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Abstract
Quantitative assessment of the first acidity constant (pKa) for BFC (27.6 in CH3CN) and FIC (27.8 in CH3CN) shows the methy-
lene protons to be significantly more acidic than those in related cyclopentadiene (32 in CH3CN), indene (34 in CH3CN), or fluo-
rene (37 in CH3CN) and comparable to the methine of 9-perfluorophenylfluorene (28.14 in CH3CN). This work reports quantita-
tive pKa values of BFC and FIC, places those values in a broadened context of CpH-cognate hydrocarbon acidity and presents a
Clar–Loschmidt graph perspective to help understand the “surprises”.
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Introduction
A classic textbook tetrad linking hydrocarbon acidity to aromat-
ic stabilization energy comprises cyclopentadiene (CpH),
indene (InH), fluorene (FlH), and diphenylmethane (DPMH)
[1,2], with pKa values in DMSO equal to 18 [3], 20.1 [3], 22.6
[3], and 32.2 [4], respectively (Scheme 1) [5,6]. The reaction
enthalpy for deprotonation of CpH is ca 20 kcal/mol less
endothermic than DPMH and ca. 24–27 kcal/mol less
endothermic than 1,4-pentadiene (PDH; pKa ≈ 35 in DMSO)
[3], values strikingly similar to the resonance stabilization
energy estimated for benzene [7,8]. Furthermore, the trend of

pKa values for CpH, InH, and FlH correlates with the reduction
of the aromatic stabilization energy for the anion across the
series [1,2]. At first glance, this model supports the notion that
the relative pKa values of cyclopentadienes embedded in
polynuclear aromatic hydrocarbons (CpH-PAHs) reflect some
general measure of the embedded CpH's aromatic character. In
this context, the observation that BFC and FIC (FlH cognates)
manifest acidity comparable to CpH, was surprising [9]. This
study uses a Clar–Loschmidt graph model to show that the
acidity of CpH-PAH is more nuanced [10,11]. Subsequently,
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Scheme 1: Aromatic stabilization energy across a series of small aromatics (upper); graphical depiction of the BFC/FIC acidity quandry (lower).

Table 1: Relative aromatic hydrocarbon acidities I.

Compound CH3CN CH3CN DMSO DMSO
Cmptla Exptl/Estb Cmptla Exptl/Estb

fluorene 35.0 37b,c 21.6 22.6d

indene 32.2 34b,c 18.8 20.1d

cyclopentadiene 29.1 32b,c 15.6 18.0d

FIC 27.8 27.8e 14.4 14.4b,e

BFC 28.3 27.6e 14.3 14.3b,e

9-phenylfluorene 30.8 32b,c 17.4 17.9f

fluoradene 22.8 23.9b,c 9.4 10.5f

diphenylmethane 43.4 48b,c 29.9 32.2g

aB97-D/def2-TZVPP(solvent)//B97-D/def2-TZVPP(solvent) referenced to 9-C6F5-fluorene (solvent). bEstimated using experimental data and correla-
tion equations. cRef. [13]. dRef. [3]. eThis work. fRef. [5]. gRef. [4].

literature and computational examples reveal a leitmotif for
CpH-PAH-based redox-active carbon-rich materials.

Results and Discussion
From competitive titrations against 9-C6F5-fluorene (pKa =
28.14 in CH3CN) [12,13] and (4-Me-C6F4)(C6H5)CHCN
(pKa = 26.98 in CH3CN) [12,13] as upper and lower references,
respectively, the acidities of BFC (pKa = 27.6 in CH3CN) and
FIC (pKa = 27.8 in CH3CN) could be quantified and ordered
relative to a series of organic aromatic acids (Table 1). Rather
than falling among the series cyclopentadiene (pKa = 32 in
CH3CN), indene (pKa = 34 in CH3CN), or fluorene (pKa = 37 in
CH3CN), BFC and FIC rank as stronger acids than CpH in

acetonitrile. Extrapolation to DMSO by conversion equations,
supports the assertion that BFC and FIC are more acidic than
CpH in an “absolute acidity” sense [13].

How odd is such a pKa value of ca. 14 for a CpH-PAH like BFC
or FIC in DMSO? From the initial structural analogy to
fluorene there is a substantial 8 pKa unit difference, which
is nearly 11 kcal/mol in ambient reaction free energy.
Computations (B97-D/def2-TZVPP(THF)//B97-D/def2-
TZVPP(THF)) also predict pKa values of 14.4 and 14.3 for FIC
and BFC in DMSO, respectively, so to the extent that these
values are surprising, the problem must mostly come from a
distortion of our perspective, and not from any dispute between
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Scheme 2: Clar–Loschmidt graphs: [upper] defining the relationship of the molecular fragment to the graph node (shaded circle) for benzene, Cp
anion, and indene anion; [middle], superposition of the graph node onto the molecular fragment and then representation of the nodes in the abstract
graph: corannulene above phenanthrene (left); triphenylene above cyclopentaphenanthrene (right); [lower] as with middle but dibenzofluorene (left)
and fluorenocorannulene (right).

theory and experiment. If that is the case, then what might be a
better perspective to investigate CpH-PAH structures like BIC
and FIC?

