due to the bulky nature of the two anthryl groups.
Interestingly, upon exposure to air, the purple color of the radical solution quickly fades to orange, resulting in decomposition to
give 9-anthryl aldehyde and anthroxyl radical derivatives.
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Introduction
Organic radicals have garnered significant attention in various
research fields, including catalysis [1-4], chromophores [5-8],
and as agents in dynamic nuclear polarization [9-12]. Recently,
highly stable aromatic hydrocarbon radicals, which can persist
in air-saturated solutions for several days to months, have been
synthesized by employing bulky substituents around the spin-
localized carbon center [13-15]. These stable radicals have
paved the way to elucidate the nature of radical species,
advancing the field of radical chemistry. However, reducing the
reactivity of radical species can mean losing one of their most

attractive properties. Therefore, it is very important to explore
aromatic hydrocarbon radicals that are sufficiently stable for
handling, yet reactive under specific conditions.

Previously, we reported aromatic hydrocarbon radicals with
9-anthryl (Ant) units at the spin-center carbon, exhibiting high
stability (Figure 1a) [16-21]. Although bulky phenyl substitu-
tions at the spin-center carbon can also provide high stability
[13-15], the introduction of an Ant unit allows for spin localiza-
tion at the 10-position of anthracene through C–C bond rotation,
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Figure 1: (a) Typical example of stable aromatic hydrocarbon radicals with 9-anthryl units. (b) Tail-to-tail σ-dimer formation by rotating anthryl group
and spin center shift.

Figure 2: (a) The structure of DAntM radical (left) and its spin delocalization on two anthryl units. (b) Plausible head-to-head σ-dimerization of the
DAntM radical.

resulting in a tail-to-tail σ-dimer (Figure 1b). The σ-dimer ex-
hibits an equilibrium state between the monomer radical and the
σ-dimer in solution, and mechano-stimulus-induced C–C bond
fission in the solid state yields the monomer radical [16-18].
Therefore, aromatic hydrocarbon radicals with Ant units pos-
sess both stability and reactivity depending on the conditions,
giving them high potential for use as reactive catalysts [22,23]
and stimuli-responsive sensors [24,25].

To further investigate this system, we designed the di(9-
anthryl)methyl (DAntM) radical, which lacks one Ant unit com-
pared to the tri(9-anthryl)methyl (TAntM) radical (Figure 2)
[17]. By reducing the number of Ant units, we anticipated that
the DAntM radical would exhibit spin delocalization between
the two Ant units, differing from the basic skeleton of the
highly reactive diphenylmethyl radical [26-28]. This spin delo-
calization is similar to that of the galvinoxyl radical, which
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Scheme 1: Synthetic route to the DAntM radical.

Figure 3: (a) ESR spectrum of the DAntM radical (black line, Exp.) and its simulated pattern (red line, Sim.). (b) Hyperfine coupling constant of the
DAntM radical.

shows high stability in air [29]. Thus, the DAntM radical would
be a stable radical with a reactive site. Additionally, utilizing
the reactive site, head-to-head σ-dimerization of the DAntM
radical could yield 1,1,2,2-tetra(9-anthryl)ethane, which is a
new anthracene embedded ethane [30] and would be a good
candidate for the synthesis of overcrowded ethylene [31-36].

Herein, we report the synthesis and properties of the DAntM
radical. The unpaired electron is primarily located at the central
sp2 carbon, a highly reactive site. The DAntM radical readily
reacts with oxygen, leading to 1,2-dioxetane intermediate and
decomposition to give anthryl aldehyde and a stable anthroxyl
radical.

Results and Discussion
The synthetic route to the DAntM radical is shown in Scheme 1.
The alcohol precursor 3 was prepared via addition reaction of
lithium reagent 2 to 10-mesitylanthracene-9-carbaldehyde (1) in
moderate yield (59%). The generation of the DAntM radical
was performed using stannous chloride dihydrate with hydro-
gen chloride in THF. Upon adding hydrogen chloride to the

solution, the solution color changed from orange to deep purple.
The presence of the DAntM radical under this reaction condi-
tions was confirmed by ESR measurement.

For the ESR measurement, a sample was prepared by taking an
aliquot from the reaction solvent to ESR tube, evaporating it,
and then dissolving it in degassed toluene. The ESR spectrum
of the DAntM radical displayed two broad signals with
g = 2.0028 (Figure 3a). The simulated spectrum indicated that
the unpaired electron mainly locates at the central sp2 carbon
but is slightly delocalized over the two anthryl moieties
(Figure 3b, Supporting Information File 1, Figure S1). DFT
calculations for structural optimization revealed that the energy
difference between two DAntM radical structures with differ-
ent spin positions, spin localization at the central sp2 carbon and
on the anthryl group, is small about 1.18 kcal mol−1 (Support-
ing Information File 1, Figure S2). To investigate the activation
barrier of this equilibrium, potential energy curve by changing
the dihedral angle θ of one anthryl group was calculated. The
transition state was calculated with the dihedral angle θ = 30.6°
and the activation barrier is only 2.94 kcal mol−1 (Supporting
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Figure 4: (a) ESR spectrum of anthroxyl radical 5 (black line, Exp.) and its simulated pattern (red line, Sim.). (b) Hyperfine coupling constant of 5.
(c) X-ray structure of 5. Hydrogen atoms are omitted for clarity.

