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The field of organic chemistry is undergoing a remarkable
transformation. The convergence of laboratory automation and
artificial intelligence is creating unprecedented opportunities for
accelerating chemical discovery and optimization [1,2]. This
thematic issue explores how adaptive experimentation, automa-
tion, and human–AI synergy are reshaping organic chemistry
research.

Several key technological advances have enabled this transfor-
mation. High-throughput experimentation platforms can now
rapidly test large numbers of reaction conditions [3]. Machine
learning algorithms can process complex chemical data to iden-
tify promising directions [4]. Closed-loop systems can autono-
mously design, execute, and analyze experiments using
machine learning optimization algorithms [5,6]. Together, these
capabilities are dramatically increasing the speed and effi-
ciency of chemical optimization with respect to economic and
environmental objectives [7].

The contributions in this thematic issue showcase innovative
approaches across multiple areas. Quijano Velasco et al. review

recent advances in high-throughput automated chemical reac-
tion platforms and machine learning algorithms for reaction op-
timization, showing how these approaches reduce experimenta-
tion time and human intervention [8]. They also discuss current
limitations and outline future opportunities for this emerging
field. Fralish and Reker demonstrate how active learning on
molecular pairs can improve the identification of potent drug
candidates [9]. Their ”ActiveDelta” method outperforms stan-
dard approaches while maintaining chemical diversity. Schmid
et al. provide a comprehensive review of machine learning ap-
plications in enantioselective organocatalysis, highlighting both
achievements and remaining challenges [10]. Guo et al. present
an automated flow chemistry system for nitration reactions,
combining kinetic modeling with experimental optimization
[11].

However, the contributions in the thematic issue also reveal an
important insight: while automation and AI are powerful tools,
human chemical intuition remains invaluable. The work of
Borup et al. on pKa prediction illustrates how machine learning
can complement rather than replace expert knowledge [12].
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Their quantum chemistry-based workflow benefits from chemi-
cal understanding in selecting appropriate descriptors and vali-
dating predictions. Similarly, Chen and Li review how machine
learning-guided optimization strategies are most effective when
incorporating chemists’ expertise [13].

This theme of human–AI synergy emerges repeatedly. The
computational design of asymmetric catalysts by Ferrer et al.
demonstrates how AI can accelerate discovery while relying on
chemical principles to guide the search space [14]. The most
successful approaches combine the rapid exploration capabili-
ties of AI with the deep understanding of experienced chemists.

Looking ahead, several key challenges and opportunities are
apparent. Integrating prior knowledge and transfer learning be-
tween chemical domains remains difficult but promising. Im-
proved methods for uncertainty quantification could help iden-
tify when human oversight is most needed. The development of
more interpretable AI models would facilitate collaboration be-
tween human and machine intelligence.

The future likely lies not in fully autonomous systems but in
thoughtfully designed frameworks that leverage both human
and artificial intelligence. As the contributions in this thematic
issue demonstrate, combining these complementary strengths
can accelerate discovery while maintaining chemical insight and
understanding.

We are grateful to all authors who have contributed to
this thematic issue. Their work illustrates the tremendous
progress in this field and the exciting opportunities ahead. As
methods for adaptive experimentation continue to advance,
maintaining focus on effective human–AI collaboration will be
crucial for realizing the full potential of these technologies in
organic chemistry.

This integration of automation, machine learning, and human
expertise represents a new paradigm in chemical research. We
hope this thematic issue provides valuable perspectives on cur-
rent capabilities and future directions in this rapidly evolving
field.

Artur M. Schweidtmann and Philippe Schwaller

Delft and Lausanne, October 2025

Data Availability Statement
Data sharing is not applicable as no new data was generated or analyzed
in this study.
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Abstract
Determining the pKa values of various C–H sites in organic molecules offers valuable insights for synthetic chemists in predicting
reaction sites. As molecular complexity increases, this task becomes more challenging. This paper introduces pKalculator, a quan-
tum chemistry (QM)-based workflow for automatic computations of C–H pKa values, which is used to generate a training dataset
for a machine learning (ML) model. The QM workflow is benchmarked against 695 experimentally determined C–H pKa values in
DMSO. The ML model is trained on a diverse dataset of 775 molecules with 3910 C–H sites. Our ML model predicts C–H pKa
values with a mean absolute error (MAE) and a root mean squared error (RMSE) of 1.24 and 2.15 pKa units, respectively. Further-
more, we employ our model on 1043 pKa-dependent reactions (aldol, Claisen, and Michael) and successfully indicate the reaction
sites with a Matthew’s correlation coefficient (MCC) of 0.82.

1614

Introduction
Over the years, the ability to selectively break a C–H bond to
create new connections has attracted increasing interest [1].
While past methods allowed for C–H transformations in simple
molecules, recent synthetic protocols [2] enable selective C–H
activation and diversification in larger molecules. This has, for
example, attracted the pharmaceutical industry to implement
such C–H transformations to diversify different types of mole-
cules ranging from small drug-like molecules to intermediates
and lead compounds. Especially late-stage functionalization is a
promising emerging field that allows chemists to efficiently

explore the chemical space in complex molecules by
exchanging a C–H bond with different functional groups to
modify the biological activity of drugs [2]. However,
pinpointing which C–H bond is reacting can be challenging.

Grzybowski and co-workers recently addressed this gap by
predicting pKa values for C–H bonds in dimethyl sulfoxide
(DMSO) using a graph convolutional neural network (GCNN)
[3]. Using a mix of experimental and computed pKa data, they
achieved a mean absolute error (MAE) of 2.1 pKa units. Lee
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and co-workers also addressed this problem by creating a
general machine learning (ML) model using either a neural
network or XGBoost. They trained on experimental pKa values
in 39 solvents from the “internet Bond-energy Databank”
(iBonD). Thus, they could predict the lowest pKa value for a
wide range of molecules that contain bonds such as N–H, O–H,
C–H, S–H, and P–H. However, they reported a scarcity of non-
aqueous pKa values and achieved a MAE of 1.5 pKa units for
the solvent DMSO using XGBoost [4,5]. Unfortunately, neither
the Grzybowski group nor the Lee group have made their
models generally available to other users.

Inspired by the efforts of the Grzybowski group and the Lee
group, we have developed pKalculator, a quantum chemistry
(QM)-based workflow for the automatic computation of C–H
pKa values in DMSO. The computed C–H pKa values are then
used to generate training data for an ML model using
LightGBM [6]. The QM-based workflow and the ML model are
freely available under the MIT license.

Methods
Datasets
We compile a dataset of 732 experimental pKa values in DMSO
from two different sources, Bordwell [7] and iBonD [4]. The
Bordwell dataset contains experimental C–H pKa values in
DMSO from 419 molecules. For the iBonD database, we select
experimental C–H pKa values in DMSO for 313 molecules. As
the iBonD database only contains an image of each molecule,
we employ the “Deep Learning for Chemical Image Recogni-
tion” software (DECIMER v. 2.0), developed by Rajan and
co-workers [8-10]. While DECIMER converts molecular
images into SMILES, manual intervention is required to ensure
the SMILES string correctly represents the molecule. Finally, to
mirror the dataset by Roszak et al. [3], we also incorporate 43
heterocycles without experimental pKa values from Shen et al.,
leaving us with a dataset of 775 compounds [11]. This dataset
will be used to calculate QM pKa values using our QM work-
flow described in the next section.

We also create a dataset from Reaxys that contains 1043 pKa-
controlled reactions. These reactions include 584 aldol, 408
Claisen, and 51 Michael reactions. This dataset is used as an
out-of-sample dataset to see how well our ML model predicts
the reaction site. Additionally, we use six pharmaceutical inter-
mediates that undergo selective borylation to compare our QM
workflow and ML model with experimentally determined reac-
tion sites.

The quantum chemistry-based workflow
Following work by Ree et al. [12-15], we present a fully auto-
mated QM-based workflow for computing C–H pKa values. A

given SMILES string undergoes modifications to produce a list
of SMILES for each deprotonated C–H bond. We generate
min(1 + 3nrot, 20) conformers for each SMILES using RDKit
(v.2022.09.4) [16,17], where (nrot) represents the number of
rotatable bonds. Each conformer undergoes optimization in
dimethyl sulfoxide (DMSO, ε = 47.2) using GFN-FF-xTB [18]
and the analytical linearized Poisson–Boltzmann (ALPB) equa-
tion [19] as the implicit solvation model. We then remove
conformers with relative energies above 3 kcal/mol and select
unique conformers by taking the centroids of a Butina clus-
tering using pairwise heavy-atom root mean square deviation
(RMSD) with a threshold of 0.5 Å [16,20]. For more informa-
tion, refer to Supporting Information File 1, section “Selecting
unique conformers”.

Subsequently, we re-optimize the remaining conformers in
DMSO with GFN2-xTB [21] and the ALPB implicit solvation
model to identify the lowest-energy conformer. We then con-
duct re-optimization in ORCA (v. 5.0.4) [22,23], using the
dispersion D4-corrected DFT functional CAM-B3LYP [24,25],
the Karlsruhe [26,27] triple-ζ basis set, def2-TZVPPD, and the
conductor-like polarizable continuum model (CPCM) [28] as
the implicit solvation models. CAM-B3LYP is chosen as the
optimal functional based on a benchmark study that evaluates
the accuracy of different levels of theory, ranging from semiem-
pirical methods (xTB) [21] over composite electronic structure
methods (r2SCAN-3c) [29] to DFT methods (CAM-B3LYP)
[24,25]. All these methods are evaluated as single-point calcula-
tions or optimization and frequency calculations. For compre-
hensive details, refer to Supporting Information File 1, section
“Benchmark study - computational methods”. Hereafter, we
check the geometries for imaginary frequencies and use the
total thermal energy at 298.15 K. Following the approach of the
Grzybowski group [3], we compute the heterolytic dissociation
energy through the  di rect  deprotonat ion react ion,

;  see  Equat ion 1 .

(1)

For each set of deprotonated C–H sites in a molecule, we deter-
mine the minimum heterolytic dissociation energy ( ).
Hereafter, we assume a linear relationship between the experi-
mental pKa values and  as this assumption allows us to
derive the empirical constants a and b and correct any system-
atic errors; see Equation 2, where ΔG° is replaced by .
After retrieving the empirical constants a and b, we can deter-
mine the QM-computed pKa values for all deprotonated C–H
sites using Equation 2:

(2)
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Machine learning
The feature descriptor
Recent research shows that the atomic descriptors introduced by
Finkelmann et al. [30,31], using charge model 5 (CM5) atomic
charges [32], are a great representation of atoms in molecules
that can be used in combination with an ML model to predict a
variety of properties. These properties encompass the site of
metabolism [31,33], the strengths of hydrogen bond donors and
acceptors [34-36], and the regioselectivity of electrophilic aro-
matic substitution reactions [14]. Building on the methodology
from Finkelmann et al. [30,31] and Ree et al. [14], we utilize
the automated approach to compute CM5 atomic charges from
semiempirical tight-binding (GFN1-xTB [37]) calculations. We
modify the workflow to enhance the accuracy of the computed
CM5 atomic charges. Instead of generating a single random
conformer, we produce 20 random conformers from a SMILES
string and optimize the structure with molecular mechanics
force fields [38] using RDKit [16]. The CM5 atomic charges of
the lowest-energy conformer are then used to generate atomic
descriptors based on sorting the CM5 charges for a given atom
of the input SMILES string. Furthermore, we adjust the shell
radius from 5 to 6, improving the performance of the ML model
to predict pKa values as detailed in Supporting Information
File 1, section “The descriptor”.

Data preparation and hyperparameter optimization
Building on the procedure outlined by Ree et al. [14], we
employ the Optuna framework (v. 3.3.0) [39] to identify
optimal hyperparameters for LigthGBM regression and classifi-
cation models [6]. Specifically, the Bayesian optimization tech-
nique utilizing the tree-structured Parzen estimator is applied
for hyperparameter space exploration. For the regression task,
the target value are the QM-computed pKa values. For the
binary classification task, which aims to predict the site with the
lowest QM-computed pKa value, labels are assigned in the
following manner: ‘1’ for the lowest QM-computed pKa value
(true site) and ‘0’ for all other QM-computed pKa values. As
there is sometimes a slight variation between the pKa value and
the other pKa values, we also introduce a tolerance where a pKa
value within +1 pKa units or +2 pKa units of the lowest pKa
value is accepted as ‘1’ to account for these variations, see Sup-
porting Information File 1, section “Machine learning models”
for more information. Further, given the significant imbalance
between the two classes (with ‘0’s far outnumbering ‘1’s), the
hyperparameter scale_pos_weight is invoked during hyperpara-
meter optimization. Finally, we establish a “null model” for the
classification task, wherein all sites are predicted as ‘0’.

The dataset with QM-computed pKa values (775 compounds;
3910 pKa values) is initially split randomly by compound into a
training set (80%; 620 compounds; 3121 pKa values) and a

held-out test set (20%; 155 compounds; 789 pKa values). For
each ML model, we carry out a fivefold randomly shuffled
cross-validation. Within each fold, the original training set is
further split randomly into a new training set (90% of the orig-
inal training set) and a validation set (10% of the original
training set). This allows us to evaluate different models and
estimate their performance. Hereafter, each ML model is trained
on our original training set and tested against the held-out test
set. Finally, we select the best-performing ML model.

Results and Discussion
Computing pKa values
From section “The quantum chemistry-based workflow” above,
we can determine the empirical values a and b in Equation 2.
For each set of deprotonated sites in a molecule, we extract the
computed  value and fit it against the experimental pKa
values. Hereafter, we convert the computed  to QM-com-
puted pKa values using Equation 2. We then inspect outliers that
exceed an absolute pKa unit difference of 5 pKa units between
the experimental pKa value and the QM-computed pKa value.
We choose an absolute pKa unit difference of 5 pKa units to
ensure that the QM-computed pKa is well above the error that is
to be expected on the level of theory we are using (CAM-
B3LYP). The observed outliers typically result from one of the
following reasons: (i) calculation errors concerning the ex-
pected minimum pKa site, (ii) discrepancies between literature
structures and database structures, (iii) mislabeled experimental
pKa values, or (iv) extrapolated pKa values. Notably, the extra-
polated pKa values correspond to compounds beyond the scale
measurable in DMSO (pKa ≥ 35) because of the autoprotolysis
of DMSO (pKa(DMSO) = 35) [40,41]. For more information
regarding finding and removing outliers, see Supporting Infor-
mation File 1, section “Finding outliers”. After multiple itera-
tions, we identified 695 molecules to have reliable experimen-
tal pKa values and computed  values. The values for the
computed  are then fitted against the experimental pKa
values, leaving us with empirical constants a and b; see
Figure 1. We now use the derived linear regression to convert
all computed ΔG° values into QM-computed pKa values for our
whole dataset (775 compounds). These values are used as target
values for the ML part.

Machine learning models for predicting C–H
pKa values
To learn and predict C–H pKa values, we train a LightGBM
regression model with our generated dataset containing
QM-computed pKa values (775 compounds; 3910 pKa values).
Hereafter, we correlate and compare the ML-predicted pKa
values and the QM-computed pKa values and achieve a MAE
and a RMSE of 1.24 and 2.15 pKa units, respectively, for the
held-out test set (155 compounds; 789 pKa values), as illus-
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Figure 1: Correlating computed  values and experimental pKa
values for 695 compounds. r: Pearson correlation coefficient;
ρ: Spearman’s rank correlation coefficient; MAE: mean absolute error;
RMSE: root mean squared error. QM calculations were carried out at
the CAM-B3LYP/def2-TZVPPD CPCM(DMSO)//GFN2-xTB
ALPB(DMSO) level of theory.

trated in Figure 2. When zooming in on the ML-predicted pKa
values that are not correlating well with the QM-computed pKa
values, we find C–H sites that are either bridgeheads or where
the negative charge is stabilized by resonance. This may be due
to the nature of the chosen descriptor vector based on sorted
CM5 atomic charges as it may not take into account, for exam-
ple, steric strain and charge delocalisation. We discuss this
further in Supporting Information File 1, section “Outliers for
the test set”.

We then compare our ML model with previously reported ML
models for predicting pKa values, namely, the GCNN C–H pKa
predictor by Roszak et al. [3] and the XGBoost pKa predictor by
Yang et al. [5]. Roszak et al. [3] used a mix of experimental
data (414 compounds) [7], manually curated DFT data
(212 compounds), and previously reported DFT data (194 C–H
sites) [11]; they obtained a MAE of 2.18 pKa units for their test
set. Yang et al. [5] used filtered entries from the iBonD dataset,
comprising 15338 compounds and 19397 pKa values across 39
solvents [5]. As they not only predict C–H pKa values, we
cannot compare our result with their best ML model. However,
they also report a holistic six-solvent (HM-6S) XGBoost model
in DMSO (9.3% of the data), which most likely contains the
majority of C–H pKa values. For this XGBoost model, they
achieved MAE and RMSE values of 1.53 and 2.35 pKa units,
respectively. A comparison between our ML model, the GCNN

Figure 2: ML-predicted pKa values vs QM-computed pKa values of the
held-out test set (155 compounds; 789 pKa values). r: Pearson correla-
tion coefficient; ρ: Spearman’s rank correlation coefficient; MAE: mean
absolute error; RMSE: root mean squared error. All predictions were
made using the best ligthGBM regressor. All calculations were carried
out at the CAM-B3LYP/def2-TZVPPD CPCM(DMSO)//GFN2-xTB
ALPB(DMSO) level of theory.

model of Roszak et al., and the model of Yang et al. is shown in
Table 1. While a direct comparison with these studies is not
feasible because of differing datasets, our model surpasses
Roszak et al.’s GCNN model by a MAE of 0.94 pKa units and
outperforms Yang et al.’s HM-6S model by a MAE of 0.29 pKa
units.

Table 1: Comparing different ML models for predicting pKa values.
Mean absolute error (MAE) and root mean squared error (RMSE) are
provided in pKa units.

Method MAE RMSE

LGBM (this work) 1.24 2.15
GCNN [3] 2.18 —
XGBoost HM-6S (DMSO)a [5] 1.53 2.35

aHM-6S: Table 7 in their paper.

Predicting the lowest C–H pKa value
Now that we can fairly accurately predict pKa values with our
LightGBM regressor, another use case is to be able to identify
the C–H site with the lowest pKa value to predict the site of
reaction. For this purpose, we treat the task as a binary classifi-
cation and train both a LightGBM classifier and a LightGMB
regressor. As described earlier in section “Data preparation and
hyperparameter optimization”, the QM-computed pKa values
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Table 2: Test set performance metrics: comparison between a LightGBM classifier and a LightGBM regressor for binary classification of the lowest
pKa site. Reaxys performance metrics: comparison between a LightGBM classifier and a LightGBM regressor for binary classification of the reaction
site in Reaxys. The best model is marked in bold.a

Test set performance metrics Reaxys performance metrics
method ACC MCC PPV TPR TNR NPV ACC MCC PPV TPR TNR NPV

null modelb 0.80 0 0 0 1.00 0.80 0.87 0 0 0 1.00 0.87
classifier 0.97 0.92 0.97 0.90 0.99 0.98 0.92 0.70 0.64 0.85 0.93 0.98
regressor 0.99 0.97 0.97 0.98 0.99 1.00 0.96 0.82 0.84 0.84 0.98 0.98

aACC: accuracy; MCC: Matthew's correlation coefficient; PPV: precision/positive predictive value; TPR: recall/true-positive rate; TNR: specificity/true-
negative rate; NPV: negative predictive value. bAll predicted pKa values are “0” to highlight the imbalance of the dataset.

are translated into binary values, with ‘1’ representing the
lowest QM-computed pKa value and ‘0’ representing other
QM-computed pKa values. The performance metrics for the test
set demonstrate that the regression model (MCC of 0.97)
outperforms the classification model (MCC of 0.92) when used
as a binary classifier, as seen in Table 2.

Now we train a LightGBM classifier and a LightGMB regressor
for the entire dataset (775 compounds; 3910 pKa values) of
QM-computed pKa values to assess the generalization capa-
bility of our ML models. We use an out-of-sample dataset of
1043 pKa-dependent reactions from Reaxys, containing 584
aldol, 408 Claisen, and 51 Michael reactions. These reactions
are chosen because they all involve a deprotonation step, and
the C–H site with the lowest pKa value is most likely the site of
the reaction. We also use these reactions for comparison with
Roszak et al. [3], who evaluated their GCNN model against
12873 pKa-controlled reactions, including aldol, Claisen and
Michael reactions, and correctly predicted the reacting site with
an accuracy of 90.5%. Our out-of-sample set is also used to see
how well our ML models predict the site of reaction using the
lowest ML-predicted pKa value.

To understand the result for the out-of-sample set, we show
three different reactions in Scheme 1. The first step of the reac-
tion shown in Scheme 1a is an aldol reaction where the depro-
tonation occurs at the least substituted C–H site next to the ke-
tone (black arrow). Our ML model predicts a pKa value of 24.7
for the experimental site of reaction. Also, our ML model
predicts that the reaction site should be at the highlighted circle.
For this site, the ML model predicts a pKa value of 16.4. It is
generally accepted that the most substituted C–H site next to a
ketone will form the more stable carbanion (thermodynamic
anion), whereas the least substituted carbanion will be the least
stable carbanion (kinetic anion). This can generally be con-
trolled by the type of base used. For the reaction in Scheme 1a,
n-BuLi is commly used, which is known to lead to the kinetic
anion. Because our ML model relies on the principle of lowest

energy, it predicts the site with the lowest pKa value as the site
of reaction (thermodynamic carbanion) and does not account for
the type of base used.

Going to Scheme 1b, we look at a Claisen reaction where the
experimental site of reaction occurs at the least substituted ke-
tone. Our ML model predicts the pKa value here to be 20.5;
however, the lowest ML-predicted pKa value is 4.2. Again, the
ML model correctly predicts the most stable carbanion (lowest
pKa value), but other factors come into play when synthesizing
compounds.

Last, we have an example of the Michael reaction in
Scheme 1c. Here, both the experimental site of reaction and the
ML-predicted site of reaction match. Our ML model predicts
the lowest pKa value to be 12.5, whereas the second lowest
ML-predicted pKa value is 21.9 (the least substituted C–H next
to a ketone). For more information, see Supporting Information
File 1, section “Outliers for Reaxys”.

When we evaluate our ML models on the whole out-of-sample
set, we again find that the regression model (MCC of 0.82)
outperforms the classification model (MCC of 0.70) when used
as a binary classifier as seen in Table 2. While a direct compari-
son cannot be made between Roszal et al.’s results [3] and ours,
we find our result to outperform theirs with an accuracy of 0.96.
In general, it is surprising that the LightGBM regressor outper-
forms our LightGBM classifier as Ree et al. [14] have shown
the opposite to be true for electrophilic aromatic substitutions.
However, our regression model serves a dual function, that is, it
accurately predicts pKa values and identifies the reaction site.

Prediction of aryl C–H borylation sites
In the previous section, we showed that our ML model is able to
predict the reaction site for pKa-dependent reactions. Now, we
test the ML model on a more complex reaction type, namely,
borylation reactions. Caldeweyher et al. [45] presented a work-
flow to predict the iridium-catalyzed borylation site of aryl C–H
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Scheme 1: Predicting the reaction site for three different reactions from the out-of-sample dataset from Reaxys. (a) Aldol reaction, Reaxys reaction
ID: 9947221 [42]; (b) Claisen reaction, Reaxys reaction ID: 3402137 [43]; (c) Michael reaction, Reaxys reaction ID: 29819768 [44]. Arrow: experimen-
tal site; teal filled circle: ML-predicted lowest pKa.

bonds (SoBo) [45] and experimentally validated their approach
using six pharmaceutical intermediates from medicinal chem-
istry programs. In the article, they state that ”Iridium catalysts
ligated by bipyridine ligands catalyze the borylation of the aryl
C–H bonds that are most acidic and least sterically
hindered…”[45]. For this reason, we tested both our QM work-
flow and the ML model to see how well they identify the reac-
tion site when only considering the lowest aromatic C–H pKa
value; see Figure 3. For both methods, we identify the possible
site of reaction if the pKa value is within 1.5 pKa units of the
lowest pKa value. This is slightly different from our previous
approach. However, because of the higher complexity of the
reaction and the similarity of aromatic C–H sites, we purposely
allow the QM workflow and the ML model to assess more sites
as ‘1’ or true site. When the pKa value is within 1.5 pKa units,
we also ensure that we are within the range or the uncertainty of
the QM-computed pKa values, which have a MAE of 1.48, as
discussed in section “Computing pKa values”.

For compound 1, the ML model predicts two low-pKa sites, in-
dicated by filled circles, of which none corresponds to the ex-
perimentally observed site of borylation, indicated by the arrow.

However, the QM workflow predicts the correct site as the
black ring indicates. Overall, the QM workflow accurately
predicts four of the six borylation sites, although, in the case of
compounds 2 and 6, there are additional sites with nearly iden-
tical pKa values. In the case of compound 3, most chemists
would expect the pKa of pyrazole C–H sites to be considerably
lower than those on the benzene ring, suggesting that factors
other than pKa determine the site of borylation for this com-
pound. In the case of compound 5, the most likely explanation
is that the site with the lowest QM-computed pKa value is steri-
cally hindered compared to the experimentally observed site of
borylation. The ML model predicts three borylation sites
correctly, but, in the case of compound 5, there are two addi-
tional sites with low pKa values. One failure is for compound 3,
where the QM workflow also fails; however, for compounds 1
and 4, the ML model fails, while the QM workflow accurately
predicts the site of borylation. This indicates that these com-
pounds are not well represented in the training set.

Conclusion
We introduce pKalculator, an automated QM-based workflow
that computes C–H pKa values with a MAE of 1.48 and a
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Figure 3: Predicting the site of borylation for a set of six experimentally reported borylation reactions [45]. Arrow: major experimental site/prediction by
SoBo; black ring: QM-computed lowest pKa + 1.5; teal filled circle: ML-predicted lowest pKa + 1.5.

RMSE of 1.81 when correlating with experimental pKa values.
We use this method to generate training data for an atom-based
regression model that delivers fast and relatively precise predic-
tions with MAE and RMSE values of 1.24 and 2.15, respective-
ly, when correlating with QM-computed pKa values. Both
methods are freely available under the MIT license. Our work-
flow can function as a filtering tool for computer-aided synthe-
sis planning for the synthesis of various pKa-dependent reac-
tions (aldol, Michael, and Claisen), evidenced by its accurate
predictions of reaction sites for 1043 reactions (MCC of 0.82).
Looking ahead, we aim to explore more reactions that depend
on C–H pKa values, further enhancing the utility of pKalculator
for synthetic chemists. Future iterations will consider factors
such as a more extensive and diverse training set, as well as
steric hindrance and base reactivity, ensuring even more precise
predictions for reaction sites.
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Abstract
Active learning allows algorithms to steer iterative experimentation to accelerate and de-risk molecular optimizations, but actively
trained models might still exhibit poor performance during early project stages where the training data is limited and model
exploitation might lead to analog identification with limited scaffold diversity. Here, we present ActiveDelta, an adaptive approach
that leverages paired molecular representations to predict improvements from the current best training compound to prioritize
further data acquisition. We apply the ActiveDelta concept to both graph-based deep (Chemprop) and tree-based (XGBoost) models
during exploitative active learning for 99 Ki benchmarking datasets. We show that both ActiveDelta implementations excel at iden-
tifying more potent inhibitors compared to the standard exploitative active learning implementations of Chemprop, XGBoost, and
Random Forest. The ActiveDelta approach is also able to identify more chemically diverse inhibitors in terms of their Murcko scaf-
folds. Finally, deep models such as Chemprop trained on data selected through ActiveDelta approaches can more accurately iden-
tify inhibitors in test data created through simulated time-splits. Overall, this study highlights the large potential for molecular
pairing approaches to further improve popular active learning strategies in low data regimes by enabling faster and more accurate
identification of more diverse molecular hits against critical drug targets.

2152

Introduction
Active learning is a powerful concept in molecular machine
learning that allows algorithms to guide iterative experiments to
improve model performance and identify the most optimal mo-
lecular solutions [1]. Many prominent studies have shown the
potential for active learning to accelerate and de-risk the identi-
fication of optimal chemical reaction conditions [2-4] and steer

molecular optimization for drug discovery [5-8]. Active
learning is particularly powerful during early project stages.
However, one major downside is that, at these early project
stages, only a very small amount of training data is available to
learn from [9] which can be insufficient to support the accurate
training of data-hungry machine learning models [10,11]
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Figure 1: Comparison of active learning approaches. (A) Classic exploitative active learning uses individual molecular representations to predict
absolute property values to select the most promising molecule from the learning set to add into the training set. (B) ActiveDelta learning uses paired
molecular representations to predict molecular property improvements from the currently best training compound to select the best molecule to add to
the training set that is predicted to improve the most compared to the currently best solution.

and thereby leading to potentially sub-optimal experimental
design due to an incomplete understanding of the underlying
structure–activity relationship and poor calibration of predic-
tive uncertainty. Additionally, model exploitation can lead to
analog identification, which can limit the acquired knowledge
and the scaffold diversity of selected hits [1].

We previously showed that leveraging pairwise molecular
representations as training data can support molecular optimiza-
tion by directly training on and predicting property differences
between molecules [12]. Compared to classic molecular
machine learning algorithms, which are trained to predict
absolute property values, such paired approaches are more well-
equipped to guide molecular optimization by directly learning
from and predicting molecular property differences [12-15] and
by cancelling systematic assay errors [12,15]. Beyond superior
performance in anticipating property improvements between
molecules, the molecular pairing approach shows particularly
strong performance on very small datasets by benefiting from
combinatorial data expansion through the pairing of molecules
[12,13]. Based on these findings, we hypothesized that we could
implement exploitative active learning campaigns based on a
molecular pairing approach (‘ActiveDelta’) to support rapid
identification of the most potent inhibitors across a wide range
of benchmark drug targets.

Active learning allows algorithms to guide iterative molecular
design by identifying the most valuable next experiment [1].
This can be done by selecting the compounds the model is most
uncertain of to improve model performance (‘explorative’)
[16,17], retrieving compounds with desired properties
(‘exploitative’) [18], or a combination of both (‘balanced’) [8].
Explorative active learning provides diverse chemical struc-
tures to support model learning while exploitative approaches

instead bias towards rapid identification of favorable com-
pounds. As such, explorative strategies may not propose as
many structures with desired characteristics and exploitative
strategies may not add much new knowledge for the model [1].
In pursuit of quickly finding potent leads with limited data, we
selected to pursue an exploitative active learning approach for
this study.

Classically during exploitative active learning, the machine
learning model is trained on the available training data and the
next compound to be added to the training dataset is selected
based on which compound from the learning set has the highest
predicted value [19] (Figure 1A). For ActiveDelta learning,
training data is paired to learn property differences between
molecules [12]. Then, the next compound is selected based on
which compound has the greatest predicted improvement from
the most promising compound currently in the training dataset
(Figure 1B).

For the first time, we here present the ActiveDelta concept and
evaluate the Chemprop-based [20] and XGBoost-based [21]
implementations of this learning strategy against standard
exploitative active learning [19] implementations of Chemprop
[20], XGBoost [21], and Random Forest [22] across 99 Ki
datasets with simulated time splits [23]. Across these bench-
marks, the ActiveDelta approach quickly outcompeted standard
active learning implementations, possibly by benefiting from
the combinatorial expansion of data during pairing which
enables the more accurate training of machine learning algo-
rithms. The ActiveDelta implementations also enabled the
discovery of more diverse molecules based on their Murcko
scaffolds, possibly due to the ability to learn property differ-
ences rather than exploiting analog identification. Finally, the
acquired data enabled the Chemprop algorithm to predict the
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most promising compounds more accurately in challenging
time-split test datasets. Taken together, we believe that the
ActiveDelta concept and extensions thereof hold large potential
to further improve popular active learning campaigns by more
directly training machine learning algorithms to guide molecu-
lar optimization and by combinatorically expanding small
datasets to improve learning.

Methods
Datasets
Datasets were obtained from Landrum et al. [23] which utilized
their simulated medicinal chemistry project data (SIMPD) algo-
rithm to curate and split 99 ChEMBL [24] Ki datasets with
consistent values for target id, assay organism, assay category,
and BioAssay Ontology (BAO) format into training and testing
sets to simulate time-based splits. Datasets were split into
training and test sets at an 80:20 ratio. Duplicate molecules
were removed. For initial active learning training dataset forma-
tion, two random datapoints were selected from each original
training dataset and the remaining training datapoints were kept
in the learning datasets (Supporting Information File 1, Figure
S1). The learning dataset is the pool of molecules that models
will select from during active learning [25]. Exploitative active
learning was repeated three times with unique starting data-
point pairs. Test sets were not used during active learning but
were used only in the test set evaluation of all algorithms.

Model architecture and implementation
To evaluate ActiveDelta with a deep machine learning model,
we used the previously established, two-molecule version of the
directed Message Passing Neural Network (D-MPNN)
Chemprop [20]. For our evaluation with tree-based models, we
selected XGBoost [21] with readily available GPU acceleration
[26]. Standard, single-molecule machine learning models were
implemented using the single-molecule mode of Chemprop
[12,27], XGBoost from the XGBoost library [22], and Random
Forest models as implemented in scikit-learn [28]. To improve
readability, we refer to our predictive pipeline consisting of our
molecular pair pre-processing approach and the established
two-molecule version of Chemprop as “ActiveDelta Chemprop”
(AD-CP) and the standard active learning implementation of
single-molecule Chemprop as “Chemprop”. Similarly, we refer
to our pairing approach applied to XGBoost as “ActiveDelta
XGBoost” (AD-XGB) and the standard single-molecule active
learning implementation of XGBoost as “XGBoost”.

The Chemprop-based models were implemented for regression
with default parameters and aggregation = ‘sum’ using the
PyTorch deep learning framework. For the single-molecule
Chemprop implementation, number_of_molecules = 1 while for
the ActiveDelta implementation number_of_molecules = 2 to

allow for processing of multiple inputs as described previously
[29]. We previously optimized the number of epochs for single
and paired implementations of Chemprop [12] and observed
convergence of performance by 5 epochs for the paired imple-
mentation and convergence by 50 epochs for the single-mole-
cule implementation. Based on these results, we set epochs = 5
for the ActiveDelta implementation and epochs = 50 for the
single-molecule active learning implementation of Chemprop.
XGBoost and Random Forest regression machine learning
models were implemented with default parameters and mole-
cules were described using radial chemical fingerprints
(Morgan Fingerprint, radius 2, 2048 bits, rdkit.org) when used
as inputs for these models. For the ActiveDelta implementation
of XGBoost, we used default parameters and concatenated the
fingerprints of each molecule in the molecular pairs to create
paired molecular representations.

During active learning, standard approaches were trained on the
active learning training set, consisting of two datapoints during
the first iteration and increasing by 1 datapoint each subsequent
iteration of active learning (Supporting Information File 1,
Figure S1), and were then used to predict the absolute Ki value
of each molecule in the learning dataset. As such, each mole-
cule was processed individually, and predictions were made
solely upon the representation of a single molecule. The data-
point with highest predicted potency was then added to the
training set for the next iteration of active learning (Figure 1A).
Conversely, during ActiveDelta learning, training was per-
formed on the cross-merged training dataset to learn potency
differences between molecular pairs as described previously
[12]. Then, the single most potent molecule in the training set
was paired with every molecule in the learning set to create new
pairs for predictions on the learning data (Figure 1B). The
second molecule from the molecular pair with highest pre-
dicted potency improvement was added to the training set for
the next iteration of active learning, resulting in one molecule
being added to the active learning training dataset at each itera-
tion which as is commonly done in active learning except when
project constraints require batch selection [1]. This datapoint
would subsequently be cross-merged with all other training data
compounds for ActiveDelta model retraining. For all active
learning runs, analysis was repeated three times, each with a
random pair of starting molecules for statistical analysis.

