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Abstract
Organocatalysis has established itself as a third pillar of homogeneous catalysis, besides transition metal catalysis and biocatalysis,
as its use for enantioselective reactions has gathered significant interest over the last decades. Concurrent to this development,
machine learning (ML) has been increasingly applied in the chemical domain to efficiently uncover hidden patterns in data and
accelerate scientific discovery. While the uptake of ML in organocatalysis has been comparably slow, the last two decades have
showed an increased interest from the community. This review gives an overview of the work in the field of ML in organocatalysis.
The review starts by giving a short primer on ML for experimental chemists, before discussing its application for predicting the
selectivity of organocatalytic transformations. Subsequently, we review ML employed for privileged catalysts, before focusing on
its application for catalyst and reaction design. Concluding, we give our view on current challenges and future directions for this
field, drawing inspiration from the application of ML to other scientific domains.
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Introduction
Since the beginning of the 21st century, organocatalysts [1]
have established themselves as a third group of homogeneous
catalysts, next to biocatalysts [2] (enzymes) and transition
metal-based catalysts [3]. In particular, enantioselective organo-
catalysis has shown an impressive rise in the last decades,

owing to the tunability of catalysts and different modes of acti-
vation, enabling a manifold of different transformations [4,5].
The development of the field, driven by many researchers, led
to the award of the Nobel Prize to List and MacMillan in 2021
‘for the development of asymmetric organocatalysis’. Organo-
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catalytic transformations have also seen the transition to indus-
trial processes for the production of a variety of pesticides and
medicinal compounds, as recently reviewed [6-9].

Despite the prominence of organocatalytic reactions, catalyst
development has so far mostly been conducted guided by intu-
ition of skilled organic chemists. Given that organocatalytic
reactions are governed by different competing interactions, the
influence of a change in molecular structure is often non-trivial,
even for highly experienced experts. Thus, intuition-guided
catalyst development is regarded as suboptimally efficient and
furthermore highly subjective to the experience of the chemists
carrying out the study [10-15]. Considering the demand of
organocatalysts, their accelerated and reliable development is
highly desirable [16]. In the spirit of accelerated discovery, the
development of organocatalysts has been augmented with
computational catalyst design [17,18]. Multiple programs for
automated catalyst simulation have been developed in the last
decade. Notable examples include the development of ACE
(Asymmetric Catalyst Evaluation) [19,20], AARON (Auto-
mated Reaction Optimiser for New Catalysts) [21] or CatVS
(Catalyst Virtual Screening) [22]. Such tools have been exten-
sively reviewed in the past years [23-25]. Based on a known
mechanism, the tools calculate the energies of relevant species
either via force field or quantum chemical methods to assess the
properties of a reaction such as activation energies or selec-
tivity. Irrespective of the degree of automation, in silico calcula-
tions are often less time-sensitive than wet-lab experiments and
can be used to reduce the number of required experiments. As
such, these methods contribute to the acceleration of catalyst
discovery, for example through high-throughput virtual
screening.

Predating these computational techniques is the desire to under-
stand and explain experimental outcomes in organic chemistry
with physicochemical descriptors. A prominent early example
are Hammett parameters, developed in 1937 [26,27], that relate
substituent parameters to the equilibrium constant of the depro-
tonation of a substituted benzoic acid. The derived substituent
parameters are used to gain insight into the mechanism of reac-
tions by observing the influence of substituents on a reaction
outcome. However, Hammett parameters have shown to not
fully describe observed trends. Therefore, complementary
representations capturing other properties of a molecule have
been derived (vide infra) [28].

While traditional linear free energy relationships such as those
using Hammett parameters used linear models, the emergence
of ML has led to the development of more complex algorithms,
better suited for extracting hidden patterns in data. The ability
of ML to efficiently capture complex relationships allows to

extract influences on catalyst properties and thus makes it suited
towards the accelerated design of chemicals and materials, in-
cluding organocatalysts [29]. Due to this potential, an increas-
ing number of research groups have used ML to predict and
develop new organocatalytic reactions.

This review aims to provide a critical overview of develop-
ments in ML specifically for organocatalysis over the last
decade, with a focus on its applications. We aim to provide a
starting point to catalysis researchers who are interested in ML
as well as an assessment of critical challenges to more experi-
enced ML users. We will first give a primer on ML, equipping
experimentalists with the knowledge necessary to follow the de-
velopments in the field. The rest of the review is divided into
three parts: (1) ML for reactivity and selectivity prediction,
(2) ML for the design of privileged organocatalysts and (3) ML
for catalyst and reaction design. Ultimately, the review will give
an outlook on the authors’ expectation of the future of the field.

Review
1. Primer on ML
1.1 Data
The foundation for any predictive model is the underlying data.
It represents the source from which the model extracts relevant
patterns and relations. Therefore, the size and quality of the
underlying dataset will determine the model’s predictive capa-
bilities. To obtain high predictive accuracy for a broad range of
problems, a data set is sought which covers the problem space
comprehensively. This does not only encompass the chemical
diversity of the included molecules, but also the range of
results, e.g., reactions with low, medium and high selectivity
[30]. Predictions for data points outside of the applicability
domain, e.g., the region which is not sufficiently covered by the
provided training data, are less reliable, which is why an appro-
priate choice of training data is paramount for predictive model-
ling. Depending on the problem at hand, different sources of
data are available (Figure 1).

Apart from experimental data, the creation of large amounts of
in silico data is possible with sufficient computational resources
[31,32]. While this approach is useful in cases where the experi-
mental determination is challenging, some experimental proper-
ties, like the reaction yield, remain elusive to be reliably com-
puted due to the myriad of factors (side-reactions, impurities,
solvation effects, interface effects,...) that influence this observ-
able [33,34]. Another pitfall regarding computational data is its
accuracy with respect to the ground truth, in particular for
multiple factors relevant throughout catalysis, such as non-
covalent interactions (NCIs) for organocatalysis or spin proper-
ties for transition metal catalysis [35,36]. While most quantities
can in principle be computed with the highest accuracy using
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Figure 1: Schematic depiction of available data sources for predictive modelling, each with its advantages and disadvantages. Icon ‘Manual experi-
ments’ made by Eucalyp from flaticon.com. This content is not subject to CC BY 4.0. Icon ‘Computation’ made by Wichai.wi from flaticon.com. This
content is not subject to CC BY 4.0. Icon ‘Literature’ made by Muhammad Atif from flaticon.com. This content is not subject to CC BY 4.0. Icon ‘HTE’
made by Nuricon from flaticon.com. This content is not subject to CC BY 4.0. Icon ‘Pros’ made by Aldo Cervantes from flaticon.com. This content is
not subject to CC BY 4.0. Icon ‘Cons’ made by Yogi Aprelliyanto from flaticon.com. This content is not subject to CC BY 4.0.

advanced tools, the associated computational cost needs to be
considered [18,24].

Therefore, the use of experimental data is advantageous as less
assumptions have to be made and the quantity of interest is
directly represented. The results of a great number of experi-
ments can be found in literature, as well as patents. Manual
curation of this data is possible, but for larger amounts of data it
is usually impractical. Therefore, automated extraction tools
have been reported yielding the data in a structured format suit-
able for ML [37-41]. While some important efforts have been
made to establish uniform data reporting standards [42,43], they
are getting picked up by the community rather slowly. With
data from experiments conducted by different scientists under
varying conditions and adhering to various standards, repro-
ducibility remains a major challenge in organic chemistry and
restricts the applicability of literature data for statistical model-
ling [30]. Despite emerging high-throughput experimentation
(HTE) pipelines [44,45], large datasets of high-quality are still
scarce. While multiple large datasets are available for transition
metal catalysis [46-48] and biocatalysis [49-51], they are how-
ever not common for organocatalysis. Therefore, much research
has been devoted to develop models that perform well on the
available small data sets [52,53].

1.2 Representation
In order to be processed by any ML model, the data needs to be
provided in a machine-readable way. Unlike chemists who typi-
cally use drawings of Lewis structures to represent molecules,
computers require a numerical representation of the molecular
structure. Since the information that describes the input directly
influences what relationships a model can learn from the
presented data, different representations might be suitable
depending on the task.

Besides the most commonly used string-based representations,
such as the Simplified Molecular Input Line Entry Specifica-
tion (SMILES) [54] and fingerprints like the extended connec-
tivity fingerprint (ECFP) [55], molecules can be directly repre-
sented as graphs (Figure 2).

Figure 2: Schematic depiction of different kinds of molecular represen-
tations for fluoronitroethane. Among the most common representa-
tions are string-based notations, such as SMILES, structural finger-
prints, like the ECFP, or molecular graphs. Another way of encoding a
molecule is through descriptors that often contain steric or electronic
properties.

In graphs, the atoms and bonds are represented as nodes, and
edges, respectively [56]. While these kind of representations are
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well suited for the description of most organocatalysts with
distinct bonds, they have limitations when describing coordina-
tion compounds as commonly found in transition metal cataly-
sis for example [57].

Another kind of representation that has found considerable ap-
plication for ML in organocatalysis, is the use of descriptors.
These are sets of numerical or categorical values to encode a
molecule. A plethora of descriptors with varying degree of
computational effort for their calculation are available. Among
the most commonly employed descriptors in organocatalysis
are steric and electronic descriptors. Section 2.1 provides a
detailed overview of examples where different kind of descrip-
tors have been successfully applied for predictive modelling in
organocatalysis. In contrast to the representations through
graphs, or SMILES, which can be directly obtained from the
molecular structure, the selection of appropriate descriptors is
problem-specific and requires knowledge about the funda-
mental interactions governing the reaction outcome. Hence,
making the selection of input features a key step for successful
modelling [58-63].

1.3 Modelling
The third important requirement for building a predictive model
is the model architecture. Generally, ML algorithms can be
divided into reinforced, unsupervised and supervised learning.
In reinforcement learning, an agent is trained to make decisions
by interacting with an environment, receiving feedback in the
form of rewards or penalties, and adjusting its behaviour to
maximise cumulative rewards over time [64].

While reinforcement learning has not yet found widespread ap-
plication in organocatalysis, supervised and unsupervised
learning are widely employed techniques. The latter uses unla-
belled data (e.g., data without a label or numerical value), to
identify patterns and relationships within the provided data.
Popular tools are Principal Component Analysis (PCA),
Uniform Manifold Approximation and Projection (UMAP)
[65], or t-distributed Stochastic Neighbour Embedding (t-SNE)
[66], which have found application in organocatalysis to reduce
the dimension of the respective reaction space, e.g., for visuali-
zation purposes. Another widely applied unsupervised ML tech-
nique is clustering, which aims to group similar data points
together and thus enables a diverse selection by uniformly
sampling from the created space [67,68]. Supervised learning
requires labelled data and aims at identifying correlations be-
tween the target values and the corresponding input features. In
the context of addressing chemical problems, this can be used to
correlate reaction specific features with the reaction outcome,
such as the yield or selectivity. A plethora of different super-
vised learning algorithms are available and a priori knowledge

which architecture works best is challenging. Some of the most
widely used algorithms include multivariate linear regression
(MLR) [69] in which the target is linearly modelled by multiple
independent variables. Other notable architectures include deci-
sion trees [70], support vector machines [67] and deep neural
networks [71,72]. While the accuracy of the model is para-
mount, interpretability is also highly desirable. In this regard,
MLR bears the advantage that it yields a directly interpretable
function which can be used for mechanistic inference. However,
it is important to note that the caveat of correlation and
causality must be considered. Also, for other kind of models,
e.g., random forests, it is common practice to consider the
importance of individual features for the model’s prediction
to gain mechanistic insight. Careful attention must be paid
to the collinearity of features [73], such that they are not too
strongly related to each other, which complicates any
quantitative interpretation of feature importance. Thus, thor-
ough analysis and special strategies to address collinearity, such
as hierarchical clustering [74] or threshold-based pre-selection
[75] have to be considered to ensure reliable interpretability
[69].

It is worth mentioning that all the above-mentioned techniques
are not limited to applications in organocatalysis but are used
for a wide variety of chemical problems.

2 ML for selectivity predictions
In the context of organocatalysis, for a majority of published
work, the reaction property of interest is the selectivity (either
enantio- or diastereoselectivity), which is predicted as the
difference in energies between the selectivity-governing transi-
tion states ∆∆G‡ (Figure 3).

Whereas the application of the above described representations
and models to such problems is rather modern, the interest to
describe the influence of substrate or catalyst structures on the
rate or selectivity of a reaction is well-established and led
among others to the introduction of Hammett parameters to
relate chemical structures to both kinetic and thermodynamic
reaction properties [28] (Figure 4).

As Hammett parameters account only for the electronic effect
of substituents, much research has been devoted to develop
physical-organic descriptors, which consider steric effects and
separate the electronic effect into contributions from resonance
and induction, among others [27,77-81].

In this chapter, we first discuss the evolution of physical-
organic descriptors for the representation of organocatalysts
[82]. Later, we examine the effects of increasing data availabili-
ty towards the application of ML in this field.
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Figure 3: Depiction of the energy diagram of a generic enantioselective reaction. In the centre, catalyst and substrate are separated. They associate
with each other to either the pro-(R) or pro-(S) complex, with all these reactions taking place in a fast equilibrium (Curtin–Hammett conditions). From
these complexes, the products are formed via separate transition states. The energy difference between these two transition states is termed ∆∆G‡

and determines the selectivity.

Figure 4: Hammett parameters are derived from the equilibrium constant of substituted benzoic acids (example from Rogers et al. [76] to correlate
Hammett parameters of the arylpyrrolidine catalysts to the reaction kinetics of the aldol reaction).

2.1 Evolution of physical-organic descriptors in
organocatalysis
Drawing inspiration from linear free energy relationships, MLR
models, pioneered by Norrby and co-workers [83] and later
further developed by Sigman and co-workers [69,82], are com-
monly used for the prediction of enantioselectivity. In such
models, the substrates, catalysts, and other relevant reaction

species are encoded via a suitable representation of expert-
chosen descriptors. Subsequently, the target property of interest,
commonly ∆∆G‡, is fitted to the representation via a linear fit of
the form y = m1x1 + m2x2 +…+ mnxn + k, where y is the target
property, m1, ... , mn are the regression coefficients, k is the
offset and x1, …, xn are the molecular descriptors. The regres-
sion coefficients are also indicative of the importance of the
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Figure 5: Selected examples of popular descriptors applied to model organocatalytic reactions. Descriptors encompass steric features modelled via
Sterimol parameters [84] (example from Harper et al. [60] correlating the Sterimol B1 and L parameters of the bisphenols to the enantioselectivity of
the peptide catalysed desymmetrisation), electronic features modelled via vibrations or NPA charges (example from Crawford et al. [86]) and NCIs,
modelled via interaction distances and energies with a defined probe (example from Orlandi et al. [61]).

respective molecular parameter. Thus, MLR models provide the
capability to directly interpret the prediction results and form
mechanistic hypotheses based on the importance of distinct
descriptors.

