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Abstract
New highly electrophilic gem- and spiro-activated trichloromethylnitrocyclopropanes were obtained by the Michael-initiated ring
closure (MIRC) reaction of 1-bromo-1-nitro-3,3,3-trichloropropene with linear and cyclic CH-acids catalyzed by bases. Conditions
for obtaining the target cyclopropanes were optimized. The process is characterized by high diastereoselectivity and allows obtain-
ing cyclopropanes with trans-configuration of -NO2 and -CCl3 groups. Monocyclic (based on malonic acid dinitrile, methyl cyano-
acetate, ethyl cyanoacetate, benzoylacetonitrile), spirocarbo- (based on 1,3-indanedione) and spiroheterocyclic (based on Meldrum's
acid, dimethylbarbituric acid, 3-methyl-1-phenyl-5-pyrazolone) cyclopropane structures were isolated and characterized.
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Introduction
Trichloromethyl groups containing compounds are widely used
in the organic synthesis of practically significant substances
[1,2]. Based on them, methods have been developed for the syn-
thesis of hard-to-access 5-aminoisoxazoles [3], α- and γ-hetero-
substituted unsaturated carboxylic acids [4]. The trichloro-
methyl group is a convenient precursor of the carboxylic func-

tion, which determines their use in the synthesis of α-amino
acids [5]. A number of natural trichloromethyl-containing com-
pounds are metabolites of symbionts of marine sponges –
cyanobacteria [6-8] – and have biologically active properties.
Thus, barbamide exhibits molluscicidal activity [7], and
sintokamide A is active against prostate cancer [8] (Figure 1).
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Scheme 1: Approaches to the synthesis of vic-trifluoromethylnitrocyclopropanes.

Figure 1: Two natural trichloromethyl-containing compounds.

As derivatives of strained and unique structure and properties
[9,10] cyclopropanes are of interest for entering into various
transformations along the path of ring opening or expanding
[11-13]. Thus, known trichloromethyl-containing cyclo-
propanes can serve as precursors for hard-to-access halo-
genated β,γ- and γ,δ-unsaturated esters [14,15].

Nitrocyclopropanes are known as highly electrophilic sub-
strates and can form a carbanion stabilized by the nitro group
upon breaking the C–C bond [16,17]. Substituted nitrocyclo-
propanes in reactions with various nucleophiles form linear pre-
cursors for the synthesis of γ-substituted α-aminobutyric acids
[18,19], cyclic nitropyrrolines [20] and isoxazoline N-oxides
[18]. The nitrocyclopropane fragment is a part of the
hormaomycin antibiotic [21], and also acts as a precursor for
the synthesis of the aminocyclopropane [22] moiety, which is a
component of some drugs, such as ciprofloxacin [23] and belac-
tosin A [24]. Thus, the construction of cyclopropanes contain-
ing vicinal nitro- and trichloromethyl groups seems attractive
for both theoretical chemistry and the synthesis of 2-aminocy-
clopropanecarboxylic acids, of which representatives have bio-
logically active properties against kynurenine-3-monooxygen-
ase [25] and GABA receptors [26]. Such aminocyclopropane

derivatives can be classified as donor–acceptor cyclopropanes
(DACs), the chemistry of which has been studied particularly
intensively in recent years [27-30].

It is worth noting that vicinal trichloromethylnitrocyclo-
propanes have not been previously described. Their analogues,
vic-trifluoromethylnitrocyclopropanes, have been obtained by
several approaches: forming of the CF3-group in a nitrocyclo-
propane (reaction of 2-nitrocyclopropanecarboxylic acid
with sulfur tetrafluoride [31,32]), cyclopropane formation
from a nitroethene substrate and a CF3-containing reagent
(Corey–Chaykovsky reaction [33]), as well as reactions involv-
ing a CF3-containing substrate and a nitromethylene compo-
nent (the tandem reaction of trifluoromethyl-substituted alkenes
with nitromethane [34] or bromonitromethane derivatives
[35,36]) (Scheme 1).