Evaluation of model performance and t-SNE
analysis
To measure model performance during exploitative active
learning, we analyzed the models’ ability to correctly identify
the compounds within the top ten percentile of most potent
compounds in the learning set. For evaluations on external data,
we evaluated model performance after training each model on
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the 100 molecules this specific model selected during exploita-
tive active learning. The models were evaluated specifically on
their ability to correctly identify the top ten percentile of the
most potent compounds in the test sets and evaluations were
repeated three times with three distinct initial training datasets
to investigate the impact of distinct starting points.

The non-parametric Wilcoxon signed-rank test was performed
for all statistical comparisons following three repeats of active
learning. When presenting the number of the most potent com-
pounds identified by each approach across 3 repeats of the
99 datasets, averages and standard deviations are presented in
the text while averages and standard error of the mean are
presented in the plots. For plotting of chemical space, mole-
cules were represented by radial chemical fingerprints (Morgan
Fingerprint, radius 2, 2048 bits, rdkit.org). Principal component
analysis (PCA) was first performed to reduce the 2048 input
dimensions to 50 dimensions before t-distributed Stochastic
Neighbor Embedding (t-SNE) was applied to further reduce
these 50 dimensions to 2 dimensions. PCA and t-SNE were per-
formed with scikit-learn and plotted with matplotlib. Bar plots
were created in GraphPad Prism 10.2.0. Source code and
datasets used in this work can be downloaded from https://
github.com/RekerLab/ActiveDelta.

Results and Discussion
Identifying the most potent leads using active
learning on pairs
First, we evaluated how directly learning from and predicting
potency differences of molecular pairs affects adaptive learning
by directly comparing the performance of specific machine
learning algorithms when either applied to molecular pairs or in
a classic single-molecule mode. Specifically, we evaluated the
ability of the D-MPNN Chemprop and the gradient boosting
tree model XGBoost to adaptively learn on molecular pairs
using the ActiveDelta approach compared to their standard
active learning implementations in single-molecule mode
(Figure 1A). As our measure of success, we analyzed all the
models’ ability to identify the most potent compounds (top ten
percentile) during exploitative active learning. We cold-started
active learning by selecting only two random datapoints as
initial training data and allowed the models to iteratively select
the next molecule from the learning set that they predicted as
the most potent compound to add to their training data.

When comparing the deep machine learning implementations,
we observed interesting patterns. AD-CP initially underper-
formed compared to the single-molecule implementation of
Chemprop, potentially due to the increased complexity of
learning and predicting potency improvements between molecu-

lar pairs compared to simply identifying analogs of the most
promising compound identified so far. However, AD-CP
quickly caught up and rapidly (after 35 active learning itera-
tions) outcompeted the single-molecule active learning imple-
mentation of Chemprop. We statistically compared the perfor-
mance differences of the models at 100 and 200 active learning
iterations to assess their differences. We noted that AD-CP
identified a statistically significantly larger fraction of the top
ten percentile of most potent compounds compared to single-
molecule Chemprop after 100 iterations of active learning (61%
vs 45%, +6.3 leads per dataset on average, p = 2e − 33,
Figure 2A and Supporting Information File 1, Table S1). This
improved performance extended out to 200 iterations where
AD-CP had identified almost 90% of the most potent inhibitors
(88% vs 79%, +4.3 leads per dataset on average, p = 4e − 19,
Supporting Information File 1, Table S1). This data overall sug-
gests that, while the learning from and predicting of molecular
pairs might be more challenging with very limited data
(<35 datapoints), the pairing rapidly enables combinatorial
training data expansion that allows the more effective usage of
deep neural networks for the identification of the most potent
compounds from limited training data until almost all hits in the
learning set are selected.

A slightly different pattern emerged when comparing the tree-
based implementations. AD-XGB and XGBoost initially
selected similar numbers of the most potent molecules, poten-
tially attesting to the more robust training of tree-based models
on very small datasets irrespective of whether using single mol-
ecule or paired tasks. After 13 iterations, AD-XGB started
consistently outperforming XGBoost. We again compared per-
formance statistically after 100 and 200 iterations. We noted
that AD-XGB was selecting a significantly larger fraction of the
most potent molecules at 100 iterations (62% vs 59%, +1.0
leads per dataset on average, p = 0.001, Figure 2B and Support-
ing Information File 1, Table S1) and at 200 iterations (88% vs.
86%, +0.8 leads per dataset on average, p = 0.02, Supporting
Information File 1, Table S1). While this difference was not
nearly as stark as for the deep neural networks, the identifica-
tion of an additional lead per project might still provide tangible
benefits in risky real-world drug development applications
where each additional lead might provide an alternative path-
way to mitigate toxicities or other compound liabilities. This
further attests to the power of our pairing approach and shows
that tree-based machine learning models can also benefit from
the pairing to identify the most potent inhibitors in adaptive
learning campaigns.

When comparing the performance of the tree-based and the
deep neural network-based ActiveDelta approaches, we ob-
served that AD-CP and AD-XGB showed no statistically signif-

https://github.com/RekerLab/ActiveDelta
https://github.com/RekerLab/ActiveDelta
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Figure 2: The ActiveDelta approach improves exploitative active learning performance. (A–C) The percentage of the top ten percentile most potent
molecules (‘hits’) in the learning set identified over 100 iterations of active learning by (A) AD-CP and Chemprop (CP), (B) AD-XGB and XGBoost
(XGB), and (C) Random Forest (RF) and random selection (Random). (D) Bar charts of the average number of identified hits of each approach at
100 iterations across all the 99 benchmarking tasks. (E–G) The number of unique scaffolds in hits selected over 100 iterations of active learning.
(H) Bar charts of the average number of unique scaffolds identified by each approach at 100 iterations across all 99 benchmarking datasets. Average
and standard error of the mean for three replicates across 99 Ki datasets after starting with two random datapoints is presented.

icant difference at 100 iterations (p = 0.2, Figure 2A,B, and
Supporting Information File 1, Table S1) or 200 iterations
(p = 0.7, Supporting Information File 1, Table S1). This sug-
gests that the improved performance of the active learning
campaigns is largely driven by the pairing and can be imple-
mented with various underlying, established machine learning
algorithms.

We next evaluated how the paired approaches were performing
overall compared to standard, single-molecule active learning
implementations. AD-CP outcompeted all standard implementa-
tions at 100 iterations (p < 0.002, Figure 2A–D and Supporting
Information File 1, Table S1) except for XGBoost over which it
showed a statistically nonsignificant improvement (p = 0.3,
Figure 2A–D and Supporting Information File 1, Table S1)
while AD-XGB outcompeted all standard implementations at
100 iterations (p < 0.001, Figure 2A–D and Supporting Infor-
mation File 1, Table S1). By 200 iterations, both models using
the ActiveDelta approach selected more of the most potent
leads than any standard single-molecule active learning ap-
proach (p < 0.04, Supporting Information File 1, Table S1).
These results highlight how a paired approach can allow models

to rapidly learn in low data regimes to outcompete standard
active learning implementations in identifying the most potent
compounds. It also suggests that the Chemprop-based imple-
mentation requires more data than the tree-based implementa-
tion to outcompete some tree-based standard approaches, poten-
tially hinting at the larger data requirements for deep neural
networks even when combinatorially expanding datasets
through pairing.

Chemical diversity in molecular selection
Beyond their ability to identify the most potent inhibitors, we
sought to determine how these approaches sampled chemical
space. When analyzing the scaffold diversity of hits (i.e., the
number of unique Murcko scaffolds in the set of molecules
selected by the different approaches whose Ki values are within
the top ten percentile of the most potent compounds in the com-
plete learning set), AD-CP selected more distinct hit scaffolds
than Chemprop (Figure 2E, p = 5e − 25 at 100 iterations) but
AD-XGB’s increase in distinct hit scaffolds selected was not
statistically significant compared to XGBoost (Figure 2F,
p = 0.1 at 100 iterations). In absolute numbers (Figure 2E–H),
AD-CP selected 14.0 ± 5.6 (average and standard deviation)
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distinct scaffolds (59.3% of all scaffolds within the hits),
AD-XGB selected 13.8 ± 5.4 (59.2%), XGBoost selected
13.4 ± 5.9 (56.6%), Random Forest selected 12.5 ± 6.1 (53.1%),
Chemprop selected 10.9 ± 5.2 (47.0%), and random selection
selected 8.1 ± 2.4 (36.0%). AD-CP, AD-XGB, and XGBoost
showed no statistically significant differences, but all
three approaches outperformed all other approaches at
100 iterations.

When analyzing the scaffold diversity of all selected com-
pounds to understand the chemical diversity of the complete
training data and not just the hits, random selection had the
highest scaffold diversity of all selection strategies, while
AD-CP had the most diverse scaffold selection of all active
learning approaches, followed by Chemprop, Random Forest,
AD-XGB, and XGBoost (p < 0.0001 at 100 iterations, Support-
ing Information File 1, Figure S2). As such, AD-CP not only
finds the most chemically diverse hits, with potential to create
multiple lead series to enable further development of distinct
scaffolds, but this approach also enriches the scaffold diversity
of “negative” training data to improve future compound selec-
tion. Although the deep learning-based ActiveDelta models
were not able to identify a larger number of hit compounds than
the tree-based ActiveDelta implementations here, a deep
learning approach appears to be more advantageous to identify
more diverse hits by selecting a greater number of distinct scaf-
folds during exploitative active learning.

Analyzing chemical trajectories
We next investigated how these models traversed chemical
space using t-SNE analysis based on radial chemical finger-
prints of molecules selected during active learning. For this
analysis, we selected the most representative dataset based on
similar hit retrieval rates for each algorithm on this dataset
compared to the average performance of each algorithm
(CHEMBL232-1, Alpha-1b adrenergic receptor). Admittedly,
chemical selection trends across datasets are variable, and, as
such, the following discussion is not universal but instead is a
representation of the overall expected behavior of the algo-
rithms. In the first learning iterations, AD-CP traversed chemi-
cal space broadly and jumped between clusters (Figure 3A).
During 16–30 iterations, AD-CP showed a balanced behavior
with equal numbers of jumps and staying within a cluster. After
30 iterations, AD-CP had identified all the relevant clusters of
active compounds and largely stayed within these clusters to
rapidly identify potent inhibitors. In contrast, Chemprop was
more targeted at the beginning and exploited the one cluster
where it could find potent inhibitors (Figure 3B). After that,
Chemprop traveled more broadly and was not able to identify
all clusters of potent inhibitors even after 45 iterations of
learning. As expected, random selection thoroughly sampled

chemical space since it is not constrained, consistently jumping
between clusters (Figure 3C).

Similar to AD-CP, AD-XGB exhibited broader initial search by
jumping between clusters during the first learning iterations and
identified a relevant cluster of potent compounds (Figure 4A).
During 16–30 iterations, AD-XGB stayed within this relevant
cluster until after 30 iterations where it sampled more widely
again to quickly identify another relevant cluster that it stayed
within to rapidly identify additional potent inhibitors. XGBoost
initially showed more targeted behavior where it exploited one
cluster and then broadly searched during 16–30 iterations to
discover another relevant cluster (Figure 4B). Random Forest
immediately exploited the one cluster where it could find po-
tent inhibitors, but after searching more widely it did not iden-
tify any other clusters of potent inhibitors by 45 iterations of
learning and instead focused on a cluster that did not contain
any of the most potent molecules (Figure 4C). Altogether, these
results highlight how the ActiveDelta approach can guide
models to navigate diverse clusters of distinct chemistries
(Figure 2E–H) by learning effectively from the initial phases of
wide investigations over chemical space instead of focusing on
analog identification to effectively traverse chemical space
(Figure 3 and Figure 4) to identify the most potent leads
(Figure 2A–D).

For an additional global analysis across all datasets instead of
focused on the representative dataset, we calculated the average
Tanimoto similarities of the top molecule selected by each
model compared to its respective nearest neighbor in the
training data using three different molecular representations
(Morgan Fingerprints, MACCS Keys, and Atom Pair Finger-
prints) during the initial iterations of active learning (1–15,
16–30, and 31–45) across all 99 benchmarking datasets with
three repeats (Supporting Information File 1, Table S2).
Random selection consistently selected the least similar mole-
cules of all approaches (p < 0.005) as expected. Of all active
learning approaches, AD-CP consistently selected the least sim-
ilar molecules (p < 0.005). Conversely, Random Forest consis-
tently selected the most similar molecules of all approaches
(p < 0.005). AD-XGB consistently selected less similar mole-
cules than XGBoost (p < 0.005) and initially selected more sim-
ilar molecules than Chemprop (p < 0.005), but later selected
less similar molecules compared to Chemprop (p < 0.005). Both
MPNN-based models (AD-CP and Chemprop) somewhat
trended towards selecting compounds with higher similarities
with increasing iterations while Random Forest somewhat
trended towards less similar compounds. Random selection,
XGBoost, and AD-XGB exhibited no consistent trends as itera-
tions advanced. Ultimately, AD-CP and AD-XGB consistently
selected more diverse compounds than their base models
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Figure 3: D-MPNN-based model navigation of chemical space. T-SNE of a representative dataset (CHEMBL232-1, Alpha-1b adrenergic receptor)
highlighting molecules identified in the first 45 iterations for (A) AD-CP, (B) Chemprop (CP), and (C) random selection (Random). Top ten percentile
most potent compounds are shown as stars and identified compounds are highlighted in yellow. The number of times a model ‘jumps’ from one cluster
to another is shown in the inlet with a green bar while the times it ‘stays’ in the same cluster is shown with a light blue bar. Arrow gradient towards
darker grey indicates increasing iteration number.

(Chemprop and XGBoost, respectively, Supporting Informa-
tion File 1, Table S2) while also identifying more of most po-
tent compounds (Figure 2D) during active learning – further
highlighting how the ActiveDelta approach can guide models to
rapidly identify more chemically diverse hits while also
collecting more diverse training data to augment model know-
ledge for future compound selection.

Extrapolation to external data
Motivated by the strong ability of ActiveDelta models to effec-
tively navigate the learning spaces, we next sought to see how
readily models trained on the selected molecules by active
learning could generalize to new data. We used splits that were
generated to mimic real-world medicinal chemistry project data
sets [23] such that the external data simulates learning from
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Figure 4: Tree-based model navigation of chemical space. T-SNE of a representative dataset (CHEMBL232-1, Alpha-1b adrenergic receptor) high-
lighting molecules identified in the first 45 iterations for (A) AD-XGB, (B) XGBoost (XGB), and (C) Random Forest (RF). Top ten percentile most po-
tent compounds are shown as stars and identified compounds are highlighted in yellow. The number of times a model ‘jumps’ from one cluster to
another is shown in the inlet with a green bar while the times it ‘stays’ in the same cluster is shown with a light blue bar. Arrow gradient towards darker
grey indicates increasing iteration number.

historic data to predict undiscovered “future” compounds
instead of simply being selected from a separate cluster based
on chemical similarity (Supporting Information File 1, Figure
S4). We evaluated all the models’ performances after training
on the 100 molecules they each selected from the learning set

during exploitative active learning on the task of identifying
novel hits (i.e., correctly predicting the top ten percentile of the
most potent compounds in the test sets). Across three repeats,
AD-CP correctly identified 41.3% ± 18.5 novel hit compounds
in the test set on average, AD-XGB identified 40.0% ± 18.9,
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XGBoost identified 40.0% ± 20.4, Random Forest identified
37.9% ± 20.4, and single-molecule Chemprop identified
27.9% ± 18.7. AD-CP showed a significant improvement over
Chemprop (p = 2e − 21), but AD-XGB showed no statistically
significant difference compared to XGBoost (p = 0.9), possibly
driven by the good performance of XGBoost alone. AD-CP was
the only approach to correctly identify 100% of the hits within a
test dataset while Random Forest peaked at 89%, AD-XGB and
XGBoost peaked 88%, and Chemprop peaked at 83% of
correctly identified hits.

In terms of chemical diversity of the novel hits identified in the
test set, AD-CP identified 3.3 ± 1.7 (42.5%) of the distinct scaf-
folds of the novel hit compounds, XGBoost identified 3.2 ± 1.7
(41.4%), AD-XGB identified 3.1 ± 1.6 (40.6%), Random Forest
identified 2.9 ± 1.7 (37.9%), and Chemprop identified 2.2 ± 1.5
(28.5%). Similar to hit identification, AD-CP showed a signifi-
cant improvement over Chemprop (p = 8e − 24) but AD-XGB
showed no statistically significant difference compared to
XGBoost (p = 0.7). To further evaluate the ability of the algo-
rithms to select diverse hits, we evaluated the Tanimoto simi-
larity of their top selected hits compared to their nearest neigh-
bors in the training data. AD-CP selected the molecules least
similar to the training set (0.83 ± 0.16, p = 0.0003, Supporting
Information File 1, Table S3), followed by Chemprop
(0.85 ± 0.15, p = 1e − 10, Supporting Information File 1, Table
S3), XGBoost (0.89 ± 0.11, p = 0.01, Table S3), and then
Random Forest (0.90 ± 0.10, Supporting Information File 1,
Table S3) and AD-XGB (0.90 ± 0.11, Supporting Information
File 1, Table S3). Random Forest and AD-XGB exhibited no
statistically significant difference from each other (p = 0.2, Sup-
porting Information File 1, Table S3). The increased diversity in
selection from the deep models, that was heightened for our
paired approach, highlights how methods that allow for appro-
priate application of complex models in low data regimes may
expand the breadth of molecular predictions based on limited
knowledge. Taken together, this data suggests that the
Chemprop-based AD-CP is particularly powerful at building
models that can generalize to new datasets and thereby will
provide medicinal chemists with options to change utilized
chemistries later in the project while utilizing knowledge gener-
ated from other molecules. Its ability to identify the most
diverse scaffolds in hits will also make it a most useful tool to
provide medicinal chemists with various lead series for further
optimization.

Discussion
Coinciding with increased enthusiasm for machine learning
methods to support drug discovery [30,31], expanded use of
adaptable laboratory automation [16,32,33] will help support
adaptive learning methods like active machine learning to

become a cornerstone technology to guide molecular optimiza-
tions and discovery [20,34,35]. The ActiveDelta approach for
active learning may efficiently guide optimization pursuits by
prioritizing the most promising candidates for subsequent eval-
uation and could be directly integrated into robotic chemical
systems to generate more potent leads through iterative design.
Beyond pharmaceutical design, we expect these methods to be
easily deployable for other chemical endeavors to support mate-
rial design and prioritization.

Although pairwise methods like ActiveDelta exhibit increased
computational costs during active learning given the combinato-
rial expansion of training data (Supporting Information File 1,
Figure S3), these extra datapoints benefit the deep models’ abil-
ities to learn the underlying structure–activity relationships
more accurately and readily identify the most potent com-
pounds of interest with novel scaffolds. In addition, as active
learning is typically conducted for smaller datasets and in early
project stages, we foresee that this combinatorial data expan-
sion will be feasible for most active learning pipelines. Further-
more, as real-world experimentation often provides a larger
bottleneck than computation, the use of more complex compu-
tational architectures with improved hit retrieval rates in place
of faster, but less effective, architectures should continue to be a
good choice for most real-world projects. In the future, subsam-
pling techniques may be employed to reduce computational
costs and even potentially improve performance for paired ap-
proaches. For example, it has been shown that similarity-based
pairing during training compound generation for Siamese neural
networks can significantly improve model efficiency [36]. Ad-
ditionally, active learning-based subsampling is an autonomous
and adaptive approach that has been shown to improve model
performance for classification tasks [37]. As the current
implementation relies on exhaustive pairing of molecules,
it is optimally suited for smaller datasets but allows for
data-hungry deep learning models to more adequately
learn from limited data amounts. Future work should evaluate
the potential of non-exhaustive pairing and subsampling
strategies to allow for more efficient application of this
method to larger datasets, compare against standard active
learning implementations of existing methods that contrast mol-
ecules, such as Siamese neural networks [36,38-43], and apply
the ActiveDelta approach to these models. Additionally, an
adaptive approach that begins with an exhaustive pairing ap-
proach in low data regimes and incorporates increasing rates of
subsampling as dataset size increases would be worth investi-
gating.

Given the general notion of tree-based models’ robustness to
training on smaller datasets [44], AD-CP’s ability to outcom-
pete standard implementations of tree-based models by only
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100 iterations shows particular promise for the application of
deep models for low data active learning that are typically par-
ticularly troublesome for data-hungry deep learning models
[9,10]. This improved performance was maintained when ex-
trapolating to external datasets that were generated to mimic the
differences between early and late compounds from true phar-
maceutical optimization projects [23], indicating the generaliz-
ability of this approach.

Conclusion
Applied to exploitative active learning, the ActiveDelta ap-
proach leverages paired molecular representations to predict
molecular improvements from the best current training com-
pound to prioritize molecules for training set expansion. Here,
we have shown that this approach allows both tree-based and
deep learning-based models to rapidly learn from pairwise data
augmentation in low data regimes to outcompete standard active
learning implementations of state-of-the-art methods in identi-
fying the most potent compounds during exploitative active
learning (Figure 2A–D) while selecting more diverse com-
pounds (Figure 2E–H). Our t-SNE analysis suggests that
ActiveDelta models will be initially forced to traverse chemical
space more broadly to learn property differences between mole-
cules rather than simply identifying analogs of promising hits
(Figure 3 and Figure 4) by learning on a pairwise transformat-
ion of chemical space. The deep models using this approach
also more accurately identified hits in external test sets gener-
ated through simulated temporal splits, indicating the
ActiveDelta approach’s applicability and generalizability to
novel chemical structures that would likely be encountered
during medicinal chemistry projects. We believe that
ActiveDelta and other pairwise approaches show particular
promise for adaptive machine learning when training data
hungry neural networks on limited data and can serve as accu-
rate platforms to guide lead optimization and prioritization
during drug development.
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Abstract
Organocatalysis has established itself as a third pillar of homogeneous catalysis, besides transition metal catalysis and biocatalysis,
as its use for enantioselective reactions has gathered significant interest over the last decades. Concurrent to this development,
machine learning (ML) has been increasingly applied in the chemical domain to efficiently uncover hidden patterns in data and
accelerate scientific discovery. While the uptake of ML in organocatalysis has been comparably slow, the last two decades have
showed an increased interest from the community. This review gives an overview of the work in the field of ML in organocatalysis.
The review starts by giving a short primer on ML for experimental chemists, before discussing its application for predicting the
selectivity of organocatalytic transformations. Subsequently, we review ML employed for privileged catalysts, before focusing on
its application for catalyst and reaction design. Concluding, we give our view on current challenges and future directions for this
field, drawing inspiration from the application of ML to other scientific domains.

2280

Introduction
Since the beginning of the 21st century, organocatalysts [1]
have established themselves as a third group of homogeneous
catalysts, next to biocatalysts [2] (enzymes) and transition
metal-based catalysts [3]. In particular, enantioselective organo-
catalysis has shown an impressive rise in the last decades,

owing to the tunability of catalysts and different modes of acti-
vation, enabling a manifold of different transformations [4,5].
The development of the field, driven by many researchers, led
to the award of the Nobel Prize to List and MacMillan in 2021
‘for the development of asymmetric organocatalysis’. Organo-
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catalytic transformations have also seen the transition to indus-
trial processes for the production of a variety of pesticides and
medicinal compounds, as recently reviewed [6-9].

Despite the prominence of organocatalytic reactions, catalyst
development has so far mostly been conducted guided by intu-
ition of skilled organic chemists. Given that organocatalytic
reactions are governed by different competing interactions, the
influence of a change in molecular structure is often non-trivial,
even for highly experienced experts. Thus, intuition-guided
catalyst development is regarded as suboptimally efficient and
furthermore highly subjective to the experience of the chemists
carrying out the study [10-15]. Considering the demand of
organocatalysts, their accelerated and reliable development is
highly desirable [16]. In the spirit of accelerated discovery, the
development of organocatalysts has been augmented with
computational catalyst design [17,18]. Multiple programs for
automated catalyst simulation have been developed in the last
decade. Notable examples include the development of ACE
(Asymmetric Catalyst Evaluation) [19,20], AARON (Auto-
mated Reaction Optimiser for New Catalysts) [21] or CatVS
(Catalyst Virtual Screening) [22]. Such tools have been exten-
sively reviewed in the past years [23-25]. Based on a known
mechanism, the tools calculate the energies of relevant species
either via force field or quantum chemical methods to assess the
properties of a reaction such as activation energies or selec-
tivity. Irrespective of the degree of automation, in silico calcula-
tions are often less time-sensitive than wet-lab experiments and
can be used to reduce the number of required experiments. As
such, these methods contribute to the acceleration of catalyst
discovery, for example through high-throughput virtual
screening.

Predating these computational techniques is the desire to under-
stand and explain experimental outcomes in organic chemistry
with physicochemical descriptors. A prominent early example
are Hammett parameters, developed in 1937 [26,27], that relate
substituent parameters to the equilibrium constant of the depro-
tonation of a substituted benzoic acid. The derived substituent
parameters are used to gain insight into the mechanism of reac-
tions by observing the influence of substituents on a reaction
outcome. However, Hammett parameters have shown to not
fully describe observed trends. Therefore, complementary
representations capturing other properties of a molecule have
been derived (vide infra) [28].

While traditional linear free energy relationships such as those
using Hammett parameters used linear models, the emergence
of ML has led to the development of more complex algorithms,
better suited for extracting hidden patterns in data. The ability
of ML to efficiently capture complex relationships allows to

extract influences on catalyst properties and thus makes it suited
towards the accelerated design of chemicals and materials, in-
cluding organocatalysts [29]. Due to this potential, an increas-
ing number of research groups have used ML to predict and
develop new organocatalytic reactions.

This review aims to provide a critical overview of develop-
ments in ML specifically for organocatalysis over the last
decade, with a focus on its applications. We aim to provide a
starting point to catalysis researchers who are interested in ML
as well as an assessment of critical challenges to more experi-
enced ML users. We will first give a primer on ML, equipping
experimentalists with the knowledge necessary to follow the de-
velopments in the field. The rest of the review is divided into
three parts: (1) ML for reactivity and selectivity prediction,
(2) ML for the design of privileged organocatalysts and (3) ML
for catalyst and reaction design. Ultimately, the review will give
an outlook on the authors’ expectation of the future of the field.

Review
1. Primer on ML
1.1 Data
The foundation for any predictive model is the underlying data.
It represents the source from which the model extracts relevant
patterns and relations. Therefore, the size and quality of the
underlying dataset will determine the model’s predictive capa-
bilities. To obtain high predictive accuracy for a broad range of
problems, a data set is sought which covers the problem space
comprehensively. This does not only encompass the chemical
diversity of the included molecules, but also the range of
results, e.g., reactions with low, medium and high selectivity
[30]. Predictions for data points outside of the applicability
domain, e.g., the region which is not sufficiently covered by the
provided training data, are less reliable, which is why an appro-
priate choice of training data is paramount for predictive model-
ling. Depending on the problem at hand, different sources of
data are available (Figure 1).

Apart from experimental data, the creation of large amounts of
in silico data is possible with sufficient computational resources
[31,32]. While this approach is useful in cases where the experi-
mental determination is challenging, some experimental proper-
ties, like the reaction yield, remain elusive to be reliably com-
puted due to the myriad of factors (side-reactions, impurities,
solvation effects, interface effects,...) that influence this observ-
able [33,34]. Another pitfall regarding computational data is its
accuracy with respect to the ground truth, in particular for
multiple factors relevant throughout catalysis, such as non-
covalent interactions (NCIs) for organocatalysis or spin proper-
ties for transition metal catalysis [35,36]. While most quantities
can in principle be computed with the highest accuracy using
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Figure 1: Schematic depiction of available data sources for predictive modelling, each with its advantages and disadvantages. Icon ‘Manual experi-
ments’ made by Eucalyp from flaticon.com. This content is not subject to CC BY 4.0. Icon ‘Computation’ made by Wichai.wi from flaticon.com. This
content is not subject to CC BY 4.0. Icon ‘Literature’ made by Muhammad Atif from flaticon.com. This content is not subject to CC BY 4.0. Icon ‘HTE’
made by Nuricon from flaticon.com. This content is not subject to CC BY 4.0. Icon ‘Pros’ made by Aldo Cervantes from flaticon.com. This content is
not subject to CC BY 4.0. Icon ‘Cons’ made by Yogi Aprelliyanto from flaticon.com. This content is not subject to CC BY 4.0.

advanced tools, the associated computational cost needs to be
considered [18,24].

Therefore, the use of experimental data is advantageous as less
assumptions have to be made and the quantity of interest is
directly represented. The results of a great number of experi-
ments can be found in literature, as well as patents. Manual
curation of this data is possible, but for larger amounts of data it
is usually impractical. Therefore, automated extraction tools
have been reported yielding the data in a structured format suit-
able for ML [37-41]. While some important efforts have been
made to establish uniform data reporting standards [42,43], they
are getting picked up by the community rather slowly. With
data from experiments conducted by different scientists under
varying conditions and adhering to various standards, repro-
ducibility remains a major challenge in organic chemistry and
restricts the applicability of literature data for statistical model-
ling [30]. Despite emerging high-throughput experimentation
(HTE) pipelines [44,45], large datasets of high-quality are still
scarce. While multiple large datasets are available for transition
metal catalysis [46-48] and biocatalysis [49-51], they are how-
ever not common for organocatalysis. Therefore, much research
has been devoted to develop models that perform well on the
available small data sets [52,53].

1.2 Representation
In order to be processed by any ML model, the data needs to be
provided in a machine-readable way. Unlike chemists who typi-
cally use drawings of Lewis structures to represent molecules,
computers require a numerical representation of the molecular
structure. Since the information that describes the input directly
influences what relationships a model can learn from the
presented data, different representations might be suitable
depending on the task.

Besides the most commonly used string-based representations,
such as the Simplified Molecular Input Line Entry Specifica-
tion (SMILES) [54] and fingerprints like the extended connec-
tivity fingerprint (ECFP) [55], molecules can be directly repre-
sented as graphs (Figure 2).

Figure 2: Schematic depiction of different kinds of molecular represen-
tations for fluoronitroethane. Among the most common representa-
tions are string-based notations, such as SMILES, structural finger-
prints, like the ECFP, or molecular graphs. Another way of encoding a
molecule is through descriptors that often contain steric or electronic
properties.

In graphs, the atoms and bonds are represented as nodes, and
edges, respectively [56]. While these kind of representations are
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well suited for the description of most organocatalysts with
distinct bonds, they have limitations when describing coordina-
tion compounds as commonly found in transition metal cataly-
sis for example [57].

Another kind of representation that has found considerable ap-
plication for ML in organocatalysis, is the use of descriptors.
These are sets of numerical or categorical values to encode a
molecule. A plethora of descriptors with varying degree of
computational effort for their calculation are available. Among
the most commonly employed descriptors in organocatalysis
are steric and electronic descriptors. Section 2.1 provides a
detailed overview of examples where different kind of descrip-
tors have been successfully applied for predictive modelling in
organocatalysis. In contrast to the representations through
graphs, or SMILES, which can be directly obtained from the
molecular structure, the selection of appropriate descriptors is
problem-specific and requires knowledge about the funda-
mental interactions governing the reaction outcome. Hence,
making the selection of input features a key step for successful
modelling [58-63].

1.3 Modelling
The third important requirement for building a predictive model
is the model architecture. Generally, ML algorithms can be
divided into reinforced, unsupervised and supervised learning.
In reinforcement learning, an agent is trained to make decisions
by interacting with an environment, receiving feedback in the
form of rewards or penalties, and adjusting its behaviour to
maximise cumulative rewards over time [64].

While reinforcement learning has not yet found widespread ap-
plication in organocatalysis, supervised and unsupervised
learning are widely employed techniques. The latter uses unla-
belled data (e.g., data without a label or numerical value), to
identify patterns and relationships within the provided data.
Popular tools are Principal Component Analysis (PCA),
Uniform Manifold Approximation and Projection (UMAP)
[65], or t-distributed Stochastic Neighbour Embedding (t-SNE)
[66], which have found application in organocatalysis to reduce
the dimension of the respective reaction space, e.g., for visuali-
zation purposes. Another widely applied unsupervised ML tech-
nique is clustering, which aims to group similar data points
together and thus enables a diverse selection by uniformly
sampling from the created space [67,68]. Supervised learning
requires labelled data and aims at identifying correlations be-
tween the target values and the corresponding input features. In
the context of addressing chemical problems, this can be used to
correlate reaction specific features with the reaction outcome,
such as the yield or selectivity. A plethora of different super-
vised learning algorithms are available and a priori knowledge

which architecture works best is challenging. Some of the most
widely used algorithms include multivariate linear regression
(MLR) [69] in which the target is linearly modelled by multiple
independent variables. Other notable architectures include deci-
sion trees [70], support vector machines [67] and deep neural
networks [71,72]. While the accuracy of the model is para-
mount, interpretability is also highly desirable. In this regard,
MLR bears the advantage that it yields a directly interpretable
function which can be used for mechanistic inference. However,
it is important to note that the caveat of correlation and
causality must be considered. Also, for other kind of models,
e.g., random forests, it is common practice to consider the
importance of individual features for the model’s prediction
to gain mechanistic insight. Careful attention must be paid
to the collinearity of features [73], such that they are not too
strongly related to each other, which complicates any
quantitative interpretation of feature importance. Thus, thor-
ough analysis and special strategies to address collinearity, such
as hierarchical clustering [74] or threshold-based pre-selection
[75] have to be considered to ensure reliable interpretability
[69].

It is worth mentioning that all the above-mentioned techniques
are not limited to applications in organocatalysis but are used
for a wide variety of chemical problems.

2 ML for selectivity predictions
In the context of organocatalysis, for a majority of published
work, the reaction property of interest is the selectivity (either
enantio- or diastereoselectivity), which is predicted as the
difference in energies between the selectivity-governing transi-
tion states ∆∆G‡ (Figure 3).

Whereas the application of the above described representations
and models to such problems is rather modern, the interest to
describe the influence of substrate or catalyst structures on the
rate or selectivity of a reaction is well-established and led
among others to the introduction of Hammett parameters to
relate chemical structures to both kinetic and thermodynamic
reaction properties [28] (Figure 4).

As Hammett parameters account only for the electronic effect
of substituents, much research has been devoted to develop
physical-organic descriptors, which consider steric effects and
separate the electronic effect into contributions from resonance
and induction, among others [27,77-81].

In this chapter, we first discuss the evolution of physical-
organic descriptors for the representation of organocatalysts
[82]. Later, we examine the effects of increasing data availabili-
ty towards the application of ML in this field.
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Figure 3: Depiction of the energy diagram of a generic enantioselective reaction. In the centre, catalyst and substrate are separated. They associate
with each other to either the pro-(R) or pro-(S) complex, with all these reactions taking place in a fast equilibrium (Curtin–Hammett conditions). From
these complexes, the products are formed via separate transition states. The energy difference between these two transition states is termed ∆∆G‡

and determines the selectivity.

Figure 4: Hammett parameters are derived from the equilibrium constant of substituted benzoic acids (example from Rogers et al. [76] to correlate
Hammett parameters of the arylpyrrolidine catalysts to the reaction kinetics of the aldol reaction).

2.1 Evolution of physical-organic descriptors in
organocatalysis
Drawing inspiration from linear free energy relationships, MLR
models, pioneered by Norrby and co-workers [83] and later
further developed by Sigman and co-workers [69,82], are com-
monly used for the prediction of enantioselectivity. In such
models, the substrates, catalysts, and other relevant reaction

species are encoded via a suitable representation of expert-
chosen descriptors. Subsequently, the target property of interest,
commonly ∆∆G‡, is fitted to the representation via a linear fit of
the form y = m1x1 + m2x2 +…+ mnxn + k, where y is the target
property, m1, ... , mn are the regression coefficients, k is the
offset and x1, …, xn are the molecular descriptors. The regres-
sion coefficients are also indicative of the importance of the
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Figure 5: Selected examples of popular descriptors applied to model organocatalytic reactions. Descriptors encompass steric features modelled via
Sterimol parameters [84] (example from Harper et al. [60] correlating the Sterimol B1 and L parameters of the bisphenols to the enantioselectivity of
the peptide catalysed desymmetrisation), electronic features modelled via vibrations or NPA charges (example from Crawford et al. [86]) and NCIs,
modelled via interaction distances and energies with a defined probe (example from Orlandi et al. [61]).

respective molecular parameter. Thus, MLR models provide the
capability to directly interpret the prediction results and form
mechanistic hypotheses based on the importance of distinct
descriptors.

