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The synthesis of tripeptides incorporating new fluorinated heterocyclic hydrazino acids, based on the tetrahydropyridazine scaffold

is described. Starting from simple fluorinated hydrazones, these non-proteinogenic cyclic f-amino acids were easily prepared by a

zinc-catalyzed aza-Barbier reaction followed by an intramolecular Michael addition. Preliminary conformational studies on tripep-

tides including this scaffold in the central position show an extended conformation in solution (NMR) and in the solid state (X-ray).

Introduction

The synthesis of molecules capable of mimicking the various
secondary structures and key functions of proteins is a major
challenge in medicinal chemistry, especially in the fields of pro-
tein—protein interactions [1,2]. Accordingly, the incorporation
of heterocyclic amino acids into peptides stabilizes their sec-
ondary structure and their metabolic stability, which is useful
for numerous applications [3-5]. Indeed, the cyclic structure
considerably reduces the number of possible rotational
conformers, allowing a rational control of the 3D conformation-
al space. Among these cyclic structures, the tetrahydropyri-
dazines, six-atom nitrogenous heterocycles, are found in various
bioactive molecules such as influenza virus neuraminidase in-

hibitors, GABA type A receptor modulators, and regulators of

progesterone receptor or cannabinoid CB1 receptor antagonists
(Figure 1) [6-9].

This tetrahydropyridazine scaffold is also found in numerous
natural linear or cyclic peptides such as svetamycins or
antrimycins as dehydropiperazic acid (Figure 2) [10].

Whereas many publications have been devoted to the synthesis
and structure of piperazic acid derivatives (dehydro, chloro,
hydroxy, ...) [11,12], nothing is known about its f-analog
(Figure 3), although B-amino acids have been shown to strongly
modulate the structural, metabolic, and biological characteris-
tics of peptides [13].
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Figure 1: Examples of bioactive tetrahydropyridazine derivatives.
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Figure 2: Linear and cyclic peptides incorporating the dehydropiperazic acid moiety.
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Figure 3: Piperazic acid and analogues and target trifluoro/difluoromethylated tetrahydropyridazine acids.

Finally, it is well known that fluorine is a very useful tool in
medicinal chemistry as the incorporation of fluorinated groups
(CF3 or CF,H) in organic molecules can modulate their physi-
cochemical (pK,, lipophilicity), structural (additional hydro-
phobic and hydrogen-bond interactions), and biological proper-
ties (metabolic stability, membrane permeability) [14,15].
Alongside the very well-known CF3 group, the CF,H group has
become an essential structural motif in medicinal chemistry due
to its hydrogen-bond donor capacity, its lipophilic character,
and as a bioisostere for alcohol, thiol, or amine groups [16-19].
Thus, the contribution of fluorinated compounds to pharmaceu-
ticals has been crucial for more than half a century [20].

In this context and in our ongoing effort to synthesize fluori-
nated non-proteinogenic linear or cyclic f-amino acids [21,22],
it appeared attractive to build fluorinated B-analogs of dehydro-

piperazic acid (Figure 3). This novel fluorinated amino acid 1

will combine the electronic and structural properties of the fluo-
rinated groups (CF3 or CF,H) and the geometric constraints due
to its partially unsaturated cycle, which could help in the design
of peptidomimetics.

To our knowledge, only a few publications report the synthesis
of tetrahydropyridazines with a carboxylic acid or ester substit-
uent. Firstly, the group of Haupt reported the synthesis of ethyl
esters of tetrahydromethylpyridazine in 20% yield in a mixture
of methanol and water by the reaction of methylhydrazine with
acetylene dicarboxylic esters through the formation of enhy-
drazine (Scheme la), [23]. Later, Tomilov et al. described the
formation of tetrahydropyridazine 3,4,5,6-tetracarboxylic esters
in 42% yield upon the decomposition in chloroform at 60 °C of
methyl diazoacetate in the presence of pyridine and catalyzed
by rhodium(II) acetate (Scheme 1b) [24,25]. More recently, an

unusual [4 + 2]-cycloaddition reaction between electron-poor
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Scheme 1: Reported syntheses of tetrahydropyridazine ester derivatives.

1,2-diaza-1,3-dienes and electron-poor alkenes in refluxing
acetonitrile was reported leading to various substituted tetra-
hydropyridazines in 17-78% yields (Scheme 1c) [26,27].

