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Abstract
A benzo[rst]pentaphene (BPP) substituted by an isopropoxy group (BPP-OiPr) was synthesized in a facile manner. Its photophysi-
cal properties were investigated by UV–vis absorption and fluorescence spectroscopy in compassion to pristine BPP and its oxida-
tion product, benzo[rst]pentaphene-5,8-dione (BPP-dione). BPP-OiPr exhibited a significantly enhanced photoluminescence quan-
tum yield (PLQY), reaching 73% in comparison to pristine BPP (13%). BPP-dione, when compared to the parent BPP, also
displayed improved absorption and emission from the first excited singlet (S1) state with a PLQY of 62% and an intramolecular
charge-transfer character. The rod-like nano- to microcrystals as well as longer wires of these BPPs were also revealed by scanning
electron microscopy. The intriguing optical properties of BPP and its derivatives may lead to their application as fluorophores.
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Introduction
Polycyclic aromatic hydrocarbons (PAHs) have attracted in-
creasing attention in view of their fascinating optical and
electronic properties, which strongly depend on their size,

shape, and edge structures, e.g., armchair and zigzag [1-6].
Benzo[rst]pentaphene (BPP) is an intriguing PAH with a com-
bination of zigzag and armchair edges, which may serve as a
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Scheme 1: Synthesis of BPP-OiPr 3 and BPP-dione 4.

key building block for obtaining multifunctional organic materi-
als [7]. Since the initial synthesis of BPP by Scholl and
Neumann [8], simplified synthetic methods for BPP have been
reported over the past decades [9-14]. Recently, a facile access
to BPP was reported by Amsharov and co-workers through the
so-called "dehydrative π-extension (DPEX)” reaction [12].
However, functionalized derivatives of BPP have scarcely been
explored in comparison to the extensive studies on the deriva-
tives of other PAHs, such as pyrene [15-17], perylene [18,19],
and coronene [20]. Besides their limited accessibility in the
past, the lack of attention to BPP can presumably be ascribed to
its low photoluminescence quantum yield (PLQY). We recently
reported a PLQY of 13% for pristine BPP and revealed a
symmetry-forbidden nature of its first excited singlet (S1) state
[21]. Notably, a dimer of BPP, 5,5'-bibenzo[rst]pentaphene
(BBPP), exhibited an enhanced PLQY of 44% through intensi-
ty borrowing from its bright S2 state as well as intriguing
symmetry-breaking charge transfer between two BPP units.
Moreover, the substitution of BPP with two electron-donating
bis(methoxyphenyl)amino groups further improved the PLQY
to 73%, displaying a mixed excitonic and charge-transfer char-
acter [22]. Additionally, the functionalization of BPP with two
methyl benzoate groups enabled the development of hole-selec-
tive contact, which was applicable in significantly improving
the stability of inverted perovskite solar cells [23]. On the other
hand, benzo[rst]pentaphene-5,8-dione (BPP-dione) is known as
an oxidation product of BPP [24,25], but to the best of our

knowledge, the detailed optical properties of this BPP deriva-
tive have not been previously described in the literature.

During our attempt to scale up the preparation of BPP 2 through
the "DPEX" reaction, we unexpectedly obtained a 5-isoprop-
oxy-substituted derivative of BPP (BPP-OiPr 3) (Scheme 1),
whose structure was proven by NMR, mass spectrometry, and
X-ray crystallography. In this work, we optimized the reaction
conditions to selectively obtain BPP-OiPr 3 in 55% yield from
dialdehyde 1. Additionally, oxidation of BPP-OiPr 3 provided
BPP-dione 4 in 70% yield. The photophysical properties of
BPP-OiPr 3 and BPP-dione 4 were carefully studied, exam-
ining the solvent-polarity dependence of their optical spectra, in
comparison with parent BPP 2. Notably, both BPP-OiPr 3 and
BPP-dione 4 displayed enhanced PLQYs while a significant
solvent-polarity dependence of the emission was observed only
for the latter, suggesting the photoinduced intramolecular
charge-transfer character of 4. Moreover, BPPs 2–4 formed
intriguing rod-like nano- to microcrystals and/or longer wires,
which were visualized by scanning electron microscopy (SEM).

Results and Discussion
BPP 2 could be prepared by the “DPEX” reaction [12] in 60%
yield on a 0.1 g scale from dialdehyde 1 with a concentration of
0.60 mM (Table 1, entry 1). However, the yield of BPP de-
creased to 40% when the amount of 1 was increased to 1.0 g
with a concentration of 2.6 mM (Table 1, entry 2). In our
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Table 1: Reaction conditions for the synthesis of BPP 2 and BPP-OiPr 3.

