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A novel series of D—A—D-type 9-phenyl-9-phosphafluorene oxide (PhFIOP) derivatives was prepared and is reported herein. The

synthetic protocol involved 5 steps from commercially available 2-bromo-4-fluoro-1-nitrobenzene, featuring a noble-metal-free

system, mild reaction conditions, and a good yield, especially for the final Cs,CO3-facilitated nucleophilic substitution (77-91%
yield). The characterization data obtained from IR and NMR spectroscopy ('H, 13C, °F, and 3!P) as well as HRMS spectrometry

were in full agreement with the expected structures, and single-crystal X-ray diffraction analysis was conducted to confirm the

structure of compound 7-H. Moreover, the photophysical properties of these PhFIOP derivatives were determined by UV-vis

absorption and photoluminescence studies, revealing that their photophysical behavior can be affected by the different substituents

in the donor carbazole group.

Introduction

m-Conjugated molecular materials containing phosphine oxide
(PO) groups have recently received considerable attention for
their high thermal stability and unique optoelectronic features,
and thus being widely applied in organic light-emitting diodes
(OLEDs) [1,2]. To date, tremendous efforts have been devoted

to the development of a variety of high-performing PO-based
luminescent molecules [3-21] due to the benign electron injec-
tion/transport capability of PO-containing groups. Among them,
9-phenyl-9-phosphafluorene oxide (PhFIOP) is one of the most
popular core units [22-26]. Compared to the traditional PO-con-
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taining moieties, PhFIOP possesses an enhanced rigid structure
to reduce the possibility of nonradiative decay processes, which

would improve optoelectronic properties [17,27].

Thermally activated delayed fluorescence (TADF) materials
and devices have emerged rapidly in recent years, and they are
mostly based on purely organic electron donor—electron
acceptor (D—A) or D-A-D systems with significant intramolec-
ular charge transfer interactions for frontier molecular orbital
separation [28-30]. Due to the electron-accepting properties,
PhFIOP can clearly act as an acceptor group in TADF emitters,
indicating great potential for the development of highly effi-
cient TADF molecules. In 2019, Nishida and co-workers pre-
pared 5 D-A-D-type PhFIOP derivatives with electron-donat-
ing diarylamine or carbazole moieties in positions 2 and 8. They
conducted optical and electrochemical studies, showing that the
photophysical properties of PhFIOP depend on the nature of the
electron-donating groups [31]. Later, Wu and co-workers intro-
duced various electron donors to the PhFIOP unit to form new
TADF emitters with high electroluminescence efficiency
[32,33].

Despite this progress, TADF emitters containing the PhFIOP
unit as an electron acceptor are still scarce. Meanwhile, the syn-
theses of the TADF emitters by the groups of Nishida and Wu
both utilized palladium noble metal as a catalyst [31-33]. There-
fore, it is of great significance to develop cost-effective synthe-
tic access to PhFIOP-based TADF emitters. Additionally, the
design of TADF emitters with the PhFIOP acceptor moiety and
the carbazole donor moiety is lacking structural diversity.
Herein, we present a 5-step synthesis of several novel D-A-D-
type PhFIOP derivatives with substituted carbazole groups as

donors, starting from commercially available 2-bromo-4-fluoro-
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1-nitrobenzene under noble-metal-free conditions. The struc-
tures and photophysical properties of the desired molecules

were also determined.

Results and Discussion

Synthesis and structural characterization

The synthesis of the PhAFIOP-based compounds 7 was achieved
in 5 steps starting from commercially available 2-bromo-4-
fluoro-1-nitrobenzene (1, Scheme 1 and Scheme 2). For the
preparation of the key intermediate 5 (Scheme 1), self-coupling
of 1 in the presence of copper followed by reduction of the nitro
group generated diamine compound 3 (89% yield over 2 steps)
[34]. Upon exposure to NaNO,/HCI, diamine 3 was trans-
formed into a diazonium salt, which was captured by KI to
deliver the diiodide 4. Treatment of 4 with n-BuLi, PhPCl,, and
H,O, sequentially gave 2,8-difluoro-5-phenylbenzo[b]phos-
phindole 5-oxide (5) in 68% yield.