Given the importance of the chosen representation, the search
for descriptive parameters has always been a cornerstone in this
field. While Taft [77] and Charton [81] describe steric proper-
ties as singular substituent values, Harper et al. [60] showed that
a singular value is insufficient to represent steric substituent
properties. Instead, the authors used Sterimol parameters [84] as
steric descriptors (Figure 5), showing superior correlations
towards the enantioselectivity for a multitude of organocata-
lytic reactions.

Sterimol parameters are calculated from a given 3D structure
and consist of three parameters, describing the minimum and
maximum (rotational) width as well as the depth of a substitu-
ent. Nowadays, Sterimol parameters are established as standard
parameters to describe steric residue properties. Since Sterimol
parameters are calculated from a 3D structure, it is important to
include information from relevant conformers. To avoid losing
important information from discarding conformers, Paton and
co-workers [85] introduced wSterimol, which takes into account
structures from the entire conformer ensemble via Boltzmann-

weighting. The authors used their descriptors for the prediction
of the enantioselectivity for several previously reported reac-
tions, showing improved prediction performance compared to
non-Boltzmann-weighted Sterimol parameters. Apart from
considering parameters of the entire conformer ensemble, it has
been shown that informative models can be developed by
considering active structures. This was demonstrated by Craw-
ford et al. [86] in their investigation of a peptide-catalysed atro-
poselective bromination (Figure 5). The authors found that the
peptidic catalysts can broadly be defined in two categories of
β-turns: a type I’ pre-helical and type II’ β-hairpin. Even though
the latter was consistently lower in ground state energy (up to
6 kcal/mol for some catalysts), predictive models for enantiose-
lectivity were found for both catalyst conformers in separate
MLR models. For organophosphorous ligands of transition
metal complexes, the minimum buried volume in a conformer
ensemble was identified to determine the ligation state towards
a metal centre as either mono- or bis-ligated and thus providing
a threshold for catalytically active ligands [87]. All of these ex-
amples demonstrate that not only the type of descriptor is im-
portant, but also the structure for which the descriptors are
considered. This can either be ensured by expert-knowledge of
preselecting relevant structures, for example based on a known
mechanism, or by considering information from the entire
conformer ensemble.
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Figure 6: Example bromocyclization reaction from Toste and co-workers using a DABCOnium catalyst system and CPA phase transfer catalyst [96].

Parallel to the evolution in modelling steric effects, the repre-
sentation of electronic effects has also been further developed.
Milo et al. [58] introduced the intensity and frequency of manu-
ally selected molecular vibrations as descriptors (Figure 5). For
the selection of relevant vibrations, a mechanistic proposal is re-
quired a priori, commonly based on a manual analysis of the
probed substrates. The inclusion of electronic parameters led to
a considerable improvement in predicting the enantioselectivity
of a peptide-catalysed bisphenol desymmetrisation compared to
their omission, showcasing the importance of capturing rele-
vant molecular properties via descriptors. Apart from molecu-
lar vibrations, electronic influences are commonly modelled via
global properties of a molecule (such as HOMO/LUMO
energies) or local properties (such as natural population
analysis (NPA) charges/NMR shifts), as shown in Figure 5
[69,72,88,89].

With respect to organocatalysis, NCIs are often a major factor
in determining selectivities, which are hard to describe via stan-
dard molecular descriptors. Therefore, Orlandi et al. [61] intro-
duced computed NCI distances and energies between benzene
and a probe residue as descriptors for NCIs (Figure 5).

Notably, the NCI energies are inspired by previous work from
Wheeler and Houk [90,91] and are defined as the computed
energetic difference between the complex of the benzene ring
and the probe residue and the separated species. Orlandi et al.
used the NCI parameters in combination with other descriptors
to model the enantioselectivities of a kinetic resolution of
benzyl alcohols and an enantiodivergent fluorination of allylic
alcohols, observing good correlations for both reactions. Since
then, the proposed NCI descriptors have been successfully
applied to multiple different reactions, such as an allenoate

Claisen rearrangement [92] and a phase-transfer catalysed oxi-
dative amination reaction [93]. In the latter, NCI descriptors
were both used to simplify previously existing MLR models
and also led to a hypothesis of key NCIs in the transition state.
Whereas these descriptors require the selection of a suitable
probe model, Chen and Pollice proposed Pint as a descriptor of
the London dispersion potential that is universal and can be
calculated without a probe system [94]. Although Pint has not
been utilised for organocatalysis, the authors applied it to a
Pd-metal-catalysed enantioselective 1,1-diarylation of benzyl
acrylates [95] and found a similar performance compared to
NCI probe descriptors.

Despite the success of this approach, it is important to
remember that descriptors do not have to be parameters of one
molecule and that intermolecular terms can be used to derive
mechanistic hypotheses. Toste and co-workers [96] investigat-
ed a bromocyclization catalysed by a chiral phosphoric acid
(CPA) and a DABCOnium brominating reagent (Figure 6). The
authors calculated transition state conformer ensembles for
several flexible DABCOnium systems and performed energy
decomposition analysis to separate the interactions between
catalyst, substrate and the DABCOnium moiety. Subsequently,
a random forest model was used to predict exo/endo- and regio-
selectivity of the reaction. Using random forest as an inter-
pretable machine learning model allowed to extract the impor-
tant features of the model, which indicated that the dispersion
interaction between the DABCOnium system and the CPA is
governing the exo-selectivity.

For the application of the ML techniques discussed above, it is
assumed that all studied reactions follow the same mechanism.
If that is not the case, models cannot be reliably fit to the data



Beilstein J. Org. Chem. 2024, 20, 2280–2304.

2287

Figure 7: Example from Neel et al. using a chiral ion pair catalyst for the selective fluorination of allylic alcohols [97].

points, similar to mechanistic breaks in Hammett plots. Howev-
er, deliberate data set design to systematically cover the rele-
vant chemical space can aid in detecting outliers and aid in
creating more relevant models, as demonstrated by Neel et al.
for an enantiodivergent fluorination of allylic alcohols, cata-
lysed by a CPA as phase transfer catalyst and an arylboronic
acid [97] (Figure 7).

After a systematic data set design involving eight phosphoric
acids and eight boronic acids, the authors observed breaks in
linearity of the model of enantioinduction for some catalyst
combinations. Further experiments, such as non-linear effect
studies and isotopic substitution experiments revealed multiple
different mechanisms of enantioinduction for the respective
combinations. To rationalise relevant interactions, MLR models
were trained on subsets of the data set. For each different mech-
anism of enantioinduction previously elucidated, the authors
developed a separate model to gain a sufficiently interpretable
model, finding that some parameters remain important
throughout the different subsets. This example demonstrates
both the strength of careful data analysis and the intricacies of
dealing with chemical reactivity data.

The above outlined examples demonstrate the relevance of effi-
cient representations, to which the development of advanced
descriptors contributed. However, the usage of descriptors also
restricts the generalizability of models, as they have to be expert
derived. Interestingly, descriptor-based MLR models have also
been used to predict the Mayr–Patz nucleophilicity parameter
N, which estimates the nucleophilicity of a nucleophile based
on experimentally measured kinetic data. The MLR models are
used to predict N for more than 1200 nucleophiles, enabling the
prediction of N for further nucleophiles [98-101]. While this
complicates the usage of descriptors for a multitude of different

reactions, it also enables an efficient representation by repre-
senting chemical hypotheses. Even though descriptors have
been proposed for a number of different interactions, others
are not easily represented via descriptors but remain highly im-
portant towards enantioselectivity, e.g., solvent-solute interac-
tions.

When interpreting the importance of descriptors, effects such as
overfitting and collinearity of features must be accounted for.
Particularly in the low-data regime, the importance of selected
features can vary based on the reactions that are contained in
the training and test set. While descriptors can help in gaining
mechanistic insight, it is important to not overinterpret
the significance of single features to form a mechanistic hypoth-
esis.

Ideally, to overcome issues such as a high dataset dependence,
larger reaction datasets are available. In terms of data set sizes,
the presented studies all worked in the low to medium data set
size, with up to few hundred experiments [102,103], where
careful considerations must be paid towards the applicability
domain, overfitting and interpretability. With HTE platforms
established and due to their importance to ML campaigns, the
past few years have seen a trend in creating larger experimental
chemical reactivity datasets, in particular for transition metal ca-
talysis [47,48].

2.2 Increasing data availability in ML for
organocatalysis
While, to the best of the authors’ knowledge, no HTE dataset
has found widespread application in ML for organocatalysis,
Denmark and co-workers published a data set comprising more
than 1,000 organocatalytic transformations [67]. In their work,
the authors demonstrated a data-driven workflow to study the
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Figure 8: Data set created by Denmark and co-workers for the CPA-catalysed thiol addition to N-acylimines [67]. The combinatorial data set encom-
passes the enantioselectivities from 5 thiols and 5 imines in combination with 43 CPA catalysts for a total of 1,075 data points.

enantioselective formation of N,S-acetals catalysed by CPAs.
To represent the catalysts, the authors developed the average
steric occupancy (ASO) descriptors, a representation inspired
by CoMFA [104-106], which recently also was applied in the
selectivity prediction of aldehydes to nitroalkenes [68]. In ASO,
all catalysts are aligned on a 3D-grid and the descriptor is calcu-
lated as the average occupancy of voxels on the 3D grid, where
a voxel is occupied if it is within the van der Waals radius of an
atom. The steric descriptors were combined with electronic
descriptors called Average Electronic Indicator Field (AEIF),
which are calculated for each CPA substituent (R) by observing
the electrostatic potential of a quarternary ammonium ion with
the substituent of interest (NMe3R+). The authors performed
unsupervised clustering on an in silico library to select a
‘Universal Training Set’ (UTS) consisting of 24 catalysts,
aiming to effectively represent the chemical space of CPAs.
This UTS was selected by first reducing the dimension of the
combined descriptor space using PCA and subsequent uniform
sampling of the catalysts using a clustering algorithm (see
Section 1.3), which ensures a broad coverage of CPA chemical
space. Notably, this data-driven technique is not restricted to the
reaction chosen by the authors. The UTS, combined with
19 ‘test set’ catalysts, 5 nucleophiles and 5 electrophiles, consti-
tutes a dataset of 1,075 reactions with associated enantioselec-
tivity values (Figure 8).

The size of the data set allowed the authors to perform various
ML experiments: a random (600:475) split on the data set, a
substrate test set where ∆∆G‡ of known catalysts with new sub-
strate combinations were predicted, a catalyst test set where the
substrates were known but the catalysts not and a test set were
both components were not known beforehand. Even in the most
challenging case, predictions were highly accurate with a mean
absolute deviation of 0.24 kcal/mol. Further, the authors per-
formed a split where the models were only trained on reactions
with an ee < 80% (718:357 split), still showing good extrapola-
tion performance with an error of only 0.33 kcal/mol on the test
set with higher enantioselectivity.

The open availability of larger, high-quality datasets also
inspires other researchers to develop and apply ML algorithms
and molecular representations. The previously described dataset
from Denmark and co-workers has been adopted by other
groups to develop and/or benchmark descriptors [107,108],
models that use architectures designed to deal with multiple
conformers [109-111] (see Figure 9A and also Section 2.1) or
models that are based on multiple fingerprints [112].

In addition, such larger data sets also lead to an increased
interest in the application of deep learning tools, such as graph-
based neural networks, to organocatalysis. One particular exam-
ple was published by Hong and co-workers [113], who de-
veloped a chemistry-informed graph model for the prediction of
enantioselectivities (Figure 9B). In their model, molecules were
represented as graphs, where local steric and electronic infor-
mation was added to each node (atom). Additionally, the used
graph neural network contains a molecular interaction module
that allows the model to learn synergistic effects between mole-
cules, crucial for reactivity prediction tasks. While reaching
state-of-the art performance in predicting ∆∆G‡ on the data set
from Denmark and co-workers, the designed neural network
also enables to interpret the effects leading to the observed en-
antioselectivity by eliminating the atom features and observing
the change in predictive performance. Using this method, the
authors observed that the main contribution towards enantioin-
duction by CPAs is through steric effects, in line with previous
literature.

Besides the establishment of experimental data sets, the num-
ber of ML data sets based on quantum mechanical calculations
is also increasing, such as a data set that considers propargyla-
tion reactions catalysed by bipyridine N,N’-dioxide-derived
scaffolds, created by Wheeler and co-workers using their
AARON toolkit [21,114-116]. Similar to experimental data,
computational data sets also lead to the development of ML
innovation [117,118]. One example is the development of a new
reaction representation based on the geometry of reactants and
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Figure 9: Selected examples of ML developments that used the dataset from Denmark and co-workers [67]. (A) Varnek and co-workers used ML
models designed to deal with multiple catalyst conformers for the prediction of catalyst selectivity. Reproduced with permission from reference [109],
© 2021 Georg Thieme Verlag KG. This content is not subject to CC BY 4.0. (B): Hong and co-workers utilised a molecular graph based on knowledge
about the local steric and electronic information, coupled with a graph neural network equipped with a module designed to capture molecular interac-
tions. Figure adapted from reference [113] (© 2023 S.-W. Li et al., published by Springer Nature, distributed under the terms of the Creative Commons
Attribution 4.0 International License, https://creativecommons.org/licenses/by/4.0).

products [89]. Unlike expert-chosen descriptors, this representa-
tion is generalisable to other systems. Although not concerned
with selectivity, Corminboeuf and co-workers reported
OSCAR, a computational repository of 4,000 organocatalyst
structures mined from the literature and Cambridge Structural
Database (CSD) [31].

In addition, the authors utilised the combinatorial nature of
organocatalysts to create data bases comprising more than 8,000
NHC-type catalysts and more than one million double hydro-
gen bond donor catalysts. While this repository does not
provide any reactivity data, it still comprises a valuable map of
organocatalyst chemical space to aid in catalyst design.

The creation of these larger datasets, both experimental and in
silico, has enabled the interest of the ML in chemistry commu-

nity towards enantioselective organocatalysis. With these
datasets, it is now possible to test different algorithms and
benchmark varying chemical representations. Despite these
advances, the existence of few large datasets in enantioselec-
tive organocatalysis might lead to a bias in developed algo-
rithms and representations. Since few datasets are available,
advances are benchmarked on these datasets and commonly
only published if they provide state-of-the-art performance.
Thus, a bias towards representations and algorithms that capture
relevant effects of the existing datasets are conceivable, while
other important effects that govern selectivities remain underex-
plored by the community. Therefore, it is highly relevant to
extend the available chemical space to underexplored regions
and to acquire large datasets for such cases to allow for more
holistic investigations of algorithms and chemical representa-
tions.

https://creativecommons.org/licenses/by/4.0
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To summarise, the last decade has seen a steady refinement in
the representation of chemical species, considering sterics, elec-
tronic properties and non-covalent interactions. Since these
interactions are governing any reactivity, accurate description is
relevant for a successful ML campaign. Most of the work in
organocatalysis using expert-derived descriptors has been con-
ducted in the low to middle data-regime. Only recently, the
focus has shifted towards bigger data sets of more than
1,000 reactions, the first one of which has already inspired a
manifold of other groups to develop new ML techniques, in-
cluding graph neural networks. With the continued rise of high-
throughput experimentation in organocatalysis [40], we expect
ML to be applied to more data sets in this domain to aid in
answering a wider variety of research questions. For the predic-
tion of selectivities, we expect more advanced techniques to be
adopted, establishing ML as a powerful tool for the evaluation
of organocatalysts.

3 ML for the design of privileged
organocatalysts
Throughout the development of organocatalysis, privileged
catalysts, i.e., catalysts which catalyse a wide variety of differ-
ent reactions through the same mechanism of enantioinduction,
have emerged in multiple organocatalytic transformations
[119]. The examples discussed in Section 2 all have seen the ap-
plication of ML techniques to predict the selectivity of a reac-
tion of interest. However, since the mechanism of enantioinduc-
tion is similar for multiple reactions catalysed by a privileged
catalyst class, these ’related’ reactions can in principle be
modelled together. The reactions are assumed to be mechanisti-
cally transferable.

The similarity of multiple reactions led to two different applica-
tions of ML to organocatalysis: (1) prediction of reaction prop-
erties (e.g., selectivity) for multiple mechanistically transfer-
able reactions, and (2) employing ML in the search to predict
the generality of a catalyst. This chapter will discuss prominent
examples in both applications.

3.1 ML for transferable reactions
The key to modelling transferable reactions together is to find a
representation that can describe all relevant reacting species.
While such representations commonly exist in chemistry, e.g.,
SMILES and graphs, the most common representation for trans-
ferable reactions is via expert-chosen descriptors. As such, the
space of relevant reactions has to be carefully studied, e.g., with
respect to the different reactant or catalyst classes. Once this
space is defined, the descriptors have to be chosen such
that they are specific enough to provide information to
the ML model while also general enough to cover the space of
interest.

One pioneering study in the field of mechanistic transferability
for enantioselectivity prediction was published by Reid and
Sigman [120] in 2019. The authors manually combined 367 dif-
ferent published reactions of BINOL-phosphoric acid catalysed
nucleophilic additions to imines, comprising alcohols, thiols,
phosphonates, diazoacetamides, peroxides, benzothiazolines
and more as nucleophiles. Apart from reactant classes, the reac-
tions also vary in additives, and solvent among others. Since
these reactions all adhere to the same mechanism of enantioin-
duction, the authors chose to consider them in the same ML
campaign, even though the nucleophiles vary significantly. As
descriptors, the authors used the overlapping features of nucleo-
philes, imines and catalysts to derive steric and electronic pa-
rameters as well as topological descriptors for solvents, where
less structural overlap is present [121].

For every reaction, the imine is categorised as either an E- or
Z-imine, based on the sign of the recorded enantiomeric excess.
Further, molecular descriptors, either physicochemical proper-
ties or topological, are calculated for all reaction partners. This
data is used to develop a comprehensive model, finding that
imine parameters govern the defining transition state and hence
the preferred enantiomer. In a focused modelling, two separate
models are constructed, one for all E- and Z-imines, respective-
ly, finding substrate–catalyst matching is important for E- and
Z-imines. The focused correlations enabled the authors to iden-
tify subtle mechanistic differences between reactions of E- and
Z-imines, such as the role of steric and electronic properties of
the imine for E- and Z-imines, respectively. The two-stage
workflow, using the comprehensive model to distinguish the
imine-type and subsequently using the focused model for
detailed predictions, proved successful for out-of-sample reac-
tion predictions with new nucleophiles, such as enecarbamates.
Further, the authors also tested their models on the dataset
published by Denmark and co-workers [67] (see Figure 10),
showcasing the importance of high-quality datasets for ML ap-
plications.

Due to their prominence in organocatalysis, CPAs have been a
common catalyst class when considering mechanistically trans-
ferable reactions for modelling. Further work on CPA catalysed
reactions was performed by Shoja et al. [122], considering a
multitude of different reaction types, ranging from hydrogena-
tions to epoxidations and dearomatization reactions. In a further
study, the generalisation of the obtained model to reactions in-
volving more complex substrates was demonstrated [123]. For
the comparison of different reaction descriptors, Asahara and
Miyao [108] considered different CPA-catalysed nucleophilic
additions to imines, comprising aza-Mannich reactions and
Friedel–Crafts reactions among others. Different reactions were
also combined by Liles et al. [124]. For a transfer hydrogena-
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Figure 10: Study from Reid and Sigman developing statistical models for CPA-catalysed nucleophilic addition reactions to imines for different classes
of nucleophiles [120].

tion reaction, the authors used a workflow consisting of training
set design, classification, MLR and extrapolation to predict a
new class of CPA catalysts with enhanced enantioselectivity.
Subsequently, the new catalyst class was tested for cyclodehy-
dration and oxetane desymmetrisation reactions, where a
comprehensive model was developed for the three different
reactions (Figure 11A).

Mechanistic model transferability for CPA-catalysed Minisci
reactions [125] was utilised for the derivatization of quinolines
and pyridines. Models trained on these compound classes show
good generalisation towards other nitrogen-containing
heteroaromatics including pyrimidines and pyrazines.

The importance of mechanistic understanding for model build-
ing was underlined by Kuang et al. [126], where the authors
considered multi-catalyst enantioselective reactions, where one
catalyst was an organocatalyst, either CPA or an amine. The
co-catalyst was included in the ML model by being considered
as a nucleophile or electrophile, depending on the reaction
mechanism. Descriptors allowed for the inclusion of a variety of
co-catalysts, ranging from Fe-piano stool complexes to copper
complexes. The consideration of co-catalysis into model devel-
opment further expands the considerable reaction space in
organocatalysis.

The discussed principle of mechanistic transferability has also
been employed outside of CPA catalysis, with a focus on
amine-based hydrogen-bond donors, for example imidodiphos-
phorimidate-type catalysts for the construction of THF and THP
rings [107] (Figure 11B). Werth and Sigman [127] investigated

multiple nucleophilic additions to nitroalkenes, catalysed by
bifunctional hydrogen bond donors, observing good correla-
tions to new bi-functional donors, new nucleophiles, new elec-
trophiles and even similar cascade-type reactions.

In the authors’ perspective, the exploitation of the concept of
mechanistic transferability is a promising avenue for the appli-
cation of ML in enantioselective organocatalysis, as combining
data from multiple reactions enlarges datasets. As such, it is an
important stepping stone towards the development of more gen-
erally applicable models. However, when applying these
models, potential mechanistic breaks as well as utility of the
chosen representations (descriptors) across the entire dataset
have to be considered. Currently, the work mainly focuses on
CPAs for which a vast number of reactions are reported. While
this underlines the importance of CPAs as enantioselective
organocatalysts, work exploring the mechanistic transferability
of other catalyst classes should not be neglected in order to
fulfill the potential that the application of ML in organocatal-
ysis holds.

3.2 ML for general organocatalysts
While it is important to consider catalysts achieving high enan-
tiomeric excess (ee) on relevant reactions, the deployment of
general catalysts that provide a reasonable ee for a variety of
reactions has gained more attention over the last years [128-
130]. Catalysts that fulfil such demands are coined ‘general
catalysts’.

While the concept of generality was recently explored in a
closed-loop fashion for Suzuki–Miyaura cross couplings to find
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Figure 11: Selected examples of studies where mechanistic transferability was exploited to model multiple reactions together. (A): Liles et al. used
univariate classification and MLR to develop a new CPA catalyst achieving high enantioselectivity for transfer hydrogenations. A comprehensive
model for multiple reactions was developed under the assumption of mechanistic transferability [124]. (B): List and co-workers employed Support
Vector Machines trained on data of different cyclisations to find an optimal catalyst for tetrahydropyran synthesis [107]. R = general residue, Ar = aro-
matic residue.

the most general catalyst and reaction conditions [131], the ap-
plication of this concept in the context of ML has found com-
paratively less attention in organocatalysis, despite the promi-
nence of privileged catalysts.

Despite the intuitive explanation of generality to chemists, a
clear mathematical definition of chemical generality remains
elusive, exacerbating the integration of the generality concept
towards machine learning algorithms. As such, different imple-
mentations were chosen to tackle this problem.

In 2022, Denmark and co-workers [132] (Figure 12) investigat-
ed a disulfonimide-catalysed atroposelective iodination with the
intention of finding a general reaction procedure. After con-
structing an in silico library consisting of 1,478 catalysts, a
universal training set was constructed consisting of 18 catalysts.
Subsequently, the enantioselectivity of each catalyst with 13

model substrates was experimentally evaluated. 13 different
models, one for each substrate, were developed. To find a
general catalyst, a technique termed ’catalyst selection by
committee’ (CSC) was employed: for each substrate, all in
silico catalysts were evaluated and catalysts in the most enantio-
selective 1% of catalysts considered received one ’vote’. After
this process was performed for each of the 13 model substrates,
catalysts with more votes were termed as being more general,
balancing high enantioselectivity with a broader substrate
scope. CSC enabled the identification of two well-performing,
general catalysts.

A different generality metric was proposed by Betinol et al.
[133] (Figure 13). The authors performed clustering on the reac-
tion space of interest representing the molecule either by topo-
logical or quantum mechanical descriptors. The generality of a
catalyst was then assigned by considering the fraction of clus-
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Figure 12: Generality approach by Denmark and co-workers [132] for the iodination of arylpyridines. From the relevant chemical space, a representa-
tive subset of 18 catalysts is selected. For each of the 13 model substrates, a catalyst-substrate model is trained. Catalysts that are top performers for
multiple substrates are considered general catalysts.

Figure 13: Betinol et al. [133] clustered the relevant chemical space and then evaluated the average ee for every cluster. Catalysts that perform
above a user-defined ee cutoff for many clusters are considered general catalysts.

ters for which the average cluster enantioselectivity of a cata-
lyst exceeds a user-defined threshold. This threshold can be
used to balance the need for a wide substrate scope and enantio-
selectivity requirements, while accounting for the specifics of a
reaction and the requirements of the user. The authors applied
their method on 3,003 literature-mined Mannich reactions from
106 publications to find that urea-based catalysts are the most
general organocatalysts for this reaction class (ee threshold
80%), even though amine-based catalysts demonstrate a higher
average ee. Notably, this strategy is not restricted to literature-
extracted examples and can also be applied to enantioselectivi-
ties calculated via quantum chemical calculations or predic-

tions from an ML model. The latter was used by the authors as
an augmentation technique towards an imbalanced dataset for
CPA-catalysed nucleophilic additions. Further, the authors
also propose an order of generality for CPAs catalysing
nucleophilic additions to imines, with TRIP being the highest
ranked (ee threshold 60%). Thus, the authors recommend that
for developing a new reaction, their metric can be used to
decide which catalyst should be tested first based on the ex-
pected success. This generality-based guiding principle of ex-
perimental design showcases a further possibility for data-
driven methods to complement and augment experimental
chemistry.



Beilstein J. Org. Chem. 2024, 20, 2280–2304.

2294

Figure 14: Corminboeuf and co-workers [134] chose a representative subset of the reaction space (indicated by dark red points) and used it to eval-
uate the generality of catalyst structures optimised through their genetic algorithm.

In addition to these methods, Corminboeuf and co-workers
[134] proposed a genetic algorithm for the de novo design of
general catalysts (Figure 14). Considering the Pictet–Spengler
cyclization of tryptamine derivatives catalysed by hydrogen-
bond donors, the authors considered a general catalyst to
display both high enantioselectivity and turn-over frequency for
a broad substrate scope. The substrate scope, termed generality
probing set (GPS), was selected based on farthest point
sampling of a literature mined reaction space to cover a wide
chemical space. To assess the enantioselectivity and turn-over
frequency for reactions with a new catalyst, which is required
for de novo design, the authors used different strategies. To
predict enantioselectivity of a previously unseen reaction, the
authors used the reported enantioselectivities in their initial lit-
erature-mined reaction database to train an XGBoost model.
The turn-over frequency of a reaction was determined using a
volcano plot based on reaction energies [135-137], where the
latter were again predicted using an XGBoost model based on
the literature-mined dataset. Using fragments derived from their
OSCAR [31] database, the authors used the NaviCatGA genetic
algorithm [118] to find the most general catalysts. The fitness
function comprised multiple objectives, including the median of
the enantioselectivity and activity across the generality probing
set. The usage of a multi-objective optimization algorithm
allowed them to discover multiple trade-off optima, enabling a
scientist to select the ideal catalyst based on the specific
requirements of catalytic activity and selectivity, while still ac-
counting for catalyst generality through design of the objec-
tives. Noticeably, data analysis allowed to identify regions in
the chemical space where highly ranked catalysts underperform
as well as less sensitive areas in chemical space, further provid-
ing mechanistic insight into the mechanism of stereoinduction
and activity trends.

With the concept of privileged catalysts deeply rooted in
organocatalysis, we expect a steady increase in studies aiming
to bridge the gaps between different reactions that are mecha-
nistically transferable via ML. Using this strategy, it is possible

to both increase the available data (since more reactions are
considered), as well as investigate more general mechanisms.
However, careful consideration has to be paid towards combin-
ing different reactions, as mechanistic transferability has to be
ensured. Furthermore, the usage of ML to identify general cata-
lysts demonstrate that the application of modern ML tools is not
limited to predicting selective catalysts.

4 ML for catalyst and reaction design
The design of chemical reactions encompasses various aspects,
from the choice of the employed catalyst to the selection of
ideal reaction conditions. While traditionally, all of this has
been performed by chemical knowledge, intuition and rational
design, the last years have witnessed a surge in data-driven ap-
proaches to improve the design of reactions, e.g., by inferring
mechanistic features through statistical modelling, the genera-
tion of catalyst structures with increased catalytic activity, or
optimising the reaction conditions to maximise the yield or
selectivity. In contrast to the direct approach as seen in many
examples discussed so far, where starting from a molecular
structure and a set of conditions, the reaction outcome is pre-
dicted, optimising the design of a reaction can be framed as an
inverse design approach [138]. Given a target, e.g., fast conver-
sion or high selectivity, the task is to find a catalyst structure or
a set of conditions to satisfy the requirement. The following
chapter will give an overview of recent advances in the design
of organocatalytic reactions.

4.1 Mechanistic understanding
The design of a catalyst requires detailed understanding of the
key catalytic steps [23,139-142] and commonly uses calculated
or measured physical parameters of reaction components to
make decisions in a design effort. In line with the early develop-
ments of statistical modelling through Hammett parameters to
correlate substrate properties to kinetic properties of the reac-
tion (Section 2), advanced ML tools can help to unravel key
mechanistic features in higher dimensions and with stronger
interactions, which can be used to tailor a reaction to match
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Figure 15: Example for data-driven modelling to improve substrate and catalyst design. (A) C–N coupling catalysed by CPA derivatives studied by
Sigman and co-workers [143]. (B) The library for the study consisted of 12 substrates and 9 triazolyl catalysts. This data was used to train an MLR
model and infer key mechanistic features as well as the design of highly selective catalysts which were experimentally verified after prediction.

desired properties. Sigman and co-workers demonstrated this by
complementing knowledge from physical organic chemistry
with data-driven analysis techniques, in particular MLR, to gain
a greater understanding of the enantioselectivity-determining
steps for a C–N coupling catalysed by CPA derivatives
(Figure 15A) [143]. Based on their findings that π–π interac-
tions between the catalyst’s triazole substituent and the sub-
strate is key for stereoinduction, they designed new catalyst
structures maximising the predicted selectivity. The predictions
were experimentally validated confirming that their model can
be used to guide the design of highly selective catalysts
(Figure 15B).

4.2 High-throughput virtual screening
Although such approaches showcase the ability of ML models
to unravel structure–activity relationships and thereby guide the
development of catalysts, the design of new structures remains
influenced by the prevailing design principles of chemists. In
this regard, approaches to explore uncharted regions of chemi-
cal space in a more unbiased way can help to identify previ-
ously unknown structures that exhibit desired properties. The
advent of statistical models that can predict key catalytic prop-

erties has enabled pipelines to assess a great number of candi-
dates in high-throughput virtual screening approaches [107,144-
147]. Thereby, experimental efforts can be focused on the most
promising candidates predicted by the model. Denmark and
co-workers utilised such an approach to design highly selective
catalysts for a peptide-catalysed annulation reaction [68]. Using
conformer-dependent steric and electronic descriptors, they
built a universal training set (UTS) consisting of 161 tripeptide
catalysts. Based on models trained on the UTS they were able to
identify highly selective tripeptide catalysts from a virtual
library containing more than 30,000 structures. Remarkably,
the predicted peptide catalysts did not follow the prevailing
design principles of experimentally optimised peptide catalysts,
demonstrating how ML can help to explore novel classes of
catalysts. While high-throughput screening campaigns can be
powerful tools for the discovery of novel structures with desired
properties, their scope can be limited due to the effort associat-
ed with computing the descriptors for each individual molecule.
Corminboeuf and co-workers utilised a fragment-based ap-
proach exploiting the modularity of commonly used organocat-
alysts. By considering individual contributions of catalyst frag-
ments, they were able to build a combinatorial library of cata-
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Figure 16: Example for utilising a genetic algorithm for catalyst design. (A) Morita–Baylis–Hillman reaction studied by Jensen and co-workers [150]
(B) Left: A genetic algorithm performs mutation and crossover operations on a set of catalysts with the goal to optimise the fitness function. Middle:
Schematic depiction how the fitness is iteratively optimised across multiple runs ("generations") of the genetic cycle. Right: Identified catalyst struc-
ture with increased catalytic activity.

lysts and predicted novel catalysts with increased reactivity for
an organocatalysed Diels–Alder reaction [148].

4.3 Genetic algorithms
An alternative approach for chemical space exploration is the
use of genetic algorithms (GAs) [149]. Inspired by biological
evolution, they aim to maximise a fitness function using
biology-inspired operations such as mutation and crossovers.
Jensen and co-workers demonstrated the utility of GAs by opti-
mising the structure of a tertiary amine catalyst for the
Morita–Baylis–Hillman reaction [150] (Figure 16).

First, the rate determining step was identified (within the pro-
posed reaction mechanism). Then, the organocatalyst's struc-
ture was optimised to decrease the barrier of this step. After
identification of the most potent structures by the GA, they veri-
fied experimentally that the identified structure increases the
reaction rate by a factor of 7.8 compared to the commonly used
DABCO catalyst. While this clearly demonstrates the capabili-
ties of the GA to accelerate the discovery of organocatalysts,
the authors note that the success of their approach is dependent
on the detailed knowledge of the underlying mechanism. There-
fore, the discovery of catalysts for novel reaction mechanism is
still an ongoing challenge [151-153]. In order to make GAs for
catalyst discovery more generally available, the Corminboeuf
group developed the software suit 'NaviCatGA' [118] which is
designed for the optimisation of catalysts with desired catalytic
properties. The tool provides the user with considerable flexi-

bility, e.g., the definition of the employed fitness function or the
genetic operations to be applied. Further, it supports the multi-
objective optimisation based on multiple target properties,
which is of particular importance as an ideal catalyst combines
a number of properties that need to be taken into account, e.g.,
solubility, stability and synthesisability. The authors exemplify
this by optimising simultaneously for catalytic activity and
selectivity using two individual MLR expressions in their
fitness function. Doing so, their algorithm is able to tailor the
structure of the employed base for a Lewis-base catalysed enan-
tioselective propargylation of benzaldehyde in this multi-objec-
tive optimisation task [118].

Importantly, molecules designed by generative models need to
be tested experimentally. This allows one to verify the assump-
tions made during modelling and validate the model’s ability to
propose molecules tailored to a given application. In this regard,
the synthesisability of the generated molecules plays a decisive
role and remains a major bottleneck which currently restricts
the effective use of generative models [154].