Entry Concentration of 1
(mM)

SnCl2·2H2O
(equiv)

iPrOH
(vol %)

Concentrated H2SO4
(vol %)

Time
(h)

Yields of 2/3
(%)a

1b 0.6 40 2.5 5.0 18 60/–
2c 2.6 40 2.5 5.0 24 40/–
3c 5.1 20 4.0 5.0 48 55/7
4c 6.0 20 10 5.0 72 29/37
5c 4.8 30 14 6.0 48 10/55

aIsolated yields. bAmount of 1: 0.10 g. cAmount of 1: 1.0 g.

attempt to improve the yield of BPP 2, we decreased the equiva-
lent of SnCl2·2H2O and increased the volume ratio of iPrOH,
which unexpectedly provided BPP-OiPr 3 as a byproduct in 7%
yield along with BPP 2 in 55% yield (Table 1, entry 3). Further
optimization of the reaction conditions by modifying the equiv-
alent of SnCl2·2H2O and volume ratios iPrOH and H2SO4
afforded BPP-OiPr 3 in 55% yield (Table 1, entries 4 and 5).
Additionally, the oxidation of BPP-OiPr 3 using ferric chloride
(FeCl3) gave BPP-dione 4 in 70% yield. The chemical struc-
tures of BPP-OiPr 3 and BPP-dione 4 were characterized by 1H
and 13C NMR spectroscopy as well as mass spectrometry (see
Supporting Information File 1, Figures S8–S11).

A single crystal of BPP-OiPr 3 suitable for X-ray diffraction
analysis was obtained by slow evaporation of a diethyl ether/n-
hexane solution, enabling its unambiguous structural determina-
tion by single-crystal X-ray diffraction (Figure 1). The planar
BPP core and the isopropyloxy group on the zigzag edge are
clearly visualized (Figure 1a and b). In a unit cell consisting of
four molecules, every two of them are stacked with the plane-
to-plane distance of 3.45 Å (Figure 1c), displaying a lamellar
π–π stacking motif in the overall packing structure (Figure S1 in
Supporting Information File 1) [26-29]. The X-ray structure is
well consistent with a model optimized by density functional
theory (DFT) calculations (Figure S2 in Supporting Informa-
tion File 1).

The optoelectronic properties of BPP-OiPr 3 and BPP-dione 4
were initially investigated by UV–vis absorption spectroscopy
in comparison with BPP 2 (Figure 2a). BPP 2 and BPP-OiPr 3
displayed similar and well-structured absorption peaks clearly
showing the vibronic progressions. BPP-OiPr 3 also exhibited a
small peak located at 442 nm with the molar extinction coeffi-
cient (ε) of 1800 M−1 cm−1, which was similar to the previous
observations of the dark S1 states for BPP 2 and its mesityl- and
tert-butyl-substituted derivatives [21,22]. In comparison to the
absorption spectrum of BPP 2, this lowest-energy absorption
band of BPP-OiPr 3 was red-shifted by ≈26 nm, which marked
the inductive and resonance effects of the electron-donating

Figure 1: Single crystal structure of BPP-OiPr 3: a) top view, b) side
view (thermal ellipsoids shown at 50% probability), and c) molecular
packing of 3 in a unit cell. All the hydrogen atoms are omitted for
clarity.

isopropyloxy group with lone pairs of electrons, raising the
HOMO level (see Table S6 in Supporting Information File 1).
BPP-dione 4 exhibited a broad absorption extending to 540 nm
with a peak at 305 nm and featureless maxima at 469 and
497 nm, which were in line with the results of time-dependent
DFT (TD-DFT) calculations at the M062X/6-311G(d,p) level of
theory (Supporting Information File 1, Table S2). The longest-
wavelength absorption maximum (S0 → S1), attributed to the
HOMO → LUMO transition, was calculated to be at 432 nm
(f = 0.5674) for 4. Compared to the S1 states in BPP 2
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Figure 2: a) UV–vis absorption spectra of BPP 2, BPP-OiPr 3, and BPP-dione 4 measured in toluene. Inset: magnified spectra of 2 and 3 for the
better visualization of the longest-wavelength peaks, b) normalized PL spectra of BPP 2, BPP-OiPr 3, and BPP-dione 4 measured in toluene with a
360 nm excitation. Inset: absolute PLQY of BPP 2 (excitation at 360 nm), BPP-OiPr 3 (excitation at 380 nm), BPP-dione 4 (excitation at 470 nm) in
toluene, and BPP-t-Bu (excitation at 360 nm) [22], c) normalized PL spectra of BPP-OiPr 3 measured in hexane, toluene, tetrahydrofuran (THF),
dichloromethane (CH2Cl2), and DMF, and d) normalized PL spectra of BPP-dione 4 measured in toluene, THF, CH2Cl2, and DMF.

(ε = 1200 M−1 cm−1) and BPP-OiPr 3 (ε = 1800 M−1 cm−1),
corresponding to forbidden transitions as previously discussed
for other BPP derivatives [21,22], the strikingly enhanced molar
extinction coefficient observed for the lowest-energy band of
BPP-dione 4 (ε = 17000 M−1 cm−1) indicates that the optical
transition to the S1 state becomes allowed by this oxidation.