Let us consider a perspective based on the teachings of Clar and
Loschmidt. Clar held the electron sextet as the paragon of
aromaticity [14] and Loschmidt considered benzene a "group el-
ement" [15]. Combining these perspectives, one can view PAH
networks as graphs comprised of Clar–Loschmidt (CL) "ele-
ments" [10,16]. For corannulene, a maximum of two CL ele-
ments (sextets) are present in any one resonance form. There-
fore, applying the CL perspective to BFC and FIC one sees
dibenzofluorene (full name 13H-dibenzo[a,c]fluorene) as a
cognate, which highlights these compounds to be like a confor-
mationally planar-locked 2,3-diphenylindene (pKa 17.7 in
DMSO [17].

The CL perspective also allows one to create graphs with points
representing the aromatic elements, such as, benzene, Cp anion,

pyrrole, etc. (Scheme 2, top). Triphenylene is a simple cyclic
graph of three benzene elements and their direct connections. A
simple modification of the triphenylene graph is the replace-
ment of benzene by Cp anion (Scheme 2, middle). From the CL
graph perspective, the anion of cyclopentaphenanthrene is
related to that of dibenzofluorene the same way as the Cp anion
is related to that of indene. Therefore, cyclopentaphenanthrene
should be more acidic than dibenzofluorene, which it is [18].
Monofluorenocorannulene and dibenzofluorene map onto a
common CL graph with benzene and indenyl elements
(Scheme 2, bottom). These compounds display related elec-
tronic structures and are predicted computationally to have sim-
ilar pKa values (i.e., show similar acidity).

The extreme of this graph example is the five rim benzene ele-
ments and a Cp− core, pentabenzocorannulene (Scheme 3,
upper) [19,20]. Such a CpH derivative should be a very acidic
aromatic hydrocarbon, and computations for this study predict
its pKa to be ca 1.1 in DMSO. This high acidity is well seen if
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Scheme 3: CL graph perspective on acidic PAH-CpHs; pentabenzocorannulene and pentabenzoazocorannulene (upper); phenyltetrabenzofluorene
and tetrabenzofluorene TBF (lower).

one recognizes that, when seen through the CL model,
pentabenzocorannulene is more of a well-overlapping
pentaphenyl-CpH derivative than a pentabenzocorannulene.
Swap out Cp− by the isolelectronic pyrrole and it becomes clear
that pentabenzoazacorannulene is also less of an azocorannu-
lene and more a pentaphenylpyrrole, which explains its ease of
synthesis and the physical properties [21,22].

The graph with four benzene elements and a CpH core is
evident in the commercially available tetrabenzofluorene, TBF
(Scheme 3, lower). The parent and the phenyl TBF derivative
were also recently prepared by a mechanochemical Scholl reac-
tion [23-25]. Furthermore, the anion of TBF is stable enough to
be easily handled and the crystal structures of a number of
common ammonium salts of TBF anion, grown from water,
have been reported [26].

Neutral highly acidic compounds tend to deprotonate to form
highly stable anions. The air stability of TBF conforms to that
model. In contrast, although the dianion of BFC can be gener-
ated with tert-butoxide under inert atmosphere, in the presence
of water it quenches and exposed to oxygen it oxidizes to form
the diketone. Access to the dianion of BFC presages an interest-
ing diradical and this was achieved by inclusion of mesityl
protecting groups [27]. Extension of the BFC model with thio-
phene provides further interesting materials [28]. A reasonable
corollary to this behavior would assert that derivatives of TBF
and pentabenzocorannulene would produce air-stable radical
and ionic PAHs, and that coupling such fragments would lead
to stable redox-active carbon sheets.

Conclusion
In conclusion, the “surprise” in the surprising pKa for BIC and
FIC was in our expectation of the deprotonated forms as poorly
delocalized fluorenyl anions. The CL perspective provided us a
different way to look at these compounds and interpret them as
phenyl-substituted CpHs, thus reconciling their higher acidity.
That perspective led us to a CL graph representation that pre-
dicted/rationalized additional acidic CpH-PAHs and sharpened
our understanding of an “azacorannulene”. Working from graph
structures based on chemically stable (“group elementary”)
nodes is a useful principle in molecular design and chemical
synthesis. Such a perspective is important to understand funda-
mental physical organic molecular properties as well as to
predict desirable unforeseen new material designs (e.g., redox-
active electrooptical materials).

Methods
pKa measurements in acetonitrile
The experimental setup and methodology for the pKa determi-
nation of BFC and FIC in acetonitrile was essentially the same
as described in detail in previous papers [12,13]. A brief de-
scription will follow.