4.4 ML-driven experimental design
Besides the design of employed catalysts, reaction design
involves the identification of optimal reaction conditions, which
poses a formidable challenge due to the high dimensionality of
the reaction space. In the simplest approach, ideal reaction
conditions are identified by changing one parameter at a time
based on the chemist’s intuition. While this shows the influ-
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Figure 17: Organocatalysed synthesis of spirooxindole analogues by Kondo et al. [171] (A) Reaction scheme of dienones with allenoates to form
chiral spirooxindole analogues using a chiral amine organocatalyst. (B) Schematic depiction of the employed optimisation to identify optimal condi-
tions for flow reaction using Gaussian Process Regression. Icon ‘Flow rate’ made by Gregor Cresnar from flaticon.com. This content is not subject to
CC BY 4.0. Icon ‘Allene concentration’ made by Nadiinko from flaticon.com. This content is not subject to CC BY 4.0. Icon ‘Temperature’ made by
hirschwolf from flaticon.com. This content is not subject to CC BY 4.0. Icon ‘ML model’ made by VectorPortal from flaticon.com. This content is not
subject to CC BY 4.0.

ence of the varied parameter on the observable, interaction
effects between the parameters are significantly harder to
capture with this approach. Design of experiments (DoE) is a
more systematic approach where parameters are varied simulta-
neously to unravel their effect on the outcome [155,156]. Al-
though multiple variants of DoE are available, the number of re-
quired experiments can quickly exceed what is feasible for
most applications. Driven by optimisation problems in other
fields, like ML model parameters, more efficient optimisation
strategies have therefore been explored recently. Particularly
Bayesian optimisation is widely used for optimisation problems
where the quantity of interest is expensive to obtain, such as
quantifying the yield of a reaction. Therefore, it has found ap-
plication for the optimisation of chemical problems [157-167]
and demonstrated its effectiveness by outperforming human
optimisation strategies [168]. However, even with efficient opti-
misation algorithms, conducting experiments and analysing the
reaction outcome remains a major bottleneck. Performing
chemistry in flow provides several advantages in this regard,
as reaction parameters can be varied on-the-fly [169]. In
combination with ML optimisation strategies, this can lead
to efficient optimisation of reaction conditions as demonstrated
by Kondo et al. where they utilised Gaussian Process Regres-
sion (GPR) [170] to optimise the flow rate, the temperature
as well as the stoichiometry of the reactant for the organo-
catalysed synthesis of spirooxindole analogues [171]
(Figure 17).

In a later study the same group expanded the search space for a
Brønsted acid-catalysed cross-coupling for the synthesis of

biaryl compounds [172]. They utilised Bayesian optimisation to
explore a total of six numerical and categorical parameters.
With as little as 15 data points they were able to find optimal
conditions which yielded the desired product in 96% yield. This
showcases the application of ML-driven optimisation strategies
for efficient multi-parameter screening problems, however,
manual action is still required for experimental setup and analy-
sis. Automating these operations would significantly increase
productivity and reproducibility and is a research area of high
interest termed self-driving laboratories [173,174]. Cooper and
co-workers exemplified the opportunities of a self-driving labo-
ratory by utilising a free-roaming robot that autonomously con-
ducted and analysed 688 experiments selected by a Bayesian
optimisation algorithm [175]. Within eight days it discovered a
set of parameters that yielded a six-fold increase of activity for
the photocatalytic hydrogen evolution from water compared to
the baseline formulation. These examples show the possibilities
that ML offers for optimising experimental design in
organocatalysis. However, the use of data-driven methods to
optimise reactions is still far from routine. It is expected that the
recent surge of Large Language Models (LLMs) will support
this development and further improve accessibility and the
interaction between humans and ML-based models [176-178].
While the works presented give a glimpse of what is possible
with automated experimentation pipelines in combination with
ML, the wide adoption of such methods is limited by the high
acquisition costs of the setup, the expertise and time required to
implement and maintain the hardware in the research environ-
ment and the limited versatility of the methods to a broad range
of problems [179].
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Figure 18: Schematic depiction of required developments in order to overcome current limitations of ML for organocatalysis.

Conclusion
The tremendous potential of utilising ML tools to support
organocatalysis is clearly demonstrated in the above presented
works. Nevertheless, it remains to be seen whether these exam-
ples provide general solutions and are applicable to a wide
range of problems. In this regard, the domain of applicability
needs to be carefully analysed in order to obtain reliable and
robust predictions [180,181]. While some works exemplified
the ability of data-driven models to provide interpretable
results, their validity is far from being universally applicable. It
should be remembered that correlations in statistical models
don’t equal causation, and that hypotheses made from feature
importances need to be followed up by mechanistic studies to
avoid potentially misleading conclusions.

One common bottleneck for further improvements and the
wider application of statistical tools is the generation and avail-
ability of high-quality data [182] (Figure 18). As the bottle-
necks are prevalent throughout the sub-disciplines of homoge-
neous catalysis, we expect that developments for the applica-

tion of ML in one area will have a strong influence across the
whole domain.

The utilisation of electronic lab notebooks [183-185] and the
adoption of standardised formats for collecting and sharing data
such as the Open Reaction Database (ORD) scheme could sig-
nificantly improve the broadness of available data sets
[42,43,186-188]. Moreover, standardised protocols for per-
forming experiments, for example for probing the robustness or
the sensitivity of a reaction [189-191], as well as the selection
of the substrate scope can help to provide valuable information
in a reproducible fashion [192,193].

Further, this also requires a paradigm shift towards keeping
track of and publishing all conducted experiments, regardless of
whether the expected outcome was achieved or not. While HTE
campaigns typically yield a broader distribution of reaction
outcomes [67], unsuccessful reactivity from traditional
"benchtop" chemistry is only rarely reported. Nevertheless,
authors are beginning to include a selection of "unsuccessful



Beilstein J. Org. Chem. 2024, 20, 2280–2304.

2299

substrates" in the supporting information [194-198]. In this
context, it is necessary to highlight the importance of publishing
data in accordance with the FAIR (Findable, Accessible, Inter-
operable, Reusable) principles to allow for wide usage by the
community. Importantly, this does not only apply to experimen-
tal work, but also all results from data-driven modelling.

In terms of data set design, Bayesian optimisation bears the
potential to maximise the information gained by ML algo-
rithms without the need for extensive experimental effort. In
combination with closed-loop high-throughput experimentation,
this would allow for fast access to data that cover the problem
space adequately and thereby enable optimal modelling. Cur-
rent challenges for automation pipelines include the purifica-
tion and analysis of the reaction outcome [199], which is partic-
ularly challenging in asymmetric organocatalysis. Due to its
relevance for industrial processes however, we expect an in-
creased interest in HTE platforms specifically tailored to
organocatalysis, especially (organo-)photocatalysis [200]. In
this context, flow chemistry could provide a promising plat-
form to enable closed-loop, multi-objective optimisations and
facile scale-up of reactions [201]. With ML tools becoming
increasingly accessible for non-experts through easy-to-use
interfaces [202,203], their application is expected to gain
greater popularity and be integrated into existing routines [204].
This could involve ML-guided catalyst screening, obtaining
entries for the substrate scope through unsupervised learning or
ML-based reaction condition optimisation. This development
will be supported through the advent of LLMs and their incor-
poration into chemical workflows [176,178] which increase the
accessibility of ML tools for synthetic chemistry. While a low
entry barrier does not make the knowledge of statistics and
coding (primarily in Python) redundant, the abundance of
online tutorials and courses on ML allows also non-experts to
acquire fundamental skills and to apply such techniques to their
own problems. As statistical and coding competencies are
becoming more relevant to scientists, courses focused on these
fundamentals are being continuously integrated in chemistry
curricula at universities.

The last decade has shown the pace at which data-driven tools
can be utilised in organocatalysis and led to powerful tools that
can augment synthetic chemists. Most works have focused on
enantioselectivity as the quantity of interest. Recently, many
works have also applied ML for investigating privileged
organocatalytic systems. However, there are other objectives
that are worth considering when developing a reaction, for ex-
ample sustainability, complexity, or cost aspects. In this regard
future work might involve multi-objective optimisation schemes
and generative modelling to account for the plethora of require-
ments in reaction and process development. Moreover, recent

trends in organocatalysis, such as photocatalysis, halogen-bond-
ing, or cooperative catalysis [205], provide new synthetic op-
portunities, whose advancements are expected to be supported
through data-driven modelling.
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Abstract
Nitration of O-methylisouronium sulfate under mixed acid conditions gives O-methyl-N-nitroisourea, a key intermediate of neoni-
cotinoid insecticides with high application value. The reaction is a fast and highly exothermic process with a high mass transfer
resistance, making its control difficult and risky. In this paper, a homogeneous continuous flow microreactor system was developed
for the nitration of O-methylisouronium sulfate under high concentrations of mixed acids, with a homemade static mixer elimi-
nating the mass transfer resistance. In addition, the kinetic modeling of this reaction was performed based on the theory of NO2

+

attack, with the activation energy and pre-exponential factor determined. Finally, based on the response surface generated by the
kinetic model, the reaction was optimized with a conversion of 87.4% under a sulfuric acid mass fraction of 94%, initial reactant
concentration of 0.5 mol/L, reaction temperature of 40 °C, molar ratio of reactants at 4.4:1, and a residence time of 12.36 minutes.

2408

Introduction
The demand for high-quality insecticides is increasing as the
world’s food crisis intensifies due to the changes in the natural
environment and ongoing geopolitical crises [1]. O-Methyl-N-
nitroisourea (NIO) is a pivotal pesticide intermediate in the

preparation of nitroguanidine derivatives, which are the raw
material for highly effective and non-toxic neonicotinoid insec-
ticides, such as dinotefuran and clothianidin [2-4]. Currently,
the industrial production of O-methyl-N-nitroisourea usually
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involves the nitration of O-methylisouronium sulfate (IO) with
a mixture of sulfuric acid (H2SO4) and nitric acid (HNO3) in a
batch reactor [3]. The reaction is a typical aliphatic nitration,
which is fast and highly exothermic, requiring low reaction tem-
peratures. In addition, the safety hazard of this reaction is in-
creased by using concentrated nitric and sulfuric acids. There-
fore, it is necessary to modify the nitrification reaction process
of O-methylisouronium sulfate to improve the reaction effi-
ciency and intrinsic safety.

In recent years, continuous flow microreactors have been recog-
nized due to their excellent mass and heat transfer performance,
precise control over reaction parameters, and intrinsic safety
[5-8]. Guo et al. constructed a continuous flow microsystem for
o-xylene nitrification and proved the process safety of by the
adiabatic temperature rise of the nitrification reaction and the
characteristic heat transfer time of the microreactor [9]. The
residence time of the microreactor was reduced by an order of
magnitude and the volumetric mass transfer coefficient was in-
creased by several orders of magnitude compared with that of a
conventional stirred-tank reactor. Jin et al. developed a continu-
ous flow microreactor system for the non-homogeneous nitrifi-
cation of nitrobenzene using mixed acids [10]. The reaction
time and temperature were reduced from >2 h and 80 °C in
industrial operation to 10 min and 65 °C in the microreactor
with high conversion and selectivity. Since O-methylisouro-
nium sulfate can be dissolved in high concentrations of sulfuric
acid, it is expected to construct a homogeneous continuous flow
nitrification system, leading to better elimination of the effects
of mass and heat transfer [11].

Kinetic modeling is a classical approach to chemical reaction
optimization, where the effects of various reaction parameters
on the results are effectively quantified by mathematical
formulas, thus providing an efficient guide to optimize reaction
conditions [12]. Taylor et al. [13] and Bures et al. [14] have per-
formed kinetic modeling with data collected from continuous
flow systems with automated platforms. Yao et al. constructed a
kinetic model on thermal dissociation and oligomerization of
dicyclopentadiene (DCPD) in a continuous flow microreactor
[15]. Where cyclopentadiene was the target intermediate formed
by the thermal dissociation of dicyclopentadiene, cascade oligo-
merization was a side reaction to be avoided. Based on the deep
understanding of the kinetic differences between thermal disso-
ciation and oligomerization, the residence time and temperature
were designed rationally to improve the yield of cyclopenta-
diene. Since NO2

+ is the actual substance that plays a role in the
nitrification process [16], kinetic modeling based on the con-
centration of NO2

+ is essential for the understanding of the
nitrification mechanism and optimization of the reaction. Luo et
al. have carried out extensive research on this topic and ob-

tained accurate kinetic data for the nitration of chlorobenzene
[17], o-nitrotoluene [18], and p-nitrotoluene [19] by construct-
ing a homogeneous continuous flow reaction system. Therefore,
it is feasible to model homogeneous nitrification and optimize
the reaction in a continuous flow system based on NO2

+.

An important prerequisite for kinetic modeling is the elimina-
tion of issues related to mass and heat transfer. The effect of
mass transfer resistance is greater for highly viscous reaction
systems, especially at higher reactant concentrations. It is still
difficult to eliminate the mass transfer effect using conven-
tional microreactors, leading to errors in the determination of
nitration kinetics. Therefore, more efficient mixers are needed
to overcome the effects of mass and heat transfer. According to
the mixing principle, there are active mixers and passive
mixers. Passive mixers do not require overly complex equip-
ment and external energy inputs and are extensively used in
continuous flow reactions [20,21]. Passive mixers enhance the
passive mixing of the liquid–liquid two-phase mass transfer
process on a microscopic scale, mainly by optimizing the
microchannel geometry [22], addition of in-channel obstacles,
etc. [23-25]. Santana et al. designed an efficient fluid mixer
"Elis" consisting of internal walls and circular obstacles. This
static mixer achieves efficient mixing in a wide range of
Reynolds numbers at the micro- and milliscale. However, many
static mixer designs are structurally complex and require the use
of 3D printing technology to aid in their manufacture, which is
more expensive to use. Kilcher et al. investigated in detail the
efficient mixing of organic phases (cyclopentadiene,
1,2-dichloroethane, and MeBu3NCl) and aqueous phases (30%
NaOH) and optimized it by the use of a simple homemade
“PTFE Raschig ring static mixer” (RRSM). The RRSM is
simple in structure, easy to fabricate, inexpensive for many flow
reaction systems, and has a promising application.

In this work, we constructed a continuous flow microreactor
system to determine the kinetic parameters of IO nitration,
which allows precise control of temperature and residence time
(Figure 1). Due to the high viscosity of the reaction system, a
simple and practical static mixer was designed to eliminate the
effect of mass transfer on the kinetic measurements and vali-
dated experimentally. We developed a kinetic model for the
nitration of O-methylisouronium sulfate and optimized the
reaction conditions for conversion rates, which is crucial for
theoretical significance and practical value for process optimi-
zation.

Results and Discussion
In this section, we perform kinetic modeling for the continuous
flow synthesis of NIO from IO and mixed acid (Scheme 1). The
reaction was then optimized by kinetic modeling.
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Figure 1: The schematic diagram of the continuous flow microreactor system.

Scheme 1: Nitration of IO with mixed acid.

Prescreening experiments
The solubility of IO in H2SO4 is critical in ensuring the smooth
progression of the nitration reaction within a homogeneous
system. Given the strongly exothermic nature of this reaction,
an excessively high concentration of IO can lead to an overpro-
duction of heat, thereby elevating the associated risks. In
contrast, a concentration that is too low may fall beneath the
detection threshold, compromising the reliability of the experi-
mental data. To strike a balance, the initial concentration of IO
was set to 0.5 mol/L in the reaction mixture. In addition, the
effect of the molar ratio between the two reactants was exam-
ined. As shown in Figure S1 in Supporting Information File 1,
the conversion of IO gradually increased as the molar ratio of
HNO3 elevated. The molar ratio of HNO3 was established at
4.4 equiv, a value chosen to optimize both conversion and atom
efficiency.

Effect of two types of mixing equipment
Upon achieving homogeneous nitration conditions, our next
objective was to eliminate the influence of mass transfer. We
assessed the impact of flow rate on the reaction conversion
under two distinct mixing scenarios (Figure 2a and 2c). The
assessments were performed with reaction temperatures at

30–40 °C to eliminate the impact of the high viscosity of
sulfuric acid [26]. Figure 2a illustrates the scenario employing
solely a T-mixer and Figure 2c shows the effect of flow rate on
the conversion under this setup. Even when the flow rate was
escalated to 14 mL/min, the conversion failed to stabilize at a
plateau, suggesting that mass transfer limitations had not been
fully addressed. Conversely, with the addition of our home-
made static mixer which consists of a 1/16-inch mixing coil and
a SiO2 beads-filled column (Figure 2b), the conversion rate
plateaued once the total flow rate surpassed 8 mL/min
(Figure 2d), suggesting the elimination of mass transfer limita-
tions. The improved mixing efficiency can be attributed to the
mixer’s design features, such as its double reverse rotating
vortex [27,28], large specific surface area [29], and the incorpo-
ration of obstacles within the flow channel [30,31].

Determining reaction orders
The reaction orders for IO and HNO3 were determined in the
continuous flow microreactor system, and the results are shown
in Figure S2 of Supporting Information File 1. The initial con-
centration of HNO3 was set at a level significantly higher
(14 times greater) than that of IO. This approach allowed for the
assumption that the concentration of HNO3 remained constant
throughout the reaction, enabling the conversion of the rate con-
stant to Kβ (Equation 1). The relationship between reaction time
and the conversion of IO was analyzed according to the first-
order (Equation 2) and second-order (Equation 3) reaction
kinetics, where xIO represented the conversion of IO and t
denoted the reaction time. The outcome of these fittings is
presented in Figure 3a for first-order and Figure 3b for second-
order. Notably, the higher R2 observed in Figure 3a compared
to Figure 3b suggests that the reaction of IO follows first-order
kinetics.
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Figure 2: Two mixing setups: (a) a T-mixer and (b) a T-mixer combined with a homemade static mixer, and the effect of the two mixing setups on the
mixing process; (c) the T-mixer and (d) the T-mixer plus the homemade static mixer effect of flow rate on conversion. Reaction conditions: H2SO4
mass fractions = 98%, reaction temperature T = 40 °C, residence time t = 2 min, initial concentration of reactants cIO = 1 mol/L, cHNO3 = 4.4 mol/L.

(1)

(2)

(3)

Given that the reaction order of IO was determined to be 1,
Equation 1 was subsequently transformed into Equation 4. As
nitration reactions are predominantly second-order, we explored
the potential for the reaction order of HNO3 (β) to be either 0 or
1 by fitting the reaction data to Equation 5 and Equation 6, re-
spectively.

(4)

(5)

(6)

The fitting results, as depicted in Figure 3c for β = 0 and
Figure 3d for β = 1, revealed that R2 for the latter scenario (R2 =
0.993) was higher than that for the former (R2 = 0.986). This

outcome indicates that the reaction order of HNO3 is also 1,
which transforms Equation 4 into Equation 7.

(7)

Also, with M=cHNO30cIO0, Equation 6 can be rewritten to
Equation 8.

(8)

After the reaction order being determined, the rest of the experi-
ments were conducted in the continuous flow reactor and t in
Equation 8 refers to the residence time.

Determining the apparent reaction kinetics
The variation in the conversion of IO (xIO) as the function of
time (t) at different temperatures (30 °C, 35 °C, 40 °C) and
H2SO4 mass fractions (88%, 90%, 92%, 94%, 96%, and 98%)
is depicted in Figure S3 in Supporting Information File 1 and
subsequently modeled using Equation 8. The fitting results
shown in Figure 4 exhibit robust linear correlations (R2 > 0.99),
facilitating the calculation of rate constants based on the slopes
of these lines across the varied temperatures and H2SO4 con-
centrations. Table 1 indicates that the reaction rate constants
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Figure 3: Determination of the number of reaction orders. a) ln(1−xIO) versus t; b)  versus t; c) ln(1−xIO) versus t;

d)  versus t. Reaction conditions for determining IO’s reaction order: H2SO4 mass fractions = 98%, reaction temperature,
T = 0 °C; initial concentration of reactants in the reaction mixture: cIO0 = 1 mol/L, cHNO30 = 15 mol/L. Reaction conditions for determining HNO3’s
reaction order: reaction temperature, T = 0 °C; initial concentration of reactants in the reaction mixture: cNIO0 = 1 mol/L, cHNO30 = 4.4 mol/L.

Table 1: Values of k for different H2SO4 mass fractions and at differ-
ent temperatures.

Mass fraction of H2SO4 (wt %)
k × 102 (L/mol/s)

30 °C 35 °C 40 °C

88 2.26 2.98 4.31
90 5.51 6.91 8.40
92 7.48 10.2 12.6
94 10.3 12.3 15.1
96 9.56 10.8 11.4
98 8.13 8.70 9.37

escalate with increasing H2SO4 mass fraction, which aligns
with the findings from previous studies on mixed acid-cata-
lyzed nitration reactions [32,33]. However, the data also reveal
a decline in rate constants when the H2SO4 mass fraction

exceeds 94%, suggesting a complex interaction at higher acid
concentrations.

Determining the intrinsic reaction kinetics
Given the strong correlation between the observed HNO3-based
reaction rate constant and the H2SO4 mass fraction, intrinsic
reaction constants independent of H2SO4 concentrations were
determined to study the intrinsic kinetics of the reaction.
Previous research has established that the relationship between
the apparent and intrinsic kinetics of nitrification can be de-
scribed by Equation 9 [17,19].

(9)

where k0 is the intrinsic rate constant only based on NO2
+ and

independent of sulfuric acid concentration [34], n is a thermo-



Beilstein J. Org. Chem. 2024, 20, 2408–2420.

2413

Figure 4: Determination of (M−1)cIO0k at different temperatures and H2SO4 mass fractions. (a) 88% H2SO4, (b) 90% H2SO4, (c) 92% H2SO4,
(d) 94% H2SO4, (e) 96% H2SO4, and (f) 98% H2SO4.

dynamic parameter related to the type of compound, and Mc is
the activity coefficient function introduced in the next section.

By shifting the terms in Equation 9, Equation 10 can be ob-
tained as:

(10)

Therefore, by plotting

as the vertical coordinate and Mc as the horizontal coordinate,
the values of n and k0 can be obtained from the slope and inter-
cept of the resulting fitting line. Since the values of Mc and
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Figure 5: Variations and fitting of as a function of a) the mass fraction of H2SO4 at 23 °C, 40 °C, and 60 °C and b) 1/T at different H2SO4 concentra-
tions .

change with the change in temperature and sulfuric acid mass
fraction, we determined the values of Mc and

according to the method proposed by Luo et al. [17,19]. As the
ranges of sulfuric acid concentrations and temperature in our
study were different from Luo et al.’s study, recalculations were
required to obtain the values of Mc and

Determination of Mc values
The value of Mc can be calculated using Equation 11 and Equa-
tion 12. Equation 11 [35] was employed to predict Mc at various
H2SO4 concentrations at 298 K, specifically when the H2SO4
concentrations were between 15.2 and 18.4 mol/L. By fitting
the predicted data, Mc as a function of the H2SO4 concentration
at a given temperature was determined (Figure S4 in Support-
ing Information File 1). In addition, the values of Mc for differ-
ent sulfuric acid concentrations at a given temperature can be
obtained by substituting the corresponding temperature into
Equation 12, as first introduced by Marziano et al.

(11)

(12)

Determination of lg(cNO2+/cHNO3) values
Since NO2

+ is the actual reactive species in the nitration reac-
tion, an accurate estimation of its concentration is essential for

the study of intrinsic kinetics. Based on the values of , re-
ported in previous studies for different temperatures and
sulfuric acid concentrations [36-38], the mass fraction of
sulfuric acid was plotted against

The fitting results shown in Figure 5a exhibit robust linear
correlations, enabling the calculation of

at temperatures of 23 °C, 40 °C, and 60 °C. Subsequently, by
plotting

versus 1/T, a series of fitted curves for the studied range of
sulfuric acid concentrations (88–98 wt %) can be obtained, as
shown in Figure 5b. Thus, the values of
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Figure 6: Determination of thermodynamic parameters n and k0 and determination of the activation energy and pre-exponential factors.

at different sulfuric acid concentrations and temperatures can be
determined.

Determination of intrinsic kinetic parameters
With

and Mc at different conditions determined in Figure 5,

was plotted against Mc at different temperatures (Figure 6a–c),
and fitting these data into Equation 10 leads to (R2 > 0.99). The
values of k0 and n at different temperatures are shown in
Table 2. The value of k0 increases with increasing temperature
and the value of n remains almost constant with temperature,
which is consistent with the results reported in previous
studies for other mixed acid-catalyzed nitration reactions
[17,39].

Table 2: Values of n and lgk0 at different temperatures.

Temperature (°C) n lgk0

30 1.0764 11.3749
35 1.1127 11.8556
40 1.1577 12.4352

According to the values of k0 at different temperatures, the acti-
vation energy for the electrophilic attack of NO2

+ on the IO can
be calculated by the Arrhenius equation:

(13)

where R is the molar gas constant and T denotes the tempera-
ture in Kelvin, and Ea and A are the activation energy and pre-
exponential factors for the IO nitration.

By fitting lnk0 versus 1/T into Equation 13 (Figure 6d), the
values of Ea and lnA were determined (Table 3).
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Table 3: Values of the pre-exponential factor and activation energy.

Factors Ea (kJ/mol) lnA

values 192.57 102.55

The synergic effect of temperature and
sulfuric acid concentration on the apparent
kinetics
As discussed above, the apparent rate constant is determined by
three components,

nMc, and lgk0. First, the intrinsic rate constant k0 is only tem-
perature-dependent and is not affected by the concentration of
sulfuric acid (Equation 9). In addition, Figure 5b shows that

increases with the increase in sulfuric acid concentration when
the temperature is fixed. In contrast, nMc is a negative value
that decreases with higher sulfuric acid concentration (Table S1
in Supporting Information File 1). As the concentration of
sulfuric acid increases, the decrease in nMc gradually surpassed
the increase in

when the sulfuric acid concentration exceeded 94%, resulting in
an overall decrease of k (Figure 7a). Similar trends were re-
ported in the nitration of nitrobenzene [40] and o-nitrotoluene
[18], suggesting that the phenomenon observed in our study is
not isolated.

Validation, extrapolation, and optimization
To validate the kinetic model and assess its ability to extrapo-
late, we conducted 18 experiments varying three residence
times, three reaction temperatures, and two sulfuric acid con-
centrations. We then compared the theoretical and experimental
values of conversion rates under these conditions (Figure 7b
and Table S2 in Supporting Information File 1). Notably, 16 of
these experiments were performed with a residence time
exceeding the upper limit of the model construction, 4.7 min.
The results revealed a strong alignment between the predicted
and experimental conversion rates, with an average discrep-
ancy of less than 2%. The smallest error was observed with a
98% sulfuric acid concentration at 35 °C and a residence time

of 8.0 min, where the theoretical and experimental values nearly
matched. Conversely, the largest error was at 94% sulfuric acid
concentration, 40 °C, and a residence time of 9.3 min, with the-
oretical and experimental values of 90% and 86%, respectively.
Increasing the residence time to 12.36 min amplified the error
to approximately 8% (Figure 7c). A similar increase in error
with prolonged residence time was noted in Kappe et al.’s
kinetic modeling of the Buchwald–Hartwig amination reaction
[41], where the theoretical and experimental values diverged by
4.1% when the residence time increased from 0.5 min to
4.2 min.

Building on the model’s demonstrated ability to extrapolate at
prolonged residence times, we performed additional experi-
ments with the reaction temperature increased to 45 °C
(Figure 7c and Table S3 in Supporting Information File 1). This
temperature exceeds the highest temperature used during the
initial development of the kinetic model, which was 40 °C. This
further extrapolation led to a 10% error at a residence time of
13.7 min, inferring that it would be prudent to avoid increasing
the temperature to 45 °C if the aim is to maintain the discrep-
ancy between the model predicted and experimental conversion
rates below 10%.

Based on the observations above, the optimized reaction condi-
tions were obtained: the sulfuric acid mass fraction was 94%,
the initial concentration of IO was 0.5 mol/L, the reaction tem-
perature was 40 °C, the molar ratio was 4.4:1, and the reaction
time was 12.36 min. Under these conditions, the experimental-
ly measured conversion was 87.4%.

This study marks the first time that the intrinsic kinetics of this
reaction have been reported and utilized to optimize the process
of nitration of O-methylisouronium sulfate within a continuous
flow device. The highly exothermic nature of nitration makes
the conversion from batch to continuous flow significantly
safer. Additionally, the optimization model demonstrates excel-
lent scalability and can accurately predict reaction conversions,
with errors not exceeding 4%, for residence times beyond the
modeling range (extending from the initial 1–5 minutes to
5–12 minutes in validation experiments). Compared to the orig-
inal patent [2], the reaction time has been significantly reduced
from tens of minutes to hours to less than 20 minutes while
maintaining a lower sulfuric acid mass fraction and achieving
higher conversion rates. Furthermore, the process does not
require low temperatures, thereby reducing energy consump-
tion and simplifying operation.

Conclusion
In this work, a homogeneous nitration system for the synthesis
of O-methyl-N-nitroisourea was constructed. To eliminate the
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Figure 7: a) The value of apparent rate constant k at various H2SO4 mass fractions and different temperatures. b) Validation of reaction kinetic
models with different mass fractions of sulfuric acid (from top to bottom: the theoretical response surfaces and experimental values are shown for
sulfuric acid mass fractions of 94% and 98%, respectively). c) Response surface of the kinetic model under optimized conditions and experimental
results. The red dots show the experimental values for a sulfuric acid mass fraction of 94% and the black dots show the experimental values for a
sulfuric acid mass fraction of 98%.

mass transfer resistance between the two liquid phases during
the reaction, a homemade simple and effective static mixer was
used which rapidly achieved thorough mixing of the two phases
with little temperature fluctuation. The effects of temperature,
residence time, and sulfuric acid mass fraction on the reaction
were investigated as well as the apparent and intrinsic rate con-
stants based on nitric acid and NO2

+ observations were ob-
tained, respectively. The apparent rate constants observed based
on nitric acid are highly correlated with the mass fraction of
sulfuric acid, increasing and then decreasing as the mass frac-
tion of sulfuric acid increases, with 94% sulfuric acid being the
turning point. This is the result of a combination of the intrinsic
rate constant, the sulfuric acid activity coefficient function, and
the NO2

+ concentration. Thus, the effect of different sulfuric
acid mass fractions and temperatures on the apparent rate con-
stants can be understood. In addition, a complete kinetic model
of IO nitration based on NO2

+ was developed to describe the
reaction process, the activation energy of the IO nitration was
calculated to be 192.57 kJ/mol. Furthermore, the accuracy of

the kinetic model was verified by comparing the predicted data
with the experimental data. Finally, the reaction was optimized
by kinetic modeling and 87.4% conversion of IO was achieved
under optimum conditions. This kinetic model can be used to
understand the nitration process of IO and optimize the reactor
design, which can serve as guidance for industrial production.

Experimental
Materials and methods
Chemicals
O-Methylisouronium sulfate (IO, 95%) was purchased from
Shanghai Yien Chemical Technology Co., Ltd; fuming nitric
acid (HNO3, 98.0%) was purchased from Sinopharm Chemical
Reagent Co., Ltd.; sulfuric acid (H2SO4, 98.0%) was purchased
from Sinopharm Chemical Reagent Co., Ltd.; pure water from
AR, Hangzhou Wahaha Group Co., Ltd.; all reagents were used
without further purification. Sulfuric acid solutions of different
mass fractions were prepared with pure water and 98% concen-
trated sulfuric acid in an ice bath with stirring.
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Solution A (IO): IO (0.1 mol, 24.64 g) was dissolved in H2SO4
(100 mL) under stirring conditions in an ice bath, solution
volume VA = 118 mL.

Solution B (H2SO4 + HNO3): HNO3 (0.44 mol, 18.49 mL) was
dissolved in H2SO4 (100 mL) under stirring conditions in an ice
bath, solution volume VB = 112 mL.

Continuous flow microreactor system
The continuous flow microreactor system is shown in Figure 1.
Solutions A and B were stored in two glass vials (500 mL) with
lids and were preheated by two high-pressure PTFE pumps
(pump A, pump B, JJRZ-10004F, Hangzhou JingJin Technolo-
gy Co., Ltd.) and pumped into coiled stainless steel capillary
tubes (SS316L, 1/16-inch diameter) that were sufficiently long
(1 m). After being preheated to reaction temperature, the mate-
rial was first initially mixed in a T-mixer (SS316L, 1/16-inch
diameter), followed by a homemade static mixer at the outlet of
the T-mixer to fully mix the material. The reaction coil
(SS316L, 1/8-inch diameter) was connected directly to the
outlet of the homemade static mixer, nitration took place in the
reaction coil. The residence time was precisely controlled by
changing the flow rate of the reaction mixture or the length of
the reaction coil. All preheat tubes, mixers, and reaction coils
were immersed in the same water bath to maintain a constant
temperature. Finally, after controlling the residence time, the
reaction was terminated by pumping excess pure ice water
through a high-pressure PTFE pump (Pump C, JJRZ-10004F,
Hangzhou Jingjin Technology Co., Ltd.) into the second
T-mixer.

The homemade static mixer consisted of two different mixing
units as shown in Figure 2b (total internal volume: 1.3154 mL).
The first mixing unit consists of a section of stainless steel coil
(SS316L, 1/16-inch diameter, Beijing Xiongchuan Technology
Co. Ltd.) and an electronic thermometer (Beijing Xiongchuan
Technology Co. Ltd.). The second mixing unit consisted of a
section of PTFE piping filled with SiO2 beads (SiO2 beads,
3 mm diameter; piping, 1/4-inch diameter,10 cm length, Wuxi
Hongxin Special Material Technology Co.) and an electronic
thermometer connected to the outlet.

Sample analysis
When the continuous flow system was operated at steady state
(after 2–3 times the residence time), the reaction solution was
quenched and diluted by a large amount of ice water at the
outlet of the reaction system. The quenched and diluted reac-
tion solution was collected and analyzed by high-performance
liquid chromatography (HPLC, ThermoFisher Ulcel3000), and
the conversion of the samples was derived from the external
standard method based on the regression equation of the HPLC

standard curve. HPLC detection conditions: C18 column
(10 μm, 4.6 × 250 mm, Welch Materials Shanghai, China), the
mobile phase was 80% MeOH and 20% ultrapure water at a
flow rate of 1 mL/min, and the detection wavelength was
195 nm. The conversion of IO was calculated by the following
equation:

(14)

The residence time was calculated as follows:

(15)

where t is the reaction residence time and V is the volume of the
microchannel. QIO and QHNO3 are the volume flow rates of the
raw material aqueous solution, respectively. Samples were
tested three times under the same conditions and averaged to
minimize errors.

Kinetic modeling optimization process
The classical integral method was employed to determine the
reaction order [42]. Various integral forms of kinetic equations
corresponding to different reaction orders were fitted against the
experimental data. The reaction orders yielding the highest R2

were selected as the best fit. Subsequently, the least squares
method was used to fit the kinetic data obtained under different
reaction conditions, allowing for the determination of the pre-
exponential factors and activation energies. Finally, the accu-
racy of the resulting kinetic model was validated through exper-
imental testing.
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Abstract
This review surveys the recent advances and challenges in predicting and optimizing reaction conditions using machine learning
techniques. The paper emphasizes the importance of acquiring and processing large and diverse datasets of chemical reactions, and
the use of both global and local models to guide the design of synthetic processes. Global models exploit the information from
comprehensive databases to suggest general reaction conditions for new reactions, while local models fine-tune the specific param-
eters for a given reaction family to improve yield and selectivity. The paper also identifies the current limitations and opportunities
in this field, such as the data quality and availability, and the integration of high-throughput experimentation. The paper demon-
strates how the combination of chemical engineering, data science, and ML algorithms can enhance the efficiency and effective-
ness of reaction conditions design, and enable novel discoveries in synthetic chemistry.
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Introduction
Machine learning (ML) techniques have been widely applied to
various chemical-related tasks, such as computer-aided synthe-
sis planning (CASP) [1-4], which can recommend possible syn-
thetic routes for a target molecule and potentially improve the
efficiency of developing new synthetic pathways. Many studies
have shown that ML-based retrosynthesis models can repro-
duce patent-derived pathways for known compounds, and even

suggest more diverse and efficient alternatives [5-8]. Building
upon the retrosynthesis, the reaction conditions prediction
models can help in identifying appropriate conditions for each
step, ensuring compatibility with the platform and addressing
safety concerns. On the other aspect, forward reaction predic-
tion normally plays the role of validating the feasibility of a
reaction pathway predicted by retrosynthetic models and to
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further enhance reaction yields by optimizing reaction parame-
ters such as temperature, pressure, and solvent choice, thus it
polishes and trims the suggested routes. As a result, CASP tools
have attracted commercial interest and stimulated the develop-
ment of integrated robotic platforms for automated flow synthe-
sis [9-11].