At the same time, one of the methods of synthesis of vicinally
substituted nitrocyclopropanes is the Michael-initiated ring
closure (MIRC) reaction of gem-halonitroalkenes and CH-acids
[37,38]. Thus, 2-nitrocyclopropanecarboxylates were obtained
based on the tandem reactions of cyclic CH-acids with alkyl
3-bromo-3-nitroacrylates [39]. Despite the structural proximity
and high activity of 1-bromo-1-nitro-3,3,3-trichloropropene (1)
[40] in reactions with nucleophiles, including those following
the formation of cyclic products in tandem transformations [41-
44], methods for obtaining cyclopropane structures based on it
are not known. In this way, it seemed desirable to synthesize
vicinal trichloromethylnitrocyclopropanes based on the well-
known 1-bromo-1-nitro-3,3,3-trichloropropene (1).

Results and Discussion
It turned out that the synthesis of the target trichloromethylni-
trocyclopropane 2 based on the reaction of 1-bromo-1-nitro-
3,3,3-trichloropropene (1) with malononitrile under conditions
similar to those described earlier [39] results in its formation in
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Scheme 2: Synthesis of monocyclic trichloromethylnitrocyclopropanes 2–5.

18% of yield (Table 1, method A). Optimization of the process
by using various bases and solvents showed that the best yield
of cyclopropane 2 (64%) was obtained in a tetrahydrofuran
(THF) solution in the presence of triethylamine (Table 1,
method E).

Table 1: Reaction of compound 1 with malononitrile leading to cyclo-
propane 2 under various conditions.

Method

Reaction conditions

Yield of 2, %Solvent Base Time, min

A MeOH AcOK 15 18
B MeOH MeONa 10 oligomers
C THF AcOK 120 20
D THF DBU 60 oligomers
E THF Et3N 60 64

The use of method E in the reaction of 1-bromo-1-nitro-3,3,3-
trichloropropene (1) with methyl cyanoacetate, ethyl cyano-
acetate or benzoylacetonitrile makes it possible to obtain cyclo-
propanes 3–5 in the yields up to 72% (Scheme 2). They are
formed as single diastereomers (according to the 1H NMR spec-
tra of the crude compounds).

The synthesis of spiro-fused trichloromethylnitrocyclopropane
6 based on the reaction of gem-bromonitroalkene 1 and
Meldrum’s acid under the conditions of method E is completed
by oiling-out the reaction mixture. At the same time, using the
conditions of method A (bromonitroalkene/CH-acid/base =
1:1:1.5 ratio) for 24 hours makes it possible to isolate the target
cyclopropane 6 with a yield of 19% (Scheme 3).

Scheme 3: Synthesis of spiro-fused trichloromethylnitrocyclopropane
6.

The use of method A, but with a longer reaction time (3 hours),
analogous to literature procedures [39], proved to be more suc-
cessful in reactions with other cyclic CH-acids (dimethylbarbi-
turic acid, 1,3-indanedione, 3-methyl-1-phenyl-5-pyrazolone).
The spiro-fused vic-trichloromethylnitrocyclopropanes 7–9
were obtained in 42–67% yields (Scheme 4).

The pyrazolone-conjugated trichloromethyl-containing nitrocy-
clopropane 9 is formed as a mixture of two diastereomers 9a
and 9b (1.3:1 dr, according to the 1H NMR spectrum) due to the
axial chirality of this molecule. The mixture was easily separat-
ed by silica gel column chromatography. Each of the isomers is
characterized by the trans-configuration of the nitro- and
trichloromethyl groups in the cyclopropane ring (3JH(1)H(2) =
6.6–6.8 Hz) which agrees with the literature data for struc-
turally similar compounds [37,38,44]. According to 1H-1H
NOESY spectroscopy data, NOE correlation of C1H (δH =
4.44 ppm)/CH3 (pyrazolone) (δH = 2.15 ppm) protons is ob-
served in the major diastereomer 9a, and C2H (δH = 5.54 ppm)/
CH3 (pyrazolone) (δH = 2.15 ppm) in the minor isomer 9b
(Scheme 5). Thus, the relative configurations of the stereo-
centers in these molecules can be defined as 1SR,2RS,3SR (9a)
and 1SR,2RS,3RS (9b).