Nevertheless, these methods are neither relevant for the synthe-
sis of 1 nor appropriate for peptide synthesis. Consequently,
developing a simple and efficient methodology is still chal-
lenging. Our new strategy to synthesize these compounds is
based on an aza-Barbier reaction on difluoro- or trifluoro-
methylated hydrazones. The thus obtained compounds will then
be oxidized and cyclized in order to lead to the expected fluori-
nated tetrahydropyridazines (Figure 4).

Results and Discussion

First, the difluoro- and trifluoromethylated hydrazones 3a—f
were synthesized by condensing the corresponding hydrazide
with the fluorinated aldehyde hemiacetal 2a or 2b (Scheme 2).
Benzyl and tert-butyl carbazate (NH,-NHCbz/NH,-NHBoc)
were chosen as starting materials in order to obtain final build-
ing blocks suitable for peptide synthesis. While the synthesis of
compound 3a was already reported [28], compounds 3b—f are
not described in the literature. All the fluorinated hydrazones
were obtained in good yields and used directly in the next step

without further purification (Scheme 2). In the case of Boc-pro-

tected hydrazones, the reaction must be carefully followed and
reacted less than 2 hours in order to avoid the cleavage of the
Boc group. The hydrazones 3e and 3f substituted by N-Cbz-1-
phenylalanine could easily be synthesized under the same reac-
tion conditions starting from the corresponding hydrazide
amino acid. Compounds 3e and 3f were obtained as a mixture
of conformers (1:1 ratio) which is often observed with N-acyl-
hydrazones [29-31]. Indeed, in theory, N-acylhydrazones can
exhibit four isomers, two due to the E and Z isomers of the
imine group (-N=CH-) and two due to the syn/anti-conformers
of the amide bond (-NH-CO-). Experimentally, the E isomer is
often more stable and so, predominant. The strong correlation
between the NH and CH of the imine observed in 2D 'H-'H
NOE experiments for the two conformers of hydrazones 3e and
3f (see Supporting Information File 1) is in accordance with the
E stereoisomers. Furthermore, another correlation is observed
for one conformer involving the NH of the imine on one side
and the a-proton and the CH, of the Cbz of the phenylalanine
on the other. This correlation is present for one conformer (anti)
and not for the other (syn), and this observation is similar for
hydrazones 3e and 3f (see Supporting Information File 1).
Based on these experimental data we can hypothesize the geom-
etry of the two conformers of hydrazones 3e and 3f is E,syn and
E,anti.

aza-Barbier o Rf CO,Me
Rfm reaction RfWCOZMe 1) oxidation I 2 Rf = CF; CF,H
L N< P = Boc, Cbz, amino acid
“NHP HN\NHP 2) cyclization E

Figure 4: Synthetic strategy to obtain fluorinated tetrahydropyridazines from difluoro- or trifluoromethylated hydrazones.
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Scheme 2: Synthesis of fluorinated hydrazones 3a—f.

Then, hydrazones 3 were reacted with zinc and methyl
2-(bromomethyl)acrylate (4). This aza-Barbier reaction was
performed in a biphasic medium (THF/aqueous solution of satu-
rated NH4Cl) to avoid the formation of the a-methylene-y-
lactam obtained by intramolecular cyclization of the zinc amide
on the ester function, as previously reported [32-35]. The corre-
sponding adducts Sa—f were isolated with good yields from 66
to 88%. In the case of hydrazides Se and 5f, the mixture of dia-
stereomers (1:1 ratio) could not be separated at this stage. Al-
though no stereoselectivity is observed, it can be noticed that
the presence of an amino acid is compatible with the conditions
of the reaction and did not interfere or significantly decrease the
yield of the reaction (Scheme 3).
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Then, the N-carboxylate hydrazides Sa—d were firstly oxidized
with iodine in the presence of potassium carbonate to lead to the
corresponding hydrazones 6a—d in good yields (69-80%). Sur-
prisingly, these conditions were unsuitable for compounds Se
and 5f and led to the formation of numerous byproducts. Fortu-
nately, the replacement of iodine with N-bromosuccinimide
(NBS), previously reported for the oxidation of hydrazine [36],
allowed the expected compounds 6e and 6f to be obtained in
good yields. This methodology was applied to the previous
hydrazides Sa—d giving the corresponding compounds 6a—d in
similar yields. As expected, no isomerization occurred during
the oxidation, leading exclusively to the imine and not the en-
amine. As for the hydrazones 3e and 3f, we assumed that the
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Scheme 3: Allylation of fluorinated hydrazones 3a—f to obtain 5a—f.
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hydrazones 6e and 6f were obtained as a mixture of conformers,
E,syn and E,anti (Scheme 4). Surprisingly, the ratio of each
conformer differs for hydrazones 6e (ratio 77:23) and 6f (ratio
52:48).