However, as Coley et al. [12] pointed out, there are still chal-
lenges to achieve a fully automated and self-driving synthesis
process. One of the key challenges is to automatically select
appropriate reaction conditions for each synthesis step without
human intervention. Conventionally, the common strategy to
determine suitable reaction conditions is to adopt the previ-
ously reported conditions for the same or similar reaction types
and conduct several experimental trials to evaluate the resulting
reaction yields. However, this empirical approach is unlikely to
find the optimal conditions, since the reaction outcome depends
on a large and complex combination of factors, such as cata-
lysts, solvents, substrate concentrations, and temperature. In
academia, especially, the "one factor at a time" (OFAT) ap-
proach, which involves changing one factor while keeping the
others constant, is frequently used to examine the effect of indi-
vidual reaction parameters [13]. However, the OFAT method is
simplistic and may fail to identify the optimal reaction condi-
tions, since it ignores the possible interactions among the exper-
imental factors.

With the rapid development of high-throughput experimenta-
tion (HTE) techniques and ML, it has become more feasible to
collect large volumes of data and accelerate the prediction of
optimal reaction condition combinations. It has been widely
demonstrated that ML algorithms can be used for various chem-
istry-related tasks, such as yield prediction [14,15], site-selec-
tivity prediction [16,17], reaction conditions recommendation
[18], and reaction conditions optimization [13]. These tech-
niques have also been integrated with robotic platforms to speed
up the discovery and synthesis of new materials and drug candi-
dates, showcasing the potential and promising benefits of self-
driving chemistry labs [19].

Raghavan et al. [20] compared two types of reaction condition
models based on their scope of applicability and dataset size:
global and local models. The global models cover a wide range
of reaction types and typically predict the experimental condi-
tions based on a predefined list derived from literature data.
However, this method requires sufficient and diverse reaction
data for training, so that the models can have broader applica-
bility and usefulness for CASP in autonomous robotic plat-
forms [12,21]. On the other hand, the local models focus on a
single reaction type. Generally, more fine-grained levels of ex-
perimental conditions, such as substrate concentrations, bases,

and additives, are considered in local models. The development
of these models usually involves using HTE [22-24] for effi-
cient data collection, coupled with Bayesian optimization (BO)
[25] for searching the best reaction conditions to achieve the
desired reaction outcomes.

In this review, we delve into the various methodologies used for
predicting and optimizing reaction conditions, and illustrate
their diverse applications across different chemical domains.
Given the importance of data collection for building data-driven
models, we review different aspects of the dataset features and
data preprocessing methods. Moreover, we introduce common
algorithms and representative studies for developing both global
and local models. We highlight representative studies that
demonstrate the effectiveness and applicability of these algo-
rithms in real-world chemical scenarios. Finally, we summarize
the progress in this field and underline the remaining chal-
lenges in the area of reaction condition design.

Review
Reaction data collection and preprocessing
One of the major challenges in building ML models for global
reaction conditions prediction is the data scarcity and diversity,
as they need to cover a vast reaction space [26,27]. However,
collecting data relevant to chemical reactions represents a sig-
nificant challenge. While specific molecular properties can be
precisely computed using existing simulation methods like
quantum chemical calculations – allowing for the generation of
extensive data through large-scale simulations – chemical reac-
tions pose a much greater difficulty for accurate simulation. The
development of systematic theoretical calculations to model
correlations between reaction yields and various substrates and
catalysts requires extensive effort. This involves complex pa-
rameter optimization, meticulous validation against experimen-
tal data, and careful consideration of diverse reaction condi-
tions and possible reaction mechanisms [28,29]. Although some
studies employ transition-state (TS) theory to simulate activa-
tion energies and compute reaction enthalpy for particular types
of reactions [30], this approach often demands significant
computational resources to determine accurate TSs and activa-
tion energies. The complexity increases further when consid-
ering the impacts of solvents and catalysts, which means that
large-scale theoretical calculations are typically restricted to
gas-phase reactions [31]. Despite these challenges, recent
advances in quantum chemical methods have shown that theo-
retical calculations can provide practical guidance for vali-
dating experimental results [32]. Thus, we posit that the role of
theoretical calculations in generating data for ML applications
will grow increasingly critical. At present, employing theoreti-
cal calculations systematically to construct accurate, large-scale
databases of reaction conditions remains highly challenging for
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Table 1: Summary of large-scale chemical reaction databases.

Database Reference No. of the reactions Availability

Reaxys [34] ≈65 millions proprietary
ORD [36] ≈1.7 million reactions from USPTO [37] and ≈91k reactions

from the chemical community
open access

Scifindern [38] ≈150 millions proprietary
Pistachio [39] ≈13 millions proprietary
Spresi [40] ≈4.6 millions proprietary

complex reaction systems, leading to a primary reliance on ex-
perimental data for building ML models.

Overview of data sources for chemical reaction
modeling
Table 1 summarizes some of the commonly used chemical reac-
tion databases and their characteristics. These databases differ
in the types and sources of reactions they contain [33], as well
as in the formats used for data recording. Predominantly, these
databases rely on experimental chemical data; however, most
are proprietary and require subscription-based access. This
restricts the availability and comparability of data essential for
developing global reaction conditions prediction models and
often leads to duplicated efforts in data collection. For instance,
Gao et al. [18] trained a reaction conditions recommender on
about 10 million reactions from Reaxys [34], but subsequent
studies could not access or use the same data for model evalua-
tion or improvement [35]. To address this issue, Coley et al.
proposed the Open Reaction Database (ORD) [36], an open-
source initiative to collect and standardize chemical synthesis
data from various literature sources. The ORD allows chemists
to upload reaction data associated with their publications, and
aims to serve as a benchmark for ML development. However,
the ORD is still in its infancy and contains mostly literature-
extracted USPTO data [37], with only a small fraction of manu-
ally curated data. Therefore, there is a need for more commu-
nity involvement and data contribution to make the ORD a
comprehensive and reliable resource for global reaction
modeling.

Local reaction datasets, on the other hand, usually focus on a
specific reaction family and record reactions with relatively less
structural variation in reactants and products. Various combina-
tions of reaction conditions are tested to investigate the output
yields in these reaction-specific datasets, which are typically
obtained from HTE [41]. Some representative datasets are sum-
marized in Table 2 and can be retrieved from the original papers
or ORD. Local reaction datasets have several advantages over
global datasets, despite containing less than 10k reactions. For
instance, HTE data include failed experiments with zero yields,

which are often omitted in large-scale commercial databases
that only extract the most successful conditions per reference, as
discussed by Chen et al. [42]. This selection bias can lead to
overestimation of reaction yields by ML models and limit their
generalization capabilities [43]. Therefore, many studies have
called for more comprehensive documentation of all experimen-
tal results and submission of data in machine-readable formats
[44-46]. Another potential issue with data from various sources
is the discrepancy in yield definition, as pointed out by Mercado
et al. [47]. Literature-extracted yields can be derived from dif-
ferent methods, such as crude yield, isolated yield, quantitative
NMR, and liquid chromatography area percentage, and they can
also vary in precision due to human bias or equipment quality.
HTE data for specific reactions, however, are usually measured
using more standardized procedures and are less affected by this
issue. In summary, while global models have the appealing fea-
ture of wider applicability, local models offer a more practical
fit for optimizing real chemical reaction conditions [20]. The
choice of datasets depends on the application scenario, whether
it is to establish a comprehensive CASP system or to focus on
specific reaction types.

Besides the existing datasets, alternative approaches for con-
structing reaction data through automatic literature mining have
also been proposed. These approaches leverage the rapid
advancement of natural language processing (NLP) techniques
to extract experimental data from unstructured text. For exam-
ple, Vaucher et al. [69] combined rule-based models and deep-
learning techniques to convert experimental procedures into
standardized synthetic steps. They further used this data extrac-
tion technique to construct a dataset of ≈693k reactions with
detailed procedures and developed a sequence-to-sequence
model to predict synthetic steps that are actionable and compati-
ble with robotic platforms [70]. Guo et al. [71] conducted a
continual pretraining scheme on the BERT model [72] to obtain
a domain-adaptive encoder, ChemBERT, which was pretrained
on an unlabeled corpus of ≈200k chemical journal articles. They
then finetuned ChemBERT on a small annotated dataset for
reaction role labeling, resulting in ChemRxnBERT, which can
identify the reaction transformation and distinguish reactants,



Beilstein J. Org. Chem. 2024, 20, 2476–2492.

2479

Table 2: Summary of chemical reaction yield datasets obtained from HTE.

Dataset Reference No. of reactions

Buchwald–Hartwig (1) [48] 4,608
Buchwald–Hartwig (2) [49] 288
Buchwald–Hartwig (3) [50] 750
Pd-catalyzed cross-coupling [49] 1,536
Suzuki–Miyaura coupling (1) [51] 5,760
Suzuki–Miyaura coupling (2) [52] 384
Suzuki–Miyaura coupling (3) [53] 534
electroreductive coupling of alkenyl and benzyl halides [54] 27
Mizoroki–Heck reaction [55] 384
coupling of α-carboxyl sp3-carbons with aryl halides [56] 24
Biginelli condensation [57] 48
deoxyfluorination [58] 80
coupling reactions [59] 264
synthesis of sulfonamide [60] 39
Ni-catalyzed Suzuki–Miyaura [61] 450
Mitsunobu reaction [62] 40
Ni-catalyzed borylation [63] 1,296
amide coupling (1) [64] 1,280
amide coupling (2) [65] 960
Pd-catalysed C–H arylation [65] 1,536
Ni-catalyzed C–O coupling [66] 2,003
Ir(I)-catalyzed O–H bond insertion [67] 653
Pd-catalyzed C–N coupling [68] 767

catalysts, solvents, and reagents from chemistry passages. How-
ever, many chemical literature records depict reactions using
diagrams, which can have various formats such as single-line,
multiple-line, tree, and graph representations. Extracting data
from reaction diagrams requires the use of image recognition to
parse molecular structures and convert them into textual repre-
sentations. Qian et al. [73,74] demonstrated that this task of
optical chemical structure recognition (OCSR) [75] can be
handled with a model that combines an image encoder and a
molecular graph decoder. Despite the promising machine-
learning solutions for reaction diagram parsing [76,77], there
are still some limitations. For instance, sometimes the reaction
conditions are listed in tables, and certain functional groups in
images are represented by abbreviations (e.g., R-groups). To
achieve more complete data extraction, future efforts will need
to employ multi-modal modeling approaches [78-80] that can
collect information from different sources and provide robust
results. Recently, Fan et al. developed the OpenChemIE toolkit
[81], which integrates extraction methods from text, images,
and tables, automating the capture of experimental records of
chemical reactions from chemical synthesis papers. This devel-
opment demonstrates significant advancements in streamlining
the data extraction process for chemical research.

Implicit data issues and data preprocessing tools
The quality of training data is a crucial factor for the robustness
of ML models in chemistry. However, chemical reaction data
may contain errors or incompleteness, which can adversely
affect the model performance and reliability. The common
errors in reaction data can be roughly categorized into two
types: (1) erroneous reactions, such as those with mislabeled,
missing, or extra atoms in reactants or products, and (2) incom-
plete reactions, such as those with missing reactants, which are
often due to insufficient documentation of the involved species.
Erroneous reactions usually require the removal of the corre-
sponding entries from the dataset, as it is hard to determine
whether the recorded reactants or products are correct and
consistent. Incomplete reactions could be mitigated by using
heuristic methods to complete the missing species. In this
section, we explain the details of data collection and prepro-
cessing, and we present a schematic representation of the work-
flow in Figure 1.

One approach to remove erroneous reactions is based on the
concept of “catastrophic forgetting”, which refers to the
model’s tendency to forget previously learned events during the
training process. Toniato et al. [83] proposed to use this idea as
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Figure 1: Schematic diagram illustrating the data mining and preprocessing steps for chemical reaction datasets. This process includes data collec-
tion, filtering, completion, and atom mapping. In the depicted example, formaldehyde, which contributes a carbon atom to the product, is classified as
a reactant due to its active involvement in the reaction. It is also noteworthy that while reaction conditions are ideally encoded in the simplified molecu-
lar-input line-entry system (SMILES) to aid in text-based model predictions [82], certain reagents and catalysts, especially those comprising specific
mixtures, cannot be represented in SMILES and are instead described using textual labels.

a criterion to filter out the reactions that are more difficult for
the model to learn, assuming that they are more likely to contain
errors. However, this protocol depends on the choice of the
model and does not require any chemistry-informed knowledge
for preprocessing.

For dealing with incomplete reactions, the first step is to iden-
tify the missing component, which can be facilitated by atom-
mapping packages [84-87] that assign a unique label to each
atom in the reactants and products. With the atom-mapping
information, one can apply the rule-based method, CGRTools
[88], to add small molecules (e.g., H2O and HCl) in reactions,
but this method is limited by the availability and coverage of
predefined reaction rules. Alternatively, language models have
been developed to predict the missing part of molecules given a
partial reaction equation, as reported in the work of Zipoli et al.
[89] and Zhang et al. [90]. These ML-based approaches can

balance reactions without exhaustive rule definition, but they
may not be able to recover complex molecules. A promising
data preprocessing strategy that addresses this issue is proposed
by Phan et al. [91], who formulated the omission of molecules
as a maximum common subgraph (MCS) problem and aligned
reactants and products to identify non-overlapping segments,
thereby generating the missing compounds. Another novel
method is AutoTemplate [92], which extracts generic reaction
templates from the reactions being preprocessed and recur-
sively applies them on the products of the dataset to validate
and correct reaction data. This approach can not only fill in
missing reactants, but also fix atom-mapping errors and remove
incorrect data entries, thus improving the quality of chemical
reaction datasets.

Although many data preprocessing tools have been proposed,
we believe more research in this direction can be beneficial to
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Figure 2: A comparison of three types of reaction embedding methods: (A) descriptor-based, which use predefined features from reactants and prod-
ucts, (B) graph-based, which use neural networks to learn features from molecular graphs, and (C) text-based, which use natural language process-
ing to learn features from reaction SMILES. These methods vary in their computational efficiency, data requirements, and feature interpretability.

the performance and reliability of machine learning models.
Ideally, a unified standard data processing workflow should be
established in the future to benefit various reaction prediction
and synthesis tasks.

Reaction representations for reaction
modeling
The choice of featurization strategy for chemical reactions is
crucial for building predictive models for reaction conditions.
Compared to the extensive research on molecular representa-
tion learning, the development of reaction encoding methods is
relatively less explored [93]. Most of the existing methods were
originally designed for predicting reaction properties (such as
activation energy, reaction enthalpy, etc.) or classifying reac-
tions, but they can be potentially adapted for reaction condi-

tions prediction by modifying the output layer of the model.
Both global reaction conditions prediction and local reaction
optimization, which use the structures of reactants and products
as inputs to predict their corresponding targets, require suitable
choices of reaction featurization. The common methods can be
categorized into three types: (1) descriptor-based, (2) graph-
based, and (3) text-based featurization, as shown in Figure 2.
Descriptor-based methods are often used for datasets with
limited samples, since they incorporate chemistry- or physics-
informed features that can enhance the model's ability to fit the
data. Graph-based and text-based methods rely on deep-learning
architectures that can learn latent patterns from the reactants and
products, but they require sufficient data to train both the fea-
ture extractor and the neural network. These methods also
reduce the need for manual feature selection by chemists.
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Descriptor-based representation
Descriptor-based methods are often used for datasets with
limited samples, since they incorporate features that are
informed by chemistry or physics and that can enhance the
model's ability to fit the data [94]. Molecular-level descriptors
of reactants and products are concatenated to obtain reaction-
level descriptors, which can be computed by various methods
[95]. These include substructure keys-based [96-100], circular
[101-103], physicochemical [104-107], and quantum mechani-
cal (QM) features [108-112]. The choice of descriptors depends
on the size and scope of the dataset. For large-scale global
models, descriptors with longer feature lengths and higher
computational efficiency, such as the first four methods, are
preferred. However, for small-scale local models, QM features
can offer more compact and accurate information, but they
require sampling and optimizing the 3D conformers of mole-
cules using density functional theory (DFT) calculations, which
are computationally expensive and time-consuming [62]. To
overcome this challenge, some studies have proposed to pre-
generate QM properties datasets and train ML models to serve
as fast feature generators for new molecules [16]. However, this
approach requires careful validation of the training data cover-
age and the extrapolation ability of the surrogate models.

Reaction-level descriptors based on DFT calculations of the TS
structures of chemical reactions can provide valuable insights
for predicting rate constants [113-117], regioselectivity, and
site-selectivity [16,17,118-120]. However, this approach is also
computationally demanding and requires a good initial guess of
the TS structure. Moreover, it may face difficulties in simu-
lating some classes of reactions and large-size molecules [121],
and the solvent effects may complicate the results [122]. There-
fore, reaction-level DFT-based descriptors are not widely used
for reaction featurization. A more popular alternative is the
differential reaction fingerprint (DRFP) developed by Probst et
al. [123], which converts a reaction SMILES sequence into a
binary fingerprint by comparing the symmetric difference of
two sets of circular molecular substructures. The DRFP finger-
print can be seen as the reaction version of the ECFP molecular
fingerprint [103]. Due to its fast computation and compatibility
with conventional ML models, it has been widely used or
benchmarked in various reaction-related tasks [124-128], and
has become one of the mainstream reaction-level featurization
techniques.

Graph-based representation
Graph neural networks (GNNs) have been widely applied to
various chemical tasks, such as predicting molecular properties
[129-133], reaction product prediction [134-136], and inverse
materials design [137-139]. Chemical molecules can be natu-
rally represented as undirected graphs, where nodes and edges

encode atomic and bond information, respectively. GNNs
update and aggregate the hidden features of nodes and edges
through recursive message passing and a readout function, re-
sulting in a molecular representation. There are many variants
of GNN models [140-143], most of which are based on the
message passing neural network (MPNN) framework proposed
by Gilmer et al. [144].

Encoding reactions as graph representations is more chal-
lenging than encoding molecular structures, as reactions involve
multiple disconnected molecular graphs and complex interac-
tions. Graph-based reaction representations can be divided into
two categories: AAM-exempted and AAM-required methods.
Atom-to-atom mapping (AAM) is a process that establishes the
correspondence between atoms before and after a reaction,
reflecting the reaction mechanism.

AAM-exempted methods [145-150] apply graph convolutions
to each reactant and product molecule separately, and then use a
pooling function or attention layers to obtain a reaction finger-
print. These methods are scalable and compatible with conven-
tional GNN models, requiring minimal modifications. AAM-re-
quired methods [151-153] assign labels to each atom and adapt
the algorithms accordingly. Grambow et al. [151] and Yarish et
al. [153] both subtract the hidden node vectors of the reactants
from those of the products, and use the resulting differential
atomic fingerprints to generate reaction representations. Heid et
al. [152] developed a more general AAM-required reaction
encoding method that operates graph convolutions on the
condensed graph of reaction (CGR) [154,155]. The CGR is the
superposition of reactant and product graphs, where nodes and
edges can incorporate features from both sides of the reaction,
as shown in Figure 2B. This method can also handle imbal-
anced reactions by imputing or zeroing the missing nodes.

The AAM procedure can provide valuable chemical insights
into graph-based reaction encoding, as it reveals how the reac-
tion center atoms influence the bond breaking and formation.
However, obtaining accurate AAM for reactions can be diffi-
cult and depends on the complexity of the reaction types, as
shown by Lin et al. [156]. Moreover, it is unclear whether AAM
significantly improves the accuracy of reaction modeling. The
AAM-required methods are usually tested on specific reaction
types, where the reaction transformations and AAM are clear
and correct. However, most large-scale reaction datasets do not
have AAM information, and thus require the use of high-accu-
racy and automated AAM tools [84-87]. These tools may still
introduce errors and affect the prediction of new reactions.
Therefore, although GNN models are popular and successful for
tasks at the molecule level, their effectiveness in reaction-level
applications can still be enhanced.
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Text-based representation
Recent years have witnessed the emergence of large language
models (LLMs) [157-159], such as ChatGPT, that learn the
statistical and semantic patterns of language through extensive
self-supervised training. These models have broad applicability
and robust learning capabilities, and thus have attracted the
interest of the chemistry domain to tackle relevant problems.
One common way to represent chemical molecular structures in
chemical databases is the SMILES notation [160], which is a
text-based expression with specific grammar rules and can be
tokenized as input for language models.

Many studies have adopted the BERT model architecture and
the masked language modeling (MLM) method to pretrain on
millions of molecular SMILES and finetune on small-sample
molecular property datasets [161-164]. For reaction-level
prediction tasks, the textual input for pretraining can be changed
to reaction SMILES, as shown in Figure 2C. Schwaller et al.
[165] first demonstrated this idea and showed that pretraining in
this way significantly improved reaction classification accuracy
and could automatically generate AAM for reactants and prod-
ucts by analyzing the attention weights of each token in the
reaction sequence.

The key to effective language modeling and its powerful
reasoning abilities is the size of the pretraining data [166].
However, unlike molecular SMILES, which can be generated
from existing databases (e.g., GDB-13 [167]) or by methods
that produce reasonable structures [168], reaction SMILES data
are often limited by the availability of experimental databases.
Therefore, various data augmentation methods [169-171] have
been proposed to increase the data size. These methods mainly
involve changing the order of SMILES without affecting their
molecular structures or modifying specific functional groups in
coupling reactions with chemistry-informed reaction templates.
Despite the need for large amounts of data to train base models,
the main advantage of text-based reaction representation is that
it can be easily applied to different downstream tasks by fine-
tuning on small-sample data [172,173], without the need for
tedious chemistry-informed feature generation and selection
beforehand.

Reaction conditions design
In this section, we discuss the practical applications of different
methods for featurizing reactions in predicting and optimizing
reaction conditions. The design of reaction conditions depends
on the availability of data and the specific application scenario.
For example, if the aim is to predict the reaction conditions for
each step in a synthesis pathway as part of an ML-aided CASP
system, global models that can handle diverse reactions need to
be built using large-scale reaction datasets. These models can

then provide a range of general reaction conditions for chemists
to select from. Alternatively, if the aim is to optimize the yield
and selectivity of a specific reaction, more fine-grained
variations of reaction conditions need to be explored. For
this purpose, local models that are tailored for specific
reaction families need to be trained to provide more focused
guidance.

Global models for direct reaction conditions
predictions
A common approach for chemists to develop novel reactions is
to reference similar chemical reactions using reaction similarity
search [174,175] and adopt the reaction conditions used in the
literature. ML can leverage the large-scale reaction databases to
build global models that can predict reaction conditions for
diverse and novel chemical reactions, providing initial guid-
ance for chemists.

Most of the existing research on global reaction conditions
models involves predicting the reagents used in the dataset as
labels, along with the reaction temperatures, using multi-class
or multi-label classification methods [176]. This is a conve-
nient way to represent the prediction targets, as some additives,
such as molecular sieves and zeolites, cannot be represented by
SMILES notation. However, the labels in the datasets may have
some inconsistencies, such as different names for the same
chemical, which may affect the learning and performance of the
models. Therefore, a preprocessing step to standardize the
labels and reduce redundancy is also essential.

Gao et al. [18] developed a large-scale model for predicting
reaction conditions, using a deep learning approach trained on
the Reaxys database. Their model could sequentially predict the
catalysts, solvents, and reagents for a given reaction. This ap-
proach demonstrated the model's ability to handle complex and
diverse datasets. However, the model assumed that each reac-
tion had a single optimal set of conditions, ignoring the fact that
some reactions might have multiple viable alternatives. This
limitation reduced the diversity of options available for experi-
mentalists. Subsequent studies have attempted to overcome this
challenge by proposing different solutions. Kwon et al. [145]
used a variational autoencoder (VAE) architecture to sample
different reaction conditions, while Chen et al. [42] designed a
two-stage recommendation system that predicted and ranked
various reaction conditions based on the reaction yields. These
methods enabled the prediction of a range of reaction condi-
tions, allowing experimentalists to choose their preferred ones.
However, building such a model is difficult, as most reaction
databases, such as Reaxys, only record the highest-yield reac-
tion conditions from a single publication. Therefore, the data
might lack diversity in reaction conditions for a given reaction,
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Table 3: Representative works on predicting globally reaction conditions. The references are sorted chronologically.

Reference Data Model type Description

[18] ≈10 million general reactions from
Reaxys

ECFP + DNN the model has the most access to proprietary
training data

[179] 4 types of totally ≈191k reactions
from Reaxys

descriptors + GBM and
GCNs

the output labels were systematically
categorized with chemical insights

[70] ≈693k reactions from Pistachio nearest-neighbor,
transformer and BART

the work demonstrates the first utilization of NLP
models to generate the step-by-step
experimental procedures

[180] ≈6k Buchwald–Hartwig
coupling reactions from in-house
lab notebooks

ECFP + DNN it showed that multi-label predictions are more
advantageous than single-label predictions

[145] 4 types of totally ≈191k reactions
from Reaxys

GNN + VAE the models provide multiple reaction conditions
by repeatedly sampling from the VAE space

[82] 480k USPTO-MIT dataset [134] reaction SMILES +
transformer

this work directly predicts SMILES
representation of the combination of reaction
conditions

[35] curated USPTO-condition dataset
with ≈680k reactions and
Reaxys-TotalSyn-Condition dataset
with ≈180k reactions

reaction SMILES +
transformer

this work demonstrates the benefits of MLM
pretraining for the downstream reaction
conditions prediction task

[42] 10 types of totally ≈74k reactions
from Reaxys

ECFP + DNN it models the reaction conditions prediction
problem as recommendation system and
artificially generate fake reaction conditions for
data augmentation

[181] curated USPTO-Condition dataset
with ≈680k reactions

SMILES-to-text retriever and
text-augmented predictor

the two-stage model first uses multimodal
retrieval to obtain related chemistry literature
and then combines it with reaction input to
predict reaction conditions

unless the same reaction appears in multiple publications with
different conditions.

A variety of ML approaches have been applied to the predic-
tion of reaction conditions, including descriptor-, graph-, and
text-based methods, as summarized in Table 3. However, these
studies use different reaction datasets to evaluate their models,
making it difficult to compare their accuracy objectively. A
more standardized and open-source way of storing and
accessing chemical reaction data, such as the ORD [36,177] or
the curated USPTO dataset [35], would facilitate the bench-
marking of models in predicting reaction conditions. Moreover,
ML models may not always learn to predict meaningful reac-
tion conditions; they may simply memorize the most frequently
reported solvents and reagents in the literature. Beker et al.
[178] showed that some machine learning models could not
outperform simple statistical analyses based on the popularity of
reported conditions in the literature, using the Suzuki–Miyaura
coupling as an example. Therefore, to assess the predictive
capabilities of models more rigorously, popularity-based base-
lines should be used as a reference.

The choice of reaction conditions is crucial for CASP applica-
tions, as it affects the cost, yield, and environmental impact of

the synthetic route [4,182]. Moreover, predicting reaction
conditions can help optimize the synthetic route [183] by pro-
viding the necessary information for each synthetic step. Coley
et al. [12] integrated ASKCOS [184], an automated CASP soft-
ware, with the self-driving lab [185] and demonstrated the syn-
thesis of 15 small molecules. Guo et al. [186] used a synthesis
strategy that combines Monte Carlo Tree Search (MCTS) with
reinforcement learning to model the retrosynthesis game,
aiming to identify high-value synthetic pathways. Recently,
Koscher et al. [21] have shown the simultaneous design and
synthesis of dye molecules through design–make–test–analyze
(DMTA) cycles [187]. Given the limited experimental through-
put, it is important to prioritize the molecular properties that are
predicted to be superior, along with their synthesis costs, during
the chemical experiments. The reaction conditions prediction
model plays a vital role in this context; it filters out inacces-
sible and incompatible conditions, such as high-temperature
reactions, high-reactive gases, insoluble solid reagents, and en-
vironmentally unfriendly reagents.

The examples above illustrate the usefulness of global reaction
conditions prediction models, which use historical literature on
similar chemical contexts to suggest suitable reaction condi-
tions for synthetic steps. However, the predictive output often
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Figure 3: A schematic diagram of how ML algorithms can be combined with HTE platforms to optimize reaction conditions for CASP.

lacks fine-grained details such as reaction time, pressure, and
pH values. These details depend on the problem formulation
specific to each individual synthetic step. To further improve
yields, it is necessary to perform local reaction optimization,
which is discussed below.

Local reaction optimization
ML-guided local reaction optimization, or self-optimization, is
an automated and generalizable approach that can accelerate the
discovery of optimal reaction conditions, as illustrated in
Figure 3. The first step is problem formulation, which involves
defining the reaction parameters to be optimized and the target
objectives, such as yield and selectivity. The reaction parame-
ters include categorical variables, such as catalysts, solvents,
and acid–base salts, and continuous variables, such as tempera-
ture, pressure, substrate concentration, and residence time.
Regression prediction models are then built for these reaction
parameters and target objectives by collecting experimental data
and conducting statistical analysis.

Many reaction optimization platforms have been developed
[188-191], which integrate software optimization algorithms
with hardware automation for experiments, enabling large-scale
experimentation and data collection. Among these, BO [192] is
the most classic and widely used algorithm, which leverages
kernel density estimators to efficiently explore parameter space.
This method updates prior probability distributions with new
experimental results and optimizes the reaction conditions by
focusing on regions of the parameter space predicted to improve
objectives. The power of BO lies in its ability to balance explo-

ration and exploitation, making it highly effective for complex,
multidimensional optimization tasks in chemical processes. BO
has also demonstrated robust performance in many benchmark
tasks [193-195], and numerous chemical reaction optimization
packages have been developed to support this algorithm [196-
200].

A typical example is the work by Shields et al. [62], who used
different featurization strategies, such as DFT [108], cheminfor-
matics [107], and binary one-hot-encoded, in conjunction with
the BO algorithm to optimize reaction conditions. Their experi-
mental results showed that DFT features could train proba-
bilistic surrogate models more effectively and that the optimiza-
tion efficiency was superior to manual adjustments made by
professional chemists. They also applied this approach to the
Mitsunobu reaction and deoxyfluorination reaction, rapidly
identifying medium to high-yield results from approximately
100,000 experimental conditions using fewer than 100 experi-
ments.

Moving from individual synthetic steps to CASP, Nambiar et al.
[201] investigated the impact of integrating a global reaction
conditions prediction model with local reaction optimization on
enhancing the overall chemical synthesis pathway. They
demonstrated the predictive pathway for sonidegib synthesis,
but it still required chemical insights to verify the compatibility
of the solvents predicted by the global model with the reactants.
Moreover, in a multistep synthesis route, the interdependencies
between different reaction sequences, such as additional separa-
tion and purification steps, could reduce the overall yield [202].
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This indicates that the suboptimal combination of each reaction
does not necessarily represent the global optimum for multistep
synthesis [203-205]. In contrast, telescoped flow sequences
[206-208] or one-pot batch synthesis [209] emphasize the use of
chemically compatible reagents and solvents in each reaction
step to minimize intermediate purification steps. Volk et al.
[210] developed AlphaFlow, which utilizes reinforcement
learning as an optimization algorithm for the shell growth of
core-shell semiconductor nanoparticles. This involves various
unit operations such as phase separation, washing, and continu-
ous in-situ spectral monitoring. Although the process condi-
tions for this reaction system do not have as extensive a litera-
ture base for training data, this study was still able to identify
better solutions than conventional designs through reinforce-
ment learning in multistep processes.

Besides maximizing the reaction yield for a given reaction with
given substrates, another goal of reaction optimization is to
discover general reaction conditions that are applicable to
various substrates within the same reaction type [211-215]. For
instance, the generality of chiral catalysts for asymmetric or en-
antioselective catalysis has been a longstanding interest in syn-
thetic chemistry [216]. Angello et al. [53] applied uncertainty-
minimizing ML and automated robotic experimentation to
accelerate the exploration of general reaction conditions for
heteroaryl Suzuki–Miyaura cross-coupling. They achieved an
average yield that was twice as high as that of previous human-
guided experiments. Recently, Wang et al. [65] formulated the
optimization of general reaction conditions as a multi-armed
bandit problem, where each set of reaction conditions is a slot
machine, and each experiment is a round of playing on one of
these machines. The challenge is to find the slot machine with
the highest win rate using a limited number of rounds. For
chemical experiments, this entails a strategic balance between
exploring new reaction conditions (or 'slot machines') and
exploiting known conditions that deliver high yields. Therefore,
they proposed a more efficient sampling strategy based on rein-
forcement learning to dynamically adjust the selection process,
thereby optimizing the exploration–exploitation trade-off.

The preceding examples demonstrate how the combination of
HTE chemistry tools and optimization algorithms has signifi-
cantly advanced the field of reaction optimization. However,
this protocol also has some limitations, especially regarding the
suitability of the chemical system under investigation. First, in
terms of hardware implementation, setting up an HTE platform
with robotic technologies entails high financial costs and
specialized knowledge for installation, which may not be acces-
sible for smaller-scale or less-funded research entities [217].
Moreover, to enable experimentation with various reaction
conditions, a large chemical storage capacity is necessary.

Otherwise, the scope of research would be confined to only a
few types of chemical reactions [21]. Additionally, to ensure
experimental safety, chemists must rigorously verify the
compatibility of each solvent and reagent combination used in
reactions and eliminate any potential hazards [218]. Second, in
terms of algorithmic approaches, the widely used BO requires
initial data to build a probabilistic surrogate model. Although
the data might be sourced from related literature, caution is
advised as experimental apparatus from different sources could
introduce systematic errors in reported yields [46]. Furthermore,
BO cannot generalize well from past reactions to unseen reac-
tion transformations, which inherently requires gathering new
relevant data for new chemical reactions [219]. Regarding
general reaction conditions, the typically limited experimental
budgets in laboratories restrict the ability to explore a diverse
range of reaction conditions [65]. Thus, initial filtering by
chemists, which removes known impractical conditions, is
essential. Despite these existing challenges, reaction optimiza-
tion continues to play a vital role in both academia and industry
in the age of big data [23].

Outlook and Perspectives
As we explore the future of ML in designing and optimizing
reaction conditions, several promising avenues and challenges
are poised to shape this interdisciplinary field. The integration
of HTE with ML is revolutionizing how chemists approach
reaction conditions. Future efforts should aim to enhance these
technologies to enable faster and more comprehensive data
collection, potentially leading to the automation of HTE and
ML integration into real-time adaptive systems that learn from
each experiment.

The discussions in this review about global and local models
underline the critical need for large, comprehensive, and
coherent datasets. Advancements in data processing and model
training methodologies, such as transfer learning and reinforce-
ment learning, are essential to boost the predictive power and
efficiency of these models. Platforms like the ORD are crucial
in meeting the demand for accessible and standardized chemi-
cal data. The expansion of such platforms and fostering wider
community involvement will be key to advancing data-driven
approaches in chemistry. A community dedicated to openly
sharing data and findings will likely accelerate innovation and
enhance the robustness of ML tools.

Moreover, computational models that integrate theoretical
chemistry and ML could unlock deeper insights into poorly
understood or complex reaction mechanisms. These models are
particularly valuable in areas where experimental data are
sparse or challenging to obtain, thereby extending the range of
ML applications in chemistry.
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Educating the next generation of chemists, engineers, and data
scientists in both ML and chemical synthesis is critical. Interdis-
ciplinary programs can develop a workforce skilled in applying
AI to complex chemical issues, fostering more innovative and
efficient solutions. Enhancing international cooperation can
standardize data collection and sharing practices, simplifying
the process of building and validating models across various
laboratories and contexts. Such global collaboration is instru-
mental in addressing widespread challenges like climate change
and sustainability through smarter chemical processes.