Cyclopropanes 2–8 are formed as single diastereomers. The
vicinal spin–spin coupling constants of C1H–C2H protons of the
cyclopropane ring (3JH(1)H(2) = 5.7–7.5 Hz) indicate their tran-
soid arrangement [38,39,45]. This makes it possible to assign
1SR,2RS configurations to the stereocenters.
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Scheme 4: Synthesis of spiro-fused trichloromethylnitrocyclopropanes 7–9. i: 1.5 AcOK, MeOH, rt, 3 h.

Scheme 6: Proposed mechanism of the formation of trichloromethylnitrocyclopropanes.

Scheme 5: Main NOE correlations in 9a, 9b.

The proposed mechanism for this transformation is depicted in
Scheme 6. Michael addition of the CH-acid anion I to the
bromonitroalkene afford the intermediate anion II, followed by
tautomerization and formation of anion IV, which undergoes
intramolecular nucleophilic substitution of the bromide along
the C-alkylation pathway [37-39] (Scheme 6).

The trans-configuration of the methine protons of the cyclo-
propane ring is probably a consequence of the formation of a
sterically hindered carbanion II in a conformation with an anti-
periplanar position of the bulky substituents – bromine and a

trichloromethyl group (Scheme 6). Due to the steric reasons, the
anion in this conformation is selectively protonated by BH+

from the side opposite to the –CH(EWG)2. Thus, only dia-
stereomer III is formed. Deprotonation of this intermediate
leads to carbanion IV. For further attack by the carbanion center
to the carbon atom bonded to bromine, the –C(EWG)2 moiety
must hold an anti-periplanar position relative to the bromine.
The cyclization step from this conformation leads to trans-
cyclopropanes.

X-ray diffraction analysis data for compounds 2, 3, 9a, and 9b
convincingly confirm the accepted structures, the position of
cyclopropane protons, and the relative configurations of
asymmetric atoms (Figures 2–5). It should be noted that the
lengths of the C1–C2 (1.470(2)–1.491(4) Å) and C2–NO2
(1.472(4)–1.486(2) Å) bonds according to X-ray diffraction
analysis in the molecules of nitrocyclopropanes 2, 3, 9a, and 9b
turn out to be close to those in the molecules of nitrospirocyclo-
propanecarboxylates (C1–C2 (1.464(1)–1.474(2) Å), C2–NO2
(1.482(1)–1.485(1) Å) [39] and fused nitrocyclopropane (C1–C2

1.4903(19) Å and C2–NO2 1.4811(17) Å) [46].
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Figure 2: Geometry of 2 in the crystal.

Figure 3: Geometry of 3 in the crystal.

Figure 4: Geometry of 9a in the crystal.

In the crystal of 2, the polar non-centrosymmetric space group
contains two independent molecules with the same configura-
tion of atoms C1 – S, C2 – R. That is, compound 2 is obtained as
a racemic diastereomeric pair 1SR,2RS. Centrosymmetric crys-
tals 9a and 9b are diastereomers and crystallize as a true race-
mate. The configuration of the chiral atoms C1 and C2 in the

Figure 5: Geometry of 9b in the crystal.

molecules is the same as in molecules 2, and the difference is
the configuration of atom C3. In crystal 9a, the enatiomeric pair
S,R,S/R,S,R is realized, and in crystal 9b – S,R,R/R,S,S.

The main geometric parameters (bond lengths and valence
angles) and the conformation of independent molecules in crys-
tals of 2, 3, 9a and 9b coincide within the experimental errors,
so Figures 2–5 show the geometry of one of the independent
molecules. Note that crystals 2, 3, 9a and 9b have a relatively
high density (dcalc/g cm−3 1.739, 1.748, 1.595 and 1.567) for
crystals that do not contain heavy atoms.

In the absence of hydrogen bonds in the crystals of 2, 3, 9a and
9b, multiple specific interactions of the types such as lone (elec-
tron) pair – the π-system of the nitro group, and bonds of the
Cl···O, Cl···N, C–H···X (X = Cl, O, N) are realized, which are
shown in Figures S47–S57 in Supporting Information File 1.
The energy of such interactions can be comparable with the
energy of “classical” hydrogen bonds [47].

