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Abstract
We present a mechanochemical synthesis of difluoromethyl enol ethers. Utilizing an in situ generation of difluorocarbenes, ketones
are efficiently converted to the target products under solvent-free conditions. The reactions proceed at room temperature and are
complete within 90 minutes, demonstrating both efficiency and experimental simplicity.
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Introduction
In recent years, mechanochemical organic synthesis has been
advanced significantly, prompting organic chemists to recon-
sider the necessity of solvents in their reactions [1-11]. Elimi-
nating hazardous solvents substantially reduces the ecological
footprint of organic reactions [12,13]. Beyond environmental
benefits and enhanced human safety, mechanochemical reac-
tions often feature shorter reaction times, eliminate the need for
external heating, and offer alternative product selectivity [3,14].
In general, such reactions are characterized by the absorption of
mechanical energy and they are influenced by several factors,
including the lack of solvation, changes in morphology and
rheology of the reaction mixtures during the milling, and varia-
tions in concentration and dielectric environment. Conse-
quently, an increased reactivity can be achieved through the for-
mation of novel reactive intermediates [15-18].

Fluorine-containing functional groups are essential structural
motifs in the development of new bioactive compounds and

functional materials. Compared to their non-fluorinated analogs,
the presence of fluorine atoms in molecular structures can
improve physicochemical and biological properties [19-27].
Among these groups, the difluoromethyl moiety has gained
considerable attention [28-30]. Commonly, it is synthesized by
the reaction of a nucleophile with difluorocarbene. However,
the generation of difluorocarbene typically requires harsh
conditions and involves toxic precursors, alongside with the risk
of dimerization to tetrafluoroethylene [31]. Although this
dimerization can be mitigated by controlling the concentration
and reaction environment, as longer half-lives are observed for
difluorocarbenes in the gas phase than in solution [32,33], it has
remained a challenge to control such reactions.

Our group has recently reported a mechanochemical difluoro-
methylation of primary, secondary, and tertiary alcohols [34],
yielding products with difluoromethoxy groups, which are
promising organofluorine compounds [35-38]. Notably, also
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Scheme 1: Overview over difluoromethyl enol ether syntheses from acyclic and cyclic 1,3-diones (A), acyclic ketones (B), and cyclic ketones (C).

sterically hindered alcohols, which are typically less reactive in
solution, could be applied under solvent-free conditions in a ball
mill [39], which was attributed to a better accessibility of the
difluorocarbene in the mechanochemical environment [40].

Motivated by these findings, we now explored difluoromethyl-
ation reactions with compounds bearing less nucleophilic func-
tional groups. Ketones caught our particular attention as they
contain a weak nucleophilic carbonyl oxygen adjacent to an
electrophilic carbonyl carbon. Previous studies have focused on
reactions of difluorocarbene with cyclic and acyclic 1,3-diones
(Scheme 1A) [41-45]. Typically, they were conducted with a
base to form the corresponding enolate anions which then
reacted with difluorocarbene to yield difluoromethyl enol
ethers. Those products are of interest because they contain a
unique structural motif with potential for further functionaliza-
tions into highly diverse secondary or tertiary difluoroalkyl
ethers. Dolbier and co-workers investigated reactions of
difluorocarbene generated from its precursor trimethylsilyl 2,2-
difluoro-2-(fluorosulfonyl)acetate (TFDA) and sodium fluoride
catalyst, with simple ketones, which resulted in the formation of
difluoromethyl 2,2-difluorocyclopropyl ethers (Scheme 1B).
Although the reactions worked well, it is also noteworthy that
the use of TFDA as reagent, liberated fluoro(trimethyl)silane
(TMSF), carbon dioxide, and ozone-depleting sulfur dioxide as

side products [46,47]. Later, Ichikawa and co-workers estab-
lished the release of difluorocarbene from TFDA with catalytic
amounts of an N-heterocyclic carbene and a base (Scheme 1C)
[29,48,49]. In these reactions, difluoromethyl enol ethers were
obtained, which were subsequently oxidized to yield the corre-
sponding aryl difluoromethyl ethers. Noteworthy, however, the
latter study focused mostly on cyclic ketones, with only one re-
ported example of a difluoromethylation reaction of an acyclic
substrate.

Against this background and seeing new synthetic opportuni-
ties, we wondered about reactions of mechanochemically gener-
ated difluorocarbene with simple acyclic ketones. The results
and observations of this study are summarized here.

