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Abstract
In this study, novel fluorinated carboxylic acid esters of the generic structure TfO–CH2–(CF2)n–COOCH3 (n = 2,4,6, Tf = triflate)
were synthesized. The triflates were reacted with 2-hydroxy-3,4,5-trimethoxybenzaldehyde via Williamson ether syntheses. The re-
sulting electron-rich compounds were used as aldehydes in the Rothemund reaction with pyrrole to form ester-substituted porphy-
rins. After metalation with Ni(acac)2 and hydrolysis electron-rich porphyrins were obtained, that are equipped with covalently at-
tached long chain acid substituents. The target compounds have potential applications in catalysis, sensing, and materials science.
The fluorinated aliphatic carboxylic acids (TfO–CH2–(CF2)n–COOCH3) with triflate as leaving group in terminal position are
easily accessible and versatile building blocks for attaching long chain acids (pKa 0–1) to substrates in Williamson ether-type reac-
tions.
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Introduction
Metal porphyrins are prosthetic groups in a number of essential
biomolecules, including hemoglobin, chlorophyll, and
cytochromes, supporting processes such as oxygen transport,
photosynthesis, and electron transfer [1-5]. Beyond their essen-
tial biological roles, porphyrins and their derivatives are em-
ployed in a number of applications, acting as catalysts in nu-
merous reactions, including oxidation, reduction, and cycload-
dition [6-10]. Particularly when electron-rich porphyrins act as
reducing agents, e.g. in electrocatalytic hydrogen evolution
reactions, a proton source is needed [11]. In this context, tri-

fluoroacetic acid is very frequently chosen as the proton source,
because it is a strong acid but just not strong enough to destroy
(demetallate) the Ni porphyrin [10]. Covalent attachment of
acids facilitates proton transfer and increases the efficiency
[12]. Three conditions should be met for the target porphyrins
of this study. 1. The acid covalently bound to the porphyrin
should have an acid strength similar to trifluoroacetic acid.
2. The length of the tether with which the acid group is bound
should be sufficient to serve as a proton source for redox reac-
tions at the metal. 3. The electronic properties of the porphyrin,
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Scheme 1: Synthesis of the starting materials 16, 17, and 18 for the subsequent Williamson ether synthesis with 2-hydroxy-3,4,5-trimethoxybenzalde-
hyde (21). Conditions: a) K2CO3, benzyl bromide, abs. MeCN, N2, reflux, 18 h; b) TEMPO, KBr, NaOCl, NaHCO3, MeCN, rt, 76 h; c) MeOH, H2SO4,
reflux, 18 h; d) Pd/C, H2, EtOH, rt, 24 h; e) Tf2O, pyridine, DCM, rt, 18 h.

especially the low oxidation potential, should not be increased.
We have chosen four-fold meso-3,4,5-trimethoxyphenyl-substi-
tuted Ni porphyrin as the electron-rich system, however, the
post-synthetic modification of this porphyrin proved to be diffi-
cult. Therefore, we have integrated the acid group into the alde-
hyde component of the Rothemund reaction to prepare the
target porphyrin. In initial tests, we have established that tri-
fluoroacetic acid can be replaced by perfluorinated alkyl
carboxylic acids [10]. It was therefore obvious to use a per-
fluoroalkyl chain as a tether. However, a perfluoroalkyl chain as
a substituent on the porphyrin has an electron-withdrawing
effect and thus a negative influence on the oxidation potential.
We have therefore inserted an O–CH2 group between the phe-
nyl group of the porphyrin and the perfluoroalkyl chain. The
oxygen atom, especially in the 2-position, should even improve
the electronic properties of the porphyrin.

Results and Discussion
Our synthesis started with the readily available fluorinated sym-
metric diols HO–CH2–(CF2)n–CH2–OH (n = 2,4,6, see
Scheme 1).