Conclusion
In summary, we proposed a diastereoselective method for the
synthesis of vicinal trichloromethylnitrocyclopropanes by
forming a cyclopropane ring from a trichloromethylnitroethene
substrate and an active methylene component. Variation of the
methylene component structure – linear (malononitrile, methyl
cyanoacetate, ethyl cyanoacetate, benzoylacetonitrile), carbo-
cyclic (1,3-indanedione), and heterocyclic (Meldrum’s acid,
dimethylbarbituric acid, 3-methyl-1-phenyl-5-pyrazolone)
CH-acids – allows the synthesis of both monocyclic and spiro-
cyclic 1SR,2RS vic-trichloromethylnitrocyclopropanes under
mild conditions. The reaction is carried out either in tetrahydro-
furan in the presence of triethylamine or in methanol in the
presence of fused potassium acetate. The structures of the iso-
lated individual products were characterized by 1H and
13C NMR, IR spectroscopy, mass spectrometry, and confirmed
by single-crystal X-ray diffraction analysis.
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Experimental
Physicochemical studies were performed using the equipment
of the Center for Collective Use "Physicochemical methods for
the study of nitro compounds, coordination, biologically active
substances and nanostructured materials" of the Interdiscipli-
nary Resource Center for collective use "Modern physicochemi-
cal methods for the formation and study of materials for the
needs of industry, science and education" Herzen State Peda-
gogical University of Russia.

Some spectral studies were performed at the Center for Magnet-
ic Resonance, the Center for Chemical Analysis and Materials
Research, and the Research Center for X-ray Diffraction
Studies of Saint-Petersburg State University, Saint-Petersburg,
Russia.

The X-ray diffraction study was performed at the Department of
X-ray Diffraction Research of the Multiple-Access Center on
the basis of the Laboratory of Diffraction Research Methods of
the A. E. Arbuzov Institute of Organic and Physical Chemistry,
the Kazan Scientific Center of the Russian Academy of
Sciences.

The 1H-13C{1H}, 1H-1H dqfCOSY, 1H-1H NOESY, 1H-13C
HMQC, 1H-13C HMBC NMR spectra were recorded on a Jeol
ECX400A spectrometer operating at 399.78 MHz (1H),
100.53 MHz (13C) in CDCl3 using residual signals of the
nondeuterated solvent (δH 7.26, δC 77.16) as the references.
The vibrational spectra were measured on a Shimadzu IR-Pres-
tige-21 Fourier-transform IR spectrometer in KBr pellets over
400–4000 cm−1 range (resolution was 2 cm−1). Mass spectra
were obtained using a MaXis mass spectrometer (Bruker
Daltonik GmbH) equipped with an electrospray ionization
source (4.5 eV) and a quadrupole time-of-flight analyzer
(ESI–QTOF) in the positive ions detection mode, with metha-
nol (0.1% FA [formic acid]) as solvent.

Isolation of individual diastereomers was carried out by column
chromatography on silica gel MN Kieselgel 60 Macherey-Nagel
140–270, eluent was a mixture of solvents hexane–EtOAc, 3:1.
The reaction progress and purity of the obtained compounds
were controlled by TLC on Silufol UV-254 plates with 3:1
hexane–EtOAc mobile phase. Visualization was performed
under UV light (λ 254 nm).

Reagents were obtained from commercial suppliers and used
without further purification unless otherwise noted.

X-ray crystallography. X-ray diffraction analysis of the struc-
ture 2, 3, 9a, and 9b was performed on a Rigaku 'SuperNova,
Single source at offset/far, HyPix3000' automatic four-circle

diffractometer with a Hybrid Pixel Array two-dimensional
detector and a micro-focus sealed X-ray tube (λ [Cu Kα] =
1.54184 Å) at cooling conditions (100 K). Data collection and
processing of diffraction data were performed using an CrysAl-
isPro 1.171.41.103a (Rigaku OD, 2021) software package. All
of the structures were solved by direct methods using the
SHELXT program [48] and refined by the full-matrix least
squares method over F2 using the SHELXL program [49]. All
of the calculations were performed in the WinGX software
package [49], the calculation of the geometry of the molecules
and the intermolecular interactions in the crystals was carried
out using the PLATON program [50] and the drawings of the
molecules were performed using the MERCURY [51]
programs. The non-hydrogen atoms were refined in anisotropic
approximation. The hydrogen atoms were placed in geometri-
cally calculated positions and included in the refinement in the
“riding” model.