The pKa determinations in acetonitrile are based on the determi-
nations of differences of pKa values of two acids. In this case
one compound is a reference acid with a previously known pKa
value and the other acid is either FIC or BFC. Both compounds,
as well as the references are also separately titrated in order to
obtain the UV–vis spectra of the acids in neutral as well as in
deprotonated forms.
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Table 2: Results of pKa measurements in acetonitrile.

Acid Reference acid pKa (Ref) ΔpKa pKa (acid) assigned pKa

BFC 9-C6F5-fluorene 28.14 0.55 27.59 27.6
(4-Me-C6F4)(C6H5)CHCN 26.98 −0.78 27.76

FIC 9-C6F5-fluorene 28.14 0.38 27.76 27.8
(4-Me-C6F4)(C6H5)CHCN 26.98 −0.94 27.92

Then, the same titration is done with a mixture of measured acid
(FIC or BFC) and a reference acid. Using the spectral data
from the titrations of mixtures the dissociation levels α =
[A−]/([A−] + [HA]) of both acids in all the mixtures formed
during titration are calculated and are then in turn used to calcu-
late the differences of pKa values (∆pKa) of FIC or BFC and the
used reference acids according the following equation:

The pKa values of BFC and FIC are estimated as a result of
∆pKa measurements against different reference acids.

A Perkin-Elmer Lambda 40 UV–vis spectrophotometer
connected with optical fibre cables to an external cell compart-
ment inside a MBraun Unilab glovebox filled with 99.999%
pure argon was used for the spectrophotometric titrations. This
setup ensured that during all titrations the moisture and oxygen
contents in argon were always under 10 ppm during measure-
ments. Triflic acid (Aldrich, 99+%) and phosphazene base
P2-Et (165535-45-5, Aldrich, ≥98%) were used to prepare the
acidic and basic titrant solutions, respectively. Acetonitrile
(Romil 190 SpS far UV/gradient quality) was used as solvent
after drying with molecular sieves (3 Å), which lowered the
water content to a range of 2–6 ppm.

Acids with previously published pKa values in acetonitrile were
used as reference acids [12,13]. Usually this kind of ∆pKa mea-
surements are done against three reference acids but due to the
lack of suitable reference acids in the weakly acidic pKa region
in acetonitrile only two reference acids were used. The results
are presented in Table 2. We estimate the standard uncertainties
of the assigned pKa values of BFC and FIC as 0.15 pKa units.

pKa predictions using correlation analysis
The pKa values of fluorene, indene, cyclopentadiene, 9-phenyl-
fluorene, and diphenylmethane in acetonitrile were estimated by
averaging the values obtained from their experimental pKa
values in DMSO [5] and three correlation equations: equations
2.1 and 2.2 in Ref. [13] and correlation equation composed

of experimental pKa values of 9-C6F5-fluorene, octa-
fluorofluorene, fluoradene, (4-Me-C6F4)(C6H5)CHCN,
(C6F5)(C6H5)CHCN, 9-COOMe-fluorene, and 9-CN-fluorene
in acetonitrile [12,13] and DMSO [5]. All these pKa estima-
tions involve significant extrapolation and the agreement be-
tween the estimates obtained from different equations is not
good. Therefore, the standard uncertainties of these obtained
pKa estimates are high: 2 pKa units for fluorene, indene and
9-phenylfluorene, 3 pKa units for cyclopentadiene (as this acid
is very different from the acids used for developing the correla-
tion equations), and 3 pKa units for diphenylmethane (as very
strong extrapolation is involved with this acid) [12,13].

The pKa values of FIC and BFC in DMSO were estimated from
the experimental pKa values in acetonitrile determined in this
study using the average values from the same three equations as
above, however, using them in reverse. The standard uncer-
tainty estimates of the pKa values of FIC and BFC in DMSO are
0.8 pKa units.

Synthesis
Material used to measure the acidity of compounds BFC and
FIC was prepared previously by methods reported in reference
[9].

Computational methods
The structural and energetic analyses of the molecular systems
for all compounds described in this study were carried out with
the B97-D dispersion enabled density functional method
[29,30], using an ultrafine grid, together with the def2-TZVPP
basis set [31]. Full geometry optimizations were performed and
uniquely characterized via second derivatives (Hessian) analy-
sis to establish stationary points and effects of zero point and
thermal energy contributions. Effects of solvent employed the
COSMO:ab initio continuum method [32,33], using a dielectric
as in experiment, and fully optimized using radii of Klamt [34].
Electronic and thermal free energy differences between neutral
and anion were compared to a reference pentafluorophenylfluo-
rene, and subsequently converted to pKa values by dividing by
1.36. Visualization and analysis of structural and property
results were obtained using Avogadro [35]. Our group develops
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GAMESS [36] and has also contributed to Gaussian software
packages, in this work the G09 ES64L-G09RevE.01 version
[37] of the latter was used.
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