
1489

Heterologous biosynthesis of cotylenol and concise
synthesis of fusicoccane diterpenoids
Ye Yuan‡1, Zhenhua Guan‡2, Xue-Jie Zhang‡1, Nanyu Yao2, Wenling Yuan2,
Yonghui Zhang*2, Ying Ye*2 and Zheng Xiang*1,3

Letter Open Access

Address:
1State Key Laboratory of Chemical Oncogenomics, Shenzhen Key
Laboratory of Chemical Genomics, School of Chemical Biology and
Biotechnology, Peking University Shenzhen Graduate School,
Shenzhen 518055, P. R. China, 2Hubei Key Laboratory of Natural
Medicinal Chemistry and Resource Evaluation, School of Pharmacy,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430030, P. R. China and 3Institute of Chemical
Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China

Email:
Yonghui Zhang* - zhangyh@mails.tjmu.edu.cn; Ying Ye* -
ying_ye@hust.edu.cn; Zheng Xiang* - zxiang@pku.edu.cn

* Corresponding author    ‡ Equal contributors

Keywords:
cotylenol; fusicoccane diterpenoids; heterologous biosynthesis; P450
oxidation; synthesis

Beilstein J. Org. Chem. 2025, 21, 1489–1495.
https://doi.org/10.3762/bjoc.21.111

Received: 30 January 2025
Accepted: 15 April 2025
Published: 21 July 2025

This article is part of the thematic issue "Concept-driven strategies in
target-oriented synthesis".

Guest Editor: Y. Tang

© 2025 Yuan et al.; licensee Beilstein-Institut.
License and terms: see end of document.

Abstract
A novel strategy for the synthesis of fusicoccane diterpenoids is reported. By harnessing the biosynthetic pathways of brassicicenes
and fusicoccins, cotylenol was produced in an engineered Aspergillus oryzae strain. We further achieved the concise synthesis of
three fusicoccane diterpenoids, including alterbrassicicene E and brassicicenes A and R in 4 or 5 chemical steps from brassicicene I.
This strategy lays the foundation for the preparation of fusicoccane diterpenoids and their analogues for biological studies.
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Introduction
Fusicoccanes are a family of 5-8-5 tricyclic diterpenoid natural
products that are produced by bacteria, fungi, algae, and plants
(Figure 1a) [1-7]. Fusicoccanes possess a broad range of biolog-
ical activities, including anticancer, anti-inflammatory, antimi-
crobial, antiparasitic, and plant growth regulating activities. For
instance, cotylenin A (1) and fusicoccin A (2) function as mo-
lecular glues to stabilize the interactions between 14-3-3 pro-
teins and their binding partners in plant and animal cells [8-12].

It has been reported that cotylenin A and its aglycone, cotylenol
(3), induce differentiation in murine and human myeloid
leukemia cells [13]. Cotylenin A and fusicoccin A also act
synergistically with interferon-α or rapamycin to induce apopto-
sis in cancer cell lines [14-16]. However, cotylenin A cannot be
produced by its natural source, Cladosporium sp. 501-7W, due
to the loss of its ability to proliferate during preservation [17].
The important biological activities and complex structures of
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Figure 1: Selected fusicoccane diterpenoids and overview of this study. (a) Representative members of the fusicoccane diterpenoid family. (b) This
work: heterologous biosynthesis of cotylenol (3) in an engineered Aspergillus oryzae strain and concise synthesis of fusicoccane diterpenoids.

fusicoccane diterpenoids have inspired several total syntheses,
which range between 15 and 29 steps [18-26]. Most of these
synthetic approaches rely on similar strategies, i.e., coupling of
the A ring and the C ring followed by the formation of the B
ring. Additionally, the semisynthesis of analogues of 1 has been
reported and led to the discovery of ISIR-050 (4), which shows
higher activity than cotylenin A in cell growth inhibition assays
and less toxicity in single-agent treatments [27,28]. Recently,
Jiang and Renata described a chemoenzymatic approach that
combines the skeletal construction by chemical methods and
enzymatic C–H oxidations [29]. The synthesis employs a cata-
lytic Nozaki–Hiyama–Kishi reaction and a one-pot Prins cycli-
zation/transannular hydride transfer to construct the 5-8-5
tricyclic scaffold. Enzymatic oxidations were used to install the
hydroxy group at the C-3 position. Ten fusicoccanes were syn-
thesized in 8–13 steps each. Despite these efforts, a strategy
with limited chemical transformations is highly desirable and
should enable the discovery of new fusicoccane derivatives with
improved biological activity.

Inspired by the biosynthetic machinery of terpenoids, we have
reported a hybrid synthetic strategy for accessing bioactive
terpenoids by combining enzymatic terpene cyclization and
chemical synthesis [30-33]. Briefly, the carbon scaffolds are
forged by terpene cyclases, followed by concise chemical trans-
formations to yield the desired natural products. Here, we
describe heterologous biosynthesis of cotylenol by engineering
the biosynthetic pathway of brassicicenes in Aspergillus oryzae
and harnessing the promiscuity of a cytochrome P450 from the
biosynthesis of fusicoccin A (Figure 1b). A key intermediate,
brassicicenes I (5), was further used to achieve the collective
synthesis of alterbrassicicene E (6), brassicicenes A (7) and R
(8).