Given the importance of the chosen representation, the search
for descriptive parameters has always been a cornerstone in this
field. While Taft [77] and Charton [81] describe steric proper-
ties as singular substituent values, Harper et al. [60] showed that
a singular value is insufficient to represent steric substituent
properties. Instead, the authors used Sterimol parameters [84] as
steric descriptors (Figure 5), showing superior correlations
towards the enantioselectivity for a multitude of organocata-
lytic reactions.

Sterimol parameters are calculated from a given 3D structure
and consist of three parameters, describing the minimum and
maximum (rotational) width as well as the depth of a substitu-
ent. Nowadays, Sterimol parameters are established as standard
parameters to describe steric residue properties. Since Sterimol
parameters are calculated from a 3D structure, it is important to
include information from relevant conformers. To avoid losing
important information from discarding conformers, Paton and
co-workers [85] introduced wSterimol, which takes into account
structures from the entire conformer ensemble via Boltzmann-

weighting. The authors used their descriptors for the prediction
of the enantioselectivity for several previously reported reac-
tions, showing improved prediction performance compared to
non-Boltzmann-weighted Sterimol parameters. Apart from
considering parameters of the entire conformer ensemble, it has
been shown that informative models can be developed by
considering active structures. This was demonstrated by Craw-
ford et al. [86] in their investigation of a peptide-catalysed atro-
poselective bromination (Figure 5). The authors found that the
peptidic catalysts can broadly be defined in two categories of
β-turns: a type I’ pre-helical and type II’ β-hairpin. Even though
the latter was consistently lower in ground state energy (up to
6 kcal/mol for some catalysts), predictive models for enantiose-
lectivity were found for both catalyst conformers in separate
MLR models. For organophosphorous ligands of transition
metal complexes, the minimum buried volume in a conformer
ensemble was identified to determine the ligation state towards
a metal centre as either mono- or bis-ligated and thus providing
a threshold for catalytically active ligands [87]. All of these ex-
amples demonstrate that not only the type of descriptor is im-
portant, but also the structure for which the descriptors are
considered. This can either be ensured by expert-knowledge of
preselecting relevant structures, for example based on a known
mechanism, or by considering information from the entire
conformer ensemble.
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Figure 6: Example bromocyclization reaction from Toste and co-workers using a DABCOnium catalyst system and CPA phase transfer catalyst [96].

Parallel to the evolution in modelling steric effects, the repre-
sentation of electronic effects has also been further developed.
Milo et al. [58] introduced the intensity and frequency of manu-
ally selected molecular vibrations as descriptors (Figure 5). For
the selection of relevant vibrations, a mechanistic proposal is re-
quired a priori, commonly based on a manual analysis of the
probed substrates. The inclusion of electronic parameters led to
a considerable improvement in predicting the enantioselectivity
of a peptide-catalysed bisphenol desymmetrisation compared to
their omission, showcasing the importance of capturing rele-
vant molecular properties via descriptors. Apart from molecu-
lar vibrations, electronic influences are commonly modelled via
global properties of a molecule (such as HOMO/LUMO
energies) or local properties (such as natural population
analysis (NPA) charges/NMR shifts), as shown in Figure 5
[69,72,88,89].

With respect to organocatalysis, NCIs are often a major factor
in determining selectivities, which are hard to describe via stan-
dard molecular descriptors. Therefore, Orlandi et al. [61] intro-
duced computed NCI distances and energies between benzene
and a probe residue as descriptors for NCIs (Figure 5).

Notably, the NCI energies are inspired by previous work from
Wheeler and Houk [90,91] and are defined as the computed
energetic difference between the complex of the benzene ring
and the probe residue and the separated species. Orlandi et al.
used the NCI parameters in combination with other descriptors
to model the enantioselectivities of a kinetic resolution of
benzyl alcohols and an enantiodivergent fluorination of allylic
alcohols, observing good correlations for both reactions. Since
then, the proposed NCI descriptors have been successfully
applied to multiple different reactions, such as an allenoate

Claisen rearrangement [92] and a phase-transfer catalysed oxi-
dative amination reaction [93]. In the latter, NCI descriptors
were both used to simplify previously existing MLR models
and also led to a hypothesis of key NCIs in the transition state.
Whereas these descriptors require the selection of a suitable
probe model, Chen and Pollice proposed Pint as a descriptor of
the London dispersion potential that is universal and can be
calculated without a probe system [94]. Although Pint has not
been utilised for organocatalysis, the authors applied it to a
Pd-metal-catalysed enantioselective 1,1-diarylation of benzyl
acrylates [95] and found a similar performance compared to
NCI probe descriptors.

Despite the success of this approach, it is important to
remember that descriptors do not have to be parameters of one
molecule and that intermolecular terms can be used to derive
mechanistic hypotheses. Toste and co-workers [96] investigat-
ed a bromocyclization catalysed by a chiral phosphoric acid
(CPA) and a DABCOnium brominating reagent (Figure 6). The
authors calculated transition state conformer ensembles for
several flexible DABCOnium systems and performed energy
decomposition analysis to separate the interactions between
catalyst, substrate and the DABCOnium moiety. Subsequently,
a random forest model was used to predict exo/endo- and regio-
selectivity of the reaction. Using random forest as an inter-
pretable machine learning model allowed to extract the impor-
tant features of the model, which indicated that the dispersion
interaction between the DABCOnium system and the CPA is
governing the exo-selectivity.

For the application of the ML techniques discussed above, it is
assumed that all studied reactions follow the same mechanism.
If that is not the case, models cannot be reliably fit to the data
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Figure 7: Example from Neel et al. using a chiral ion pair catalyst for the selective fluorination of allylic alcohols [97].

points, similar to mechanistic breaks in Hammett plots. Howev-
er, deliberate data set design to systematically cover the rele-
vant chemical space can aid in detecting outliers and aid in
creating more relevant models, as demonstrated by Neel et al.
for an enantiodivergent fluorination of allylic alcohols, cata-
lysed by a CPA as phase transfer catalyst and an arylboronic
acid [97] (Figure 7).

After a systematic data set design involving eight phosphoric
acids and eight boronic acids, the authors observed breaks in
linearity of the model of enantioinduction for some catalyst
combinations. Further experiments, such as non-linear effect
studies and isotopic substitution experiments revealed multiple
different mechanisms of enantioinduction for the respective
combinations. To rationalise relevant interactions, MLR models
were trained on subsets of the data set. For each different mech-
anism of enantioinduction previously elucidated, the authors
developed a separate model to gain a sufficiently interpretable
model, finding that some parameters remain important
throughout the different subsets. This example demonstrates
both the strength of careful data analysis and the intricacies of
dealing with chemical reactivity data.

The above outlined examples demonstrate the relevance of effi-
cient representations, to which the development of advanced
descriptors contributed. However, the usage of descriptors also
restricts the generalizability of models, as they have to be expert
derived. Interestingly, descriptor-based MLR models have also
been used to predict the Mayr–Patz nucleophilicity parameter
N, which estimates the nucleophilicity of a nucleophile based
on experimentally measured kinetic data. The MLR models are
used to predict N for more than 1200 nucleophiles, enabling the
prediction of N for further nucleophiles [98-101]. While this
complicates the usage of descriptors for a multitude of different

reactions, it also enables an efficient representation by repre-
senting chemical hypotheses. Even though descriptors have
been proposed for a number of different interactions, others
are not easily represented via descriptors but remain highly im-
portant towards enantioselectivity, e.g., solvent-solute interac-
tions.

When interpreting the importance of descriptors, effects such as
overfitting and collinearity of features must be accounted for.
Particularly in the low-data regime, the importance of selected
features can vary based on the reactions that are contained in
the training and test set. While descriptors can help in gaining
mechanistic insight, it is important to not overinterpret
the significance of single features to form a mechanistic hypoth-
esis.

Ideally, to overcome issues such as a high dataset dependence,
larger reaction datasets are available. In terms of data set sizes,
the presented studies all worked in the low to medium data set
size, with up to few hundred experiments [102,103], where
careful considerations must be paid towards the applicability
domain, overfitting and interpretability. With HTE platforms
established and due to their importance to ML campaigns, the
past few years have seen a trend in creating larger experimental
chemical reactivity datasets, in particular for transition metal ca-
talysis [47,48].

2.2 Increasing data availability in ML for
organocatalysis
While, to the best of the authors’ knowledge, no HTE dataset
has found widespread application in ML for organocatalysis,
Denmark and co-workers published a data set comprising more
than 1,000 organocatalytic transformations [67]. In their work,
the authors demonstrated a data-driven workflow to study the
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Figure 8: Data set created by Denmark and co-workers for the CPA-catalysed thiol addition to N-acylimines [67]. The combinatorial data set encom-
passes the enantioselectivities from 5 thiols and 5 imines in combination with 43 CPA catalysts for a total of 1,075 data points.

enantioselective formation of N,S-acetals catalysed by CPAs.
To represent the catalysts, the authors developed the average
steric occupancy (ASO) descriptors, a representation inspired
by CoMFA [104-106], which recently also was applied in the
selectivity prediction of aldehydes to nitroalkenes [68]. In ASO,
all catalysts are aligned on a 3D-grid and the descriptor is calcu-
lated as the average occupancy of voxels on the 3D grid, where
a voxel is occupied if it is within the van der Waals radius of an
atom. The steric descriptors were combined with electronic
descriptors called Average Electronic Indicator Field (AEIF),
which are calculated for each CPA substituent (R) by observing
the electrostatic potential of a quarternary ammonium ion with
the substituent of interest (NMe3R+). The authors performed
unsupervised clustering on an in silico library to select a
‘Universal Training Set’ (UTS) consisting of 24 catalysts,
aiming to effectively represent the chemical space of CPAs.
This UTS was selected by first reducing the dimension of the
combined descriptor space using PCA and subsequent uniform
sampling of the catalysts using a clustering algorithm (see
Section 1.3), which ensures a broad coverage of CPA chemical
space. Notably, this data-driven technique is not restricted to the
reaction chosen by the authors. The UTS, combined with
19 ‘test set’ catalysts, 5 nucleophiles and 5 electrophiles, consti-
tutes a dataset of 1,075 reactions with associated enantioselec-
tivity values (Figure 8).

The size of the data set allowed the authors to perform various
ML experiments: a random (600:475) split on the data set, a
substrate test set where ∆∆G‡ of known catalysts with new sub-
strate combinations were predicted, a catalyst test set where the
substrates were known but the catalysts not and a test set were
both components were not known beforehand. Even in the most
challenging case, predictions were highly accurate with a mean
absolute deviation of 0.24 kcal/mol. Further, the authors per-
formed a split where the models were only trained on reactions
with an ee < 80% (718:357 split), still showing good extrapola-
tion performance with an error of only 0.33 kcal/mol on the test
set with higher enantioselectivity.

The open availability of larger, high-quality datasets also
inspires other researchers to develop and apply ML algorithms
and molecular representations. The previously described dataset
from Denmark and co-workers has been adopted by other
groups to develop and/or benchmark descriptors [107,108],
models that use architectures designed to deal with multiple
conformers [109-111] (see Figure 9A and also Section 2.1) or
models that are based on multiple fingerprints [112].

In addition, such larger data sets also lead to an increased
interest in the application of deep learning tools, such as graph-
based neural networks, to organocatalysis. One particular exam-
ple was published by Hong and co-workers [113], who de-
veloped a chemistry-informed graph model for the prediction of
enantioselectivities (Figure 9B). In their model, molecules were
represented as graphs, where local steric and electronic infor-
mation was added to each node (atom). Additionally, the used
graph neural network contains a molecular interaction module
that allows the model to learn synergistic effects between mole-
cules, crucial for reactivity prediction tasks. While reaching
state-of-the art performance in predicting ∆∆G‡ on the data set
from Denmark and co-workers, the designed neural network
also enables to interpret the effects leading to the observed en-
antioselectivity by eliminating the atom features and observing
the change in predictive performance. Using this method, the
authors observed that the main contribution towards enantioin-
duction by CPAs is through steric effects, in line with previous
literature.

Besides the establishment of experimental data sets, the num-
ber of ML data sets based on quantum mechanical calculations
is also increasing, such as a data set that considers propargyla-
tion reactions catalysed by bipyridine N,N’-dioxide-derived
scaffolds, created by Wheeler and co-workers using their
AARON toolkit [21,114-116]. Similar to experimental data,
computational data sets also lead to the development of ML
innovation [117,118]. One example is the development of a new
reaction representation based on the geometry of reactants and
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Figure 9: Selected examples of ML developments that used the dataset from Denmark and co-workers [67]. (A) Varnek and co-workers used ML
models designed to deal with multiple catalyst conformers for the prediction of catalyst selectivity. Reproduced with permission from reference [109],
© 2021 Georg Thieme Verlag KG. This content is not subject to CC BY 4.0. (B): Hong and co-workers utilised a molecular graph based on knowledge
about the local steric and electronic information, coupled with a graph neural network equipped with a module designed to capture molecular interac-
tions. Figure adapted from reference [113] (© 2023 S.-W. Li et al., published by Springer Nature, distributed under the terms of the Creative Commons
Attribution 4.0 International License, https://creativecommons.org/licenses/by/4.0).

products [89]. Unlike expert-chosen descriptors, this representa-
tion is generalisable to other systems. Although not concerned
with selectivity, Corminboeuf and co-workers reported
OSCAR, a computational repository of 4,000 organocatalyst
structures mined from the literature and Cambridge Structural
Database (CSD) [31].

In addition, the authors utilised the combinatorial nature of
organocatalysts to create data bases comprising more than 8,000
NHC-type catalysts and more than one million double hydro-
gen bond donor catalysts. While this repository does not
provide any reactivity data, it still comprises a valuable map of
organocatalyst chemical space to aid in catalyst design.