The last cyclization step was based on an intramolecular
Michael addition carried out in DMF and catalyzed by 10% of

Beilstein J. Org. Chem. 2024, 20, 3174-3181.

potassium carbonate. As previously observed [37], under these
conditions, the 5-endo-trig cyclization was selective and the
lactam resulting from the 5-exo-trig cyclization was not ob-
served. Furthermore, in the case of compounds 7e and 7f, no
competition with the NH of the phenylalanine was observed.
The corresponding tetrahydropyridazines 7a—f were obtained in
moderate to good yields (Scheme 5).
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Scheme 4: Oxidation of hydrazines 5a—f to obtain hydrazones 6a—f.
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Scheme 5: Intramolecular cyclization of compounds 6a—f to obtain tetrahydropyridazines 7a—f.
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Concerning compounds 7e and 7f, each diastereomer of the 1:1
ratio mixture could be isolated after purification by flash silica

chromatography.

With dipeptides 7e and 7f stereoisomerically pure, we next
focused our attention on the preparation of novel peptidic struc-
tures to perform some conformational analyses. Starting from

the methyl ester 7, each diastereomer was engaged in a clas-
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sical sequence of saponification in the presence of LiOH, fol-
lowed by a coupling reaction with L-valine methyl ester hydro-
chloride, to give the corresponding four enantiomerically pure

tripeptides 8 with satisfactory yields over two steps (Scheme 6).

The absolute configuration (S,S,S) of the isomer 8f was
unambiguously assigned by X-ray crystallographic analysis
(Figure 5).

1) LiOH (2.5 equiv) 0
THF/H,0,
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Scheme 6: Preparation of tripeptides 8e, 8e’, 8f, and 8f’. Yields refer to the yield over 2 steps.
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Figure 5: X-ray diffraction of compound 8f.
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Consequently, it was possible to assess the stereochemistry of
the other diastereoisomer 8f” and their precursors 7f and 7f*. On
the other hand, considering the similarities of the 'H NMR
spectra of the CF,H and CFj analogs, by comparison, we could
hypothesize the absolute configuration of compounds 7e and
7e¢’ and consequently of tripeptides 8e and 8e’ (see Supporting
Information File 1).

Next, some preliminary conformational studies were performed.
Firstly, the X-ray crystallographic analysis of compound 8f did
not show any hydrogen-bond pattern and the global structure of
the tripeptide is extended. Secondly, 2D 'H-'H NOE experi-
ments of compound 8f confirmed this result. Indeed, no correla-
tion was observed between the protons of the side chain of the
phenylalanine and those of the valine, suggesting an extended
structure in accordance with the X-ray structure. Furthermore,
the 2D '°F,"H NOE experiments of compound 8f did not show
any specific correlation between fluorine atoms and the protons
of the amino acids (see Supporting Information File 1). Finally,
the low chemical shifts of the amide and carbamate protons
(6.4 ppm for NH of valine and 5.5 ppm for the NH of phenyl-
alanine) indicate that they are not involved in hydrogen bonds.
Furthermore, the 2D 'H-'H NOE NMR spectra and the chemi-
cal shifts of the NH protons of compounds 8f”, 8e, and 8e’ did
not show any significant differences compared to 8f. Overall,
the ability of the new fluorinated B-analogs of dehydropiper-
azic acid to act as f or y-turn is excluded. Interestingly, this

novel scaffold rather promotes extended structures.

Conclusion

To conclude, we have developed a new methodology to
synthesize B-analogs of dehydropiperazic acid incorporating
fluorinated groups. In order to improve the efficiency
of this strategy, the control of the stereoselectivity of the intra-
molecular aza-Michael addition could be envisaged with
various chiral catalysts in further studies. These heterocyclic
hydrazino acids, when incorporated into the peptidic structure,
appear to confer an extended conformation. These interesting
feature results will be further confirmed by the insertion of
these cyclic f-dehydropiperazic acids in longer peptide se-
quences.

Supporting Information

Supporting Information File 1

Experimental procedures, product characterization, X-ray
analysis and copies of NMR spectra.
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