In order to break the symmetry and to generate the acid func-
tion only on one side, benzyl protection was performed. From
diols 1, 2, and 3 statistical mixtures of unprotected, mono-, and
di-protected products were obtained, from which the isolation
of the desired mono-protected products 4 (65%), 5 (50%), and 6
(40%) by chromatography was straightforward. However, the
subsequent oxidation of the alcohol with the usual oxidizing
agents (Jones reagent, KMnO4, etc.) was not successful. A
radical oxidation with TEMPO, potassium bromide (KBr), sodi-
um hypochlorite (NaOCl), and sodium bicarbonate (NaHCO₃)

provided acids 7, 8, and 9. A byproduct is obtained during oxi-
dation and it is assumed that this is the molecule oxidized at the
benzyl position (see Supporting Information File 1, compounds
35–40). Work-up and isolation proved to be difficult, and there-
fore, the acids were directly converted into the methyl esters 10
(54%), 11 (52%), and 12 (46%). The benzyl-protecting group
was removed hydrogenolytically to give products 13 (85%), 14
(65%), and 15 (99%). The alcohols were then converted to the
triflates 16 (28%), 17 (41%), and 18 (63%).

We have chosen 3,4,5-trimethoxybenzaldehyde (19) as the
aldehyde component due to its commercial availability. A OH
group was introduced to serve as the nucleophile in the
Williamson ether synthesis with the triflates 16, 17, and 18
(Scheme 2).

Towards this end, 3,4,5-trimethoxybenzaldehyde (19) was iodi-
nated using N-iodosuccinimide (NIS) to give 20 in a yield of
89% [13]. To convert the iodo to an OH group, compound 20
was reacted with Cu2O, 2-pyridinaldoxime and CsOH to give
2-hydroxy-3,4,5-trimethoxybenzaldehyde (21, 65%) [13]. In a
subsequent nucleophilic substitution, the fluorinated alkyl
chains of 16, 17, and 18 were linked via a Williamson ether
synthesis to yield 22 (78%), 23 (44%), and 24 (44%).

Compounds 22, 23, and 24 were used as aldehyde components
in the Rothemund-type synthesis of metal-free porphyrins 26
(9%), 27 (18%), and 28 (21%) (see Scheme 3).

Metalation was achieved with nickel acetylacetonate to obtain
the ester-substituted Ni porphyrins 29 (78%), 30 (97%), and 31
(57%). The latter were treated with LiOH and HCl to give the
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Scheme 2: Synthesis of perfluoroalkyl ester-functionalized aldehydes 22, 23, and 24. Conditions: a) NIS, TFA, Na2CO3, MeCN, reflux, 18 h;
b) Cu2O·H2O, 2-pyridinaldoxime, TBAB, CsOH, H2O, N2, rt, 18 h; c) Cs2CO3, DMAc, N2, rt, 3 h.

Scheme 3: Porphyrin synthesis. a) Rothemund porphyrin synthesis of metal-free porphyrins 26, 27, and 28; b) metalation of porphyrins with
Ni(acac)2; c) ester hydrolysis to generate the free acids 32, 33, and 34. Conditions: a) 1) 22/23/24, TFA, abs. DCM, N2, reflux, 30 min, 2) pyrrole,
reflux, 2.5 h, 3) DDQ, reflux, 2 h; b) Ni(acac)2, toluene, reflux, 20 h; c) 1) LiOH, MeOH, rt, 1 h, 2) HCl.
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free acids 32  (94%), 33  (39%), and 34  (45%). The
HPLC–ESIMS analysis of 32, 33, and 34 revealed that two
major atropisomers of each porphyrin had formed. In 32 both
atropisomers exhibit a roughly 1:1 ratio, in 33 we observed a
roughly 1:2 ratio, and in 34 almost only one atropisomer was
formed (see Figures S102, S106, and S110 in Supporting Infor-
mation File 1). We attribute this to the increasing sterical
hindrance of the increasing chain lengths in compounds 32, 33,
and 34, which should favor an alternating sequence of the
chains pointing upward and downward.

Conclusion
This study reports the synthesis of perfluoroalkyl carboxylic
esters with CH2–OTf groups in the ω-position of the type
TfO–CH2–(CF2)n–COOCH3 (n = 2, 4, 6, Tf = triflate). The
latter compounds were used in Williamson ether reactions with
2-hydroxy-3,4,5-trimethoxybenzaldehyde (21) to prepare the
aldehyde component for a Rothemund-type porphyrin synthesis
of acid-functionalized electron-rich porphyrins. The corre-
sponding Ni porphyrins are potential compounds for electro-
catalysis and sensor applications. The ω-triflated, perfluoro-
alkylated carboxylic acids 16, 17, and 18 are easily accessible
and versatile building blocks for connecting long chain acids
(pKa range between 0 and 1) to substrates in Williamson ether-
type reactions.

Supporting Information
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Experimental procedures, characterization data of all
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