The creation of these larger datasets, both experimental and in
silico, has enabled the interest of the ML in chemistry commu-

nity towards enantioselective organocatalysis. With these
datasets, it is now possible to test different algorithms and
benchmark varying chemical representations. Despite these
advances, the existence of few large datasets in enantioselec-
tive organocatalysis might lead to a bias in developed algo-
rithms and representations. Since few datasets are available,
advances are benchmarked on these datasets and commonly
only published if they provide state-of-the-art performance.
Thus, a bias towards representations and algorithms that capture
relevant effects of the existing datasets are conceivable, while
other important effects that govern selectivities remain underex-
plored by the community. Therefore, it is highly relevant to
extend the available chemical space to underexplored regions
and to acquire large datasets for such cases to allow for more
holistic investigations of algorithms and chemical representa-
tions.

https://creativecommons.org/licenses/by/4.0
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To summarise, the last decade has seen a steady refinement in
the representation of chemical species, considering sterics, elec-
tronic properties and non-covalent interactions. Since these
interactions are governing any reactivity, accurate description is
relevant for a successful ML campaign. Most of the work in
organocatalysis using expert-derived descriptors has been con-
ducted in the low to middle data-regime. Only recently, the
focus has shifted towards bigger data sets of more than
1,000 reactions, the first one of which has already inspired a
manifold of other groups to develop new ML techniques, in-
cluding graph neural networks. With the continued rise of high-
throughput experimentation in organocatalysis [40], we expect
ML to be applied to more data sets in this domain to aid in
answering a wider variety of research questions. For the predic-
tion of selectivities, we expect more advanced techniques to be
adopted, establishing ML as a powerful tool for the evaluation
of organocatalysts.

3 ML for the design of privileged
organocatalysts
Throughout the development of organocatalysis, privileged
catalysts, i.e., catalysts which catalyse a wide variety of differ-
ent reactions through the same mechanism of enantioinduction,
have emerged in multiple organocatalytic transformations
[119]. The examples discussed in Section 2 all have seen the ap-
plication of ML techniques to predict the selectivity of a reac-
tion of interest. However, since the mechanism of enantioinduc-
tion is similar for multiple reactions catalysed by a privileged
catalyst class, these ’related’ reactions can in principle be
modelled together. The reactions are assumed to be mechanisti-
cally transferable.

The similarity of multiple reactions led to two different applica-
tions of ML to organocatalysis: (1) prediction of reaction prop-
erties (e.g., selectivity) for multiple mechanistically transfer-
able reactions, and (2) employing ML in the search to predict
the generality of a catalyst. This chapter will discuss prominent
examples in both applications.

3.1 ML for transferable reactions
The key to modelling transferable reactions together is to find a
representation that can describe all relevant reacting species.
While such representations commonly exist in chemistry, e.g.,
SMILES and graphs, the most common representation for trans-
ferable reactions is via expert-chosen descriptors. As such, the
space of relevant reactions has to be carefully studied, e.g., with
respect to the different reactant or catalyst classes. Once this
space is defined, the descriptors have to be chosen such
that they are specific enough to provide information to
the ML model while also general enough to cover the space of
interest.

One pioneering study in the field of mechanistic transferability
for enantioselectivity prediction was published by Reid and
Sigman [120] in 2019. The authors manually combined 367 dif-
ferent published reactions of BINOL-phosphoric acid catalysed
nucleophilic additions to imines, comprising alcohols, thiols,
phosphonates, diazoacetamides, peroxides, benzothiazolines
and more as nucleophiles. Apart from reactant classes, the reac-
tions also vary in additives, and solvent among others. Since
these reactions all adhere to the same mechanism of enantioin-
duction, the authors chose to consider them in the same ML
campaign, even though the nucleophiles vary significantly. As
descriptors, the authors used the overlapping features of nucleo-
philes, imines and catalysts to derive steric and electronic pa-
rameters as well as topological descriptors for solvents, where
less structural overlap is present [121].

For every reaction, the imine is categorised as either an E- or
Z-imine, based on the sign of the recorded enantiomeric excess.
Further, molecular descriptors, either physicochemical proper-
ties or topological, are calculated for all reaction partners. This
data is used to develop a comprehensive model, finding that
imine parameters govern the defining transition state and hence
the preferred enantiomer. In a focused modelling, two separate
models are constructed, one for all E- and Z-imines, respective-
ly, finding substrate–catalyst matching is important for E- and
Z-imines. The focused correlations enabled the authors to iden-
tify subtle mechanistic differences between reactions of E- and
Z-imines, such as the role of steric and electronic properties of
the imine for E- and Z-imines, respectively. The two-stage
workflow, using the comprehensive model to distinguish the
imine-type and subsequently using the focused model for
detailed predictions, proved successful for out-of-sample reac-
tion predictions with new nucleophiles, such as enecarbamates.
Further, the authors also tested their models on the dataset
published by Denmark and co-workers [67] (see Figure 10),
showcasing the importance of high-quality datasets for ML ap-
plications.

Due to their prominence in organocatalysis, CPAs have been a
common catalyst class when considering mechanistically trans-
ferable reactions for modelling. Further work on CPA catalysed
reactions was performed by Shoja et al. [122], considering a
multitude of different reaction types, ranging from hydrogena-
tions to epoxidations and dearomatization reactions. In a further
study, the generalisation of the obtained model to reactions in-
volving more complex substrates was demonstrated [123]. For
the comparison of different reaction descriptors, Asahara and
Miyao [108] considered different CPA-catalysed nucleophilic
additions to imines, comprising aza-Mannich reactions and
Friedel–Crafts reactions among others. Different reactions were
also combined by Liles et al. [124]. For a transfer hydrogena-
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Figure 10: Study from Reid and Sigman developing statistical models for CPA-catalysed nucleophilic addition reactions to imines for different classes
of nucleophiles [120].

tion reaction, the authors used a workflow consisting of training
set design, classification, MLR and extrapolation to predict a
new class of CPA catalysts with enhanced enantioselectivity.
Subsequently, the new catalyst class was tested for cyclodehy-
dration and oxetane desymmetrisation reactions, where a
comprehensive model was developed for the three different
reactions (Figure 11A).

Mechanistic model transferability for CPA-catalysed Minisci
reactions [125] was utilised for the derivatization of quinolines
and pyridines. Models trained on these compound classes show
good generalisation towards other nitrogen-containing
heteroaromatics including pyrimidines and pyrazines.

The importance of mechanistic understanding for model build-
ing was underlined by Kuang et al. [126], where the authors
considered multi-catalyst enantioselective reactions, where one
catalyst was an organocatalyst, either CPA or an amine. The
co-catalyst was included in the ML model by being considered
as a nucleophile or electrophile, depending on the reaction
mechanism. Descriptors allowed for the inclusion of a variety of
co-catalysts, ranging from Fe-piano stool complexes to copper
complexes. The consideration of co-catalysis into model devel-
opment further expands the considerable reaction space in
organocatalysis.

The discussed principle of mechanistic transferability has also
been employed outside of CPA catalysis, with a focus on
amine-based hydrogen-bond donors, for example imidodiphos-
phorimidate-type catalysts for the construction of THF and THP
rings [107] (Figure 11B). Werth and Sigman [127] investigated

multiple nucleophilic additions to nitroalkenes, catalysed by
bifunctional hydrogen bond donors, observing good correla-
tions to new bi-functional donors, new nucleophiles, new elec-
trophiles and even similar cascade-type reactions.

In the authors’ perspective, the exploitation of the concept of
mechanistic transferability is a promising avenue for the appli-
cation of ML in enantioselective organocatalysis, as combining
data from multiple reactions enlarges datasets. As such, it is an
important stepping stone towards the development of more gen-
erally applicable models. However, when applying these
models, potential mechanistic breaks as well as utility of the
chosen representations (descriptors) across the entire dataset
have to be considered. Currently, the work mainly focuses on
CPAs for which a vast number of reactions are reported. While
this underlines the importance of CPAs as enantioselective
organocatalysts, work exploring the mechanistic transferability
of other catalyst classes should not be neglected in order to
fulfill the potential that the application of ML in organocatal-
ysis holds.

3.2 ML for general organocatalysts
While it is important to consider catalysts achieving high enan-
tiomeric excess (ee) on relevant reactions, the deployment of
general catalysts that provide a reasonable ee for a variety of
reactions has gained more attention over the last years [128-
130]. Catalysts that fulfil such demands are coined ‘general
catalysts’.

While the concept of generality was recently explored in a
closed-loop fashion for Suzuki–Miyaura cross couplings to find
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Figure 11: Selected examples of studies where mechanistic transferability was exploited to model multiple reactions together. (A): Liles et al. used
univariate classification and MLR to develop a new CPA catalyst achieving high enantioselectivity for transfer hydrogenations. A comprehensive
model for multiple reactions was developed under the assumption of mechanistic transferability [124]. (B): List and co-workers employed Support
Vector Machines trained on data of different cyclisations to find an optimal catalyst for tetrahydropyran synthesis [107]. R = general residue, Ar = aro-
matic residue.

the most general catalyst and reaction conditions [131], the ap-
plication of this concept in the context of ML has found com-
paratively less attention in organocatalysis, despite the promi-
nence of privileged catalysts.

Despite the intuitive explanation of generality to chemists, a
clear mathematical definition of chemical generality remains
elusive, exacerbating the integration of the generality concept
towards machine learning algorithms. As such, different imple-
mentations were chosen to tackle this problem.

In 2022, Denmark and co-workers [132] (Figure 12) investigat-
ed a disulfonimide-catalysed atroposelective iodination with the
intention of finding a general reaction procedure. After con-
structing an in silico library consisting of 1,478 catalysts, a
universal training set was constructed consisting of 18 catalysts.
Subsequently, the enantioselectivity of each catalyst with 13

model substrates was experimentally evaluated. 13 different
models, one for each substrate, were developed. To find a
general catalyst, a technique termed ’catalyst selection by
committee’ (CSC) was employed: for each substrate, all in
silico catalysts were evaluated and catalysts in the most enantio-
selective 1% of catalysts considered received one ’vote’. After
this process was performed for each of the 13 model substrates,
catalysts with more votes were termed as being more general,
balancing high enantioselectivity with a broader substrate
scope. CSC enabled the identification of two well-performing,
general catalysts.

A different generality metric was proposed by Betinol et al.
[133] (Figure 13). The authors performed clustering on the reac-
tion space of interest representing the molecule either by topo-
logical or quantum mechanical descriptors. The generality of a
catalyst was then assigned by considering the fraction of clus-
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Figure 12: Generality approach by Denmark and co-workers [132] for the iodination of arylpyridines. From the relevant chemical space, a representa-
tive subset of 18 catalysts is selected. For each of the 13 model substrates, a catalyst-substrate model is trained. Catalysts that are top performers for
multiple substrates are considered general catalysts.

Figure 13: Betinol et al. [133] clustered the relevant chemical space and then evaluated the average ee for every cluster. Catalysts that perform
above a user-defined ee cutoff for many clusters are considered general catalysts.

ters for which the average cluster enantioselectivity of a cata-
lyst exceeds a user-defined threshold. This threshold can be
used to balance the need for a wide substrate scope and enantio-
selectivity requirements, while accounting for the specifics of a
reaction and the requirements of the user. The authors applied
their method on 3,003 literature-mined Mannich reactions from
106 publications to find that urea-based catalysts are the most
general organocatalysts for this reaction class (ee threshold
80%), even though amine-based catalysts demonstrate a higher
average ee. Notably, this strategy is not restricted to literature-
extracted examples and can also be applied to enantioselectivi-
ties calculated via quantum chemical calculations or predic-

tions from an ML model. The latter was used by the authors as
an augmentation technique towards an imbalanced dataset for
CPA-catalysed nucleophilic additions. Further, the authors
also propose an order of generality for CPAs catalysing
nucleophilic additions to imines, with TRIP being the highest
ranked (ee threshold 60%). Thus, the authors recommend that
for developing a new reaction, their metric can be used to
decide which catalyst should be tested first based on the ex-
pected success. This generality-based guiding principle of ex-
perimental design showcases a further possibility for data-
driven methods to complement and augment experimental
chemistry.
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Figure 14: Corminboeuf and co-workers [134] chose a representative subset of the reaction space (indicated by dark red points) and used it to eval-
uate the generality of catalyst structures optimised through their genetic algorithm.

In addition to these methods, Corminboeuf and co-workers
[134] proposed a genetic algorithm for the de novo design of
general catalysts (Figure 14). Considering the Pictet–Spengler
cyclization of tryptamine derivatives catalysed by hydrogen-
bond donors, the authors considered a general catalyst to
display both high enantioselectivity and turn-over frequency for
a broad substrate scope. The substrate scope, termed generality
probing set (GPS), was selected based on farthest point
sampling of a literature mined reaction space to cover a wide
chemical space. To assess the enantioselectivity and turn-over
frequency for reactions with a new catalyst, which is required
for de novo design, the authors used different strategies. To
predict enantioselectivity of a previously unseen reaction, the
authors used the reported enantioselectivities in their initial lit-
erature-mined reaction database to train an XGBoost model.
The turn-over frequency of a reaction was determined using a
volcano plot based on reaction energies [135-137], where the
latter were again predicted using an XGBoost model based on
the literature-mined dataset. Using fragments derived from their
OSCAR [31] database, the authors used the NaviCatGA genetic
algorithm [118] to find the most general catalysts. The fitness
function comprised multiple objectives, including the median of
the enantioselectivity and activity across the generality probing
set. The usage of a multi-objective optimization algorithm
allowed them to discover multiple trade-off optima, enabling a
scientist to select the ideal catalyst based on the specific
requirements of catalytic activity and selectivity, while still ac-
counting for catalyst generality through design of the objec-
tives. Noticeably, data analysis allowed to identify regions in
the chemical space where highly ranked catalysts underperform
as well as less sensitive areas in chemical space, further provid-
ing mechanistic insight into the mechanism of stereoinduction
and activity trends.

With the concept of privileged catalysts deeply rooted in
organocatalysis, we expect a steady increase in studies aiming
to bridge the gaps between different reactions that are mecha-
nistically transferable via ML. Using this strategy, it is possible

to both increase the available data (since more reactions are
considered), as well as investigate more general mechanisms.
However, careful consideration has to be paid towards combin-
ing different reactions, as mechanistic transferability has to be
ensured. Furthermore, the usage of ML to identify general cata-
lysts demonstrate that the application of modern ML tools is not
limited to predicting selective catalysts.