With compound 5 in hand, we turned our attention to the syn-
thesis of PhFIOP-based compounds through a Cs,CO3-facili-
tated nucleophilic substitution with substituted carbazoles as the
nucleophiles (Scheme 2). For example, tert-butyl, bromo,
carbazolyl, or phenyl substituents were introduced into the
carbazoles. To our delight, by treatment of 5 with substituted
carbazoles 6 in the presence of CsoCOj3 (5.0 equiv) in DMF
at 100 °C, seven 2,8-bis(9H-carbazol-9-yl)-5-phenyl-
benzo[b]phosphindole 5-oxide derivatives 7 were furnished in
good to excellent yields (77-91%). The structural characteriza-
tion of the obtained molecules 2—7 was performed by NMR
spectroscopy, which confirmed the synthetic outcomes (Figures
S1-S11, Supporting Information File 1). The structures of com-
pounds 7 were further confirmed by HRMS and IR analyses
(Figures S12-S18, Supporting Information File 1).
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Scheme 1: Preparation of key intermediate 5.
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Scheme 2: Synthesis of PhFIOP-based molecules 7.

In addition, the chemical structure of 7-H was fully elucidated chromated Mo Ka radiation at a temperature of 296 + 2 K.
by single-crystal X-ray crystallography, which was performed Crystallographic data were deposited with the Cambridge Crys-
on a Bruker APEX-II CCD diffractometer using graphite mono-  tallographic Data Centre under accession number CCDC
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2256875. The crystallographic details are summarized in
Table 1, and the structure of 7-H is shown in Figure 1 as an
ORTEP diagram.

Photophysical properties

In order to investigate the photophysical properties of the
PhFIOP-based molecules 7, UV—vis absorption and photolumi-
nescence (PL) studies were conducted. UV—vis absorption spec-
tra of 7 in toluene solution at room temperature are shown in
Figure 2, and the corresponding data are included in Table 2.
The spectra in Figure 2a exhibit two major absorption bands at
~290 nm and ~340 nm. The band at around 290 nm might be in-
duced by m—* transitions associated with the conjugated
system, while the band at around 340 nm is attributed to intra-
molecular charge transfer processes. The low-energy absorp-
tion bands of 7-t-Bu (Ay,x = 345 nm, Table 2) and 7-Cz-2
(Mmax = 342 nm) are slightly redshifted compared to 7-H
(Mmax = 338 nm), and larger redshifts are observed for 7-Ph-1
(Mmax = 354 nm) and 7-Ph-2 (A« = 366 nm). In contrast to
7-H, 7-Br (Apax = 327 nm) and 7-Cz-1 (A, = 316 nm) show a
blueshift. With a stronger electron-donating ability than 7-Cz-1,
7-Cz-2 shows a lower energy level for the absorption band
stemming from intramolecular charge transfer, as indicated by
the Apax value of 342 nm. In addition, the effect of solvent
polarity on the UV—-vis absorption was studied with 7-H
(Figure 2b). The spectra show that there is no significant differ-

Beilstein J. Org. Chem. 2024, 20, 3299-3305.

Table 1: Crystal data and structural parameters for 7-H.

parameter

empirical formula
Fw
temperature (K)
crystal system
space group
a(A)

b (A)

c(A)

o (deg)

B (deg)

Y (deg)

volume (A3)

z

p calcd (mg/m3)

(Mo Ko, mm~1)

F(000)

number of reflections
unique reflections
data/restraints/parameters
Rint

GOF (F?)

completeness to 6 = 25.242
final R indices [/ > 20(/)]

7-H

C4oHo7NoOP
606.19
296(2)
monoclinic
P2(1)/c
13.886(3)
17.477(4)
15.239(3)
90
105.503(4)
90
3563.7(13)
4

1.586
0.612

1702
26109
6289
8850/0/437
0.0253
1.062
99.8%

R1 =0.0769, wR2 = 0.2894

Figure 1: An ORTEP drawing obtained using the X-ray crystallographic data of 7-H.
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Figure 2: (a) UV-vis absorption spectra of the PhFIOP-based emitters 7 measured at a concentration of ~10-5 M in toluene at room temperature.