Results and Discussion
Fusicoccanes feature a characteristic dicyclopenta[a,d]cyclooc-
tane (5-8-5) ring system that is biosynthesized from geranylger-
anyl pyrophosphate (GGPP) via class I terpene cyclization
(Figure 2a). To date, two fusicoccadiene synthases have been
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Figure 2: Heterologous production of brassicicene I in an engineered A. oryzae strain. (a) Biosynthesis of fusicoccin A in Phomopsis (Fusicoccum)
amygdali. (b) Brassicicene BGC in A. brassicicola XXC. (c) Heterologous production of brassicicene I (5) in an engineered AO strain.

identified by the analysis of the brassicicene biosynthesis-
related gene cluster (BGC) in Alternaria brassicicola and
Pseudocercospora fijiensis [34,35]. The 5-8-5 tricyclic scaffold
is transformed into various fusicoccane natural products cata-
lyzed by P450s, dioxygenases, dehydrogenases, and reductases.
Therefore, we propose to harness the biosynthetic pathway for
brassicicenes, which share the same carbon skeleton and simi-
lar oxidation and unsaturation states as cotylenol and cotylenin
A [36]. In a previous study, Oikawa and co-workers reported
the identification of brassicicene BGC in Pseudocercospora
fijiensis [37]. By heterologous expression of this BGC in
Aspergillus oryzae, brassicicene I was produced by the transfor-

mant AO-bscABCDE at a titer of 5.5 mg/L. Recently, we identi-
fied a new BGC for brassicicenes, namely, abn, from the brassi-
cicene-producing strain A. brassicicola XXC (Figure 2b) [38].
We constructed an A. oryzae strain with the homologous gene
abnABCDE. As expected, compound 5 was produced at a titer
of 8 mg/L (Figure 2c). By co-fermenting with Amberlite XAD-
16, an enhanced yield of 30 mg/L was achieved, thus allowing
further transformation into other natural products.

We next carried out the formal synthesis of cotylenin A and
cotylenol (Figure 3a). Oxidation of brassicicene I with
Dess–Martin reagent afforded intermediate 9 in 92% yield. The
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Figure 3: Synthesis of cotylenol (3). (a) Synthesis of Nakada’s intermediate 10 from 5. (b) Orf7 catalyzes the oxidation of 11 in the biosynthesis of
fusicoccin A (2). (c) LC–MS analysis of the production of 3 through AO-abnABCDE+orf7 heterologous expression or AO-orf7 biotransformation.

tertiary hydroxy group of compound 9 was further protected
with a TMS group to provide compound 10 in 90% yield, a key
intermediate in the synthesis of cotylenol and cotylenin A by
Nakada and co-workers [21]. However, installing the C9
hydroxy group requires the use of stoichiometric MoOPH [39],
which raises toxicity and safety issues. Therefore, we sought an
enzymatic method to selectively oxidize 5 at the C9 position.
Dairi and co-workers reported that Orf7 oxidizes compound 11
at the C9 position in the biosynthesis of fusicoccin A
(Figure 3b) [40]. Given the structural similarities between com-
pound 5 and compound 11, we hypothesized that Orf7 might
also catalyze the hydroxylation of compound 5 at C9. Hence,

we fed an A. oryzae strain that expressed the orf7 gene with
compound 5. To our delight, compound 3 was obtained success-
fully (Figure 3c). To stably produce 3 by fermentation, we
constructed an A. oryzae strain that integrates abnABCDE with
orf7, achieving a yield of 60 mg/kg rice through rice fermenta-
tion.

We next targeted alterbrassicicene E (6), brassicicenes A (7)
and R (8) (Scheme 1). The secondary hydroxy group of brassi-
cicene I was selectively TBS-protected in the presence of
TBSOTf and 2,6-lutidine to give compound 13 in 93% yield.
Then, compound 13 underwent oxidative rearrangement with
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Scheme 1: Synthesis of alterbrassicicene E (6) and brassicicenes A (7) and R (8) from brassicicene I (5).

PCC to afford ketone 14 in 61% yield. Under Luche reduction
conditions, compound 15 and its diastereomer were obtained in
a total yield of 90% at a ratio of 1:0.7. To improve the dia-
stereoselectivity, we examined other reduction conditions and
found that ʟ-Selectride afforded compound 15 in 90% yield

with a dr of 9:1. Upon desilylation with TBAF, compound 15
was converted into alterbrassicicene E (6) in 80% yield. To
synthesize brassicicenes A (7) and R (8), the tertiary hydroxy
group of compound 13 was protected with a TES group to
furnish compound 16 in 89% yield. By screening several condi-
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tions, we found that allylic oxidation of compound 16 could be
achieved in the presence of chromium trioxide–3,5-
dimethylpyrazole complex [41] to provide compound 17 in 76%
yield. After deprotection of the TBS and TES groups with
TBAF, brassicicene A (7) was obtained in 75% yield. Com-
pound 17 was subjected to α-hydroxylation from the less-
hindered convex face using Davis’s oxaziridine [25], furnishing
intermediate 18 in 72% yield. After deprotection of the TBS
and TES groups, brassicicene R (8) was obtained in 70% yield.
Therefore, alterbrassicicene E (6) and brassicicenes A (7) and R
(8) were synthesized from brassicicene I over 4 or 5 chemical
steps.

Conclusion
In summary, the diverse biological activities and complex struc-
tures of fusicoccane diterpenoids have stimulated multiple
elegant chemical syntheses. In contrast to these approaches, we
harnessed the biosynthetic machinery of brassicicenes to
produce brassicicene I in an engineered A. oryzae strain. Brassi-
cicene I was further oxidized by a cytochrome P450 from the
biosynthesis of fusicoccin A, thus leading to total biosynthesis
of cotylenol in A. oryzae. Three fusicoccane diterpenoids, in-
cluding alterbrassicicene E and brassicicenes A and R, were
efficiently synthesized from brassicicene I in 4 or 5 chemical
steps. This work lays the foundation for the preparation of
fusicoccane natural products and exploration of their biological
activities.
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