4 ML for catalyst and reaction design
The design of chemical reactions encompasses various aspects,
from the choice of the employed catalyst to the selection of
ideal reaction conditions. While traditionally, all of this has
been performed by chemical knowledge, intuition and rational
design, the last years have witnessed a surge in data-driven ap-
proaches to improve the design of reactions, e.g., by inferring
mechanistic features through statistical modelling, the genera-
tion of catalyst structures with increased catalytic activity, or
optimising the reaction conditions to maximise the yield or
selectivity. In contrast to the direct approach as seen in many
examples discussed so far, where starting from a molecular
structure and a set of conditions, the reaction outcome is pre-
dicted, optimising the design of a reaction can be framed as an
inverse design approach [138]. Given a target, e.g., fast conver-
sion or high selectivity, the task is to find a catalyst structure or
a set of conditions to satisfy the requirement. The following
chapter will give an overview of recent advances in the design
of organocatalytic reactions.

4.1 Mechanistic understanding
The design of a catalyst requires detailed understanding of the
key catalytic steps [23,139-142] and commonly uses calculated
or measured physical parameters of reaction components to
make decisions in a design effort. In line with the early develop-
ments of statistical modelling through Hammett parameters to
correlate substrate properties to kinetic properties of the reac-
tion (Section 2), advanced ML tools can help to unravel key
mechanistic features in higher dimensions and with stronger
interactions, which can be used to tailor a reaction to match
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Figure 15: Example for data-driven modelling to improve substrate and catalyst design. (A) C–N coupling catalysed by CPA derivatives studied by
Sigman and co-workers [143]. (B) The library for the study consisted of 12 substrates and 9 triazolyl catalysts. This data was used to train an MLR
model and infer key mechanistic features as well as the design of highly selective catalysts which were experimentally verified after prediction.

desired properties. Sigman and co-workers demonstrated this by
complementing knowledge from physical organic chemistry
with data-driven analysis techniques, in particular MLR, to gain
a greater understanding of the enantioselectivity-determining
steps for a C–N coupling catalysed by CPA derivatives
(Figure 15A) [143]. Based on their findings that π–π interac-
tions between the catalyst’s triazole substituent and the sub-
strate is key for stereoinduction, they designed new catalyst
structures maximising the predicted selectivity. The predictions
were experimentally validated confirming that their model can
be used to guide the design of highly selective catalysts
(Figure 15B).

4.2 High-throughput virtual screening
Although such approaches showcase the ability of ML models
to unravel structure–activity relationships and thereby guide the
development of catalysts, the design of new structures remains
influenced by the prevailing design principles of chemists. In
this regard, approaches to explore uncharted regions of chemi-
cal space in a more unbiased way can help to identify previ-
ously unknown structures that exhibit desired properties. The
advent of statistical models that can predict key catalytic prop-

erties has enabled pipelines to assess a great number of candi-
dates in high-throughput virtual screening approaches [107,144-
147]. Thereby, experimental efforts can be focused on the most
promising candidates predicted by the model. Denmark and
co-workers utilised such an approach to design highly selective
catalysts for a peptide-catalysed annulation reaction [68]. Using
conformer-dependent steric and electronic descriptors, they
built a universal training set (UTS) consisting of 161 tripeptide
catalysts. Based on models trained on the UTS they were able to
identify highly selective tripeptide catalysts from a virtual
library containing more than 30,000 structures. Remarkably,
the predicted peptide catalysts did not follow the prevailing
design principles of experimentally optimised peptide catalysts,
demonstrating how ML can help to explore novel classes of
catalysts. While high-throughput screening campaigns can be
powerful tools for the discovery of novel structures with desired
properties, their scope can be limited due to the effort associat-
ed with computing the descriptors for each individual molecule.
Corminboeuf and co-workers utilised a fragment-based ap-
proach exploiting the modularity of commonly used organocat-
alysts. By considering individual contributions of catalyst frag-
ments, they were able to build a combinatorial library of cata-
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Figure 16: Example for utilising a genetic algorithm for catalyst design. (A) Morita–Baylis–Hillman reaction studied by Jensen and co-workers [150]
(B) Left: A genetic algorithm performs mutation and crossover operations on a set of catalysts with the goal to optimise the fitness function. Middle:
Schematic depiction how the fitness is iteratively optimised across multiple runs ("generations") of the genetic cycle. Right: Identified catalyst struc-
ture with increased catalytic activity.

lysts and predicted novel catalysts with increased reactivity for
an organocatalysed Diels–Alder reaction [148].

4.3 Genetic algorithms
An alternative approach for chemical space exploration is the
use of genetic algorithms (GAs) [149]. Inspired by biological
evolution, they aim to maximise a fitness function using
biology-inspired operations such as mutation and crossovers.
Jensen and co-workers demonstrated the utility of GAs by opti-
mising the structure of a tertiary amine catalyst for the
Morita–Baylis–Hillman reaction [150] (Figure 16).

First, the rate determining step was identified (within the pro-
posed reaction mechanism). Then, the organocatalyst's struc-
ture was optimised to decrease the barrier of this step. After
identification of the most potent structures by the GA, they veri-
fied experimentally that the identified structure increases the
reaction rate by a factor of 7.8 compared to the commonly used
DABCO catalyst. While this clearly demonstrates the capabili-
ties of the GA to accelerate the discovery of organocatalysts,
the authors note that the success of their approach is dependent
on the detailed knowledge of the underlying mechanism. There-
fore, the discovery of catalysts for novel reaction mechanism is
still an ongoing challenge [151-153]. In order to make GAs for
catalyst discovery more generally available, the Corminboeuf
group developed the software suit 'NaviCatGA' [118] which is
designed for the optimisation of catalysts with desired catalytic
properties. The tool provides the user with considerable flexi-

bility, e.g., the definition of the employed fitness function or the
genetic operations to be applied. Further, it supports the multi-
objective optimisation based on multiple target properties,
which is of particular importance as an ideal catalyst combines
a number of properties that need to be taken into account, e.g.,
solubility, stability and synthesisability. The authors exemplify
this by optimising simultaneously for catalytic activity and
selectivity using two individual MLR expressions in their
fitness function. Doing so, their algorithm is able to tailor the
structure of the employed base for a Lewis-base catalysed enan-
tioselective propargylation of benzaldehyde in this multi-objec-
tive optimisation task [118].

Importantly, molecules designed by generative models need to
be tested experimentally. This allows one to verify the assump-
tions made during modelling and validate the model’s ability to
propose molecules tailored to a given application. In this regard,
the synthesisability of the generated molecules plays a decisive
role and remains a major bottleneck which currently restricts
the effective use of generative models [154].

4.4 ML-driven experimental design
Besides the design of employed catalysts, reaction design
involves the identification of optimal reaction conditions, which
poses a formidable challenge due to the high dimensionality of
the reaction space. In the simplest approach, ideal reaction
conditions are identified by changing one parameter at a time
based on the chemist’s intuition. While this shows the influ-
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Figure 17: Organocatalysed synthesis of spirooxindole analogues by Kondo et al. [171] (A) Reaction scheme of dienones with allenoates to form
chiral spirooxindole analogues using a chiral amine organocatalyst. (B) Schematic depiction of the employed optimisation to identify optimal condi-
tions for flow reaction using Gaussian Process Regression. Icon ‘Flow rate’ made by Gregor Cresnar from flaticon.com. This content is not subject to
CC BY 4.0. Icon ‘Allene concentration’ made by Nadiinko from flaticon.com. This content is not subject to CC BY 4.0. Icon ‘Temperature’ made by
hirschwolf from flaticon.com. This content is not subject to CC BY 4.0. Icon ‘ML model’ made by VectorPortal from flaticon.com. This content is not
subject to CC BY 4.0.

ence of the varied parameter on the observable, interaction
effects between the parameters are significantly harder to
capture with this approach. Design of experiments (DoE) is a
more systematic approach where parameters are varied simulta-
neously to unravel their effect on the outcome [155,156]. Al-
though multiple variants of DoE are available, the number of re-
quired experiments can quickly exceed what is feasible for
most applications. Driven by optimisation problems in other
fields, like ML model parameters, more efficient optimisation
strategies have therefore been explored recently. Particularly
Bayesian optimisation is widely used for optimisation problems
where the quantity of interest is expensive to obtain, such as
quantifying the yield of a reaction. Therefore, it has found ap-
plication for the optimisation of chemical problems [157-167]
and demonstrated its effectiveness by outperforming human
optimisation strategies [168]. However, even with efficient opti-
misation algorithms, conducting experiments and analysing the
reaction outcome remains a major bottleneck. Performing
chemistry in flow provides several advantages in this regard,
as reaction parameters can be varied on-the-fly [169]. In
combination with ML optimisation strategies, this can lead
to efficient optimisation of reaction conditions as demonstrated
by Kondo et al. where they utilised Gaussian Process Regres-
sion (GPR) [170] to optimise the flow rate, the temperature
as well as the stoichiometry of the reactant for the organo-
catalysed synthesis of spirooxindole analogues [171]
(Figure 17).

In a later study the same group expanded the search space for a
Brønsted acid-catalysed cross-coupling for the synthesis of

biaryl compounds [172]. They utilised Bayesian optimisation to
explore a total of six numerical and categorical parameters.
With as little as 15 data points they were able to find optimal
conditions which yielded the desired product in 96% yield. This
showcases the application of ML-driven optimisation strategies
for efficient multi-parameter screening problems, however,
manual action is still required for experimental setup and analy-
sis. Automating these operations would significantly increase
productivity and reproducibility and is a research area of high
interest termed self-driving laboratories [173,174]. Cooper and
co-workers exemplified the opportunities of a self-driving labo-
ratory by utilising a free-roaming robot that autonomously con-
ducted and analysed 688 experiments selected by a Bayesian
optimisation algorithm [175]. Within eight days it discovered a
set of parameters that yielded a six-fold increase of activity for
the photocatalytic hydrogen evolution from water compared to
the baseline formulation. These examples show the possibilities
that ML offers for optimising experimental design in
organocatalysis. However, the use of data-driven methods to
optimise reactions is still far from routine. It is expected that the
recent surge of Large Language Models (LLMs) will support
this development and further improve accessibility and the
interaction between humans and ML-based models [176-178].
While the works presented give a glimpse of what is possible
with automated experimentation pipelines in combination with
ML, the wide adoption of such methods is limited by the high
acquisition costs of the setup, the expertise and time required to
implement and maintain the hardware in the research environ-
ment and the limited versatility of the methods to a broad range
of problems [179].
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Figure 18: Schematic depiction of required developments in order to overcome current limitations of ML for organocatalysis.

Conclusion
The tremendous potential of utilising ML tools to support
organocatalysis is clearly demonstrated in the above presented
works. Nevertheless, it remains to be seen whether these exam-
ples provide general solutions and are applicable to a wide
range of problems. In this regard, the domain of applicability
needs to be carefully analysed in order to obtain reliable and
robust predictions [180,181]. While some works exemplified
the ability of data-driven models to provide interpretable
results, their validity is far from being universally applicable. It
should be remembered that correlations in statistical models
don’t equal causation, and that hypotheses made from feature
importances need to be followed up by mechanistic studies to
avoid potentially misleading conclusions.

One common bottleneck for further improvements and the
wider application of statistical tools is the generation and avail-
ability of high-quality data [182] (Figure 18). As the bottle-
necks are prevalent throughout the sub-disciplines of homoge-
neous catalysis, we expect that developments for the applica-

tion of ML in one area will have a strong influence across the
whole domain.

The utilisation of electronic lab notebooks [183-185] and the
adoption of standardised formats for collecting and sharing data
such as the Open Reaction Database (ORD) scheme could sig-
nificantly improve the broadness of available data sets
[42,43,186-188]. Moreover, standardised protocols for per-
forming experiments, for example for probing the robustness or
the sensitivity of a reaction [189-191], as well as the selection
of the substrate scope can help to provide valuable information
in a reproducible fashion [192,193].

Further, this also requires a paradigm shift towards keeping
track of and publishing all conducted experiments, regardless of
whether the expected outcome was achieved or not. While HTE
campaigns typically yield a broader distribution of reaction
outcomes [67], unsuccessful reactivity from traditional
"benchtop" chemistry is only rarely reported. Nevertheless,
authors are beginning to include a selection of "unsuccessful
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substrates" in the supporting information [194-198]. In this
context, it is necessary to highlight the importance of publishing
data in accordance with the FAIR (Findable, Accessible, Inter-
operable, Reusable) principles to allow for wide usage by the
community. Importantly, this does not only apply to experimen-
tal work, but also all results from data-driven modelling.

In terms of data set design, Bayesian optimisation bears the
potential to maximise the information gained by ML algo-
rithms without the need for extensive experimental effort. In
combination with closed-loop high-throughput experimentation,
this would allow for fast access to data that cover the problem
space adequately and thereby enable optimal modelling. Cur-
rent challenges for automation pipelines include the purifica-
tion and analysis of the reaction outcome [199], which is partic-
ularly challenging in asymmetric organocatalysis. Due to its
relevance for industrial processes however, we expect an in-
creased interest in HTE platforms specifically tailored to
organocatalysis, especially (organo-)photocatalysis [200]. In
this context, flow chemistry could provide a promising plat-
form to enable closed-loop, multi-objective optimisations and
facile scale-up of reactions [201]. With ML tools becoming
increasingly accessible for non-experts through easy-to-use
interfaces [202,203], their application is expected to gain
greater popularity and be integrated into existing routines [204].
This could involve ML-guided catalyst screening, obtaining
entries for the substrate scope through unsupervised learning or
ML-based reaction condition optimisation. This development
will be supported through the advent of LLMs and their incor-
poration into chemical workflows [176,178] which increase the
accessibility of ML tools for synthetic chemistry. While a low
entry barrier does not make the knowledge of statistics and
coding (primarily in Python) redundant, the abundance of
online tutorials and courses on ML allows also non-experts to
acquire fundamental skills and to apply such techniques to their
own problems. As statistical and coding competencies are
becoming more relevant to scientists, courses focused on these
fundamentals are being continuously integrated in chemistry
curricula at universities.

The last decade has shown the pace at which data-driven tools
can be utilised in organocatalysis and led to powerful tools that
can augment synthetic chemists. Most works have focused on
enantioselectivity as the quantity of interest. Recently, many
works have also applied ML for investigating privileged
organocatalytic systems. However, there are other objectives
that are worth considering when developing a reaction, for ex-
ample sustainability, complexity, or cost aspects. In this regard
future work might involve multi-objective optimisation schemes
and generative modelling to account for the plethora of require-
ments in reaction and process development. Moreover, recent

trends in organocatalysis, such as photocatalysis, halogen-bond-
ing, or cooperative catalysis [205], provide new synthetic op-
portunities, whose advancements are expected to be supported
through data-driven modelling.