By focusing on these directions, we anticipate a future where
ML not only supports but significantly propels the field of syn-
thetic chemistry forward, making it more innovative, efficient,
and sustainable. The ongoing development of ML in reaction
conditions design and optimization holds the promise of
unlocking new capabilities and achieving transformative break-
throughs in the field.
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Abstract
Carbon capture and utilisation (CCU) technologies offer a compelling strategy to mitigate rising atmospheric carbon dioxide levels.
Despite extensive research on the CO2 insertion into epoxides to form cyclic carbonates, the stereochemical implications of this
reaction have been largely overlooked, despite the prevalence of racemic epoxide solutions. This study introduces an in silico ap-
proach to design asymmetric frustrated Lewis pairs (FLPs) aimed at controlling reaction stereochemistry. Four FLP scaffolds, in-
corporating diverse Lewis acids (LA), Lewis bases (LB), and substituents, were assessed via volcano plot analysis to identify the
most promising catalysts. By strategically modifying LB substituents to induce asymmetry, a stereoselective catalytic scaffold was
developed, favouring one enantiomer from both epoxide enantiomers. This work advances the in silico design of FLPs, high-
lighting their potential as asymmetric CCU catalysts with implications for optimising catalyst efficiency and selectivity in sustain-
able chemistry applications.

2668

Introduction
The field of frustrated Lewis pairs (FLPs) has flourished since
their seminal discovery in 2006 by Stephan and colleagues [1].
These compounds, which feature a Lewis acid (LA) and a

Lewis base (LB), whose interaction is hindered by bulky sub-
stituents or chain strain, have garnered significant attention.
Initially explored for their ability to trap small molecules [2,3],

https://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:maxime.ferrer@iqm.csic.es
mailto:cristina.trujillodelvalle@manchester.ac.uk
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Scheme 1: Reaction between propylene oxide (PO) and CO2 and the five catalyst scaffolds under study. The position of the LB along with an appro-
priate number of substituents is indicated by blue dots and that of the LA by pink dots.

such as H2 [4], CO2 [5-7], N2O [8,9], and alkenes [10,11], they
have since found applications in catalysis [12,13].

Among the first catalytic uses of FLPs were the hydrogenation
of unsaturated compounds [12,14] and the reduction of CO2
using H2 as a reductant [7,15-17]. FLPs have become an attrac-
tive avenue for the reduction of CO2, particularly given the in-
creasing levels of CO2 in the atmosphere. However, challenges
persist in understanding and optimising the reactivity of these
systems.

One significant obstacle is the tendency for CO2 to react prefer-
entially with FLPs over H2. As such, the design of FLPs that
prioritise the capture of H2 over CO2 becomes crucial for effec-
tive CO2 reduction [7]. Additionally, the strength of the interac-
tion between the catalyst and the resulting system after hydride
transfer presents a limitation. The formation of a robust
LA–oxygen interaction may impede proton transfer to the basic
oxygen atom. These limitations suggest that a more viable ap-
proach to employing FLPs as catalysts for CO2-related reac-
tions could involve their use in CO2 activation [7,18,19]. In par-
ticular, the capture of CO2 by FLPs enhances the electrophilic-
ity of the CO2 carbon atom and the nucleophilicity of one of the
CO2 oxygen atoms [6,7].

Carbon capture and utilisation (CCU) technologies involve the
extraction of CO2 from the atmosphere of the Earth to generate
value-added chemicals, which can serve as platform chemicals
in other chemical processes [20,21]. This is achieved by
inserting CO2 as a C1 building block into readily available sub-
strates such as epoxides, resulting in the formation of polycar-
bonates or monomeric cyclic carbonates [22]. Depending on the
substitution pattern in the epoxide, a chiral centre is present in
the product.

The insertion of CO2 into epoxides has been the subject of nu-
merous studies, but the stereochemical aspects of this reaction,
particularly through the use of FLP catalysts, have been largely
overlooked, despite the prevalence of racemic epoxide solu-

tions. Only one study has addressed the asymmetric insertion of
CO2 into propylene oxide (PO) using a transition-metal catalyst
[23-25]. Therefore, the stereochemical aspects of CO2 insertion
into PO enabled by FLP catalysts should be investigated.

To the best of our knowledge, only one paper has proposed an
asymmetric approach to this reaction using a metal-based cata-
lyst [23]. However, our approach differs significantly and seeks
to explore new possibilities in this area. Herein, the present
study focusses on the asymmetric insertion of CO2 into PO
using asymmetric FLPs as catalysts. Initially, five FLP scaf-
folds with different substituents, LA and LB, were tested, re-
sulting in a total of 53 potential catalysts (Scheme 1). The most
promising catalyst scaffolds for the reaction under study were
identified by volcano plot analysis [26,27]. Inspired by the
asymmetric oxazoline synthesised by Gao et al. [28], and
guided by the volcano plot results, modifications to these FLP
scaffolds facilitated the development of an asymmetric FLP and
consequently an asymmetric catalyst. The subsequent study
explores the asymmetric insertion of CO2 into chiral PO cata-
lysed by the proposed in silico designed catalyst.

Computational Details
During the benchmark to choose the best catalyst, the reported
geometries were optimised with the Gaussian16 quantum chem-
ical software package [29], using the B3LYP density functional
[30,31] along with the Grimme dispersion correction including
Becke and Johnson damping D3(BJ) [32-34] and the def2-
TZVP basis set [35]. Harmonic frequencies were computed at
the optimisation level to confirm that the relaxed structures cor-
respond to local minima (no imaginary frequencies) or transi-
tion states (one imaginary frequency). The reaction simulations
were run in chloroform using the “Solvation Model based on
Density” (SMD) [36] at 273.0 K to reproduce the most com-
monly used experimental conditions [37-39].

When considering asymmetry, it was necessary to include large
substituents on the catalyst to induce steric hindrance. These
modifications increase the size of the asymmetric catalysts.
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Thus, the calculations presented in subsection “Asymmetric ca-
talysis” were optimised at the B3LYP-D3(BJ)/def2-SVP
computational level. Single point energy calculations on the op-
timised structures were run at the B3LYP-D3(BJ)/def2-TZVP
level to obtain more accurate electronic energies. The reported
free energies in this section correspond to the sum of the triple-
zeta electronic energy and the free energy correction at double-
zeta.

The kinetics of some reactions were calculated, applying the
transition state theory [40]. Within this theory, the rate constant
of an elementary reaction with the free energy barrier ΔG‡ is
given by Equation 1,

(1)

where k is the rate constant in s−1, kB is the Boltzmann constant,
T is the temperature in Kelvin, h is the Planck constant, and R is
the gas constant.

The enantiomeric excess (%ee) was calculated using Equation 2
[41]. kfav stands for the kinetic rate constant of the most
favourable process, and kdefav stands for the rate constant of the
less favourable process.

(2)

During the study, it will be observed that several transition
states (TSs) can lead to the same product. As there is no
possible interconversion between the reactant states, the differ-
ent reactions will be considered independent, and it will be
necessary to use an effective rate constant (keff). The definition
given by Williams will be used (Equation 3, [42]):

(3)

The proton affinity (PA) [43] of the LB and the fluoride ion
affinity (FIA) [44] of the LA of a given FLP are generally used
to rationalise the FLP reactivity observed [45,46]. Thus, PA and
FIA of the different scaffolds considered were calculated using
Equation 4 and Equation 5, respectively, where H(A) stands for
the enthalpy of the FLP, H(H+) for the enthalpy of the proton,
H(F−) for the enthalpy of the fluoride ion, and H([A-H+]) and
H([A-F−]) for the enthalpies of the complexes formed between
the FLP and a proton and a fluoride ion, respectively.

(4)

(5)

Volcanic 1.3.3, a Python package for the NaviCat platform, was
used to generate 3D volcano plots, facilitating the identification
of the most appropriate catalyst for the coupling reaction being
considered [27].

Volcano plots
Volcano plots are a visualisation of the Sabatier principle [47],
a qualitative concept originating in heterogeneous catalysis for
assessing the performance of different catalysts. According to
this principle, an ideal catalyst interacts with reactants neither
strongly nor weakly. This idea is visualised in volcano plots,
where a metric of the catalyst performance, for example, the
reaction rate, is displayed as a function of the catalyst–substrate
interaction, for example, the adsorption energy when consid-
ering a heterogeneous catalyst (Figure 1A). The resulting plot
exhibits a volcano-like shape consisting of at least two slopes
with the best-performing catalysts located at the top. The top of
the volcano plot corresponds to the scenario where the catalyst
exhibits high catalytic activity, as it achieves an optimal balance
in binding to the reactants, neither too strongly nor too weakly
(Figure 1A, purple points). The catalysts with binding energies
lower than the catalysts at the top show lower catalytic activity
due to insufficient activation of the substrate (Figure 1A, green
points). Conversely, catalysts that bind too strongly impede the
detachment of the catalyst–reactant complex, thereby reducing
the catalyst turnover (Figure 1A, pink points) [26,27].

The previous plots are effective for metal-based catalysts and
relatively simple catalytic reactions; however, they fall short
when reactions involve multiple steps and independent activa-
tion barriers. In this paper, instead of focusing solely on the ac-
tivation energy, the energy span of the catalytic reaction (δE) is
considered. King et al. [48] introduced the concept of the
energy span of a simulated catalytic cycle by defining it as the
difference between the highest and lowest free energy station-
ary points [49,50]. More precisely, the energy span can be
defined using Equation 6, where Ti is the energy of the rate-
limiting TS, Ij the energy of the most populated intermediate,
and δGi,j a correction that accounts for the cyclic nature of the
catalytic cycle [26]:

(6)
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Figure 1: Schematic representation of an (A) 2D and a (B) 3D volcano plot. The abbreviation “cat.” stands for catalyst.

The energy span is a crucial parameter as it directly correlates
with the turnover frequency (TOF) of the catalytic reaction
(Equation 7). A flatter energy profile, indicated by a δE value
closer to zero, signifies more efficient catalysis:

(7)

In this work, to achieve better correlations between the energy
span and the system energies, two energies were used
(Figure 1B). The volcanic program employs a multivariate
linear regression process. Considering a reaction with six sta-
tionary points (REACTANTS, E1, TS2, E2, TS3, and PROD-
UCTS), which can be catalysed by n potential catalysts, the
program calculates the correlation between the energy span and
all possible pairs of stationary points for the n catalysts. For
instance, it determines a function such as E1 = f(E2, TS3). The
quality of these correlations is assessed through the square of
the Pearson coefficient. The pair of stationary points has to
correlate with the energies of the six stationary points previ-
ously presented. The quality of the pair considered to describe
well the energies of the catalytic reaction is, thus, obtained by
taking the mean value of R2 of the six correlations. The pair
with the largest mean R2, is considered as the optimal pair of
stationary points; it is then used to predict the energy span, re-
sulting in a 2D contour plot (Figure 1B). The x axis represents
the free energy of the first stationary point of the selected pair
and the y axis represents the free energy of the other stationary
point of the pair. According to the volcano plots, the best
theoretically predicted catalysts are those nearest to the
lowest predicted δE values, depicted by the purple points in
Figure 1B.

Results and Discussion
The following nomenclature will be used during the volcano
plot analysis: FX_LBLA_S1_S2 where X is the label of the
family (1, 2, 3, 5, or 6), LB is the Lewis base considered (N or
P), LA is the Lewis acid (in this particular study only B), S1 is
the substituent on the LB, and S2 is the substituent on the LA.

Capture of CO2 and PO by an FLP
Chemoselectivity
Our investigations began by examining the uncatalysed cou-
pling reaction between CO2 and PO (Scheme 1), which exhib-
its a calculated activation barrier (ΔG‡) greater than
55 kcal·mol−1 (Figure S6, Supporting Information File 1).
Therefore, in order to observe the coupling between these two
moieties under standard conditions, the presence of a catalyst is
necessary. In the literature, metal-based and organocatalysts
have been reported as efficient catalysts for this reaction
[24,25]. As noted previously [51,52], the reaction depicted in
Scheme 1 can proceed via two distinct mechanisms.

In the first mechanism, the catalyst initiates epoxide opening,
followed by CO2 insertion. The second mechanism suggests
that CO2 activation by the catalyst precedes its transfer to the
epoxide. To determine the more feasible mechanism, a compre-
hensive investigation of both possibilities was conducted. To
determine the most probable mechanism within our system, the
capture of CO2 and a symmetric epoxide (E) using the FLP pro-
posed by Stephan et al. [37] was evaluated (Scheme 2). A sym-
metric epoxide was chosen to avoid addressing asymmetry
concerns at this stage. The capture exhibiting the lowest activa-
tion barrier was considered the first step of the coupling reac-
tion for the remainder of the study. The free-energy profiles of
both capture processes are depicted in Figure S1 (Supporting
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Scheme 2: Capture reactions of CO2 or an epoxide by FLP.

Figure 2: (A) Structure of PO annotated with the C–O bond distances and electron densities at the BCPs. BCPs are indicated by green spheres and
the ring critical point by a red sphere. (B) Schematic representation of the two possible ring-opening reactions of PO in the presence of activated CO2.

Information File 1). Notably, the CO2 capture exhibits a lower
activation barrier compared to the capture of epoxide
(+10.0 kcal·mol−1 vs +30.0 kcal·mol−1). Using transition state
theory [40] as expressed in Equation 1, the rate constants were
calculated for binding to either molecule at 273.0 K, resulting in
k1 = 5.47·104 s−1 for capturing CO2 and k2 = 4.85·10−12 s−1 for
capturing the epoxide. Despite the FLP–CO2 adduct being less
thermodynamically stable than the FLP–epoxide adduct
(−10.1 kcal·mol−1 vs −44.8 kcal·mol−1), the lower activation
barrier for the capture of CO2 and the temperature considered
(273.0 K) suggest a kinetically controlled reaction. To further
shift the chemical equilibrium toward CO2 capture, increasing
steric hindrance at the epoxide was explored by introducing
bulky substituents into the scaffold. This resulted in an increase
in activation barriers for adduct formation. Including a methyl
group, for instance, increased the barrier by 1.4 kcal·mol−1, a
phenyl group by 1.7 kcal·mol−1, and a tert-butyl group by more
than 2 kcal·mol−1 (Table S1, Supporting Information File 1).
This observation is consistent with reports in the literature
[24,53-56]. Based on this initial study, it can be concluded that
the mechanism for our system proceeds according to mecha-
nism two. The following simulations were performed on this
conclusion.

Regioselectivity
PO exhibits two distinct electrophilic sites, which can be subject
to nucleophilic attack (Figure 2B). Thus, the regioselectivity of
the CO2 insertion into PO must be addressed as part of the full
mechanistic investigation. The compound 3-boryl-2-propen-1-

amine is now considered as the catalyst (Figure 2B). As ob-
served in Figure 2A, the bond length and electron density at the
bond critical point (BCP) difference are minimal and do not
conclusively suggest that one bond will be broken more easily
than the other. Therefore, both scenarios will be explored to see
if the coupling reaction could proceed more easily by breaking
the O–CH(CH3) bond rather than the O–CH2 bond.

Based on our investigations, the opening of PO with activated
CO2 was found to proceed through two transition states. The
calculations showed that the breaking of the O–CH(CH3) bond
was more kinetically favourable, with a TS 7.6 kcal·mol−1

lower in free energy than the corresponding TS for breaking the
O–CH2 bond. The electron-donating nature of the methyl group
facilitates a greater stabilisation of the intermediary positive
charge at the central carbon compared to the hydrogen after
bond-breaking at the terminal carbon, thereby reducing the acti-
vation barrier.

Henceforth, in this paper, the optimised TSs will consistently
represent the breaking of the O–CH(CH3) bond. Additionally,
the (S)-epoxide enantiomer was employed consistently.

Symmetric FLP scaffolds – achiral environ-
ment
Following the initial exploration and preliminary results, our
attention shifted toward the identification of a suitable catalyst.
Drawing inspiration from the literature, fourteen FLP scaffolds
have been evaluated (Figure 3), focussing specifically on N/B
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Figure 3: Symmetric FLP scaffolds considered in the first study. X denotes N or P.

Figure 4: Subset of FLP scaffolds considered in the catalyst optimisation study. Substituents and labels are indicated.

and P/B FLPs because of their widespread application in this
field, especially considering the initial step involving CO2
capture [6,12,21].

Selection of the scaffolds and substituents
Volcano plots were introduced to find the most efficient cata-
lyst for a given reaction [26,57]. They are a valuable tool for the
in silico design of catalysts [27,58]. Volcano plot analysis
requires a set of reactions that follow the same mechanism but
whose stationary points possess different energies. Generally,
the larger the differences in energy between the stationary
points, the better the exploration of the catalytic space.

To determine the set of scaffolds to be used for volcano plot
analysis, the CO2–FLP adduct of each of the fourteen scaffolds
was optimised (Figure 3). Based on the stability of the opti-
mised adducts, families can be selected to cover a wide energy
range. The obtained free energies of formation are presented in
Figure S2 (Supporting Information File 1). The stabilities of the

N/B adducts range from −9 to +48 kcal·mol−1, while the P/B
adducts vary from +10 to +36 kcal·mol−1. The reliability of a
volcano plot is based on an extensive exploration of the ener-
getic space. Thus, because of the larger variation in the energy
of the CO2–FLP adducts employing N/B FLPs, it was decided
to choose systems based on FLPs with N/B. It is expected that
the large energy range of the CO2–FLP adducts will propagate
along the reaction path, enabling appropriate energy explo-
ration. The scaffolds V_BX (family 1, ΔG(adduct) =
−0.4 kcal ·mol−1) ,  IX_BX (family 2,  ΔG(adduct)  =
−2.1 kcal·mol−1), XIII_BX (family 3, ΔG(adduct) =
+3.0 kcal ·mol−1) ,  IV_BX (family 4,  ΔG(adduct)  =
+15.4 kcal·mol−1), and XI_BX (family 5, ΔG(adduct) =
−19.5 kcal·mol−1) were selected for further investigation
(Figure 4). This selection allows us to obtain free energy differ-
ences of 35 kcal·mol−1 already in the adduct stationary point.

After selecting the scaffolds to work with, the next step is to
choose substituents for placement on the LA and LB positions.
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Figure 5: Coupling reaction between PO and CO2. Depending on the catalyst considered, the reaction follows mechanism 1, 2, or 3.

These substituents will have two main effects on the FLP. First,
they will alter the Lewis acidity and basicity of the LA and LB
centres, respectively; second, they may induce steric hindrance.
The first effect is perhaps the most intriguing to consider, as the
acidity and basicity of the LA/LB centres are indicative of the
FLP’s reactivity [45,46]. Thus, substituents must be selected to
ensure a broad spectrum of acidity and basicity of the LA and
LB. Different methods for determining these properties have
been described in the literature. Because of their easy computa-
tion, the proton affinity [43] and fluoride ion affinity [44] were
selected to compute the basicity and acidity of the systems
considered. By selecting the substituents presented in Figure 4,
FIAs spanning a range of 60 kcal·mol−1 and PAs spanning a
range of 48 kcal·mol−1 were obtained (Figure S3, Supporting
Information File 1). All the structures studied exhibit the clas-
sical FLP characteristics, except for some systems that can be
considered as “masked FLPs” (Table S4, Supporting Informa-
tion File 1).

Possible mechanisms
As established in the previous section. the general mechanism
of the coupling reaction proceeds through three steps:
(1) capture of CO2, (2) opening of PO and addition of the acti-
vated CO2, and (3) liberation of the product (Figure 5).

During the study of the selected catalysts (Figure 4), it was ob-
served that, depending on the catalyst considered, the reaction
followed a different mechanism, that is, mechanism 1, 2, or 3
(Figure 5). Mechanism 1 (Figure 5A), comprises three steps.

First, CO2 is captured by FLP (TS01), and subsequently acti-
vated CO2 is inserted into the epoxide (TS12). TS12 corre-
sponds to the concerted opening of PO and the insertion of
CO2. The product is later released via TS23. This mechanism is
followed by 40% of the catalysed reactions studied. Mecha-
nism 2 (Figure 5B) contains an additional step. In this mecha-
nism, the epoxide is first isomerised through TS14, resulting in
the formation of the aldehyde (Min4). It can be observed that
the opening of the epoxide is catalysed by the presence of the
CO2 adduct. In the gas phase and isolated, the isomerisation of
the epoxide exhibits a barrier of 52.6 kcal·mol−1. In the case of
F2_NB_H_H, the barrier is reduced to 37.0 kcal·mol−1. CO2
later reacts with the aldehyde, forming the insertion product
already observed in mechanism 1 (Min2). Passing through
TS23, the product is released. Similar to mechanism 2, mecha-
nism 3 contains eleven stationary points (Figure 5C). After the
capture of CO2 by the FLP, the opening of the epoxide takes
place along with the insertion reaction. The main difference
from the previous two mechanisms is that a new intermediate
(Min5) is stabilised, in which the oxygen of CO2 has attacked
the electrophilic carbon of PO, and the oxygen atom of PO
interacts with the LB. This mechanism is exclusive to phos-
phorus-containing FLPs, as nitrogen does not support this type
of reactivity. Subsequently, the intermediate undergoes reorga-
nization, leading to Min2.

Surprisingly, family 5, having phosphorus as the Lewis base,
presents a different reactivity from the other families (Figure
S3, Supporting Information File 1). Compounds F5_PB_H and
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Figure 6: VOLCANO plot group 1. The free energies of pre-TS01 assembly and Min2 are considered for the correlation. (A) On the left, the com-
pounds of families 1, 3, 4, and 5 were used for the plot. (B) On the right, only families 3, 4, and 5 are considered along with compounds F1_PB_Ph_H
and F1_PB_Ph_CF3. In (B), a purple star was used to locate the minimum of the surface, along with a circle centred at the minimum to locate the
closest systems. Also in (B), the names of the most effective catalysts are indicated in black.

F5_PB_CF3 react following mechanism 3 (Figure 5C), but the
reaction proceeds directly from Min5 to Min3, with no Min2
observed. These two cases were then removed from the volcano
plot analysis. The remaining two catalysts from family 5,
namely, F5_NB_H and F5_NB_CF3, react according to mecha-
nism 1 (Figure 5A, Figure S4, Supporting Information File 1).
The energy matrix obtained can be found in Table S2 and Table
S3 (Supporting Information File 1). It is interesting to observe
that of the remaining 47 catalysts, 12 are not catalytically
active, having their largest activation barrier greater than the
55.0 kcal·mol−1 previously reported for the uncatalysed reac-
tion. Most of these belong to family 1.

Optimising catalyst selection
The optimal scaffolds and substituents for the studied reaction
were identified through analysis using a volcano plot. This anal-
ysis requires that all catalytic cycles present the same number of
steps. Because of varying numbers of steps between mecha-
nism 1 and mechanisms 2 and 3, they had to be treated sepa-
rately. The first group comprises catalysts that yield reactions
following mechanism 1 (Figure 5A), characterised by nine sta-
tionary points. The second group consists of reactions with
eleven stationary points, indicating that FLPs catalyse reactions
following mechanisms 2 or 3 (Figure 5B,C). For each group, an
analysis was performed using two volcano plots. The first plot
aids in identifying the best families, which are then exclusively
considered for the second volcano plot. The second plot helps to
determine the most appropriate substituents to consider, thereby
highlighting the optimal catalyst.

The first group of reactions, those following mechanism 1
(Figure 5A), comprises a total of twenty-two FLPs, accounting
for 40% of the 55 catalysts considered. This group 1 includes
FLPs from families 1, 3, 4, and 5. Sixteen compounds are based
on an N/B pair, while the remaining six are P/B FLPs. Given
the relative complexity of the mechanism studied, it was neces-
sary to employ a 3D volcano plot using the energy span (δE)
and two energies of the system. Analysis of the correlations
revealed that the most suitable combination of energies to
consider involved the energy of pre-TS01 assembly, which is
the non-covalent complex formed between the FLP and the CO2
molecule, and the energy of the intermediate Min2 (Figure 5).
Correlating these parameters with the energy span yields an R2

value of 0.79, a mean absolute error (MAE) of 2.59, and a stan-
dard mean absolute percentage error (MAPE) of 0.35.

As depicted in Figure 6A, families 3, 4, and 5 emerge as cata-
lysts that catalyse the reaction most effectively. This aligns with
previous findings that family 1 is not suitable for catalysing
the reaction. However, compounds F1_PB_Ph_H and
F1_PB_Ph_CF3 from family 1 are exceptions as they exhibit
acceptable catalytic activity.

To identify the most suitable substituents, compounds of family
1 were excluded (except F1_PB_Ph_H and F1_PB_Ph_CF3),
and a new volcano plot (Figure 6B) was generated. This plot
employs the same axes as before (ΔG(pre-TS01 assembly) and
ΔG(Min2)) and identifies a catalyst worthy of special consider-
ation, that is, F3_NB_C5_CF3.
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Figure 7: VOLCANO plot group 2. The free energies of pre-TS01 assembly and Min2 are considered for the correlation. (A) On the left, the com-
pounds of families 1, 2, 3 and 4 are depicted. (B) On the right, only family 2 is considered. In (B) a purple star was used to locate the minimum of the
surface, along with a circle centred at the minimum to locate the closest systems. Also in (B), the names of the most effective catalysts are indicated
in black.

Additionally, it is observed that an efficient catalyst for this
reaction should have an unstable pre-TS assembly, pre-TS01
assembly, (E1 > 0), and an intermediate Min2 with an energy
close to 0 kcal·mol−1. Remarkably, among the most efficient
catalysts within this group of FLPs those with a nitrogen LB
stand out. This phenomenon could be attributed to the excep-
tional stability of the covalent adduct formed between phos-
phorus-based FLPs and CO2.

The second group comprises compounds that undergo reactions
following mechanisms 2 or 3 (Figure 5). This group represents
60% of the 55 catalysts considered. This time, the set is richer
in FLPs based on phosphorus, comprising 21 out of 29 com-
pounds. It includes compounds from families 1, 2, 3, and 4.
Similarly to the previous group, a 3D volcano plot was utilised.
The same variables (energy of pre-TS01 assembly and Min2)
were considered, which yielded a correlation with a R2 value of
0.71.

As depicted in Figure 7A, it is clear that the best family for this
mechanism is family 2, followed by families 3 and 4. Family 1,
similar to the previous group, exhibits the lowest catalytic activ-
ity. The low reactivity could be attributed to the masked char-
acter of this family. FLP monomers belonging to family 1 can
be considered as masked FLPs [59,60], requiring breaking the
LA–LB bond to achieve reactivity. Consequently, the pre-TS
assembly formed between CO2 and the FLPs from family 1 are
less stable than the pre-TS assembly between CO2 and the other
FLP families, because of the absence of possible interactions
between CO2 and LA or L). Furthermore, TS01, corresponding

to the capture of CO2, is higher in energy because of the need
for breaking the LA–LB bond.

By exclusively considering family 2 and using the energy of
pre-TS01 assembly and product P4 for the second volcano plot
(Figure 7B), it is observed that the best candidates are
F2_PB_H_CF3 and F2_PB_Ph_CF3. Then, it can be concluded
that the catalytic activity of the FLP is more efficient if the
boron bears CF3 substituents. Thus, an acidic boron atom seems
to increase the reactivity of the considered system. Concerning
the LB, it appears that, as opposed to the first group of com-
pounds, a phosphorus atom is more active than a nitrogen atom.

Asymmetric catalysis
After examining the volcano results, we looked into the litera-
ture to explore examples of asymmetric FLPs. This exploration
revealed three main types, namely, intramolecular chiral FLPs,
intermolecular FLPs composed of a chiral acid and an achiral
base, and intermolecular FLPs comprising an achiral acid and a
chiral base [61,62]. One study reported a reaction involving the
asymmetric reduction of ketones using an achiral borane,
denoted as B(p-HC6F4)3, paired with a chiral oxazoline, as
depicted in Scheme 3 [28]. Remarkably, in this study, these
FLPs demonstrated the capability to achieve high conversion
rates and enantiomeric excess.

Following the volcano plot analysis presented in the previous
section, F3_NB_C5_CF3 emerged as one of the top FLP cata-
lysts under study. This catalyst, adhering to mechanism 1, in-
corporates a CF3 group on the boron atom, serving as a simpli-
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Scheme 3: Asymmetric catalysis studied. On the left, the catalyst proposed by Gao et al. for the asymmetric hydrogenation of a ketone is shown [28].
On the right, the catalyst design inspired by the Gao catalyst and the volcano plot results is shown. At the bottom the reaction under study is
presented.

Table 1: Free energy reaction profile of the asymmetric coupling between propylene oxide and CO2 catalysed by the catalyst depicted in Scheme 3.
The energies are reported in kcal·mol−1, and the 0.0 energy was set to be the FLP–CO2 adduct and the isolated propylene oxide.

Enantiomer Pre-TS TS1 Int. Asymmetric TS Product

R 9.4 27.6 27.9 30.9 −14.2
S 8.9 25.0 24.5 32.1 −13.4

fied version of the B(p-HC6F4)3. Notably, the nitrogen in this
FLP is situated within a five-membered ring. Using this struc-
tural insight, an asymmetric catalyst was subsequently de-
signed by strategically modifying the pyrrolidine substituent
(C5 in Figure 4) based on the most efficient FLP.

The coupling reaction proposed in Scheme 3 was studied. In
order to minimise the computational costs associated with the
study, the asymmetric catalyst was obtained by removing a phe-
nyl group and exchanging the t-Bu group with a methyl group
in the catalyst of Gao [28]. It appears that the capture of CO2 by
the catalyst is barrierless and results in the formation of an
adduct with a relative free energy of 0.7 kcal·mol−1. Thus, the
evaluation of the stereoselectivity of the designed catalyst was
conducted by only studying the steps after the capture of CO2
by the catalyst.

The reaction occurs in two steps (Table 1). Initially, a pre-TS
assembly, with the PO compound positioned 2.67 Å from the
CO2 carbon is formed. Overcoming a TS, an intermediate is
generated. In this intermediate, the distance between PO and the
CO2 carbon decreases to 1.61 Å from the initial 2.67 Å, and the
interaction between nitrogen and the CO2 carbon weakens. The
intermediate is highly energetic and closely positioned to the
TS. In the case of the (R) mechanism, the intermediate is

slightly higher in energy than the TS, potentially because of
methodological error. The intermediate further reacts with the
activated CO2 to generate the corresponding product. As can be
observed in Table 1, the mechanism leading to the (S) product
presents an asymmetric TS, 1.2 kcal·mol−1 higher in energy
than that of the (R) mechanism. Thus, the asymmetric catalyst
enables to generate an enantiomeric excess of 95% with the (R)
product being the most abundant product.

Surprisingly, a transition state connecting the (S) epoxide with
the (R) product was identified (Figure 8). Even more intrigu-
ingly, this new TS (TS_S_R in ), verified by the IRC calcula-
tion (Figure S5, Supporting Information File 1) is the most
stable TS located (Figure 9).

In this TS, the epoxy ring opens (Figure 9). Because of a shorter
C–C distance between the CH3 group in the catalyst and the
epoxy carbon atom (3.45 Å vs 3.75 Å in TS_S_S), a steric clash
between the two methyl groups occurs (Figure 9). This results
in an inversion of stereochemistry via rotation of the epoxy C–C
bond, leading to the formation of the (R) product. As two TSs
now yield the same product, it is necessary to recalculate the
%ee, but this time using an effective rate constant keff (Equa-
tion 3). In doing so, a small increase in enantioselectivity is ob-
served, with now a (R) enantiomeric excess of 96%ee. The de-
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Figure 8: Catalysed reaction between the (S)-enantiomer of propylene oxide and CO2 resulting in the formation of the (R)-product. In orange, the
hydrogen atom that illustrates the stereochemistry inversion. The free energies are given in kcal·mol−1

Figure 9: Schemes of the different asymmetric reactions observed. Hydrogen capable of rotation is marked in orange, influencing the stereochemis-
try at the TS.

signed catalyst enables the generation of an almost enantiomeri-
cally pure product from a racemic mixture.

Conclusion
Carbon capture and utilisation technologies represent a promis-
ing avenue for addressing increasing atmospheric carbon
dioxide levels. The reaction involving the insertion of CO2 into
epoxides to form cyclic carbonates is a key focus within this
domain. Despite extensive exploration, the stereochemical
aspects of this reaction have been surprisingly underexplored,

especially in the context of racemic epoxide mixtures common-
ly encountered in practice.

This study introduces an innovative in silico design strategy for
asymmetric frustrated Lewis pairs tailored specifically to
control the stereochemistry of the CO2 insertion reaction.
Computational evaluations of four distinct FLP scaffolds, incor-
porating various Lewis acids, Lewis bases, and substituents,
identify the most promising catalyst candidates through volcano
plot analysis. The volcano plot analysis reveals that the best
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candidate is F3_NB_C5_CF3, which is the catalyst based on the
2-borylbenzenamine scaffold, with a pyrrolidine substituent on
the nitrogen atom and CF3 substituents on the boron.

Through strategic modification of the Lewis base substituents, a
stereoselective catalyst was engineered to produce a single en-
antiomer preferentially from both enantiomers of the epoxide
substrate. An enantiomeric excess of 95%ee was initially
achieved, with the predominant (R) enantiomer. Enhanced
selectivity was subsequently observed through additional transi-
tion states, resulting in a remarkable 96%ee yielded by the cata-
lyst.

Supporting Information
Supporting information features geometries of the different
stationary points optimised as well as figures and tables
mentioned in the main text. The outputs of the calculations
presented can be found at the following link:
https://doi.org/10.5281/zenodo.

Supporting Information File 1
Supporting figures and tables.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-20-224-S1.pdf]
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Abstract
The discovery of the optimal conditions for chemical reactions is a labor-intensive, time-consuming task that requires exploring a
high-dimensional parametric space. Historically, the optimization of chemical reactions has been performed by manual experimen-
tation guided by human intuition and through the design of experiments where reaction variables are modified one at a time to find
the optimal conditions for a specific reaction outcome. Recently, a paradigm change in chemical reaction optimization has been
enabled by advances in lab automation and the introduction of machine learning algorithms. Therein, multiple reaction variables
can be synchronously optimized to obtain the optimal reaction conditions, requiring a shorter experimentation time and minimal
human intervention. Herein, we review the currently used state-of-the-art high-throughput automated chemical reaction platforms
and machine learning algorithms that drive the optimization of chemical reactions, highlighting the limitations and future opportu-
nities of this new field of research.

10

Introduction
Organic synthesis plays a crucial role in drug discovery,
polymer synthesis, materials science, agrochemicals, and
specialty chemicals. Their synthesis and process optimization

require substantial resources and are labor-intensive, often
exploring only a single variable in search of the optimal condi-
tions while disregarding the intricate interactions among
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Figure 1: A high-level representation of the workflow and framework used for the optimization of organic reactions through optimization algorithms
and high-throughput experimentation (HTE) tools.

competing variables within the synthesis process. The complex-
ity of the problem requires consideration that process optimiza-
tion often demands solutions that meet multiple targets, such as
yield, selectivity, purity, cost, environmental impact, etc. In
recent years, the advancement of artificial intelligence (AI),
machine learning (ML), and automation has produced a para-
digm shift for chemical synthesis optimization techniques. By
leveraging on ML models to predict reaction outcomes and ML
optimization algorithms, this new approach has demonstrated
the ability to navigate the complex relationships between reac-
tion variables and finding the global optimal conditions within a
fewer number of experiments than with traditional methods
[1,2]. In addition, machine-guided optimization has emerged as
a promising framework to obtain reaction conditions that
perform optimally for single- or multiple-target objectives,
enabling researchers to explore diverse solution spaces and
uncover the optimal conditions that strike a balance between
consonant and/or conflicting targets. In addition, the incorpora-
tion of lab robotics into chemical synthesis has enabled the de-
velopment of closed-loop optimization platforms capable of
executing optimization campaigns rapidly with minimal human
intervention, relieving experimenters from labor-intensive tasks
and reducing the overall process development lead time [3,4].