(b) UV-vis absorption spectra of 7-H measured at a concentration of ~10~4 M in different solvents at room temperature.

Table 2: Photophysical data of the PhFIOP-based emitters 7.

compound Aabs, N (log €)2 Aem, hmP PLQY® TpF (ms)d
7-H 290 (4.52), 338 (4.21) 408 (412, 450, 478)F  0.32 (0.16) 1.94 (296)
[291 (4.55), 338 (4.31)]
7-t-Bu 295 (4.60), 345 (4.30) 424 0.25 1.23
7-Br 298 (4.70), 327 (4.29) 383 0.22 0.88
7-Cz-1 285 (4.82), 316 (4.85) 436 0.38 1.23
7-Cz-2 293 (4.84), 342 (4.41) 444 0.31 1.15
7-Ph-1 285 (5.01), 354 (4.26) 425 0.34 1.49
7-Ph-2 302 (4.68), 349 (4.56), 366 (4.63) 392 0.27 117

aMeasured at a concentration of ~10~3 M in toluene at room temperature. °Measured in toluene at room temperature. The absolute PL quantum yield
(PLQY) was measured in degassed toluene at room temperature using an integrating sphere, and the reported PLQY of solid 7-H is presented in
parentheses [31]. 9The delayed fluorescence lifetime (TDF) was measured in degassed toluene at room temperature, and the reported TDF of 7-H in
toluene at 77 K is presented in parentheses [31]. ®Reported data are presented in square brackets [31]. {The values in parentheses are reported Agm

in various solvents, namely toluene, DCM, and CH3CN [31].

ence in the absorption bands in different solvents, indicating
that the polar environment has insignificant effect on the molec-

ular ground state of 7-H.

The PL spectra of the PhFIOP-based compounds 7 in toluene at
room temperature are shown in Figure 3, and the A, values are
included in Table 2. Different emission wavelengths are ob-
served due to the various substituents present in the donor
carbazole group (Figure 3a). Compared to 7-H (A¢y, = 408 nm,
Table 2), compounds 7--Bu (Aer, = 424 nm), 7-Cz-1 (Aepy =
436 nm), 7-Cz-2 (Aey, = 444 nm), and 7-Ph-1 (A, = 425 nm)
all show a redshift due to the electron-donating groups (¢-Bu,
Cz, Ph) on the carbazole moiety. However, 7-Ph-2 exhibits a
significantly blueshifted emission maximum at 392 nm, perhaps

as a consequence of a more rigid configuration. As for 7-Br,

owing to the electron-withdrawing properties of Br, it displays a
blueshifted PL maximum at 383 nm. The emission wavelength
of 7-Cz-2 has a slight redshift compared to 7-Cz-1, which may
be induced by the stronger electron-donating feature of the
carbazole substituent located on the donor carbazole group. In
addition, we tested the emission wavelength of 7-H in different
solvents (Figure 3b) and found that the maximum is redshifted
gradually with increasing solvent polarity, which indicates
the CT feature in the excited state. Further, the solvent depen-
dence of 7-H exhibits good consistence with that reported by
the Nishida group [31]. The PLQY and 1pp values of the
PhF1OP-based emitters 7 were measured in degassed toluene,
and the corresponding data are included in Table 2, showing a
PLQY ranging from 0.22-0.38 and a tpg in the order of
milliseconds.
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Figure 3: (a) PL spectra of the PhFIOP-based emitters 7 measured in toluene at room temperature. (b) PL spectra of 7-H measured in different sol-

vents at room temperature.

Conclusion

In summary, we have developed a 5-step synthesis of a series of
D-A-D-type PhFIOP derivatives 7 with 2-bromo-4-fluoro-1-
nitrobenzene as the starting material. This novel protocol is
mild, noble-metal-free, and operationally simple. The structure
of 7-H was confirmed by single-crystal X-ray diffraction.
Furthermore, UV—-vis absorption and PL studies were carried
out to explore the photophysical properties of these PhFIOP de-
rivatives. Investigations for further applications of the PhFIOP-
based emitters 7 are still ongoing.

Supporting Information

Supporting Information File 1

General information, experimental procedures,
characterization data, and copies of spectra.
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