Acknowledgements
The authors thank Lauriane Jacot-Descombes for assistance in
design of Figure 18. Further, we acknowledge different artists
for icons used in the Graphical Abstract: Icon ‘Database’ made
by The Chohans Brand from flaticon.com. This content is not
subject to CC BY 4.0. Icon ‘Molecule’ made by Freepik from
flaticon.com. This content is not subject to CC BY 4.0. Icon
‘Brain’ made by Freepik from flaticon.com. This content is not
subject to CC BY 4.0.

Funding
This study was created as part of NCCR Catalysis (grant num-
ber 180544), a National Centre of Competence in Research,
funded by the Swiss National Science Foundation. The authors
thank the Deutsche Forschungsgemeinschaft (SPP2363 – Utili-
sation and Development of Machine Learning for Molecular
Applications – Molecular Machine Learning, L.S.).

ORCID® iDs
Stefan P. Schmid - https://orcid.org/0000-0002-0965-0208
Leon Schlosser - https://orcid.org/0009-0007-6764-6497
Frank Glorius - https://orcid.org/0000-0002-0648-956X
Kjell Jorner - https://orcid.org/0000-0002-4191-6790

Data Availability Statement
Data sharing is not applicable as no new data was generated or analyzed
in this study.

Preprint
A non-peer-reviewed version of this article has been previously published
as a preprint: https://doi.org/10.26434/chemrxiv-2024-xfdn8

References
1. Benaglia, M., Ed. Organocatalysis. Stereoselective Reactions and

Applications in Organic Synthesis; De Gruyter: Berlin, Germany, 2021.
doi:10.1515/9783110590050

2. Bell, E. L.; Finnigan, W.; France, S. P.; Green, A. P.; Hayes, M. A.;
Hepworth, L. J.; Lovelock, S. L.; Niikura, H.; Osuna, S.; Romero, E.;
Ryan, K. S.; Turner, N. J.; Flitsch, S. L. Nat. Rev. Methods Primers
2021, 1, 46. doi:10.1038/s43586-021-00044-z

3. Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.;
MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 52.
doi:10.1038/s41570-017-0052

4. Kerru, N.; Katari, N. K.; Jonnalagadda, S. B. Phys. Sci. Rev. 2022, 7,
325–344. doi:10.1515/psr-2021-0022

5. Xiang, S.-H.; Tan, B. Nat. Commun. 2020, 11, 3786.
doi:10.1038/s41467-020-17580-z

https://orcid.org/0000-0002-0965-0208
https://orcid.org/0009-0007-6764-6497
https://orcid.org/0000-0002-0648-956X
https://orcid.org/0000-0002-4191-6790
https://doi.org/10.26434/chemrxiv-2024-xfdn8
https://doi.org/10.1515%2F9783110590050
https://doi.org/10.1038%2Fs43586-021-00044-z
https://doi.org/10.1038%2Fs41570-017-0052
https://doi.org/10.1515%2Fpsr-2021-0022
https://doi.org/10.1038%2Fs41467-020-17580-z


Beilstein J. Org. Chem. 2024, 20, 2280–2304.

2300

6. Bernardi, L.; Carlone, A.; Fini, F. Industrial Relevance of Asymmetric
Organocatalysis in the Preparation of Chiral Amine Derivatives. In
Methodologies in Amine Synthesis; Ricci, A.; Bernardi, L., Eds.;
Wiley-VCH: Weinheim, Germany, 2021; pp 187–241.
doi:10.1002/9783527826186.ch6

7. Bulger, P. G. Industrial Applications of Organocatalysis. In
Comprehensive Chirality; Carreira, E. M.; Yamamoto, H., Eds.;
Elsevier: Amsterdam, Netherlands, 2012; pp 228–252.
doi:10.1016/b978-0-08-095167-6.00911-3

8. Han, B.; He, X.-H.; Liu, Y.-Q.; He, G.; Peng, C.; Li, J.-L.
Chem. Soc. Rev. 2021, 50, 1522–1586. doi:10.1039/d0cs00196a

9. Hughes, D. L. Org. Process Res. Dev. 2018, 22, 574–584.
doi:10.1021/acs.oprd.8b00096

10. Keith, J. A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, S.;
Gastegger, M.; Müller, K.-R.; Tkatchenko, A. Chem. Rev. 2021, 121,
9816–9872. doi:10.1021/acs.chemrev.1c00107

11. Toyao, T.; Maeno, Z.; Takakusagi, S.; Kamachi, T.; Takigawa, I.;
Shimizu, K.-i. ACS Catal. 2020, 10, 2260–2297.
doi:10.1021/acscatal.9b04186

12. Kitchin, J. R. Nat. Catal. 2018, 1, 230–232.
doi:10.1038/s41929-018-0056-y

13. Li, Z.; Wang, S.; Xin, H. Nat. Catal. 2018, 1, 641–642.
doi:10.1038/s41929-018-0150-1

14. Yang, W.; Fidelis, T. T.; Sun, W.-H. ACS Omega 2020, 5, 83–88.
doi:10.1021/acsomega.9b03673

15. Esterhuizen, J. A.; Goldsmith, B. R.; Linic, S. Nat. Catal. 2022, 5,
175–184. doi:10.1038/s41929-022-00744-z

16. Gomollón-Bel, F. Chem. Int. 2019, 41 (2), 12–17.
doi:10.1515/ci-2019-0203

17. Houk, K. N.; Cheong, P. H.-Y. Nature 2008, 455, 309–313.
doi:10.1038/nature07368

18. Sterling, A. J.; Zavitsanou, S.; Ford, J.; Duarte, F.
Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, 11, e1518.
doi:10.1002/wcms.1518

19. Corbeil, C. R.; Thielges, S.; Schwartzentruber, J. A.; Moitessier, N.
Angew. Chem., Int. Ed. 2008, 47, 2635–2638.
doi:10.1002/anie.200704774

20. Weill, N.; Corbeil, C. R.; De Schutter, J. W.; Moitessier, N.
J. Comput. Chem. 2011, 32, 2878–2889. doi:10.1002/jcc.21869

21. Guan, Y.; Ingman, V. M.; Rooks, B. J.; Wheeler, S. E.
J. Chem. Theory Comput. 2018, 14, 5249–5261.
doi:10.1021/acs.jctc.8b00578

22. Rosales, A. R.; Wahlers, J.; Limé, E.; Meadows, R. E.; Leslie, K. W.;
Savin, R.; Bell, F.; Hansen, E.; Helquist, P.; Munday, R. H.; Wiest, O.;
Norrby, P.-O. Nat. Catal. 2019, 2, 41–45.
doi:10.1038/s41929-018-0193-3

23. Iribarren, I.; Garcia, M. R.; Trujillo, C.
Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022, 12, e1616.
doi:10.1002/wcms.1616

24. Melnyk, N.; Iribarren, I.; Mates-Torres, E.; Trujillo, C. Chem. – Eur. J.
2022, 28, e202201570. doi:10.1002/chem.202201570

25. Melnyk, N.; Garcia, M. R.; Iribarren, I.; Trujillo, C. Tetrahedron Chem
2023, 5, 100035. doi:10.1016/j.tchem.2023.100035

26. Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96–103.
doi:10.1021/ja01280a022

27. Williams, W. L.; Zeng, L.; Gensch, T.; Sigman, M. S.; Doyle, A. G.;
Anslyn, E. V. ACS Cent. Sci. 2021, 7, 1622–1637.
doi:10.1021/acscentsci.1c00535

28. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165–195.
doi:10.1021/cr00002a004

29. Suvarna, M.; Pérez-Ramírez, J. Nat. Catal. 2024, 7, 624–635.
doi:10.1038/s41929-024-01150-3

30. Strieth-Kalthoff, F.; Sandfort, F.; Kühnemund, M.; Schäfer, F. R.;
Kuchen, H.; Glorius, F. Angew. Chem., Int. Ed. 2022, 61,
e202204647. doi:10.1002/anie.202204647

31. Gallarati, S.; van Gerwen, P.; Laplaza, R.; Vela, S.; Fabrizio, A.;
Corminboeuf, C. Chem. Sci. 2022, 13, 13782–13794.
doi:10.1039/d2sc04251g

32. Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A.
Sci. Data 2014, 1, 140022. doi:10.1038/sdata.2014.22

33. Strieth-Kalthoff, F.; Sandfort, F.; Segler, M. H. S.; Glorius, F.
Chem. Soc. Rev. 2020, 49, 6154–6168. doi:10.1039/c9cs00786e

34. Haghighatlari, M.; Li, J.; Heidar-Zadeh, F.; Liu, Y.; Guan, X.;
Head-Gordon, T. Chem 2020, 6, 1527–1542.
doi:10.1016/j.chempr.2020.05.014

35. Wappett, D. A.; Goerigk, L. J. Chem. Theory Comput. 2023, 19,
8365–8383. doi:10.1021/acs.jctc.3c00558

36. Taylor, M. G.; Yang, T.; Lin, S.; Nandy, A.; Janet, J. P.; Duan, C.;
Kulik, H. J. J. Phys. Chem. A 2020, 124, 3286–3299.
doi:10.1021/acs.jpca.0c01458

37. Swain, M. C.; Cole, J. M. J. Chem. Inf. Model. 2016, 56, 1894–1904.
doi:10.1021/acs.jcim.6b00207

38. Vaucher, A. C.; Zipoli, F.; Geluykens, J.; Nair, V. H.; Schwaller, P.;
Laino, T. Nat. Commun. 2020, 11, 3601.
doi:10.1038/s41467-020-17266-6

39. Zheng, Z.; Zhang, O.; Borgs, C.; Chayes, J. T.; Yaghi, O. M.
J. Am. Chem. Soc. 2023, 145, 18048–18062.
doi:10.1021/jacs.3c05819

40. Fan, V.; Qian, Y.; Wang, A.; Wang, A.; Coley, C. W.; Barzilay, R.
J. Chem. Inf. Model. 2024, 64, 5521–5534.
doi:10.1021/acs.jcim.4c00572

41. Ai, Q.; Meng, F.; Shi, J.; Pelkie, B.; Coley, C. W. Digital Discovery
2024, in press. doi:10.1039/d4dd00091a

42. Kearnes, S. M.; Maser, M. R.; Wleklinski, M.; Kast, A.; Doyle, A. G.;
Dreher, S. D.; Hawkins, J. M.; Jensen, K. F.; Coley, C. W.
J. Am. Chem. Soc. 2021, 143, 18820–18826.
doi:10.1021/jacs.1c09820

43. Nippa, D. F.; Müller, A. T.; Atz, K.; Konrad, D. B.; Grether, U.;
Martin, R. E.; Schneider, G. ChemRxiv 2023.
doi:10.26434/chemrxiv-2023-nfq7h

44. Nie, W.; Wan, Q.; Sun, J.; Chen, M.; Gao, M.; Chen, S. Nat. Commun.
2023, 14, 6671. doi:10.1038/s41467-023-42446-5

45. Krska, S. W.; DiRocco, D. A.; Dreher, S. D.; Shevlin, M.
Acc. Chem. Res. 2017, 50, 2976–2985.
doi:10.1021/acs.accounts.7b00428

46. Buitrago Santanilla, A.; Regalado, E. L.; Pereira, T.; Shevlin, M.;
Bateman, K.; Campeau, L.-C.; Schneeweis, J.; Berritt, S.; Shi, Z.-C.;
Nantermet, P.; Liu, Y.; Helmy, R.; Welch, C. J.; Vachal, P.;
Davies, I. W.; Cernak, T.; Dreher, S. D. Science 2015, 347, 49–53.
doi:10.1126/science.1259203

47. Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G.
Science 2018, 360, 186–190. doi:10.1126/science.aar5169

48. Perera, D.; Tucker, J. W.; Brahmbhatt, S.; Helal, C. J.; Chong, A.;
Farrell, W.; Richardson, P.; Sach, N. W. Science 2018, 359, 429–434.
doi:10.1126/science.aap9112

49. Heid, E.; Probst, D.; Green, W. H.; Madsen, G. K. H. Chem. Sci. 2023,
14, 14229–14242. doi:10.1039/d3sc02048g

https://doi.org/10.1002%2F9783527826186.ch6
https://doi.org/10.1016%2Fb978-0-08-095167-6.00911-3
https://doi.org/10.1039%2Fd0cs00196a
https://doi.org/10.1021%2Facs.oprd.8b00096
https://doi.org/10.1021%2Facs.chemrev.1c00107
https://doi.org/10.1021%2Facscatal.9b04186
https://doi.org/10.1038%2Fs41929-018-0056-y
https://doi.org/10.1038%2Fs41929-018-0150-1
https://doi.org/10.1021%2Facsomega.9b03673
https://doi.org/10.1038%2Fs41929-022-00744-z
https://doi.org/10.1515%2Fci-2019-0203
https://doi.org/10.1038%2Fnature07368
https://doi.org/10.1002%2Fwcms.1518
https://doi.org/10.1002%2Fanie.200704774
https://doi.org/10.1002%2Fjcc.21869
https://doi.org/10.1021%2Facs.jctc.8b00578
https://doi.org/10.1038%2Fs41929-018-0193-3
https://doi.org/10.1002%2Fwcms.1616
https://doi.org/10.1002%2Fchem.202201570
https://doi.org/10.1016%2Fj.tchem.2023.100035
https://doi.org/10.1021%2Fja01280a022
https://doi.org/10.1021%2Facscentsci.1c00535
https://doi.org/10.1021%2Fcr00002a004
https://doi.org/10.1038%2Fs41929-024-01150-3
https://doi.org/10.1002%2Fanie.202204647
https://doi.org/10.1039%2Fd2sc04251g
https://doi.org/10.1038%2Fsdata.2014.22
https://doi.org/10.1039%2Fc9cs00786e
https://doi.org/10.1016%2Fj.chempr.2020.05.014
https://doi.org/10.1021%2Facs.jctc.3c00558
https://doi.org/10.1021%2Facs.jpca.0c01458
https://doi.org/10.1021%2Facs.jcim.6b00207
https://doi.org/10.1038%2Fs41467-020-17266-6
https://doi.org/10.1021%2Fjacs.3c05819
https://doi.org/10.1021%2Facs.jcim.4c00572
https://doi.org/10.1039%2Fd4dd00091a
https://doi.org/10.1021%2Fjacs.1c09820
https://doi.org/10.26434%2Fchemrxiv-2023-nfq7h
https://doi.org/10.1038%2Fs41467-023-42446-5
https://doi.org/10.1021%2Facs.accounts.7b00428
https://doi.org/10.1126%2Fscience.1259203
https://doi.org/10.1126%2Fscience.aar5169
https://doi.org/10.1126%2Fscience.aap9112
https://doi.org/10.1039%2Fd3sc02048g


Beilstein J. Org. Chem. 2024, 20, 2280–2304.