A standard workflow and general methodology for organic
reaction optimization through ML methods is shown in
Figure 1. The workflow comprises (i) careful design of experi-
ments (DOE); (ii) reaction execution with commercial high-
throughput systems or in-house designed reaction modules;
(iii) data collection by in-line/offline analytical tools;
(iv) mapping the collected data points with the target objectives;
(v) prediction of the next set of reaction conditions towards
attaining optimal solutions; and (vi) experimental validation of
suggested optimization results. Through an examination of
methodologies, algorithms, and various case studies, this article
offers our perspective on the state-of-the-art techniques for opti-

mizing the synthesis of organic molecules, highlighting both
challenges and prospects. The structure of this review follows
the steps presented in Figure 1. In the following section, we
review the high-throughput platforms currently used to perform
chemical reaction optimization. Thereafter, we discuss the de-
velopment and use of analytical tools and data processing algo-
rithms. After that, we discuss the latest trends in the selection of
optimization algorithms for chemical synthesis. Finally, we
highlight the future directions and opportunities in the field. For
an in-depth overview on the topic of chemical reaction optimi-
zation, the readers are referred to prominent reviews by Taylor
et al. [5], Griffin et al. [6], and Sagmeister et al. [7]. The first
two offer valuable perspectives on chemical reaction optimiza-
tion, particularly focusing on process scale-up, while the latter
discusses the potential of flow platforms for self-optimization
reactions. Additionally, we refer the readers to the following lit-
erature in other areas relevant to the application of ML to chem-
ical synthesis that are not covered by our review, such as small
molecule discovery [8], drug discovery [9,10], retrosynthesis
[11,12], and catalyst selection and design [13,14].

Review
HTE platforms
HTE platforms were designed to accelerate the discovery and
development of organic molecules by the rapid screening and
analysis of large numbers of experimental conditions simulta-
neously. For the purpose of this article, we define HTE as a
technique that leverages a combination of automation, paral-
lelization of experiments, advanced analytics, and data process-
ing methods to streamline repetitive experimental tasks, reduce
manual intervention, and increase the rate of experimental
execution in comparison to traditional manual experimentation.
In conventional chemical synthesis, several sequential steps are
typically undertaken, involving the setup of the reaction, mixing
of reactants, reaction workup, product analysis, and product
purification. To perform all these basic chemistry tasks effec-
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tively, customizable HTE platforms are available from various
laboratory instrument manufacturers or can be assembled using
a mix of commercial and in-house developed equipment.
Normally, HTE for organic chemistry will include a liquid
transfer module, a reactor stage, and analytical tools for prod-
uct characterization. When the full experimental process is auto-
mated and coupled with a centralized control system per-
forming ML optimization, the HTE can function as a self-
driving platform where the next iteration of experiments is auto-
matically selected by algorithm without human intervention.
This section will highlight the key features of various HTE plat-
forms, including benefits, limitations, and applications to
organic molecule synthesis.

HTE using batch modules
Batch reactions occur without flow of the reagents/products into
or out of the reaction vessel until a target conversion has been
achieved. HTE batch platforms leverage on parallelization of
experiments to perform several reactions under different condi-
tions simultaneously to increase the experimental throughput.
Commonly, batch platforms include a liquid handling system
for setting up reactions based on a plunger pump (e.g., syringe,
pipette), a reactor capable of heating and mixing, and in-line/
online analytical tools. HTE in batch excels in the control of
categorical and continuous variables, in particular for the stoi-
chiometry and chemical formulation of reaction mixtures. Many
HTE batch experiments have been performed in self-contained
automated platforms developed by various instrument manufac-
turers (Chemspeed, Zinsser Analytic, Mettler Toledo, Tecan,
Unchained Labs, etc.). In these HTE platforms, microtiter well
plates (MTP) and reaction blocks containing 96/48/24-well
plates are widely used as reaction and characterization vessels
[5]. UltraHTE configurations typically incorporate 1536-well
plates, enabling the exploration of lager spaces of reaction pa-
rameters. While ultraHTE was initially tailored to biological
assays, the versatility of these modules has been extended to op-
timizing chemistry-related processes [5]. The Chemspeed
SWING robotic system, equipped with two fluoropolymers and
PFA-mat-sealed 96-well metal blocks, was used for the explo-
ration of stereoselective Suzuki–Miyaura couplings, offering
precise control over both categorical and continuous variables
(Figure 2a) [15]. The integrated robotic system containing a
four-needle dispense head facilitated the delivery of reagents in
low volume and slurries, ensuring the accuracy and throughput
of the process. The entire experimental workflow was further
optimized through parallelization, dividing reactions into eight
loops, enabling them to complete 192 reactions within 24 loops,
achieving a significant throughput in within four days. Other
reports for various reactions include the Buchwald–Hartwig
aminations [16-19], Suzuki couplings [16,17,20], N-alkylations
[21], hydroxylations [22], and photochemical reactions [23-29].

The versatility to handle multiple reagents and the widespread
availability of 96-well plates have facilitated the extensive
adoption of HTE under batch conditions for optimizing chemi-
cal synthesis. However, several challenges arise when MTP are
used as reaction vessels. First, the independent control of vari-
ables such as reaction time, temperature, and pressure within
individual wells is not possible due to the inherent design
constraints of parallel reactors that share the same MTP. In ad-
dition, challenges arise when standard MTP-based reaction
vessels are used at a temperature near the solvent's boiling
point, as this labware is not enclosed or able to cool the top of
the reaction vessel to facilitate reflux conditions. Although
some research groups have developed custom tools to enable
high-temperature reactions, these reactors are currently not
commercially available. For an in-depth discussion on the limi-
tations of batch reactors for HTE, we refer the readers to a
review by Taylor et al. on chemical reaction optimization [5].

In recent years, research laboratories have deviated from tradi-
tional commercial tools to HTE systems custom-built to the
chemists’ requirements and demands. Burger et al. [30] have
creatively developed a mobile robot equipped with sample-
handling arms, tailored for the precise execution of photocata-
lytic reactions for water molecule cleavage to produce hydro-
gen. The mobile robot (Figure 2b) acted as a substitute of a
human experimenter by executing tasks and linking eight
separate experimental stations, including solid and liquid
dispensing, sonication, several characterization equipments, and
stations for consumables and sample storage. Remarkably,
through a tedious ten-dimensional parameter search spanning
eight days, the robot achieved an impressive hydrogen evolu-
tion rate of approximately 21.05 µmol⋅h−1. Despite the initial
investment and two-year development timeline, the versatility
of this robotic system promises remarkable applications in ma-
terials, polymers, and chemical synthesis. Most automated syn-
thesis platforms are based on expensive scientific equipment,
have a large equipment footprint, and need extensive reconfigu-
ration to adapt to new synthetic protocols. To address this issue,
Manzano et al. [31] have developed a small-footprint portable
chemical synthesis platform able to perform liquid and solid
phase organic reactions (Figure 2c). The platform utilizes
3D-printed reactors that can be generated on demand based on
the targeted reaction and features liquid handling, stirring,
heating, and cooling modules for enhanced versatility. In addi-
tion, the platform is capable of performing under inert and low-
pressure atmospheres, handling separation steps, and pressure
sensing for reaction monitoring. Its efficacy and robustness
were confirmed through the successful synthesis of five small
organic molecules, four oligopeptides, and four oligonucleo-
tides in high purity and impressive yield. Although, in the cur-
rent configuration, the platform lacks characterization modules
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Figure 2: (a) Photograph showing a Chemspeed HTE platform using 96-well reaction blocks. (b) Mobile robot equipment performing tasks normally
executed by human experimenters for the photocatalytic conversion of water to hydrogen. (c) Small-footprint portable chemical synthesis platform.
(d) Schematic of the SynBot platform developed by Samsung researchers, showing each module used for chemical synthesis. Figure 2a was repro-
duced from [15] (© 2021 M. Christensen et al., published by Springer Nature, distributed under the terms of the Creative Commons Attribution 4.0
International License, https://creativecommons.org/licenses/by/4.0). Figure 2b is from [30] and was reprinted by permission from Springer Nature from
the journal Nature (“A mobile robotic chemist” by B. Burger; P. M. Maffettone; V. V. Gusev; C. M. Aitchison; Y. Bai; X. Wang; X. Li; B. M. Alston; B. Li;
R. Clowes; N. Rankin; B. Harris; R. S. Sprick; A. I. Cooper), Copyright © 2020 The Author(s), under exclusive licence to Springer Nature Limited. This
content is not subject to CC BY 4.0. Figure 2c is from [31] and was reprinted by permission from Springer Nature from the journal Nature Chemistry
(“An autonomous portable platform for universal chemical synthesis” by J. S. Manzano; W. Hou; S. S. Zalesskiy; P. Frei; H. Wang; P. J. Kitson; L.
Cronin), Copyright © 2022 The Author(s), under exclusive licence to Springer Nature Limited. This content is not subject to CC BY 4.0. Figure 2d was
adapted from [32] (© 2023 T. Ha et al., published by American Association for the Advancement of Science, distributed under the terms of the
Creative Commons Attribution 4.0 International License, https://creativecommons.org/licenses/by/4.0).

and has a lower throughput in comparison to other automated
platforms, it does offer a low-cost alternative that can be
adapted to perform chemical reaction optimization.

In addition to academia, industry is increasingly recognizing the
value of investing in custom-built HTE setups to automate their
synthesis workflows for enhanced productivity. A fully inte-
grated, cloud-accessible, automated synthesis laboratory (ASL)
was designed and built by Eli Lilly [33]. This state-of-the-art
facility allowed for heating, cryogenic conditions, microwaving,
high-pressure reactions, evaporation, and workup, empowering
researchers to conduct an extensive array of chemical reactions.
The ASL comprises of three bench spaces dedicated to either
high temperature reactions, cryogenic/microwave reactions, or
reaction workup. On each bench, a translational combination of

robotic arms performs the specific experiments using the
modular platforms, while consumables and samples are trans-
ferred between benches through a conveyor belt, linking them
together. According to the report, the ASL has facilitated over
16,350 gram-scale reactions across various case studies, show-
casing the widespread capability. Researchers at Samsung have
pioneered the development of SynBot, an innovative autono-
mous synthesis robot that uses AI and robotic technology to
establish optimal synthetic procedures [32]. Similar to ASL,
SynBot consists of five modules connected through a conveyor
belt backbone, with a robot arm in charge of transferring the
samples between them. The modules include a pantry for chem-
ical storage and chemical selection, a dispensing module for
solids and liquids, a reaction module capable of heating and
stirring, a sample preparation module, and a LC–MS characteri-
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zation module (Figure 2d). The efficiency of the system has
been demonstrated in three reactions types, namely
Suzuki–Miyaura coupling, Buchwald–Hartwig amination, and
Ullmann coupling. These experiments showcased a conversion
rate that outperformed existing reference systems and provided
at least six times the efficiency in the experimentation, besides
synthesis planning, optimization, and downstream workup
tasks. The throughput of SynBot is estimated to be an average
of 12 reactions within 24 hours depending on the reaction time.
IBM has developed RoboRXN, a remotely accessible autono-
mous chemical laboratory that enables notable acceleration in
chemical synthesis by leveraging cloud computing, AI, and
automation [34]. The technology relies on an AI model that
recommends the sequence of operations needed to perform the
corresponding chemical reactions, including the order of
reagent addition [35]. This model facilitates that the synthesis
tasks are sent to a robotic research lab from anywhere in the
world, allowing the robot to execute the recommended retrosyn-
thesis provided by the user. The enhancements in RoboRXN
assist chemists in predicting the environmental impact of chem-
ical processes, and the new AI model also helps identify more
environmentally friendly enzymes for chemical reactions. Al-
though RoboRXN has demonstrated the ability to perform most
tasks in chemical and material synthesis, the hardware current-
ly cannot perform product purification and multistep synthesis
continuously.

HTE using flow platforms
Flow reactions are characterized by a constant flow of reagents
and products into and out of the reaction vessel. A flow plat-
form consists of a fluid delivery system, mixing tools, reactors,
quenching units, pressure regulation units, and collection
vessels. The fluid delivery is normally executed using either
high-pressure liquid chromatography (HPLC), a syringe, or
peristaltic pumps. A passive mixing stage where the reagents
are introduced to the system through a Y- or T-connection is the
most common approach observed for most flow reactions, while
more specialized mixing tools can be incorporated depending
on the reaction prerequisites. The most common reactors used
are either microfluidic chip- or coil-based reactors for solution
chemistry. Packed bed reactors are used when solid heterogen-
eous catalysts and reagents (e.g., inorganic bases) are handled.
Specialized reactors for electro- [36,37] and photochemical [38-
40] experiments have also been developed. Depending on the
flow of the reaction mixture, flow reactions can be continuous
or segmented (also known as slug). Segmented flow reactions
present an efficient means to gather diverse data points by
creating segmented or droplet flow within microfluidic reactors.
Each droplet is carefully separated by either an antisolvent or an
inert gas, thus providing every droplet with the functionality of
an individual reactor. This segmentation ensures precise control

over reactions and prevents interference between different reac-
tion environments. Moreover, the ratio of reagents within these
droplets is easily modulated using syringe pumps, providing
users with a convenient means to collect data efficiently and
coherently. This approach streamlines experimentation pro-
cesses, enhances reproducibility, and facilitates the exploration
of complex reaction spaces with unprecedented accuracy.

Droplet microfluidics has emerged as a powerful tool across
diverse scientific disciplines, with dedicated literature offering
concepts behind droplet formation [41,42]. An example of a
segmented flow droplet system was employed to screen a range
of organic solvents to obtain optimal conditions for the
monoalkylation of trans-1,2-diaminocyclohexane [43]. The
HTE methodology in combination with feedback DOE facili-
tated the rapid identification of appropriate solvents. Notably,
the use of DMSO, DMF, and pyridine led to an enhanced yield
of the monoalkylated product. An experimental setup was de-
veloped for single-droplet studies of visible-light photoredox
catalysis using an oscillatory flow strategy [44,45]. In an oscil-
latory reactor, an alternating pressure gradient is applied within
the reactor, causing a back-and-forth oscillation of the reaction
slugs, which leads to higher control in mixing and an extended
residence time of the reaction mixture. About 150 reaction
conditions were explored, using a total volume of 4.5 mL reac-
tion mixture, and the screening results can be readily translated
to continuous flow synthesis. The application of segmented
flow or microslug reactors was demonstrated in the decarboxyl-
ative arylation cross-coupling reaction promoted by catalysts
and light [40]. The design allows the screening to be more ma-
terial- and time-efficient in the optimization of both continuous
variables (e.g., temperature and residence time) and discrete
variables (e.g., catalyst, base). Pieber et al. [46] reported the ap-
plication of a segmental flow reactor for heterogeneous
solid–liquid reactions. In their report, they described the reac-
tion slugs as serial microbatch reactors (SMBRs) separated
through gas segments that incorporated liquid reagents and solid
photocatalysts in a continuous flow. The slugs were generated
by establishing a stable gas–liquid segmented-flow pattern
using a Y-shaped mixer, followed by the suspension of the cata-
lyst via a T-mixer. This technology was utilized to develop
selective and efficient decarboxylative fluorination reactions.
Recently, a slug flow platform was developed (Figure 3a) by
injecting segments of gas as a separating medium for enhancing
the optimization of the Buchwald–Hartwig amination interme-
diate, which is crucial for synthesizing the drug olanzapine [47].
The reactor setup was integrated with spectroscopic and chro-
matographic in-line analytical tools, enabling real-time monitor-
ing of products and reaction intermediates. A detailed discus-
sion on the optimization strategy is described in the section
Machine-learning-driven optimization of chemical reactions.
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Figure 3: (a) Description of a slug flow platform developed using segments of gas as separation medium for high-throughput data collection in a
Buchwald–Hartwig amination. A six-way mixer was used to mix the solvents and reagents. (b) Schematic representation of a computer-controlled seg-
mented flow pattern developed using degassed water as an antisolvent for the high-throughput polymerization of styrene in p-xylene. A staggered
infusion of organic and aqueous phases resulted in the exploration of a wider parameter space.

Robochem, a HTE platform, was designed to streamline the
screening of photochemical reactions, facilitating the rapid gen-
eration of diverse reaction mixtures, each comprising 650 µL
within a slug flow reactor [48]. This innovative system features
precise monitoring of the reaction slug through a dedicated
array of phase sensors and an algorithm designed for detecting
its passage. As a result, the workflow delivers a notable boost in
productivity, surpassing traditional batch reactions by over a
500-fold and outperforming flow reactions with a five-fold
improvement. A fully integrated automated multistep chemical
synthesizer (AutoSyn) was reported to be able to autonomously
synthesize milligram- to gram-scale amounts of any organic or
drug-like molecule [49]. The system comprised of a flow chem-
istry synthesis platform, a reagent delivery system, a packed
bed reactor, process-analytical tools, and an integrated software
control system that automates end-to-end process operations
and monitoring. The system has been used to demonstrate the
synthesis of at least ten drug molecules autonomously, and it
does not include a closed-loop optimization framework. The
Pfizer research team developed a custom-designed flow system
for rapid reaction screening of the Suzuki–Miyaura coupling
reaction on a nanomolar scale [50]. The platform included a
modified HPLC system that supplied a flowing stream of 12
selectable solvents, an autosampler that injected microliter
amounts of preselected reaction mixtures, and an LC–MS
device for product characterization. Approximately 5,760 reac-
tions were screened across a selection of 11 ligands, seven

bases, and four solvents, along with appropriate control experi-
ments being performed. The nanomolar droplet system enabled
a very high throughput, exceeding 1,500 reactions every
24 hours. This extensive and intelligent screening approach
identified optimal conditions for scaling up selected reactions to
50–200 mg under batch and flow conditions.

In addition to organic synthesis, the slug flow methodology has
found application in polymer synthesis. A flow platform
capable of polymerizing 397 unique copolymer compositions
was developed by Reis et al. [51] using a droplet flow reactor.
The methodology and high-fidelity data enabled them to
discover more than ten copolymer compositions of promising
19F MRI agents that outperformed state-of-the-art materials. A
rapid generation of copolymer libraries was achieved by
forming a droplet flow in an automated HTE flow setup [52].
This approach not only assists in overcoming viscosity chal-
lenges in conventional photopolymerization reactions but also
helps to identify structure–property relationships for copolymer
libraries. We have generated a segmented flow pattern
(Figure 3b) by alternating the infusion of organic components
and degassed water to create nine different compositions [53].
The organic components consisting of styrene, α,α′-azobisiso-
butyronitrile (AIBN), and p-xylene were infused using a com-
puter-controlled segmented-flow platform. These approaches
allow the compartmentalization of reaction mixtures without
cross-contamination and enhance experimental throughput sig-
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Figure 4: Schematic representation (a) and photograph (b) of the flow parallel synthesizer intelligently designed for screening optimal conditions for
diazonium chemistry (c) for 24 products within two sequences. Figure 4 was reproduced from [54] (© 2021, G.-N. Anh et al., published by Springer
Nature, distributed under the terms of the Creative Commons Attribution 4.0 International License, https://creativecommons.org/licenses/by/4.0).

nificantly. The concept of parallel flow reactors, where several
distinct reactions conditions are tested simultaneously, has been
proposed as a pathway to increase the throughput of flow reac-
tions. Ahn et al. [54] designed and fabricated a complete proto-
type equipped with a unique built-in flow distributor (Figure 4)
and 16 microreactors capable of executing diverse conditions in
parallel, including photochemistry. The temperature of the
capillary reactors can be controlled independently, providing
flexibility in experimentation. The reservoir-type distributor,
featuring a baffle structure, not only ensures uniform flow of
reagents even when one or more reactors experience clogging
but also allows for variation of the residence time of individual
capillary reactors. The authors demonstrated the capabilities of
their platform by executing 12 distinct reactions, which encom-
passed six different types of chemical transformations based on
diazonium chemistry, in parallel (Figure 4). A total of 96 reac-
tion conditions were tested, leading to optimized reaction pa-
rameters in less than an hour.

Chatterjee et al. [55] introduced the concept of radial synthesis
to perform multiple single-step chemical reactions or to
decouple multistep reactions into parallel processes. Individu-
ally accessible reactors are arranged around a central switching
station that enables the delivery of independent reaction mix-
tures or reagents. Each reactor loop functions as an indepen-
dent unit to carry out thermal or photochemical reactions under
different conditions. This parallel reactor setup was successful-
ly utilized for the multistep synthesis of 18 compounds of an
anticonvulsant drug, employing various reaction pathways to
perform photoredox carbon–nitrogen cross-coupling reactions.
A parallel droplet flow system was developed by Eyke et al.
[56] to significantly increase the throughput of reaction
screening. A closed-loop Bayesian optimization (BO) frame-
work was integrated to optimize reactions involving both con-
tinuous and categorical variables. The team upgraded the oscil-
latory droplet reactor platform to a high-throughput version
consisting of multiple independent parallel reactors. This paral-
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Figure 5: (a) Schematic representation of an ASFR for obtaining an optimal solution with minimal human intervention. Selected case studies (b–d)
with closed-loop optimization are provided. Abbreviations “Obj” and “NOI” represent “objective functions” and “number of interactions”.

lelization enables the collection of high-fidelity data for reac-
tion kinetics and optimization for at least six different chemical
reactions. The major bottleneck in HTE synthesis lies in the
challenge of isolating and purifying reaction products once ex-
periments are performed. Despite this bottleneck, the landscape
is evolving, with various practical tools emerging to streamline
purification processes. From prepacked silica gel tubes to the
precision semipreparative liquid chromatography and the versa-
tile capabilities of various scavenger resins, laboratories are
witnessing a surge in options for efficient high-throughput
purification, particularly in chemical synthesis on a modest
scale. A change in thinking beyond conventional purification
methods presents an opportunity to revolutionize HTE flow
platforms. A completely novel design, differing from estab-
lished isolation and separation techniques, holds the promise of
not only enhancing the efficiency of HTE flow synthesis but
also paving the way for more sustainable growth in this research
area.

Autonomous self-optimizing flow reactors
Autonomous self-optimizing flow reactors (ASFRs) represent a
promising advancement in the process optimization of chemi-
cal reactions. ASFR combines principles of automation, AI,
in-line analytics, and robotics to streamline and accelerate the
process optimization workflow. ASFRs enhance the yield and

throughput of synthesis by minimizing waste. Engaging in-line/
online analytics and integrating them with flow systems is rela-
tively straightforward. The real-time processing of analytical
data allows for immediate adjustments to the reaction parame-
ters, enabling the attainment of optimal solutions rapidly.
Consequently, the process can lead to lower energy consump-
tion and reduced use of hazardous materials, contributing to
more sustainable chemical processes. Integrating ML algo-
rithms to simultaneously optimize multiple parameters such as
yield, purity, and cost within a closed-loop represents a signifi-
cant advancement in process design. Furthermore, automation
in ASFRs reduces the need for constant human oversight,
lowering operational costs and minimizing the risk of human
errors. A schematic representation of ASFR is provided in
Figure 5a.

A self-optimizing microreactor system has been devised specifi-
cally for closed-loop optimization of the Heck reaction, em-
ploying a "black-box" optimization strategy directed by
Nelder–Mead simplex method algorithm [57]. In-line HPLC
analysis was performed to determine the product yield in real
time and give feedback to the control system to direct the input
conditions to achieve the optimum product yield in 19 auto-
mated experiments. The optimum conditions for the formation
of the monoarylated product 1 (Figure 5b) identified in a
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Figure 6: (a) A modular flow platform developed for a wider variety of chemical syntheses. (b) Various categories of chemical reactions optimized and
molecules synthesized in a continuous flow system are given. Figure 6a is from [62]. Reprinted with permission from AAAS. This content is not subject
to CC BY 4.0.

microfluidics system were successfully translated to a mesoflu-
idics system on a 50-fold scale to afford 26.9 g of the product 1.
LeyLab, a modular software system developed by Fitzpatrick et
al. [58], allows researchers to oversee chemical reactions
online. The hydration of 3-cyanopyridine to an amide was
monitored by online MS, offering real-time conversion insights.
Through 30 experiments within ten hours, five key reaction pa-
rameters were finely tuned for optimal conditions.

Photochemical reactions require uniform light penetration of the
reaction mixture, and flow setups with uniform path lengths
would be ideal for such reactions. A self-optimizing continu-
ous-flow reactor was designed by Poscharny et al. [59] for
[2 + 2]-cycloaddition reactions promoted by light. The optimi-
zation (modified simplex) algorithm elaborated the optimal
conditions within 25 iterative experiments to afford compound
3 (Figure 5c) in good yield. A modular autonomous flow
reactor controlled via MATLAB was designed for the synthesis
of carpanone (7, Figure 5d) using a modified Nelder−Mead
algorithm [60]. The four-step process involves allylation,
Claisen rearrangement, isomerization, and oxidative dimeriza-
tion. Each reaction step was optimized independently by using
either online HPLC or in-line benchtop NMR spectroscopy to
afford an overall yield of 67% in 66 iterative experiments over
four linear reaction steps. Nandiwale et al. [61] reported the au-
tonomous optimization of three multiphase catalytic reactions

involving the handling of solid substrates, operating the
photoreactor, and feeding of the slurries, catalysts, and inorgan-
ic bases in an automated flow platform comprising a continu-
ous stirred tank reactor (CSTR) cascade. The platform allowed
to showcase the autonomous optimization to find the ideal reac-
tion conditions for Suzuki–Miyaura and photoredox-catalyzed
coupling reactions.

A plug-and-play, continuous-flow chemical synthesis system
(Figure 6a) was intelligently designed by Bédard et al. [62] to
mitigate some of the challenges in traditional organic synthesis
by the integration of hardware, software, and analytics. Com-
prising an array of modular components, including units for
heating, cooling, LED light exposure, and packed bed reactors,
it provides a flexible platform for various reaction categories.
The system consists of a liquid–liquid separator and an in-line/
online analytical tool to facilitate closed-loop autonomous opti-
mization. The capability of the system was demonstrated in the
optimization of C–C and C–N cross-coupling, olefination, re-
ductive amination, photoredox-catalytic, and nucleophilic aro-
matic substitution reactions, as well as in the two-step synthesis
of cyclobutanone. The molecules synthesized under the optimal
conditions are presented in Figure 6b, employing the stable
noisy optimization by branch and fit (SNOBFIT) algorithm.
SNOBFIT offers a convenient methodology for global optimi-
zation, eliminating the necessity of a theoretical model. A
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Table 1: Different analytical methods depending on their position within the experimental workflow.

analytical method description

in-line Analyzed in real time during the reaction or production process by directly integrating appropriate
devices.

online Sampling and analysis take place while the reaction or process is running. The analysis is done on a
device located nearby. Online analyses can be carried out continuously or at set intervals.
Autonomous sampling allows for direct online analysis with the instrument.

at-line Like online analysis, the samples are analyzed usually within a manufacturing facility. An aliquot of
the reaction mixture is taken for analysis. Human intervention is often required for this task. At-line
analysis still provides relatively rapid results compared to offline methods, offering a balance
between real-time monitoring and convenience.

offline Analysis conducted outside of the process environment and separate from ongoing operations.
Provides a more detailed and comprehensive analysis compared to real-time monitoring.

reconfigurable automated flow platform integrating online
HPLC monitoring was used for the cobalt-catalyzed aerobic ox-
idative dimerization of desmethoxycarpacine (6) to carpanone
(7) in the presence of oxygen as an oxidant [63]. A gas−liquid
segmented or a tube-in-tube strategy was adopted to achieve a
higher yield within a shorter residence time. Substantial further
developments have been made in applying ASFR in multiobjec-
tive optimizations, which will be discussed in detail below in
the section "Machine-learning-driven optimization of chemical
reactions".

Real-time analytics and high-throughput data
processing
Real-time analytics play a critical role in the optimization of
chemical reactions via high-throughput synthesis and ML algo-
rithms. Process-analytical technology (PAT) tools empower
researchers to obtain chemical insights from a large number of
experiments, facilitating the precise measurement of optimiza-
tion targets. The integration of real-time analysis in HTE
presents a multitude of advantages over traditional, one-time
final product evaluations, as outlined below:

(i) Real-time analysis facilitates rapid decision-making,
enabling researchers to continuously monitor and analyze data
as it is generated and allows for immediate adjustments to
process parameters during experiments.

(ii) Early detection of trends or anomalies are made possible
through real-time analysis, providing valuable insights that can
guide subsequent experiments and inform iterative improve-
ments and optimizations in experimental protocols.

(iii) By optimizing experimental workflows and minimizing
waste through real-time analysis, researchers can allocate
resources more efficiently, ensuring that resources are utilized
effectively to maximize experimental outcomes.

(iv) Enhanced experimental control on the process to deliver
constant product quality to meet desired specifications and stan-
dards.

(v) By providing instantaneous feedback, real-time analysis
accelerates the optimization process, reducing the experimenta-
tion time and expediting the discovery of optimal reaction
conditions with minimum material use.

Analytical tools are integral components of high-throughput
platforms and are found in various configurations, such as
in-line, online, at-line, and offline, contingent upon their place-
ment within the experimental workflow. In Table 1, we describe
the subtle disparities for clarity and reference.

Self-optimizing HTE throughput platforms require in-line and/
or online characterization as well as data analysis and process-
ing for rapid optimization of organic reactions. Chromatograph-
ic (i.e., HPLC, GC) and spectroscopic (e.g., NMR, FTIR,
UV–vis, Raman) characterization methods are commonly used
in real-time reaction monitoring. To quantify the products of a
chemical reaction, a calibration curve is required before the op-
timization campaign. The following sequential steps are typical-
ly employed to refine raw data into actionable inputs for build-
ing ML models for optimization: (i) extraction and categoriza-
tion of appropriate spectra; (ii) fitting of spectral peaks utilizing
predefined functional models, alongside deconvolution of over-
lapping signals; (iii) consolidation of extracted peak informa-
tion and generation of relevant data plots; and (iv) extracting the
relevant information and formatting into input data for ML
models. A recent review by Felpin and Rodriguez-Zubiri [64]
highlighted the selection of in-line/online analytical tools that
can be integrated into flow reactors for the monitoring of chem-
ical reactions. In the current review, we focus on the high-
throughput data processing that complements the HTE plat-
forms for rapid optimization of organic reactions. Although
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Figure 7: Implementation of four complementary PATs into the optimization process of a three-step synthesis.

multivariate data analysis has frequently been adopted in analyt-
ical chemistry for rapid data processing, the availability of rele-
vant open-source code is relatively low [65,66]. Consequently,
the development of open-source code for data processing is
interesting for the scientific community.

Jansen et al. [67] have developed HappyTools, a tool for the
analysis of HPLC measurements, able to calibrate retention
time, perform peak quantification, and use various quality
criteria to curate the compiled data. For the quantification and
calibration of chromatographic peaks, the user can either input a
peak list containing the retention time window of the target
chemicals, or the tool can use an automated peak detection
algorithm, removing the need of user input. The peak detection
algorithm was developed using a loop to attain the user-speci-
fied cut-off value of the highest-intensity peak. A new
univariate spline is fitted for each iteration, from which the
local maxima and minima are determined. Overall, Happy-
Tools showed similar or better performance in comparison to
existing commercial software. In particular, HappyTools
showed an enhanced throughput, demonstrating up to a ten-fold
reduction of the total processing time for biopharmaceutical
samples. The authors have released the source code and an
executable program in an online repository to be employed
freely for research purposes.

In addition to HappyTools, there are other available open-
source Python packages to analyze chromatographic and spec-
troscopic data. A cross-platform Python package named Aston
can be used to process both UV–vis and MS data. The open-
source library is written using Python, NumPy, and SciPy and is
openly hosted in an online repository [68]. Similarly, for pro-
cessing chromatographic data from GC–FID, HPLC–UV, or
HPLC–FD, packages are also available open source. Embed-
ding these codes into HTE and ML workflow dramatically im-

proves the efficiency and speed of the optimization processes.
Liu et al. [69] developed a custom-built Python script to study
the kinetics of carbonyldiimidazole-mediated amide formation
by analyzing data from online HPLC and in-line FTIR-spectros-
copic measurements. Their algorithm was able to automatically
detect peaks from chromatographic spectra and to automati-
cally assign the peaks to reagents or products depending on the
decrease or increase in peak intensity over time. In addition to
monitoring the evolution of the reaction, the IR spectral data
was processed in real time. This was to ensure the complete
consumption of acid reactant and to feed this information back
to the pump for immediate quenching of carbonyldiimidazole to
prevent any side reactions. The entire process allows to control
the acid activation and amide formation precisely to afford the
desired final product in quantitative yield.

Recently, Sagmeister et al. [70] assembled four complementary
PATs, including in-line NMR, UV–vis, IR, and online ultra-
high-performance liquid chromatography (UHPLC) to meticu-
lously monitor the intricate three-step linear synthesis of the
drug mesalazine (18, Figure 7) with a 1.6 g⋅h−1 throughput. In
the first step, the nitration reaction was monitored by in-line
NMR. The overlapping peaks were resolved for accurate quan-
tification by building a chemometric model. The model also
allowed for flexibility to small changes in peak positions and
shapes in repetitive analyses. An in-house-designed flow cell
equipped with a reflectance probe was employed for real-time
monitoring of hydrolysis by in-line UV–vis spectroscopy. The
raw data was processed using a sophisticated neural network
algorithm, yielding rapid quantification with an impressive pro-
cessing time of 1.4 ms per spectrum. This streamlined approach
ensured efficient and timely data analysis, facilitating seamless
real-time monitoring of the hydrolysis of 16. The final hydroge-
nation step was monitored by an in-line IR probe. The spectral
data was processed using a partial least squares regression
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Figure 8: Overlay of several Raman spectra of a single condition featuring the styrene vinyl region (a) and the p-xylene region (b). (c) Waterfall plot
depicting the decrease in the vinyl peak AUC over time. (d) A representative conversion plot shows an increasing conversion with residence time.
Figure 8 is adapted from [53]. Figure 8 was reprinted with permission from [53], Copyright 2023 American Chemical Society.

model and quantified. An online UHPLC was used to analyze
the final composition of the reaction mixture after three reac-
tion steps. The integration of all PAT tools into the three-step
reaction was carefully executed with an open platform commu-
nications unified architecture (OPCUA) platform for interplat-
form equipment communication. The adoption of the OPCUA
platform ensured seamless communication between different
equipment platforms for enhanced efficiency and accuracy in
data analysis.

A recent study introduced a novel approach for directly process-
ing and analyzing HPLC−DAD raw data using Python [71].
This method leverages the Multivariate Online Contextual
Chromatographic Analysis (MOCCA) package, designed for in-
tegration into both automated and manual workflows. MOCCA
offers a range of benefits, including automated management of
internal standards for precise relative quantification, reliable
peak assignments, accelerated sample processing, and efficient
deconvolution of overlapping peaks. Its versatility was show-
cased through the successful completion of four comprehensive
case studies, demonstrating its broad applicability across
diverse analytical scenarios. Recently, we implemented in-line
Raman spectroscopy to monitor the real-time conversion of
styrene to polystyrene, utilizing a custom Python package de-

veloped in-house [53]. This approach enabled us to track the
conversion process at different residence times. Specifically, we
quantified the conversion by analyzing the area under the curve
(AUC) of the Raman-active vibrational modes associated with
the styrene–vinyl C=C stretch (≈1630 cm−1), which we calibrat-
ed against signals from p-xylene (≈830 cm−1). To resolve over-
lapping peaks, we employed curve-fitting techniques utilizing
Lorentzian functional forms, facilitated by the lmfit Python
package. This methodology (Figure 8) allowed us to accurately
calculate conversion rates and to make precise predictions using
ML models. Traditionally, the optimization of a chemical reac-
tion, the development of kinetic models, and optimization of an-
alytical characterization parameters are undertaken indepen-
dently. With this approach, many overlapping tasks are per-
formed in parallel, thus leading to long lead times and ineffi-
cient personnel allocation. To overcome these issues,
Sagmeister et al. [72] developed a dual modelling approach
using a single platform that seamlessly integrates the calibra-
tion of PAT, reaction optimization, kinetic modelling, and
parametrizes a process model for scale-up within approxi-
mately eight hours. Their platform consisted of a flow reactor
connected to an in-line FTIR spectrometer. In addition, the plat-
form has two valves that allow a stream of reagents or target
product to bypass the reactor coil directly into the in-line FTIR
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spectrometer. Using this configuration, the platform can
perform a calibration of the reagent and product concentration
through a standard addition method. Once the PAT is calibrat-
ed, the platform performs dynamic experiments where the con-
centration of the reagents is ramped to explore the parametric
space. Finally, using a scientific programming language called
Julia, the collected data can be fitted to the kinetic model pa-
rameters, and in silico optimization of the reaction parameters
can be performed.