BPP 2 and BPP-OiPr 3 exhibited similar emission spectra in tol-
uene with maxima at 436 and 443 nm, respectively, with well-
defined vibronic structures (Figure 2b). Notably, the absolute
PLQY of BPP-OiPr 3 was measured to be 0.73, demonstrating a
remarkable enhancement of the photoluminescence from BPP 2
(PLQY: 0.13) and tert-butyl-substituted BPP (BPP-t-Bu,
PLQY: 0.47) (Figure 2b) [21,22]. Considering that two tert-
butyl groups should more effectively hinder the aggregation
than one isopropyl group, we tentatively attribute the enhanced
PLQY of 3 to the reduced molecular symmetry, which can relax
the selection rule and allow more radiative transitions.

On the other hand, a broad and featureless PL spectrum with the
maximum at 538 nm was observed for BPP-dione 4 in toluene
with a high PLQY of 0.62, which is again significantly en-
hanced from that of BPP 2. To gain further insight into the pho-
tophysical properties of BPP-OiPr 3 and BPP-dione 4, their
absorption and emission spectra were next measured in differ-
ent solvents (Figure 2c and d and Supporting Information
File 1, Figures S4 and S5). For BPP-OiPr 3 the well-defined
vibronic structures were observed without showing any signifi-
cant solvent-polarity dependence (Figure 2c). In contrast, BPP-
dione 4 displayed a considerable redshift of the emission
maximum from 538 nm in toluene to 572 nm in dimethylform-
amide (DMF) along with disappearance of the shoulder peak
with increasing solvent polarity (Figure 2d). The UV–vis
absorption spectra of 4 in different solvents also showed signifi-
cant differences (Figure S5 in Supporting Information File 1),
indicating an intramolecular charge-transfer character both in its
ground and excited states [30,31].



Beilstein J. Org. Chem. 2025, 21, 270–276.

274

Figure 3: SEM images of BPP-OiPr showing: a) the variety in crystallization, including differences in shape, length, and width, b) rod-like crystals with
lengths of hundreds of nanometers, c) rod-like crystals with lengths of hundreds of micrometers, and d) longer wire.

DFT calculations were performed to understand the effects of
the substituents on the frontier orbitals. As shown in Table S6
and Figure S1 in Supporting Information File 1, the highest
occupied molecular orbital (HOMO) and the lowest unoccu-
pied molecular orbital (LUMO) of BPP-OiPr 3 were calculated
to be at −5.15 and −2.00 eV, respectively, with a slightly
smaller HOMO–LUMO gap of 3.15 eV compared to that of
BPP 2 (3.24 eV). BPP-dione 4 was revealed to have lower
HOMO (−6.18 eV) and LUMO (−3.31 eV) and an even smaller
HOMO–LUMO gap of 2.87 eV in agreement with the experi-
mental optical spectra.

Nano- and microcrystals of organic semiconductors exhibit
great potential in next-generation nanoscale optoelectronics and
photonics [32-35]. However, precise preparation and shape
control over organic crystals are still elusive targets [36]. We
carried out SEM analysis of crystals of BPP-OiPr 3 obtained by
slow evaporation of its solution in a mixture of dichloro-
methane and n-hexane (Figure 3). The formation of rod-shaped
nano- and microcrystals and longer wires were revealed, with
the widths from tens of nanometers to tens of micrometers and
the lengths from hundreds of nanometers to hundreds of
micrometers. For example, a nanocrystal (width: 143 nm,

length: 661 nm; Figure 3b) and microcrystal (width: 12 µm,
length: 318 µm; Figure 3c) of BPP-OiPr 3 were observed along
with a long nanowire with the width of ≈50 nm and length over
1.8 µm (Figure 3d). Moreover, nano- and microcrystals of BPP
2 and BPP-dione 4 with similar shapes were also obtained and
visualized by SEM (Figures S6 and S7 in Supporting Informa-
tion File 1), suggesting that the BPP core can lead to such rod-
shaped crystals and nanowires.

Conclusion
In summary, we achieved a facile synthesis of BPP-OiPr 3 and
studied its optical properties in comparison to pristine BPP 2
and its oxidation product BPP-dione 4. Both BPP-OiPr 3 and
BPP-dione 4 displayed significantly enhanced PLQYs com-
pared to BPP 2, and only 4 displayed the intramolecular charge-
transfer character. Additionally, these BPPs formed rod-shaped
nano- and microcrystals as well as elongated nanowires with the
lengths from hundreds of nanometers to hundreds of microme-
ters, as demonstrated by SEM. These results provide not only an
easy access to highly emissive BPP derivatives with potential as
organic fluorescent materials, but also an insight to design de-
rivatives of other PAHs with enhanced fluorescence and charge
transfer character.
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Supporting Information
Supporting Information File 1
Experimental and computational details, X-ray
crystallography, synthesis and characterization of new
compounds, additional PL, mass, and NMR spectra, and
theoretical calculations.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-21-19-S1.pdf]
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