2301

50. Morgat, A.; Axelsen, K. B.; Lombardot, T.; Alcántara, R.; Aimo, L.;
Zerara, M.; Niknejad, A.; Belda, E.; Hyka-Nouspikel, N.; Coudert, E.;
Redaschi, N.; Bougueleret, L.; Steinbeck, C.; Xenarios, I.; Bridge, A.
Nucleic Acids Res. 2015, 43, D459–D464. doi:10.1093/nar/gku961

51. Jeske, L.; Placzek, S.; Schomburg, I.; Chang, A.; Schomburg, D.
Nucleic Acids Res. 2019, 47, D542–D549. doi:10.1093/nar/gky1048

52. Shalit Peleg, H.; Milo, A. Angew. Chem., Int. Ed. 2023, 62,
e202219070. doi:10.1002/anie.202219070

53. Davies, I. W. Nature 2019, 570, 175–181.
doi:10.1038/s41586-019-1288-y

54. Weininger, D. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36.
doi:10.1021/ci00057a005

55. Rogers, D.; Hahn, M. J. Chem. Inf. Model. 2010, 50, 742–754.
doi:10.1021/ci100050t

56. Wigh, D. S.; Goodman, J. M.; Lapkin, A. A.
Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022, 12, e1603.
doi:10.1002/wcms.1603

57. David, L.; Thakkar, A.; Mercado, R.; Engkvist, O. J. Cheminf. 2020,
12, 56. doi:10.1186/s13321-020-00460-5

58. Milo, A.; Bess, E. N.; Sigman, M. S. Nature 2014, 507, 210–214.
doi:10.1038/nature13019

59. Gallegos, L. C.; Luchini, G.; St. John, P. C.; Kim, S.; Paton, R. S.
Acc. Chem. Res. 2021, 54, 827–836.
doi:10.1021/acs.accounts.0c00745

60. Harper, K. C.; Bess, E. N.; Sigman, M. S. Nat. Chem. 2012, 4,
366–374. doi:10.1038/nchem.1297

61. Orlandi, M.; Coelho, J. A. S.; Hilton, M. J.; Toste, F. D.; Sigman, M. S.
J. Am. Chem. Soc. 2017, 139, 6803–6806. doi:10.1021/jacs.7b02311

62. Hickey, D. P.; Schiedler, D. A.; Matanovic, I.; Doan, P. V.;
Atanassov, P.; Minteer, S. D.; Sigman, M. S. J. Am. Chem. Soc. 2015,
137, 16179–16186. doi:10.1021/jacs.5b11252

63. Dhayalan, V.; Gadekar, S. C.; Alassad, Z.; Milo, A. Nat. Chem. 2019,
11, 543–551. doi:10.1038/s41557-019-0258-1

64. Gow, S.; Niranjan, M.; Kanza, S.; Frey, J. G. Digital Discovery 2022,
1, 551–567. doi:10.1039/d2dd00047d

65. McInnes, L.; Healy, J.; Melville, J. arXiv 2018, 1802.03426.
doi:10.48550/arxiv.1802.03426

66. van der Maaten, L.; Hinton, G. E. J. Mach. Learn. Res. 2008, 9,
2579–2605.

67. Zahrt, A. F.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.;
Denmark, S. E. Science 2019, 363, eaau5631.
doi:10.1126/science.aau5631

68. Schnitzer, T.; Schnurr, M.; Zahrt, A. F.; Sakhaee, N.; Denmark, S. E.;
Wennemers, H. ACS Cent. Sci. 2024, 10, 367–373.
doi:10.1021/acscentsci.3c01284

69. Santiago, C. B.; Guo, J.-Y.; Sigman, M. S. Chem. Sci. 2018, 9,
2398–2412. doi:10.1039/c7sc04679k

70. Noto, N.; Yada, A.; Yanai, T.; Saito, S. Angew. Chem., Int. Ed. 2023,
62, e202219107. doi:10.1002/anie.202219107

71. Coley, C. W.; Barzilay, R.; Jaakkola, T. S.; Green, W. H.;
Jensen, K. F. ACS Cent. Sci. 2017, 3, 434–443.
doi:10.1021/acscentsci.7b00064

72. Banerjee, S.; Sreenithya, A.; Sunoj, R. B. Phys. Chem. Chem. Phys.
2018, 20, 18311–18318. doi:10.1039/c8cp03141j

73. Dormann, C. F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.;
Carré, G.; Marquéz, J. R. G.; Gruber, B.; Lafourcade, B.; Leitão, P. J.;
Münkemüller, T.; McClean, C.; Osborne, P. E.; Reineking, B.;
Schröder, B.; Skidmore, A. K.; Zurell, D.; Lautenbach, S. Ecography
2013, 36, 27–46. doi:10.1111/j.1600-0587.2012.07348.x

74. Harrell, F. E., Jr. Regression Modeling Strategies: With Applications to
Linear Models, Logistic Regression, and Survival Analysis; Springer:
New York, NY, USA, 2001. doi:10.1007/978-1-4757-3462-1

75. Murray, K.; Conner, M. M. Ecology 2009, 90, 348–355.
doi:10.1890/07-1929.1

76. Rogers, C. J.; Dickerson, T. J.; Brogan, A. P.; Janda, K. D.
J. Org. Chem. 2005, 70, 3705–3708. doi:10.1021/jo050161r

77. Taft, R. W., Jr. J. Am. Chem. Soc. 1952, 74, 2729–2732.
doi:10.1021/ja01131a010

78. Taft, R. W., Jr. J. Am. Chem. Soc. 1952, 74, 3120–3128.
doi:10.1021/ja01132a049

79. Taft, R. W., Jr. J. Am. Chem. Soc. 1953, 75, 4538–4539.
doi:10.1021/ja01114a044

80. Taft, R. W.; Topsom, R. D. The Nature and Analysis of Substitutent
Electronic Effects. Progress in Physical Organic Chemistry; John
Wiley & Sons: New York, NY, USA, 1987; Vol. 16, pp 1–83.
doi:10.1002/9780470171950.ch1

81. Charton, M. J. Am. Chem. Soc. 1975, 97, 1552–1556.
doi:10.1021/ja00839a047

82. Crawford, J. M.; Kingston, C.; Toste, F. D.; Sigman, M. S.
Acc. Chem. Res. 2021, 54, 3136–3148.
doi:10.1021/acs.accounts.1c00285

83. Oslob, J. D.; Åkermark, B.; Helquist, P.; Norrby, P.-O.
Organometallics 1997, 16, 3015–3021. doi:10.1021/om9700371

84. Verloop, A.; Hoogenstraaten, W.; Tipker, J. Development and
Application of New Steric Substituent Parameters in Drug Design. In
Medicinal Chemistry: A Series of Monographs; Ariëns, E. J., Ed.;
Academic Press: Amsterdam, Netherlands, 1976; pp 165–207.
doi:10.1016/b978-0-12-060307-7.50010-9

85. Brethomé, A. V.; Fletcher, S. P.; Paton, R. S. ACS Catal. 2019, 9,
2313–2323. doi:10.1021/acscatal.8b04043

86. Crawford, J. M.; Stone, E. A.; Metrano, A. J.; Miller, S. J.;
Sigman, M. S. J. Am. Chem. Soc. 2018, 140, 868–871.
doi:10.1021/jacs.7b11303

87. Newman-Stonebraker, S. H.; Smith, S. R.; Borowski, J. E.; Peters, E.;
Gensch, T.; Johnson, H. C.; Sigman, M. S.; Doyle, A. G. Science
2021, 374, 301–308. doi:10.1126/science.abj4213

88. Durand, D. J.; Fey, N. Chem. Rev. 2019, 119, 6561–6594.
doi:10.1021/acs.chemrev.8b00588

89. Gallarati, S.; Fabregat, R.; Laplaza, R.; Bhattacharjee, S.;
Wodrich, M. D.; Corminboeuf, C. Chem. Sci. 2021, 12, 6879–6889.
doi:10.1039/d1sc00482d

90. Wheeler, S. E.; Houk, K. N. J. Am. Chem. Soc. 2008, 130,
10854–10855. doi:10.1021/ja802849j

91. Wheeler, S. E. Acc. Chem. Res. 2013, 46, 1029–1038.
doi:10.1021/ar300109n

92. Miró, J.; Gensch, T.; Ellwart, M.; Han, S.-J.; Lin, H.-H.; Sigman, M. S.;
Toste, F. D. J. Am. Chem. Soc. 2020, 142, 6390–6399.
doi:10.1021/jacs.0c01637

93. Orlandi, M.; Toste, F. D.; Sigman, M. S. Angew. Chem., Int. Ed. 2017,
56, 14080–14084. doi:10.1002/anie.201707644

94. Pollice, R.; Chen, P. Angew. Chem., Int. Ed. 2019, 58, 9758–9769.
doi:10.1002/anie.201905439

95. Orlandi, M.; Hilton, M. J.; Yamamoto, E.; Toste, F. D.; Sigman, M. S.
J. Am. Chem. Soc. 2017, 139, 12688–12695.
doi:10.1021/jacs.7b06917

96. Miller, E.; Mai, B. K.; Read, J. A.; Bell, W. C.; Derrick, J. S.; Liu, P.;
Toste, F. D. ACS Catal. 2022, 12, 12369–12385.
doi:10.1021/acscatal.2c03077

https://doi.org/10.1093%2Fnar%2Fgku961
https://doi.org/10.1093%2Fnar%2Fgky1048
https://doi.org/10.1002%2Fanie.202219070
https://doi.org/10.1038%2Fs41586-019-1288-y
https://doi.org/10.1021%2Fci00057a005
https://doi.org/10.1021%2Fci100050t
https://doi.org/10.1002%2Fwcms.1603
https://doi.org/10.1186%2Fs13321-020-00460-5
https://doi.org/10.1038%2Fnature13019
https://doi.org/10.1021%2Facs.accounts.0c00745
https://doi.org/10.1038%2Fnchem.1297
https://doi.org/10.1021%2Fjacs.7b02311
https://doi.org/10.1021%2Fjacs.5b11252
https://doi.org/10.1038%2Fs41557-019-0258-1
https://doi.org/10.1039%2Fd2dd00047d
https://doi.org/10.48550%2Farxiv.1802.03426
https://doi.org/10.1126%2Fscience.aau5631
https://doi.org/10.1021%2Facscentsci.3c01284
https://doi.org/10.1039%2Fc7sc04679k
https://doi.org/10.1002%2Fanie.202219107
https://doi.org/10.1021%2Facscentsci.7b00064
https://doi.org/10.1039%2Fc8cp03141j
https://doi.org/10.1111%2Fj.1600-0587.2012.07348.x
https://doi.org/10.1007%2F978-1-4757-3462-1
https://doi.org/10.1890%2F07-1929.1
https://doi.org/10.1021%2Fjo050161r
https://doi.org/10.1021%2Fja01131a010
https://doi.org/10.1021%2Fja01132a049
https://doi.org/10.1021%2Fja01114a044
https://doi.org/10.1002%2F9780470171950.ch1
https://doi.org/10.1021%2Fja00839a047
https://doi.org/10.1021%2Facs.accounts.1c00285
https://doi.org/10.1021%2Fom9700371
https://doi.org/10.1016%2Fb978-0-12-060307-7.50010-9
https://doi.org/10.1021%2Facscatal.8b04043
https://doi.org/10.1021%2Fjacs.7b11303
https://doi.org/10.1126%2Fscience.abj4213
https://doi.org/10.1021%2Facs.chemrev.8b00588
https://doi.org/10.1039%2Fd1sc00482d
https://doi.org/10.1021%2Fja802849j
https://doi.org/10.1021%2Far300109n
https://doi.org/10.1021%2Fjacs.0c01637
https://doi.org/10.1002%2Fanie.201707644
https://doi.org/10.1002%2Fanie.201905439
https://doi.org/10.1021%2Fjacs.7b06917
https://doi.org/10.1021%2Facscatal.2c03077


Beilstein J. Org. Chem. 2024, 20, 2280–2304.

2302

97. Neel, A. J.; Milo, A.; Sigman, M. S.; Toste, F. D. J. Am. Chem. Soc.
2016, 138, 3863–3875. doi:10.1021/jacs.6b00356

98. Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66–77.
doi:10.1021/ar020094c

99. Mayr, H.; Ofial, A. R. J. Phys. Org. Chem. 2008, 21, 584–595.
doi:10.1002/poc.1325

100.Mayr, H.; Patz, M. Angew. Chem., Int. Ed. Engl. 1994, 33, 938–957.
doi:10.1002/anie.199409381

101.Orlandi, M.; Escudero-Casao, M.; Licini, G. J. Org. Chem. 2021, 86,
3555–3564. doi:10.1021/acs.joc.0c02952

102.Jorner, K. Chimia 2023, 77, 22–30. doi:10.2533/chimia.2023.22
103.Heid, E.; McGill, C. J.; Vermeire, F. H.; Green, W. H.