Crystal of 2, C6H2Cl3N3O2, M = 254.46, monoclinic, space
group P21, at 100.4(5) K: a = 11.6233(2), b = 6.39530(10), c =
13.1586(2) Å, β = 96.5730(10), V = 971.71(3) Å3, Z = 4 (two
independent molecules), Dcalc = 1.739 g·cm−3, μ(Mo Kα)
8.393 mm−1, F(000) = 504, 9545 reflections measured
(6.762° ≤ 2Θ ≤ 139.896°), 3676 unique (Rint° = 0.0391, Rsigma°
= 0.0425) which were used in all calculations. Flack parameter
0.299(14), crystal is a racemic twin, and final refinement of this
structure was completed as racemic twin. The final R1 was
0.0260 (I > 2σ(I)) and wR2 was 0.0655 (all data).

Crystal of 3, C7H5Cl3N2O4, M = 287.48, monoclinic, space
group P21/n, at 100.00(10) K: a = 8.3468(3), b = 6.1819(2), c =
21.2056(6) Å, α  = 90, β  = 93.234(3), γ  = 90o ,  V  =
1092.45(6) Å3, Z = 4, Dcalc = 1.748 g·cm−3, μ(MoKα)
7.658 mm−1, F(000) = 576.0, 3763 reflections measured
(8.352° ≤ 2Θ ≤ 139.956°), 2056 unique (Rint = 0.0223, Rsigma =
0.0260) which were used in all calculations. The final R1 was
0.0321 (I > 2σ(I)) and wR2 was 0.0844 (all data).

Crystal of 9а, C13H10Cl3N3O3, M = 362.60, monoclinic, space
group P21/n, at 100(2) K: a = 11.4834(6), b = 11.0564(5), c =
23.7834(10) Å, α = 90, β = 91.057(4), γ = 90o, V =
3019.1(2) Å3, Z = 8 (two independent molecules), Dcalc =
1.595 g·cm−3, μ(Mo Kα) 5.651 mm−1, F(000) = 1485.2, 21310
reflections measured (7.44° ≤ 2Θ ≤ 139.94°), 5708 unique
(Rint° = 0.0984, Rsigma° = 0.0556) which were used in all calcu-
lations. The final R1 was 0.0696 (I>=2u(I)) and wR2 was
0.2072 (all data).

Crystal of 9b, C13H10Cl3N3O3, M = 362.59, monoclinic, space
group P21/n, at 100(2) K: a = 16.6097(2), b = 9.76570(10), c =
19.4325(2) Å, α = 90, β = 102.7570(10), γ = 90o, V =
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3074.25(6) Å3, Z = 8 (two independent molecules), Dcalc =
1.567 g·cm−3, μ(Mo Kα) 5.550 mm−1, F(000) = 1472.0, 25819
reflections measured (6.346° ≤ 2Θ ≤ 140°), 5821 unique
(Rint° = 0.0567, Rsigma° = 0.0359) which were used in all calcu-
lations. The final R1 was 0.0378 (I > 2σ(I)) and wR2 was
0.0979 (all data).

Supporting Information
The crystallographic data of the structure are deposited in
the Cambridge Crystal Structure Data Bank (CCDC 2:
2237758; CCDC 3: 2481941; CCDC 9a: 2450586; CCDC
9b: 2450587). Statistics on the collection of X-ray
diffraction data and refinement of the structure are shown
in Table S1 in Supporting Information File 1.

Supporting Information File 1
General synthetic procedures, characterization data and
copies of IR spectra, 1H-13C{1H}, 1H-1H dqfCOSY, 1H-1H
NOESY, 1H-13C HMQC, 1H-13C HMBC NMR spectra of
all synthesized compounds, and crystallographic data for
compounds 2, 3, 9a, and 9b.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-22-5-S1.pdf]
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