Information File 1, Figure S3). Thus, these two structures are
likely in equilibrium and rapidly exchange with each other in
solution. The energy difference between DAntM dimer (head-
to-head σ-dimer) and DAntM radical monomer was also evalu-
ated, showing that the dimer form is energetically preferable by
about 3.97 kcal mol−1 (Supporting Information File 1, Figure
S2). In VT-ESR measurements at low temperatures, the ESR
signal integral decreased with cooling (Supporting Information
File 1, Figure S4). However, even at 190 K, the relative signal
integral compared to that at 295 K remained 0.56. Thus, the
σ-dimer formation occurs but the σ-dimer readily dissociates,
probably due to the steric bulkiness of the two Ant units [37].

It is noteworthy that the purple colored solution of the DAntM
radical immediately fade to orange when exposed to air, indicat-
ing that the high reactivity of the central sp2 carbon. To eval-
uate the decomposition pathway, the decomposed materials
were characterized. Surprisingly, the major compound detected
by 1H NMR measurement of the crude material was compound
1, along with di(10-mesityl-9-anthryl)methane (4) as a minor
product. After silica gel column purification, the isolated yield
of these compounds were 64% and 13%, respectively. Addition-

ally, a radical species, showing an ESR peak pattern distinct
from that of the DAntM radical and mainly splitting into five
peaks with g = 2.0037, was confirmed (Figure 4, Figure S7,
Supporting Information File 1). ESR and MS measurements as
well as X-ray crystallography revealed that the radical species
was assigned 10-mesityl-9-anthroyxyl radical (5), obtained in
47% yield (Figure 4c, Figure S8, Supporting Information
File 1). Thus, two decomposition pathways were considered: a
minor pathway involving hydrogen abstraction from water
yielding 4, and a major pathway involving oxygen addition to
the central carbon to afford 1,2-dioxetane (DOT) intermediate.
Usually, DOT derivatives are known to readily decompose [38],
and this DOT intermediate is also considered to decompose
upon C–C and O–O bond cleavage to give compounds 1 and 5
(Scheme 2).

Owing to the high reactivity of the DAntM radical, cyclic
voltammogram (CV) was measured by using the stable DAntM
cation, prepared from compound 3 oxidized by antimony(V)
chloride, which can be characterized by 1H, 13C NMR, and
UV–vis spectroscopy under ambient conditions. The CV of
DAntM species showed a reversible wave at E1/2 = −0.20 V



Beilstein J. Org. Chem. 2024, 20, 2254–2260.

2258

Scheme 2: Decomposition pathway of the DAntM radical under air conditions.

Figure 5: Cyclic voltammogram (CV) of DAntM cation. (a) CV measured with scan rate at 3.0 V s−1. (b) Scan rate dependency (0.1, 0.5, 1.0, 2.0, and
3.0 V s−1) of the redox wave. Measurement conditions: 100 mM n-Bu4NPF6 and 1 mM DAntM cation in CH2Cl2. Red arrows indicate the sweep direc-
tion.

(V vs Fc/Fc+) (Figure 5a) [39]. This redox potential is close to
that of TAntM radical and cation [17]. Additionally, at a scan
rate of 0.1 V s−1, the current peak intensity on the anodic side
(from radical to cation) was significantly lower than that on the
cathodic side (from cation to radical), resulting in an irre-
versible redox wave. However, by increasing the scan rate, the
current peak intensity on the anodic side gradually increased,
and the difference in current intensity between the anodic and
cathodic sides became smaller, resulting in a reversible redox
wave (Figure 5b). This indicates that the generated DAntM
radical rapidly decomposes during the CV measurement,
leading to the irreversible redox wave at slow scan rate.

The UV–vis spectra of the DAntM radical and cation were
shown in Figure 6a and 6b, respectively. The DAntM radical

exhibited a forbidden near-IR (NIR) band centered at 900 nm
and relatively intense bands at 580 and 540 nm, whose spectral
pattern is similar to the spectrum pattern of the TAntM radical
[17]. The result of TD-DFT calculations could reproduce the
obtained spectrum shape (Supporting Information File 1, Figure
S10). On the other hand, the UV–vis spectrum of the DAntM
cation, generated from 3 in TFA solution, showed an intense
absorption band at 890 nm, which is the opposite trend com-
pared to the DAntM radical.

Conclusion
The synthesis and characterization of the DAntM radical were
successfully conducted. Although the DAntM radical exhibits
σ-dimerization in solution, it readily dissociates into a
monomeric radical due to the presence of two bulky 9-anthryl
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Figure 6: UV–vis–NIR spectra of (a) DAntM radical in toluene, (b) DAntM cation in TFA.

groups. However, the DAntM radical retains a highly reactive
nature with oxygen, resulting in the formation of a 1,2-dioxe-
tane (DOT) intermediate and decomposition to aldehyde 1 and
anthroxyl radical 5 via C–C and O–O bond cleavage. This reac-
tivity is attributed to the predominant localization of an
unpaired electron at the central sp2 carbon of the DAntM
radical. These findings provide variable insights for the molecu-
lar design of readily handled aromatic hydrocarbon radicals that
possess both stability and reactivity.

Supporting Information
Supporting Information File 1
Synthetic procedure and compound characterization data
(1H, 13C NMR, MS, melting point, X-ray crystallography)
of new compounds. DFT calculation results and optimized
structural Cartesian coordinates.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-20-193-S1.pdf]

Supporting Information File 2
Crystallographic information file for compound 5.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-20-193-S2.cif]
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