J. Chem. Inf. Model. 2023, 63, 4012–4029.
doi:10.1021/acs.jcim.3c00373

104.Yamaguchi, S. Org. Biomol. Chem. 2022, 20, 6057–6071.
doi:10.1039/d2ob00228k

105.Lipkowitz, K. B.; Pradhan, M. J. Org. Chem. 2003, 68, 4648–4656.
doi:10.1021/jo0267697

106.Melville, J. L.; Andrews, B. I.; Lygo, B.; Hirst, J. D. Chem. Commun.
2004, 1410–1411. doi:10.1039/b402378a

107.Tsuji, N.; Sidorov, P.; Zhu, C.; Nagata, Y.; Gimadiev, T.; Varnek, A.;
List, B. Angew. Chem., Int. Ed. 2023, 62, e202218659.
doi:10.1002/anie.202218659

108.Asahara, R.; Miyao, T. ACS Omega 2022, 7, 26952–26964.
doi:10.1021/acsomega.2c03812

109.Zankov, D.; Polishchuk, P.; Madzhidov, T.; Varnek, A. Synlett 2021,
32, 1833–1836. doi:10.1055/a-1553-0427

110.Zankov, D.; Madzhidov, T.; Polishchuk, P.; Sidorov, P.; Varnek, A.
J. Chem. Inf. Model. 2023, 63, 6629–6641.
doi:10.1021/acs.jcim.3c00393

111.Zankov, D.; Madzhidov, T.; Varnek, A.; Polishchuk, P.
Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2024, 14, e1698.
doi:10.1002/wcms.1698

112.Sandfort, F.; Strieth-Kalthoff, F.; Kühnemund, M.; Beecks, C.;
Glorius, F. Chem 2020, 6, 1379–1390.
doi:10.1016/j.chempr.2020.02.017

113.Li, S.-W.; Xu, L.-C.; Zhang, C.; Zhang, S.-Q.; Hong, X. Nat. Commun.
2023, 14, 3569. doi:10.1038/s41467-023-39283-x

114.Lu, T.; Zhu, R.; An, Y.; Wheeler, S. E. J. Am. Chem. Soc. 2012, 134,
3095–3102. doi:10.1021/ja209241n

115.Sepúlveda, D.; Lu, T.; Wheeler, S. E. Org. Biomol. Chem. 2014, 12,
8346–8353. doi:10.1039/c4ob01719f

116.Doney, A. C.; Rooks, B. J.; Lu, T.; Wheeler, S. E. ACS Catal. 2016, 6,
7948–7955. doi:10.1021/acscatal.6b02366

117.van Gerwen, P.; Fabrizio, A.; Wodrich, M. D.; Corminboeuf, C.
Mach. Learn.: Sci. Technol. 2022, 3, 045005.
doi:10.1088/2632-2153/ac8f1a

118.Laplaza, R.; Gallarati, S.; Corminboeuf, C. Chem.: Methods 2022, 2,
e202100107. doi:10.1002/cmtd.202100107

119.Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691–1693.
doi:10.1126/science.1083622

120.Reid, J. P.; Sigman, M. S. Nature 2019, 571, 343–348.
doi:10.1038/s41586-019-1384-z

121.Roy, K.; Das, R. N. Curr. Drug Metab. 2014, 15, 346–379.
doi:10.2174/1389200215666140908102230

122.Shoja, A.; Zhai, J.; Reid, J. P. ACS Catal. 2021, 11, 11897–11905.
doi:10.1021/acscatal.1c03520

123.Betinol, I. O.; Kuang, Y.; Reid, J. P. Org. Lett. 2022, 24, 1429–1433.
doi:10.1021/acs.orglett.1c04134

124.Liles, J. P.; Rouget-Virbel, C.; Wahlman, J. L. H.; Rahimoff, R.;
Crawford, J. M.; Medlin, A.; O’Connor, V. S.; Li, J.; Roytman, V. A.;
Toste, F. D.; Sigman, M. S. Chem 2023, 9, 1518–1537.
doi:10.1016/j.chempr.2023.02.020

125.Reid, J. P.; Proctor, R. S. J.; Sigman, M. S.; Phipps, R. J.
J. Am. Chem. Soc. 2019, 141, 19178–19185.
doi:10.1021/jacs.9b11658

126.Kuang, Y.; Lai, J.; Reid, J. P. Chem. Sci. 2023, 14, 1885–1895.
doi:10.1039/d2sc05974f

127.Werth, J.; Sigman, M. S. J. Am. Chem. Soc. 2020, 142, 16382–16391.
doi:10.1021/jacs.0c06905

128.Wagen, C. C.; McMinn, S. E.; Kwan, E. E.; Jacobsen, E. N. Nature
2022, 610, 680–686. doi:10.1038/s41586-022-05263-2

129.Strassfeld, D. A.; Algera, R. F.; Wickens, Z. K.; Jacobsen, E. N.
J. Am. Chem. Soc. 2021, 143, 9585–9594. doi:10.1021/jacs.1c03992

130.Wang, J. Y.; Stevens, J. M.; Kariofillis, S. K.; Tom, M.-J.;
Golden, D. L.; Li, J.; Tabora, J. E.; Parasram, M.; Shields, B. J.;
Primer, D. N.; Hao, B.; Del Valle, D.; DiSomma, S.; Furman, A.;
Zipp, G. G.; Melnikov, S.; Paulson, J.; Doyle, A. G. Nature 2024, 626,
1025–1033. doi:10.1038/s41586-024-07021-y

131.Angello, N. H.; Rathore, V.; Beker, W.; Wołos, A.; Jira, E. R.;
Roszak, R.; Wu, T. C.; Schroeder, C. M.; Aspuru-Guzik, A.;
Grzybowski, B. A.; Burke, M. D. Science 2022, 378, 399–405.
doi:10.1126/science.adc8743

132.Rose, B. T.; Timmerman, J. C.; Bawel, S. A.; Chin, S.; Zhang, H.;
Denmark, S. E. J. Am. Chem. Soc. 2022, 144, 22950–22964.
doi:10.1021/jacs.2c08820

133.Betinol, I. O.; Lai, J.; Thakur, S.; Reid, J. P. J. Am. Chem. Soc. 2023,
145, 12870–12883. doi:10.1021/jacs.3c03989

134.Gallarati, S.; van Gerwen, P.; Laplaza, R.; Brey, L.; Makaveev, A.;
Corminboeuf, C. Chem. Sci. 2024, 15, 3640–3660.
doi:10.1039/d3sc06208b

135.Nørskov, J. K.; Bligaard, T.; Hvolbæk, B.; Abild-Pedersen, F.;
Chorkendorff, I.; Christensen, C. H. Chem. Soc. Rev. 2008, 37,
2163–2171. doi:10.1039/b800260f

136.Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Chem. Rev.
2018, 118, 2302–2312. doi:10.1021/acs.chemrev.7b00488

137.Wodrich, M. D.; Sawatlon, B.; Busch, M.; Corminboeuf, C.
Acc. Chem. Res. 2021, 54, 1107–1117.
doi:10.1021/acs.accounts.0c00857

138.Sanchez-Lengeling, B.; Aspuru-Guzik, A. Science 2018, 361,
360–365. doi:10.1126/science.aat2663

139.Liu, S.-J.; Chen, Z.-H.; Chen, J.-Y.; Ni, S.-F.; Zhang, Y.-C.; Shi, F.
Angew. Chem., Int. Ed. 2022, 61, e202112226.
doi:10.1002/anie.202112226

140.Gerosa, G. G.; Marcarino, M. O.; Spanevello, R. A.; Suárez, A. G.;
Sarotti, A. M. J. Org. Chem. 2020, 85, 9969–9978.
doi:10.1021/acs.joc.0c01256

141.Handoko; Satishkumar, S.; Panigrahi, N. R.; Arora, P. S.
J. Am. Chem. Soc. 2019, 141, 15977–15985.
doi:10.1021/jacs.9b07742

142.Iribarren, I.; Trujillo, C. Phys. Chem. Chem. Phys. 2020, 22,
21015–21021. doi:10.1039/d0cp02012e

143.Milo, A.; Neel, A. J.; Toste, F. D.; Sigman, M. S. Science 2015, 347,
737–743. doi:10.1126/science.1261043

144.Wan, Y.; Ramirez, F.; Zhang, X.; Nguyen, T.-Q.; Bazan, G. C.; Lu, G.
npj Comput. Mater. 2021, 7, 69. doi:10.1038/s41524-021-00541-5

145.Nandy, A.; Duan, C.; Goffinet, C.; Kulik, H. J. JACS Au 2022, 2,
1200–1213. doi:10.1021/jacsau.2c00176

https://doi.org/10.1021%2Fjacs.6b00356
https://doi.org/10.1021%2Far020094c
https://doi.org/10.1002%2Fpoc.1325
https://doi.org/10.1002%2Fanie.199409381
https://doi.org/10.1021%2Facs.joc.0c02952
https://doi.org/10.2533%2Fchimia.2023.22
https://doi.org/10.1021%2Facs.jcim.3c00373
https://doi.org/10.1039%2Fd2ob00228k
https://doi.org/10.1021%2Fjo0267697
https://doi.org/10.1039%2Fb402378a
https://doi.org/10.1002%2Fanie.202218659
https://doi.org/10.1021%2Facsomega.2c03812
https://doi.org/10.1055%2Fa-1553-0427
https://doi.org/10.1021%2Facs.jcim.3c00393
https://doi.org/10.1002%2Fwcms.1698
https://doi.org/10.1016%2Fj.chempr.2020.02.017
https://doi.org/10.1038%2Fs41467-023-39283-x
https://doi.org/10.1021%2Fja209241n
https://doi.org/10.1039%2Fc4ob01719f
https://doi.org/10.1021%2Facscatal.6b02366
https://doi.org/10.1088%2F2632-2153%2Fac8f1a
https://doi.org/10.1002%2Fcmtd.202100107
https://doi.org/10.1126%2Fscience.1083622
https://doi.org/10.1038%2Fs41586-019-1384-z
https://doi.org/10.2174%2F1389200215666140908102230
https://doi.org/10.1021%2Facscatal.1c03520
https://doi.org/10.1021%2Facs.orglett.1c04134
https://doi.org/10.1016%2Fj.chempr.2023.02.020
https://doi.org/10.1021%2Fjacs.9b11658
https://doi.org/10.1039%2Fd2sc05974f
https://doi.org/10.1021%2Fjacs.0c06905
https://doi.org/10.1038%2Fs41586-022-05263-2
https://doi.org/10.1021%2Fjacs.1c03992
https://doi.org/10.1038%2Fs41586-024-07021-y
https://doi.org/10.1126%2Fscience.adc8743
https://doi.org/10.1021%2Fjacs.2c08820
https://doi.org/10.1021%2Fjacs.3c03989
https://doi.org/10.1039%2Fd3sc06208b
https://doi.org/10.1039%2Fb800260f
https://doi.org/10.1021%2Facs.chemrev.7b00488
https://doi.org/10.1021%2Facs.accounts.0c00857
https://doi.org/10.1126%2Fscience.aat2663
https://doi.org/10.1002%2Fanie.202112226
https://doi.org/10.1021%2Facs.joc.0c01256
https://doi.org/10.1021%2Fjacs.9b07742
https://doi.org/10.1039%2Fd0cp02012e
https://doi.org/10.1126%2Fscience.1261043
https://doi.org/10.1038%2Fs41524-021-00541-5
https://doi.org/10.1021%2Fjacsau.2c00176


Beilstein J. Org. Chem. 2024, 20, 2280–2304.

2303

146.Bai, Y.; Wilbraham, L.; Slater, B. J.; Zwijnenburg, M. A.; Sprick, R. S.;
Cooper, A. I. J. Am. Chem. Soc. 2019, 141, 9063–9071.
doi:10.1021/jacs.9b03591

147.Meyer, B.; Sawatlon, B.; Heinen, S.; von Lilienfeld, O. A.;
Corminboeuf, C. Chem. Sci. 2018, 9, 7069–7077.
doi:10.1039/c8sc01949e

148.Gallarati, S.; Laplaza, R.; Corminboeuf, C. Org. Chem. Front. 2022, 9,
4041–4051. doi:10.1039/d2qo00550f

149.Anstine, D. M.; Isayev, O. J. Am. Chem. Soc. 2023, 145, 8736–8750.
doi:10.1021/jacs.2c13467

150.Seumer, J.; Kirschner Solberg Hansen, J.; Brøndsted Nielsen, M.;
Jensen, J. H. Angew. Chem., Int. Ed. 2023, 62, e202218565.
doi:10.1002/anie.202218565

151.Rasmussen, M. H.; Jensen, J. H. PeerJ Phys. Chem. 2022, 4, e22.
doi:10.7717/peerj-pchem.22

152.Habershon, S. J. Chem. Theory Comput. 2016, 12, 1786–1798.
doi:10.1021/acs.jctc.6b00005

153.Bensberg, M.; Reiher, M. Isr. J. Chem. 2023, 63, e202200123.
doi:10.1002/ijch.202200123

154.Gao, W.; Coley, C. W. J. Chem. Inf. Model. 2020, 60, 5714–5723.
doi:10.1021/acs.jcim.0c00174

155.Weissman, S. A.; Anderson, N. G. Org. Process Res. Dev. 2015, 19,
1605–1633. doi:10.1021/op500169m

156.Nori, V.; Sinibaldi, A.; Giorgianni, G.; Pesciaioli, F.; Di Donato, F.;
Cocco, E.; Biancolillo, A.; Landa, A.; Carlone, A. Chem. – Eur. J.
2022, 28, e202104524. doi:10.1002/chem.202104524

157.Häse, F.; Roch, L. M.; Kreisbeck, C.; Aspuru-Guzik, A. ACS Cent. Sci.
2018, 4, 1134–1145. doi:10.1021/acscentsci.8b00307

158.Reker, D.; Hoyt, E. A.; Bernardes, G. J. L.; Rodrigues, T.
Cell Rep. Phys. Sci. 2020, 1, 100247. doi:10.1016/j.xcrp.2020.100247

159.Taylor, C. J.; Pomberger, A.; Felton, K. C.; Grainger, R.; Barecka, M.;
Chamberlain, T. W.; Bourne, R. A.; Johnson, C. N.; Lapkin, A. A.
Chem. Rev. 2023, 123, 3089–3126.
doi:10.1021/acs.chemrev.2c00798

160.Clayton, A. D.; Manson, J. A.; Taylor, C. J.; Chamberlain, T. W.;
Taylor, B. A.; Clemens, G.; Bourne, R. A. React. Chem. Eng. 2019, 4,
1545–1554. doi:10.1039/c9re00209j

161.Mateos, C.; Nieves-Remacha, M. J.; Rincón, J. A. React. Chem. Eng.
2019, 4, 1536–1544. doi:10.1039/c9re00116f

162.Sans, V.; Cronin, L. Chem. Soc. Rev. 2016, 45, 2032–2043.
doi:10.1039/c5cs00793c

163.Reizman, B. J.; Jensen, K. F. Acc. Chem. Res. 2016, 49, 1786–1796.
doi:10.1021/acs.accounts.6b00261

164.Fabry, D. C.; Sugiono, E.; Rueping, M. Isr. J. Chem. 2014, 54,
341–350. doi:10.1002/ijch.201300080

165.Fabry, D. C.; Sugiono, E.; Rueping, M. React. Chem. Eng. 2016, 1,
129–133. doi:10.1039/c5re00038f

166.James, D. M.; Lindsey, J. S. JALA (1998-2010) 2004, 9, 364–374.
doi:10.1016/j.jala.2004.08.004

167.Houben, C.; Lapkin, A. A. Curr. Opin. Chem. Eng. 2015, 9, 1–7.
doi:10.1016/j.coche.2015.07.001