Results and Discussion
For the optimization of the reaction conditions, 4-methylaceto-
phenone (1a) was chosen as model substrate. Under standard
reaction conditions with difluorocarbene precursor TMSCF2Br
(2, 2.0 equiv), activator KFHF (4.0 equiv), and grinding auxil-
iary CsCl (4.0 equiv), difluoromethyl enol ether 3a was ob-
tained after 90 min reaction time at 25 Hz in 74% yield, deter-
mined by quantitative 1H NMR spectroscopy (Table 1, entry 1).
The reaction was conducted in a PTFE milling equipment with
two milling balls (diameter: 10 mm). Changing to a heavier



Beilstein J. Org. Chem. 2024, 20, 2799–2805.

2801

Table 1: Optimization of the reaction conditions.a

Entry Deviation from the reaction conditions Yield of 3a (%)b

1 none 74c

2 with one PTFE milling ball (diameter: 15 mm) 67
3 60 min 72
4 60 min, 2 (1.5 equiv) 61
5 60 min, 2 (3.0 equiv) 60
6 60 min, KCl instead of CsCl 69
7 60 min, KBr instead of CsCl 69
8 60 min, NaCl instead of CsCl 64
9 60 min, SiO2 instead of CsCl 0
10 LAG (H2O) 37
11 LAG (1,4-dioxane) 43
12 LAG (CHCl3) 62
13 LAG (toluene) 68

aReaction performed with two PTFE milling balls (diameter: 10 mm) in a PTFE jar (volume: 25 mL). Liquid-assisted grinding (LAG): 0.25 µL·mg−1.
bDetermined by 1H NMR spectroscopy using 1,2-dichloroethane as the internal standard. cRepetition of the experiment gave consistent results.

milling ball (diameter: 15 mm) resulted in a yield of 67% of 3a
(Table 1, entry 2). Stopping the reaction after 60 min gave prod-
uct 3a in 72% yield (Table 1, entry 3). At a reaction time of
60 min, both reducing and increasing the amount of 2 (from
initially used 2.0 equiv to 1.5 equiv and 3.0 equiv, respectively)
reduced the yield of 3a by about 10% (Table 1, entries 3–5).
Probably, with less carbene precursor the amount of generated
difluorocarbene was insufficient, and with too much of it, side
reactions occurred [31-33]. Next, various grinding auxiliaries
were investigated at a reaction time of 60 min (Table 1, entries
6–9). A similar yield of 3a (69%) was obtained with KCl or
KBr instead of CsCl (Table 1, entries 6 and 7 versus entry 3).
Using NaCl, gave 3a in 64% yield (Table 1, entry 8). Finally,
CsCl was substituted by silica, which, to our surprise, blocked
the product formation completely (Table 1, entry 9). Appar-
ently, the presence of an alkali halide salt was beneficial, most
likely by stabilizing the consistency of the reaction mixture
leading to a sufficient mixing. Silica could not fulfill this role.
Lastly, water, 1,4-dioxane, chloroform, and toluene were tested
in a liquid-assisted grinding (LAG) protocol (Table 1, entries
10–13). The lowest yields were obtained with water and 1,4-
dioxane, providing 3a in yields of 37% and 43%, respectively
(Table 1, entries 10 and 11). With the less polar solvents chloro-
form and toluene 3a was obtained in 62% and 68% yield, re-
spectively (Table 1, entries 12 and 13).

For comparison, the difluoromethylation of ketone 1a with
difluorocarbene precursor TMSCF2Br (2) was investigated in
solution (Scheme 2). The reaction conditions were chosen based
on those reported by Ni, Hu and co-workers for the difluoro-
methylation of alcohols in solution [39]. The two activators
KFHF and KOAc were investigated in a dichloromethane/water
mixture at room temperature for 10 h. In both cases, the yield of
3a was negligible (with KFHF: 3%, with KOAc: nil). Following
these initial attempts, the mechanochemical approach appears to
be superior. However, it should also be noted that the reaction
with difluorocarbene precursor 2 was not further optimized in
solution.

Next, various ketones were investigated under the optimized
reaction conditions with difluorocarbene precursor 2, KFHF
(4 equiv) as activator, and CsCl or KCl (4 equiv) as grinding
auxiliaries in a PTFE milling jar for 90 min at 25 Hz
(Scheme 3). To get an initial efficiency estimate, the crude reac-
tion mixtures were first analyzed by quantitative 1H NMR spec-
troscopy with 1,2-dichloroethane as the internal standard. After
these analyses, isolating the products by column chromatogra-
phy was attempted. Unfortunately, many products were highly
volatile and very non-polar, rendering the purification difficult.
As a result, in several cases only little or no product was ob-
tained. Furthermore, most isolated products had only purities of
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Scheme 2: Attempted difluoromethylation of 1a in solution. The reactions were performed on a 0.2 mmol scale. Method A: 2 (2.0 equiv), KFHF
(4.0 equiv), CH2Cl2 (0.2 mL), H2O (0.2 mL), rt, 10 h; Method B: 2 (2.0 equiv), KOAc (4.0 equiv), CH2Cl2 (0.2 mL), H2O (0.2 mL), rt, 10 h. The yields
were determined by 19F NMR spectroscopy using trifluoromethoxybenzene as the internal standard.