Machine-learning-driven optimization of
chemical reactions
Historically, optimization of chemical reactions has been per-
formed based on DOE methodologies, with the objective of
maximizing the yield of the reaction product. However, these
techniques are not well suited to find the global optimal condi-
tions and scale exponentially with the number of variables.
Computational approaches that rely on optimization algorithms
offer more efficient ways to obtain the optimal conditions, with-
out requiring an exponential number of experiments per vari-
able to be optimized. Early examples of chemical reaction
conditions optimization through computational approaches
focused on the application of black-box optimization algo-
rithms, such as steepest descent, SNOBFIT, and Nelder–Mead
simplex, which demonstrated positive results and the ability to
perform self-optimizing automated workflows with little human
intervention [57,58,60,62,73-75]. In recent years, ML optimiza-
tion methods have demonstrated the ability to obtain optimal
reaction conditions within a reduced number of experiments in
comparison to human intuition, traditional DOE, and other
black-box optimization algorithms [2,76,77]. Unlike traditional
optimization algorithms, the ML approach focuses on building
predictive surrogate models for objective functions. These
models learned the relationships between the reaction condi-
tions and the target optimization objectives based on experi-
mental data. In a second step, these models are efficiently
probed to identify the most promising values for optimizing the
objective function. In this section, we review the latest develop-
ments in ML optimization strategies for the optimization of
chemical reactions.

Figure 9a outlines the basic steps for the optimization of chemi-
cal reactions using ML methods. The workflow requires an
initial set of experimental data that contains different variables
for reaction conditions (i.e., temperature, time, solvent, catalyst,
etc.) and the corresponding outcome values for the target opti-
mization objectives (e.g., yield, purity, cost, etc.). The initial
dataset is commonly obtained by sampling a combination of
reaction variables from the parametric space, performing the
synthetic experiments under the selected reaction conditions,
and measuring the values for the target optimization objectives.

The sampling of the initial reaction variables is often per-
formed through near-random statistical methods, such as Latin
hypercube sampling (LHS), Sobol sampling, full factorial
sampling, and centerpoint sampling methods. Alternatively, the
initial dataset can be obtained from values previously reported
in the literature. After that, one or various predictive models are
fitted to the initial dataset to predict the expected values of the
optimization objectives. The number of models that are fitted
depends on the number of optimization objectives, and
normally one model is constructed for each optimization objec-
tive. The next step involves the application of an optimization
algorithm to find the parameters that would most likely lead to
optimal outcomes of the target optimization objectives. Finally,
a set of the most promising suggestions is selected and tested
experimentally. The dataset is then updated with the outcomes
of the latest experimental parameters, and the process is
repeated until the optimal conditions have been found.
Depending on the number of objectives, optimization
campaigns are classified as single-objective (Figure 9b) or
multiobjective optimizations (Figure 9c). In single-objective op-
timizations, the algorithm will explore the parametric space to
determine the optimal conditions by finding the variables that
either maximize or minimize the target objective function. In
multiobjective optimizations, the algorithms will search for
optimal conditions that either maximize or minimize each
objective function. On the other hand, when competing objec-
tives are optimized, the algorithm aims to discover the set of
solutions where the improvement of one objective results in the
deterioration of the other. This set of solutions is called the
Pareto front of the system (also known as nondominated solu-
tions), and all other solutions that are not part of the Pareto front
are not optimal for any of the objectives and are referred to as
dominated solutions. Since all solutions in the Pareto front are
optimal, the user is responsible for choosing the set of condi-
tions for their specific application.

The first reports on the application of ML in the optimization of
chemical reactions appeared over 20 years ago. A handful of
studies used ML algorithms, such as neural networks and
support vector machines, to fit models to chemical reaction data
that were then optimized by genetic algorithms [78-80]. How-
ever, the use of ML for chemical reaction optimization did not
become popular until the introduction of BO techniques by
Lapkin and Bourne et al. [81]. BO is a global optimization
method that fits a probabilistic function to model the objective
function and utilizes it to search for parameters that will likely
lead to optimal objective values. Commonly, BO uses a
Gaussian process (GP) to create surrogate models that map the
relationships between the variables and objectives (Figure 9a).
Then, the surrogate model is sampled, and the output values are
passed to an acquisition function that balances the surrogate
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Figure 9: (a) Schematic description of the process of chemical reaction optimization through ML methods. (b) 3D representation of the objective func-
tion depending on two variables, showing the path of five optimization iterations that aim to minimize the value of the objective function. (c) Represen-
tation of the outcomes of a multiobjective optimization campaign. Each data point represents one experimental reaction condition. The Pareto front of
the system, where the improvement of one objective leads to the deterioration of the other, is highlighted in red.

model predictions and uncertainties to find variable combina-
tions that are likely to lead to optimal solutions (Figure 9a). The
application of GPs and BO to optimize chemical reactions has
the advantages of being able to model complex nonlinear rela-
tionships between multiple variables and of incorporating
uncertainty into the predictions, making them suitable for the
optimization of noisy and expensive evaluation functions.

Multiobjective optimization of chemical synthesis
Different BO algorithms can be implemented depending on the
acquisition function used to evaluate the surrogate models and
the strategies used to suggest the most likely optimal values for
a target objective. Table 2 summarizes the use of various ML
algorithms for the optimization of chemical syntheses with
multiple objective functions. For chemical reaction optimiza-

tion, the Thompson sampling efficient multiobjective optimiza-
tion (TSEMO) algorithm has been the most widely used due to
its capability to model noisy functions, efficient computation,
and ability to model functions in the absence of any prior know-
ledge. The TSEMO algorithm utilizes a GP to model each
objective function and utilizes an approach based on Thompson
sampling to recommend the next set of conditions that maxi-
mizes the evaluated objective functions [82]. The use of
TSEMO for the optimization of a chemical reaction was first re-
ported by Schweidtmann et al. [81]. In this study, the multiob-
jective Bayesian optimization (MOBO) was used to optimize an
SNAr reaction (Table 2, entry 1) and an N-benzylation reaction
(Table 2, entry 2) using an automated flow reactor. The objec-
tives of the optimization were to maximize the space–time yield
(STY) while minimizing either the E-factor of the SNAr reac-
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Table 2: Multiobjective optimization of synthetic organic case studies using ML methods and single-objective optimization of telescoped reactions.

entry platform algorithm variables objectives Refs.

1 [81]

flow BO (TSEMO) residence time
equiv of 20
concn of 19
temp

↑a STY of 21
↓b E-factor

2 [81]

flow BO (TSEMO) flow rate
24/25 ratio
solvent
temp

↑ STY of 26
↓ yield of 27

3 [86]

flow (CSTR) TSEMO residence time
equiv of 29
temp

↑ STY of 30
↓ yield of 31

4 [86]

flow (CSTR) TSEMO flow of 32
equiv of 33
equiv of NaOH
temp

↑ STY of 34
↓ yield of 35
↑ RMEc of 32

5 [87]

flow TSEMO equiv 33
equiv of NaOH
temp
residence time

↑ yield of 34
↓ cost
↓ E-factor
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Table 2: Multiobjective optimization of synthetic organic case studies using ML methods and single-objective optimization of telescoped reactions.
(continued)

6 [15]

batch Phoenics
Gryffin

ligand
ligand/Pd ratio
Pd loading
equiv of 38
temp

↑ yield of (E)-39
↓ yield of (Z)-39
↓ Pd loading
↓ equiv of 38

7 [88]

batch TSEMO temp
concn of H2SO4
aqueous/organic phase ratio
time
equiv of 40
equiv of 41
equiv of 42
equiv of 43

↑ conversion of 40–43
↑ yield of 44–47

8 [88]
flow TSEMO temp

air flow
liquid flow
time
equiv of 44
equiv of 45
equiv of 46
equiv of 47

↑ conversion of 44–47
↑ yield of 48

9 [83]

flow TSEMO temp
residence time
concn of 19
equiv of 20
Et3N

↑ conversion of 19
↑ STY of 21
↓ E-factor
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Table 2: Multiobjective optimization of synthetic organic case studies using ML methods and single-objective optimization of telescoped reactions.
(continued)

10 [83]
flow TSEMO equiv of 49

concn of 49 and 50
residence time of step 2
temp of step 1
temp of step 2
equiv of Et3N

↑ yield of 51
↑ STY of 52
↓ equiv of 49 and Et3N

11 [84]

flow Dragonfly temp
residence time
equiv of 53
equiv of DIPEA
leaving group X

↓ cost
↑ productivity of 55
↑ yield of 55

12 [84]

flow Dragonfly activation time
55/57 equiv ratio
temp of step 2
reactor vol
substituent R

↑ yield of 58
↑ productivity of 58

13 [89]
flow TSEMO equiv of 59

temp
concn of 60
equiv of AcOH
light intensity
residence time

↑ STY of 61
↑ conversion of 60
↑ selectivity
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Table 2: Multiobjective optimization of synthetic organic case studies using ML methods and single-objective optimization of telescoped reactions.
(continued)

14 [85]

flow BOAEId residence time
equiv of 64
temp
equiv of TsOH

↑ yield of 66

15 [90]

flow MVMOOe solvents
residence time
concn of 19
equiv of 20
temp

↑ yield of 21
↑ yield of 22

16 [90]

flow MVMOO ligands
residence time
equiv of 68
temp

↑ RME
↑ STY of 69

17 [48]

photoflow reactor
(Robochem)

BO concn of 70
cat. loading
concn of CF3SO2Na
(NH4)2S2O8 loading
residence time
light intensity

↑ yield of 72
↑ throughput
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Table 2: Multiobjective optimization of synthetic organic case studies using ML methods and single-objective optimization of telescoped reactions.
(continued)

18 [48]

photoflow reactor
(Robochem)

BO concn of 73
concn of 74
cat. loading
residence time
light intensity

↑ yield of 75
↑ throughput

19 [48]

photoflow reactor
(Robochem)

BO concn of 76
loading of 76
TBADT loading
residence time
light intensity

↑ yield of 78
↑ throughput

20 [47]
slug flow reactor TSEMO residence time

concn of 79 and 80
equiv of 80
temp
equiv of DBU
cat. loading

↑ yield of 81
↑ STY of 81
↓ cost

21 [91]

flow ALaBOf residence time
cat. loading
temp
phosphine ligand

↑ yield of 84
↑ turnover number

aMaximization. bMinimization. cReaction mass efficiency. dBayesian optimization algorithm with an adaptive expected improvement acquisition func-
tion. eMixed-variable multiobjective optimization. fAdaptive latent Bayesian optimization.

tion or the impurity concentration of the N-benzylation reaction.
For both reactions, there were four variables to optimize, in-
cluding metrics for reaction time, reagent concentration, and
temperature. After an initial sampling of 20 experimental condi-
tions by LHS, the choice of reaction conditions was left to the
TSEMO algorithm, optimizing the SNAr within a total of 48
iterations and the N-benzylation reaction within a total of 58
iterations. Both optimizations resulted in the discovery of a

dense Pareto front with approximately 30–50% of the total sug-
gested conditions resulting in nondominated solutions. Since
then, multiple reports have demonstrated the ability of TSEMO
to optimize multiobjective optimizations for the synthesis of
organic molecules (see examples in Table 2, entries 3–5 and
7–9). A particularly noteworthy development is the application
of TSEMO for the optimization of synthetic routes composed of
two and more successive reaction steps or telescoped reactions
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[83-85]. Sagmeister et al. [83] reported the optimization of a
two-step telescoped synthesis of the active pharmaceutical
ingredient edaravone (52, Table 2, entry 10). In this study, a
self-optimizing flow reactor was used to run the optimization of
seven continuous variables, including three variables for the
first step and four variables for the second step. The optimiza-
tion had the objective of maximizing the yield of the imine
intermediate 51 obtained after the first reaction, the STY of 52,
and minimizing the overall used equivalents of the reagents.
After 85 iterations, a maximum yield of 95% for the synthesis
of 51 and a maximum STY of 5.42 kg/h for the synthesis of
edaravone (52) were achieved. Setting the objective to reducing
the quantity of reagents led to the discovery of unexpected reac-
tion conditions where a substoichiometric amount of triethyl-
amine was sufficient to promote the second reaction step, de-
creasing the waste produced during synthesis. Although no
global solution that provided the optimal reaction conditions for
all three objectives was found, a distinct set of reaction condi-
tions was identified that led to a high yield and a low overall
number of equivalents of reagent.

Accelerating optimization campaigns
Shortening the optimization time is desirable, especially when
manufacturing active pharmaceutical ingredients where only
small amounts of materials are available in each step in the de-
velopment. Currently, optimization methods require an initial-
ization step where reaction conditions are sampled and executed
to train the surrogate models used during the optimization
(Figure 9a). Sagmeister et al. [83] performed a multiobjective
optimization of an SNAr reaction in an automated flow reactor
platform and compared initialization sampling methods to
understand how different methods affect the final number of ex-
periments required to find optimal conditions (Table 2, entry 9).
They compared LHS (20 experiments), full factorial DoE (17
experiments), and centerpoint (only one experiment) as the
starting data points. They found that LHS and full factorial DoE
required a smaller number of optimization iterations after the
initial set of experiments was conducted due to the better
predictive capability of GPs trained with larger amounts of data.
However, when the total number of experiments including the
initialization set was considered, the number of experiments re-
quired to obtain optimal reaction values was larger than, or
equal to the situation where only one starting point was used as
the only initial sample of reaction conditions. Thus, the authors
concluded that it is beneficial to start the algorithm-driven opti-
mization as soon as possible instead of performing an initial
thorough exploration of the parametric space. However, they
did not fully explore if there was a trade-off between a reduced
number of initialization sampling and a total number of experi-
ments to achieve the optimal reaction conditions. Further
studies are required to understand this relationship.

Recently, Taylor et al. [92] introduced the concept of multitask
Bayesian optimization (MTBO) for chemical reaction optimiza-
tion. Analogous to transfer learning in ML models, the idea
behind multitask learning is to pretrain the surrogate GP models
with data that has been previously collected from similar reac-
tions to eliminate the need of an initial sampling step and
reduce the overall number of experiments required to obtain the
optimal reaction conditions. In MTBO, the standard GP surro-
gate models are replaced with multitask GPs that use kernels
able to create correlations between multiple GPs. The GP that
models the experimental conditions that are being optimized is
called the main task, while any other GP trained on previous
data is called an auxiliary task (Figure 10a). The authors bench-
marked MTBO in silico for a single objective optimization for a
Suzuki–Miyaura reaction. They discovered that in most cases,
pretraining the multitask GPs using a single dataset as an auxil-
iary task resulted in fewer iterations in comparison to standard
BO in order to achieve the optimal conditions. Moreover, the
authors observed that when four auxiliary tasks were used
instead of 1, the number of iterations required to the obtain
optimal reaction conditions was reduced from 15 to fewer than
five experiments (Figure 10b). Finally, the authors tested the
performance of MTBO in a series of palladium-catalyzed C–H
activation reactions of chloroacetanilides in an automated flow
reactor to produce the corresponding oxindoles (Figure 10c).
For all reactions, three continuous and one categorical variable
were optimized to maximize the reaction yield. The authors first
performed a standard single-objective BO of reaction (i) in
Figure 10c. The optimization was initialized with a set of 16
distinct reaction conditions sampled by LHS, reaching optimal
reaction conditions within seven further BO iterations. Subse-
quently, reaction (ii), yielding a similar oxindole product, was
optimized using MTBO, wherein the data gathered from the
previous optimization was used to train the auxiliary GP, ob-
taining the optimal conditions within only 11 iterations, in com-
parison to 18 required for the first reaction. Reaction (iii),
yielding another similar oxindole product, was optimized using
the previous data from the first two optimization campaigns to
train the auxiliary task GP. The authors found the optimal
conditions within five iterations by the algorithm. Further, the
authors tested the ability of MTBO to learn from previous ex-
periments by performing the optimization of two other C–H ac-
tivation reactions, where the structure of the substrate 91 was
substantially different in comparison to the first three optimiza-
tions. Thus, for the fourth campaign, they tested the optimiza-
tion of a reaction that produced a six-membered quinolinone
ring instead of the five-membered ring present in oxindoles.
The MTBO was able to find optimal reaction conditions within
ten iterations, demonstrating the capability of the algorithm to
handle the optimization of reactions that show small structural
deviations from the auxiliary task. Finally, the limits of the
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Figure 10: (a) Comparison between a standard GP (single-task) and a multitask GP. Training an auxiliary task using data collected from a similar
reaction reduces the uncertainties associated with the GP predictions. (b) Comparison of reaction optimizations performed in silico for single-task and
multitask BO. Multitask BO requires a reduced number of iterations to find optimal parameters that maximize the reaction yield. The performance is
further improved by incorporating a larger number of auxiliary tasks. (c) Reactions used to test multitask BO under experimental conditions. Reaction
(i) was performed using standard single-task BO, where each subsequent reaction incorporated the previously collected data to train auxiliary tasks.
(d) Example of SeMOpt algorithm maximizing a sine function. The upper row shows the ground truth function with the sampled points and the best
suggested candidate by the BO algorithm. The bottom row shows the values from the acquisition function from the surrogate of the target objective,
the neural processes (NPs), and their combination. Figure 10a and 10b were reproduced from [92] (© 2023 C. J. Taylor et al., published by American
Chemical Society, distributed under the terms of the Creative Commons Attribution 4.0 International License, https://creativecommons.org/licenses/
by/4.0). Figure 10d was republished with permission of The Royal Society of Chemistry, from [93] (“Equipping data-driven experiment planning for
Self-driving Laboratories with semantic memory: case studies of transfer learning in chemical reaction optimization” by R. J. Hickman et al., React.
Chem. Eng., vol. 8, issue 9, © 2023); permission conveyed through Copyright Clearance Center, Inc. This content is not subject to CC BY 4.0.

MTBO were tested by using a chloroacetanilide 93 having an
electron-rich aromatic ring. Therein, the MTBO was unable to
discover satisfying reaction conditions.

Recently, researchers from Atinary Technologies reported the
development of SeMOpt, a BO framework that, similarly to

MTBO, aims to transfer knowledge obtained from previous op-
timization campaigns to accelerate chemical reaction optimiza-
tion [93]. In comparison to MTBO, SeMOpt has the advantage
of being an agnostic model, and thus it can be applied to any
combination of surrogate model and acquisition function used
during the BO campaign. In addition to the surrogate model

https://creativecommons.org/licenses/by/4.0
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used for BO (see Figure 9a), SeMOpt introduces a surrogate NP
to model and make predictions based on previously gathered
data. Then, an acquisition function is used to select likely candi-
dates by evaluating both the surrogate model and NP predic-
tions. SeMOpt introduces the knowledge learnt by biasing the
acquisition function of the surrogate model for the target
optimization with the acquisition function evaluated using
the NP model (Figure 10d). In addition, the bias introduced
to the acquisition function by the NP is continuously updated
and decreases as the number of optimization iterations in-
creases. In this way, the optimization surrogate will eventually
disregard the bias introduced by the NP whenever it becomes
uninformative. The authors benchmarked the performance of
the SeMOpt framework by performing an in silico single-objec-
tive optimization of a simulated cross-coupling reaction and a
Buchwald–Hartwig cross-coupling of aryl halides. For the
benchmarking, the authors used several different BO algo-
rithms and compared their performance when paired with
SeMOpt. The authors observed that in all cases, the application
of SeMOpt outperformed the single-task implementation of the
same BO algorithm. In addition, they compared the perfor-
mance of SeMOpt against other algorithms that include some
knowledge transfer into the optimization workflow, including
MTBO. The authors observed that SeMOpt outperformed most
of the other algorithms, with MTBO closely matching the per-
formance of SemMOpt.

Mixed-variable optimizations
A challenge in BO is to include categorical variables (i.e.,
noncontinuous) into the optimization procedures due to the
inherent limitations of standard GPs to include discrete vari-
ables into their predictions. Categorical variables, such as
choice of solvent, catalyst, ligands, additives, etc., are crucial
for many chemical reactions. For this purpose, new algorithms
have been developed to include categorical variables into
MOBOs. Kershaw et al. [90] utilized an MVMOO algorithm
developed in house, employing GP regression surrogate models
tailored for predictions with discrete variable inputs. Their
study employed a self-driving flow reactor to optimize the syn-
thesis of ortho- and para-isomers 21 and 22 of an SNAr reac-
tion, leveraging four continuous variables alongside a single
discrete variable representing the solvent (Table 2, entry 15).
After 99 sequential reactions (25 LHS steps and 74 optimiza-
tion iterations), the researchers found 20 nondominated solu-
tions that mapped the Pareto front from a highly dominant
ortho-product 21 to a 50:50 split between the isomers. In addi-
tion, the researchers explored the optimization of a Sonogashira
cross-coupling to optimize the STY and RME for the synthesis
of 69 (Table 2, entry 16). In this case, the optimization involved
three continuous variables and the selection of a ligand for the
catalyst as a discrete variable. After 69 sequential experiments

(25 LHS steps, 44 optimizations), the platform was able to iden-
tify 12 nondominated solutions that demonstrated the trade-off
between RME and STY. In general, most Pareto solutions were
obtained when triphenylphosphine was used as the catalyst
ligand. Interestingly, triphenylphosphine was the least steri-
cally hindering ligand, which is counterintuitive to expert intu-
ition that may identify sterically demanding ligands as more
favorable choices for cross-coupling reactions.

Another noteworthy approach for the optimization of both con-
tinuous and categorical variables for a Suzuki–Miyaura cou-
pling reaction was reported by Christensen et al. [15] using BO
algorithms developed in house called Phoenics and Gryffin
(Table 2, entry 6). The Gryffin algorithm uses Bayesian neural
networks to construct the surrogate model, circumventing the
limitations of GPs to fit categorical variables. The authors chose
a total of four continuous reaction variables and selected a cata-
lyst ligand as the unique categorical variable for the optimiza-
tion. The algorithm targeted the optimal reaction variables for
four objectives, including the maximization of the targeted
stereoisomer (E)-39, the minimization of the undesirable one
(Z)-39, catalyst loading, and reagent equivalents. Twelve
ligands were initially selected based on domain expert know-
ledge, and after 120 trials, the best conditions were found to be
similar to those previously reported in the literature. To further
improve the performance of the reaction, the authors used DFT
simulations to compute the chemical properties of 365 commer-
cially available phosphine ligands, and by using k-means clus-
tering, they grouped the ligands into 24 distinct regions.
Through the strategic selection of a representative ligand from
each distinct region, the researchers identified a novel set of
ligands that differed from conventional recommendations based
on domain expertise. Following the optimization of the reaction
conditions using these 23 new ligands, the authors observed en-
hanced performance, surpassing that of previous reports
(Figure 11). This study showcased how data science, ML algo-
rithms, and reaction optimization can be used to discover reac-
tion conditions that would have otherwise been overlooked by
human intuition. Another great example of a combination of
ML and AI cheminformatic tools and reaction optimization was
reported by Nambiar et al. [84], who presented the use of a
computer-aided synthesis planning (CASP) tool to find a three-
step reaction pathway for the synthesis of the active pharmaceu-
tical ingredient sonidegib (58). After the generation of multiple
reaction pathways by the CASP tool, the authors manually
selected a highly ranked route based on synthetic feasibility.
This three-step reaction comprised an SNAr, hydrogenative
reduction of a nitro group, and an amide coupling (Table 2,
entries 11 and 12). Using an automated flow reactor, the
researchers attempted to perform the optimization of the fully
telescoped reaction. However, the optimization campaign had to
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Figure 11: Comparison of the reaction yield between optimizations campaign where the catalyst ligand selection was based on (a) expert intuition and
(b) sampling the distinct ligand clusters obtained from k-means clustering in the calculated chemical space. Figure 11 was adapted from [15] (© 2021
M. Christensen et al., published by Springer Nature, distributed under the terms of the Creative Commons Attribution 4.0 International License, https://
creativecommons.org/licenses/by/4.0.

be restructured into two independent optimizations due to the
side products of the SNAr reaction poisoning the Pd catalyst
used in the hydrogenation reaction. Thus, the MOBO of the
SNAr reaction was performed to maximize the yield of 55, the
productivity, and to minimize the cost of the reagents per mole
of product by optimizing four continuous and one categorical
variable. The second optimization campaign was performed for
the telescoped reaction, which included the hydrogenation step
and the amide coupling. Therein, the objectives of the optimiza-
tion were to maximize the yield and productivity by optimizing
two categorical and three continuous variables.

Dragonfly, an open-sourced BO package, was used to optimize
both categorical and continuous reaction variables. An increase
in yield and productivity was observed as the optimization
progressed. The authors found that the selection of F as a

leaving group led to the highest yield (98.3%) and productivity
(5.97 g/h) for the synthesis of 58. However, if Cl was selected
as the leaving group, only a marginal reduction in yield and
productivity was observed (93.8% and 5.70 g/h), but a 33%
reduction in the cost. In the second reaction, both a high yield
and productivity were achieved concurrently. Because these
objectives were positively correlated, no trade-offs were ob-
served in the optimization suggestions. Recently, Aldulaijan et
al. [91] reported a novel single-objective ALaBO algorithm that
can optimize continuous and categorical variables simulta-
neously. This algorithm first encodes the continuous and cate-
gorical variables into a 2D latent space, creating a continuous
response surface for the objective function, which can be
modeled by standard GPs and optimized by standard acquisi-
tion functions, such as adaptive expected improvement. Once
the likelihood for the optimal variables is determined within the

https://creativecommons.org/licenses/by/4.0
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latent space, they can be decoded into their original continuous
and categorical forms. Thus, this approach enables a “one-shot”
optimization of both kinds of variables without the need for
specialized GP modeling techniques. The authors evaluated the
efficacy of the ALaBO through the optimization of catalytic
reactions, demonstrating a faster convergence to optimal values
in comparison to Dragonfly.

Benchmarking of optimization algorithms
With an increasing number of optimization algorithms, an effort
to benchmark their performance is required. Felton et al. [76]
have highlighted the fact that the ability of an algorithm to
perform well in a specific task may not translate universally to
other problems, and thus a specific algorithm for chemical reac-
tion optimization may have different performances depending
on the nature of the target variables, objectives, and chemical
reaction. Also, the computational time required to execute an
algorithm varies, and it should be taken into consideration in
order to select the most appropriate variation for each case
study. To benchmark different optimization algorithms, Felton
et al. released Summit, a Python module containing several op-
timization algorithms and two benchmark in silico models, to
compare the performance of algorithms. Initially, the bench-
marking models included in Summit were a kinetic model for
the SNAr reaction of difluoronitrobenzene with pyrrolidine and
a neural network forward model for the prediction of the yield
of diphenylamine in a Pd-catalyzed C–N cross-coupling reac-
tion trained on a previously published dataset containing 96
unique sets of reaction conditions. The optimization for the
SNAr reaction included four continuous variables and two opti-
mization objectives, while the C–N cross-coupling included
three continuous variables, two categorical variables, and two
optimization objectives. The algorithms used during the optimi-
zation included non-ML algorithms (Nelder–Mead, SNOBFIT),
BO algorithms (Gryffin, SOBO, TSEMO), and distributionally
robust optimization (DRO), a pretrained reinforcement learning
agent algorithm. For the optimization of SNAr reaction, BO
methods were superior to any other of the algorithms, reaching
a higher hypervolume within a smaller number of iterations.
When the BO algorithms were compared, TSEMO outper-
formed Gryffin and SOBO by a significant margin. For the C–N
cross-coupling, all models had a similar hypervolume perfor-
mance, including a random search of reaction conditions, due to
the small parametric space for the selected categorical variable.
Müller et al. [77] also conducted a benchmarking in silico study
for six different chemical reactions using previously reported
kinetic models. Therein, three distinct BO algorithms (TSEMO,
ParEGO, EIM-EGO) and a genetic algorithm (NSGA-II) were
compared. The authors demonstrated that BO methods outper-
formed non-BO methods such as NSGA-II, which is consistent
with the earlier studies by Felton et al. [76].

Conclusion
In this article, we outlined the latest advances in ML-driven
multiobjective optimization for chemical synthesis, in addition
to breakthroughs in HTE and analytical techniques. The recent
developments of ML algorithms, HTE tools, data processing
techniques, and self-optimizing reactors has been a transforma-
tive force for chemical optimization processes. Nonetheless,
there are still plenty of research opportunities to continue the
transformation of the field and to accelerate the execution of
chemical reaction optimization. Given the time-consuming
nature inherit to organic synthesis and characterization, optimi-
zation campaigns are significantly limited by the time required
to test new reaction conditions. This is importantly true for
campaigns aimed to map a Pareto front, which can often
require too many evaluations to be conducted experimentally.
Innovative approaches such as MTBO and transfer learning
have already demonstrated improvements in reducing the
number of experiments to find optimal solutions. However,
developing novel algorithms that address the limitations
of traditional BO approaches would also yield substantial
benefits. For example, existing BO algorithms are often
concerned with optimizing the objective and fail to uniformly
map the Pareto front [94,95]. New algorithms that integrate
sampling procedures based on single-step evolutionary algo-
rithms in conjunction with BO have demonstrated fast conver-
gence, decreased sampling wastage, and uniform exploration of
the Pareto front, which could be promising in the field of
organic reaction optimization [95]. We anticipate that further
advancements will lead to better-performing algorithms that
require a minimal number of experiments to achieve optimal
solutions.

The field has experienced substantial progress in optimizing
multiple continuous variables, yet the utilization of categorical
variables in chemical synthesis optimization has predominantly
been confined to single-step reactions with one or two optimiza-
tion objectives. The development of ML algorithms that can
efficiently optimize a larger number of categorical variables
will be crucial to unlocking the full potential of optimization
methods. This is particularly true when objective functions that
go beyond direct measurements of the reaction product outputs
(e.g., yield, throughput, selectivity, etc.) are targeted. For exam-
ple, optimizations that aim to minimize the environmental
impact of chemical synthesis are becoming a priority in
industry. The environmental impact of a reaction not only
depends on the efficiency of the process (i.e., yield and through-
put) but will be highly affected by the nature of the solvent,
catalyst, reagents, downstream workup, etc. used in the synthe-
sis. To obtain optimal reaction conditions that minimize the
environmental impact, the exploration of a large number of dif-
ferent reagents may be required, which is not possible through
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traditional optimization methodologies. Nonetheless, ML algo-
rithms could offer an efficient approach to navigating the para-
metric space and to reduce the experimentation time to find the
conditions that minimize the environmental impact of a particu-
lar manufacturing process. However, the state-of-the-art optimi-
zation algorithms that incorporate mixed variables still fall short
of handling the large number of categorical variables required
for these studies.

Manufacturing of pharmaceutical and specialty chemicals com-
monly involves multiple reaction steps in order to transform the
starting reagents into the final product. So far, optimization
algorithms have been mostly applied to single-step reactions or
step by step to each reaction of a multistep procedure. Few ex-
amples in the literature have demonstrated the ability of ML
methods to optimize telescoped reactions in automated flow
reactors, but the positive results should encourage further
research in this field. However, situations where the telescoped
reactions are not feasible due to competing chemical interac-
tions of the reagents in the reaction mixture are bound to occur.
Thus, more research should investigate optimization strategies
in multistep reaction procedures in which the final objective
function has input variables from multiple steps of the synthetic
route.

The application of ML algorithms to aid the discovery of new
chemistry knowledge is flourishing, from generative design to
property prediction and reaction planning. Further work should
incorporate the diverse applications of ML into chemical reac-
tion optimization campaigns to open new avenues for research
and discovery. In particular, ML tools have great potential for
the planning of reaction optimization campaigns to assist the
selection of categorical chemical variables (e.g., catalysts,
ligands, additives, etc.). Christensen et al. [15] have already
demonstrated the advantages of applying ML clustering
methods to discover new ligands for catalysts that would have
been missed if the selection of test ligands had only relied on
human chemical intuition. Taylor et al. [92] also highlighted the
use of DFT or ML alternatives to find similarities between reac-
tion models in order to apply efficient multitask learning to
chemical reaction optimization. Another potential application of
ML tools is the use of CASP to discover alternative reaction
routes, with the potential to improve the efficiency of current
manufacturing methods. Finally, leveraging on the large quanti-
ties of data generated from self-optimizing chemical platforms
and their experimental versatility, we envision the incorpora-
tion of reaction optimization methods with generative design to
create full-driving laboratories. These could tackle both the
discovery of new molecules and the search for optimal synthe-
sis conditions to meet the production requirements for a chemi-
cal commodity.

Future research on the optimization of organic chemistry reac-
tions should leverage advanced deep learning models. In partic-
ular, we highlight large language models (LLMs) as a promis-
ing technology to enable the extraction of chemical knowledge
from previous literature. LLMs can be used to generate synthe-
sis protocols for target materials through data mining of peer-
reviewed literature [96,97]. Bran et al. [98] recently demon-
strated an advanced LLM-powered chemistry engine called
ChemCrow that is capable of planning and executing the syn-
thesis of organic molecules. The LLM integrated 18 cheminfor-
matic tools and performed the reasoning steps based on the
information supplied by these tools to accomplish specific
chemistry tasks. Along these lines, we envision that the integra-
tion of CASP tools and LLMs could accelerate the optimization
of organic reactions by providing viable reaction routes with
starting conditions that are close to the reaction optimum based
on previous studies. LLMs could also assist researchers with
limited coding experience to write the code required for
automating their experimental workflows and execute their
reaction optimizations. However, the use of LLMs to drive ex-
perimental campaigns is still in its early stages, making it
crucial to understand their limitations and potential shortcom-
ings in generating valuable content for chemical sciences. A
recent study has shown that LLMs can generate erroneous and
misleading information regarding chemical safety, which
requires to be addressed to avoid accidents in autonomous plat-
forms controlled by these models [99]. Early findings suggest
that prompt engineering [100], fine-tuning [97], and retrieval-
augmented generation [101] could improve the reliability of
LLMs in chemistry-related tasks and enable their widespread
application in the field.

Standardizing benchmarking methods for ML optimization
algorithms will be crucial as the number of optimization meth-
odologies increases. Foundational work has been laid by the
Lapkin research group with the release of the Summit open-
source software package [76]. Given the vast spectrum of chem-
ical reactions, there is a necessity to develop a diverse array of
reaction models to comprehensively assess the suitability of op-
timization methods for various scenarios. The field should
leverage the ability of HTE to produce large amounts of data to
create reliable forward models that can be incorporated into an
online repository. Thus, researchers could access this online
repository to benchmark new optimization algorithms by per-
forming in silico optimization campaigns of the chemical reac-
tion models.

For the continued advancement of this research, it is paramount
to democratize access to proprietary autonomous platforms and
algorithms and to foster collaboration to share expertise within
academia. While particularly significant advances have been
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made in addressing immediate challenges, we are convinced
that the full potential of ML and AI is yet to be realized. This
highlights the importance of raising cross-functional expertise
both within universities and at preuniversity levels, thereby
nurturing a broader knowledge base. Such an approach will
empower young researchers to tackle complex scientific chal-
lenges holistically right from the outset, thereby unlocking new
possibilities for innovation and advancement.
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