168.Shields, B. J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.;
Alvarado, J. I. M.; Janey, J. M.; Adams, R. P.; Doyle, A. G. Nature
2021, 590, 89–96. doi:10.1038/s41586-021-03213-y

169.Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H.
Chem. Rev. 2017, 117, 11796–11893.
doi:10.1021/acs.chemrev.7b00183

170.Deringer, V. L.; Bartók, A. P.; Bernstein, N.; Wilkins, D. M.;
Ceriotti, M.; Csányi, G. Chem. Rev. 2021, 121, 10073–10141.
doi:10.1021/acs.chemrev.1c00022

171.Kondo, M.; Wathsala, H. D. P.; Sako, M.; Hanatani, Y.; Ishikawa, K.;
Hara, S.; Takaai, T.; Washio, T.; Takizawa, S.; Sasai, H.
Chem. Commun. 2020, 56, 1259–1262. doi:10.1039/c9cc08526b

172.Kondo, M.; Wathsala, H. D. P.; Salem, M. S. H.; Ishikawa, K.;
Hara, S.; Takaai, T.; Washio, T.; Sasai, H.; Takizawa, S.
Commun. Chem. 2022, 5, 148. doi:10.1038/s42004-022-00764-7

173.Tom, G.; Schmid, S. P.; Baird, S. G.; Cao, Y.; Darvish, K.; Hao, H.;
Lo, S.; Pablo-García, S.; Rajaonson, E. M.; Skreta, M.; Yoshikawa, N.;
Corapi, S.; Akkoc, G. D.; Strieth-Kalthoff, F.; Seifrid, M.;
Aspuru-Guzik, A. Chem. Rev. 2024, 124, 9633–9732.
doi:10.1021/acs.chemrev.4c00055

174.Abolhasani, M.; Kumacheva, E. Nat. Synth. 2023, 2, 483–492.
doi:10.1038/s44160-022-00231-0

175.Burger, B.; Maffettone, P. M.; Gusev, V. V.; Aitchison, C. M.; Bai, Y.;
Wang, X.; Li, X.; Alston, B. M.; Li, B.; Clowes, R.; Rankin, N.;
Harris, B.; Sprick, R. S.; Cooper, A. I. Nature 2020, 583, 237–241.
doi:10.1038/s41586-020-2442-2

176.Boiko, D. A.; MacKnight, R.; Kline, B.; Gomes, G. Nature 2023, 624,
570–578. doi:10.1038/s41586-023-06792-0

177.Jablonka, K. M.; Schwaller, P.; Ortega-Guerrero, A.; Smit, B.
Nat. Mach. Intell. 2024, 6, 161–169. doi:10.1038/s42256-023-00788-1

178.Bran, A. M.; Cox, S.; Schilter, O.; Baldassari, C.; White, A. D.;
Schwaller, P. Nat. Mach. Intell. 2024, 6, 525–535.
doi:10.1038/s42256-024-00832-8

179.Pablo-García, S.; García, Á.; Deniz Akkoc, G.; Sim, M.; Cao, Y.;
Somers, M.; Hattrick, C.; Yoshikawa, N.; Dworschak, D.; Hao, H.;
Aspuru-Guzik, A. ChemRxiv 2024.
doi:10.26434/chemrxiv-2024-cwnwc

180.Tetko, I. V.; Sushko, I.; Pandey, A. K.; Zhu, H.; Tropsha, A.; Papa, E.;
Öberg, T.; Todeschini, R.; Fourches, D.; Varnek, A.
J. Chem. Inf. Model. 2008, 48, 1733–1746. doi:10.1021/ci800151m

181.Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A. K.;
Kovalishyn, V. V.; Prokopenko, V. V.; Tetko, I. V. J. Chemom. 2010,
24, 202–208. doi:10.1002/cem.1296

182.Schrader, M. L.; Schäfer, F. R.; Schäfers, F.; Glorius, F. Nat. Chem.
2024, 16, 491–498. doi:10.1038/s41557-024-01470-8

183.Tremouilhac, P.; Nguyen, A.; Huang, Y.-C.; Kotov, S.;
Lütjohann, D. S.; Hübsch, F.; Jung, N.; Bräse, S. J. Cheminf. 2017, 9,
54. doi:10.1186/s13321-017-0240-0

184.Scroggie, K. R.; Burrell-Sander, K. J.; Rutledge, P. J.; Motion, A.
Digital Discovery 2023, 2, 1188–1196. doi:10.1039/d3dd00032j

185.Boobier, S.; Davies, J. C.; Derbenev, I. N.; Handley, C. M.; Hirst, J. D.
J. Chem. Inf. Model. 2023, 63, 2895–2901.
doi:10.1021/acs.jcim.3c00306

186.Pistoia Alliance, UDM. https://github.com/PistoiaAlliance/UDM.
187.Jablonka, K. M.; Patiny, L.; Smit, B. Nat. Chem. 2022, 14, 365–376.

doi:10.1038/s41557-022-00910-7
188.Wigh, D. S.; Arrowsmith, J.; Pomberger, A.; Felton, K. C.;

Lapkin, A. A. J. Chem. Inf. Model. 2024, 64, 3790–3798.
doi:10.1021/acs.jcim.4c00292

189.Collins, K. D.; Glorius, F. Nat. Chem. 2013, 5, 597–601.
doi:10.1038/nchem.1669

190.Gensch, T.; Teders, M.; Glorius, F. J. Org. Chem. 2017, 82,
9154–9159. doi:10.1021/acs.joc.7b01139

191.Pitzer, L.; Schäfers, F.; Glorius, F. Angew. Chem., Int. Ed. 2019, 58,
8572–8576. doi:10.1002/anie.201901935

192.Kariofillis, S. K.; Jiang, S.; Żurański, A. M.; Gandhi, S. S.;
Martinez Alvarado, J. I.; Doyle, A. G. J. Am. Chem. Soc. 2022, 144,
1045–1055. doi:10.1021/jacs.1c12203

https://doi.org/10.1021%2Fjacs.9b03591
https://doi.org/10.1039%2Fc8sc01949e
https://doi.org/10.1039%2Fd2qo00550f
https://doi.org/10.1021%2Fjacs.2c13467
https://doi.org/10.1002%2Fanie.202218565
https://doi.org/10.7717%2Fpeerj-pchem.22
https://doi.org/10.1021%2Facs.jctc.6b00005
https://doi.org/10.1002%2Fijch.202200123
https://doi.org/10.1021%2Facs.jcim.0c00174
https://doi.org/10.1021%2Fop500169m
https://doi.org/10.1002%2Fchem.202104524
https://doi.org/10.1021%2Facscentsci.8b00307
https://doi.org/10.1016%2Fj.xcrp.2020.100247
https://doi.org/10.1021%2Facs.chemrev.2c00798
https://doi.org/10.1039%2Fc9re00209j
https://doi.org/10.1039%2Fc9re00116f
https://doi.org/10.1039%2Fc5cs00793c
https://doi.org/10.1021%2Facs.accounts.6b00261
https://doi.org/10.1002%2Fijch.201300080
https://doi.org/10.1039%2Fc5re00038f
https://doi.org/10.1016%2Fj.jala.2004.08.004
https://doi.org/10.1016%2Fj.coche.2015.07.001
https://doi.org/10.1038%2Fs41586-021-03213-y
https://doi.org/10.1021%2Facs.chemrev.7b00183
https://doi.org/10.1021%2Facs.chemrev.1c00022
https://doi.org/10.1039%2Fc9cc08526b
https://doi.org/10.1038%2Fs42004-022-00764-7
https://doi.org/10.1021%2Facs.chemrev.4c00055
https://doi.org/10.1038%2Fs44160-022-00231-0
https://doi.org/10.1038%2Fs41586-020-2442-2
https://doi.org/10.1038%2Fs41586-023-06792-0
https://doi.org/10.1038%2Fs42256-023-00788-1
https://doi.org/10.1038%2Fs42256-024-00832-8
https://doi.org/10.26434%2Fchemrxiv-2024-cwnwc
https://doi.org/10.1021%2Fci800151m
https://doi.org/10.1002%2Fcem.1296
https://doi.org/10.1038%2Fs41557-024-01470-8
https://doi.org/10.1186%2Fs13321-017-0240-0
https://doi.org/10.1039%2Fd3dd00032j
https://doi.org/10.1021%2Facs.jcim.3c00306
https://github.com/PistoiaAlliance/UDM
https://doi.org/10.1038%2Fs41557-022-00910-7
https://doi.org/10.1021%2Facs.jcim.4c00292
https://doi.org/10.1038%2Fnchem.1669
https://doi.org/10.1021%2Facs.joc.7b01139
https://doi.org/10.1002%2Fanie.201901935
https://doi.org/10.1021%2Fjacs.1c12203


Beilstein J. Org. Chem. 2024, 20, 2280–2304.

2304

193.Rana, D.; Pflüger, P. M.; Hölter, N. P.; Tan, G.; Glorius, F.
ACS Cent. Sci. 2024, 10, 899–906. doi:10.1021/acscentsci.3c01638

194.Saebi, M.; Nan, B.; Herr, J. E.; Wahlers, J.; Guo, Z.; Zurański, A. M.;
Kogej, T.; Norrby, P.-O.; Doyle, A. G.; Chawla, N. V.; Wiest, O.
Chem. Sci. 2023, 14, 4997–5005. doi:10.1039/d2sc06041h

195.Kleinmans, R.; Pinkert, T.; Dutta, S.; Paulisch, T. O.; Keum, H.;
Daniliuc, C. G.; Glorius, F. Nature 2022, 605, 477–482.
doi:10.1038/s41586-022-04636-x

196.Formica, M.; Rogova, T.; Shi, H.; Sahara, N.; Ferko, B.;
Farley, A. J. M.; Christensen, K. E.; Duarte, F.; Yamazaki, K.;
Dixon, D. J. Nat. Chem. 2023, 15, 714–721.
doi:10.1038/s41557-023-01165-6

197.Huang, C.; Xiao, P.; Ye, Z.-M.; Wang, C.-L.; Kang, C.; Tang, S.;
Wei, Z.; Cai, H. Org. Lett. 2024, 26, 304–309.
doi:10.1021/acs.orglett.3c03980

198.Ji, D.-S.; Zhang, R.; Han, X.-Y.; Hu, X.-Q.; Xu, P.-F. Org. Lett. 2024,
26, 315–320. doi:10.1021/acs.orglett.3c03861

199.Welch, C. J. React. Chem. Eng. 2019, 4, 1895–1911.
doi:10.1039/c9re00234k

200.Mennen, S. M.; Alhambra, C.; Allen, C. L.; Barberis, M.; Berritt, S.;
Brandt, T. A.; Campbell, A. D.; Castañón, J.; Cherney, A. H.;
Christensen, M.; Damon, D. B.; Eugenio de Diego, J.;
García-Cerrada, S.; García-Losada, P.; Haro, R.; Janey, J.;
Leitch, D. C.; Li, L.; Liu, F.; Lobben, P. C.; MacMillan, D. W. C.;
Magano, J.; McInturff, E.; Monfette, S.; Post, R. J.; Schultz, D.;
Sitter, B. J.; Stevens, J. M.; Strambeanu, I. I.; Twilton, J.; Wang, K.;
Zajac, M. A. Org. Process Res. Dev. 2019, 23, 1213–1242.
doi:10.1021/acs.oprd.9b00140

201.Slattery, A.; Wen, Z.; Tenblad, P.; Sanjosé-Orduna, J.; Pintossi, D.;
den Hartog, T.; Noël, T. Science 2024, 383, eadj1817.
doi:10.1126/science.adj1817

202.Falivene, L.; Credendino, R.; Poater, A.; Petta, A.; Serra, L.; Oliva, R.;
Scarano, V.; Cavallo, L. Organometallics 2016, 35, 2286–2293.
doi:10.1021/acs.organomet.6b00371

203.Ertl, P. Chem.: Methods 2022, 2, e202200041.
doi:10.1002/cmtd.202200041

204.Strieth-Kalthoff, F.; Szymkuć, S.; Molga, K.; Aspuru-Guzik, A.;
Glorius, F.; Grzybowski, B. A. J. Am. Chem. Soc. 2024, 146,
11005–11017. doi:10.1021/jacs.4c00338

205.García Mancheño, O.; Waser, M. Eur. J. Org. Chem. 2023, 26,
e202200950. doi:10.1002/ejoc.202200950

License and Terms
This is an open access article licensed under the terms of
the Beilstein-Institut Open Access License Agreement
(https://www.beilstein-journals.org/bjoc/terms), which is
identical to the Creative Commons Attribution 4.0
International License
(https://creativecommons.org/licenses/by/4.0). The reuse of
material under this license requires that the author(s),
source and license are credited. Third-party material in this
article could be subject to other licenses (typically indicated
in the credit line), and in this case, users are required to
obtain permission from the license holder to reuse the
material.

The definitive version of this article is the electronic one
which can be found at:
https://doi.org/10.3762/bjoc.20.196

https://doi.org/10.1021%2Facscentsci.3c01638
https://doi.org/10.1039%2Fd2sc06041h
https://doi.org/10.1038%2Fs41586-022-04636-x
https://doi.org/10.1038%2Fs41557-023-01165-6
https://doi.org/10.1021%2Facs.orglett.3c03980
https://doi.org/10.1021%2Facs.orglett.3c03861
https://doi.org/10.1039%2Fc9re00234k
https://doi.org/10.1021%2Facs.oprd.9b00140
https://doi.org/10.1126%2Fscience.adj1817
https://doi.org/10.1021%2Facs.organomet.6b00371
https://doi.org/10.1002%2Fcmtd.202200041
https://doi.org/10.1021%2Fjacs.4c00338
https://doi.org/10.1002%2Fejoc.202200950
https://www.beilstein-journals.org/bjoc/terms
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.3762/bjoc.20.196

	Abstract
	Introduction
	Review
	1. Primer on ML
	1.1 Data
	1.2 Representation
	1.3 Modelling

	2 ML for selectivity predictions
	2.1 Evolution of physical-organic descriptors in organocatalysis
	2.2 Increasing data availability in ML for organocatalysis

	3 ML for the design of privileged organocatalysts
	3.1 ML for transferable reactions
	3.2 ML for general organocatalysts

	4 ML for catalyst and reaction design
	4.1 Mechanistic understanding
	4.2 High-throughput virtual screening
	4.3 Genetic algorithms
	4.4 ML-driven experimental design


	Conclusion
	Acknowledgements
	Funding
	ORCID iDs
	Data Availability Statement
	Preprint
	References