Scheme 3: Scope of ketones. The yields were determined by 1H NMR spectroscopy using 1,2-dichloroethane as the internal standard. In paren-
theses: yields after column chromatography (with product purities of ca. 90%). aWith CsCl. bWith KCl.

ca. 90% still containing inseparable impurities (as revealed by
NMR spectroscopy).

In the first series of substrates, acetophenone derivatives with
various para-substituents were applied. Similar to methyl tolyl
ketone (1a), which afforded product 3a in 74% yield, aceto-
phenone (1b) gave 3b in 56% yield. Substrates 1c and 1d bear-
ing a chloro or a bromo group in para position of the aryl
moiety, gave the corresponding products in yields of 53% (for
3c) and 42% (for 3d). These two difluoromethyl enol ethers
were also isolated by column chromatography, which afforded
the products in 53% and 39% yield, respectively. Product 3e

with an isobutyl group in para-position was obtained in 63%
yield and isolated in 35% yield. Changing the position of the
methyl group to the ortho-position led to a decrease in yield (3f:
34%). ortho-Methoxy-substituted ketone 1g provided the corre-
sponding product 3g in 56% yield. Difluoromethyl enol ether
3h with three methyl groups was obtained in 56% yield and
column chromatography allowed to isolate it in 42% yield.
2-Acetonaphthone was successfully converted to 3i in 66%
yield. Besides aryl ketones, arylalkyl ketones reacted well too.
Accordingly, 3j was obtained in 42% yield. Enone 1k gave 3k
in 51% yield, and after isolation by column chromatography the
product was obtained in 13% yield. Difluoromethyl enol ether
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Scheme 4: Proposed mechanism (A) and mechanistic investigations (B and C). The yields were determined by 1H NMR spectroscopy using 1,2-
dichloroethane as internal standard.

3l was formed from diketone 1l in 25% yield. Finally, conver-
sions of the two cyclic ketones 1m and 1n were studied. Both
gave the expected products in yields of 50% (for 3m) and 44%
(for 3n).

Besides these successful transformations several ketones proved
unsuitable (Scheme S1 in Supporting Information File 1).
Additionally, attempted [4 + 1]-type cycloadditions of three
1-arylprop-2-en-1-ones as heteroconjugated alkenes with
difluorocarbene to give 2,2-difluoro-2,3-dihydrofurans [50]
remained unsuccessful (Scheme S2 in Supporting Information
File 1).

Two mechanisms have been proposed for the difluoromethyl-
ation of ketones, as illustrated in Scheme 4A. In both cases, the
process begins with the generation of difluorocarbene from
TMSCF2Br and KFHF. This is followed by a nucleophilic
attack of the oxygen atom of ketone 1 on the difluorocarbene.
Subsequently, a protonation–deprotonation sequence occurs,

which can either be intermolecular, involving a molecule of HF,
or intramolecular, proceeding through a five-membered transi-
tion state.

To clarify the mechanism, two experiments were conducted. In
the first one, 2-acetonaphthone with a trideuteromethyl group
(1i-d3) was subjected to the standard reaction conditions. Two
products were obtained: First, 3i-d2 containing a CF2H group,
and second 3i-d3 bearing a CF2D group. The yields were 57%
and 15%, respectively. In the second experiment, the potential
for proton exchange in difluoromethyl enol ether 3h was inves-
tigated. The compound was milled with the activator KFHF,
CsCl as grinding auxiliary, and D2O in a liquid-assisted
grinding process. As a result, no H/D-exchange was detected.
The experimental results of both experiments suggest that the
reaction predominantly proceeds through an intermolecular
pathway. The occurrence of the CF2D product may be attri-
buted to a minor intramolecular reaction path or the involve-
ment of DF formed during the reaction.



Beilstein J. Org. Chem. 2024, 20, 2799–2805.

2804

Conclusion
In conclusion, we discovered a mechanochemical synthesis of
difluoromethyl enol ethers. The products were obtained from
the corresponding ketones at room temperature after a reaction
time of 90 minutes. The investigation of the reaction scope
revealed challenges in isolating the low-boiling non-polar prod-
ucts. Mechanistic studies suggested that in situ-generated
difluorocarbene reacts with the ketone oxygen, followed by
intermolecular protonation/deprotonation. Although the process
has still synthetic limitations, also acyclic ketones can now be
converted into difluoromethyl enol ethers, which have the
potential for further functionalization.

Supporting Information
Supporting Information File 1
Experimental procedures, optimization studies, compound
characterization data, NMR spectra, and mechanistic
investigations.
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