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In this study, we implemented the P,olefin-type chiral ligand (aR)-(—)-6, which contains a cyclohexyl group and a cinnamoyl group

on the nitrogen atom, in the Pd-catalyzed asymmetric allylic amination of allylic esters with isatin derivatives 11 as nucleophiles.

The reaction proceeds efficiently, yielding the products (S)-13 with good-to-high enantioselectivity. A scale-up reaction was also

successfully conducted at a 1 mmol scale. Additionally, when malononitrile was added to the resulting product (S)-13a in the pres-

ence of FeClj3 as the catalyst, the corresponding malononitrile derivative (S)-16 was obtained without any loss in optical purity.

Introduction

Isatin is a well-known natural indole derivative. Due to the
broad biological activities of its derivatives, extensive research
has been conducted on their synthesis. Furthermore, the isatin
framework is a versatile starting material for various transfor-
mations, including multicomponent reactions and the synthesis

of spirocyclic compounds [1-3]. The nucleophilicity of isatin at

the nitrogen atom allows it to participate in reactions such as
alkylation [4], arylation [5], and aza-Michael addition [6-8].
However, the products obtained from these reactions are
primarily achiral or racemic, and only a few studies have re-
ported the use of isatin as a nucleophile in asymmetric reac-

tions [9-11]. On the other hand, it has been revealed that com-
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pounds in which the carbon bonded to the nitrogen atom of
newly constructed N-substituted isatin becomes a chiral center
exhibit pharmacological properties in medicinal chemistry. For
example, racemic compound 1 (Figure 1) was evaluated for its
cytotoxicity against human breast cancer cells (MCF7) in com-
parison to the standard doxorubicin and exhibited excellent ac-
tivity against the MCF7 cell line [12]. The optically active com-
pound 2 also showed activity against Huh7.5-FGR-JC1-RIluc2A
cells, which carry HCV gt 2a [13].

1 2

Figure 1: Compound 1 and 2.

Therefore, developing asymmetric reactions that simultaneous-
ly form a carbon—nitrogen bond and construct a chiral center is
of great importance. Although a relatively large number of
asymmetric allylic amination reactions using palladium cata-
lysts with amines as nucleophiles have been reported [14-25],
there have been only a few reports on the N-substitution of
isatin using asymmetric methods. Recently, Wolf’s group re-
ported a transition-metal-catalyzed (Pd-catalyzed) asymmetric
allylic amination of allyl esters using isatin as a nucleophile. In
this reaction, bisphosphine-type ligands such as BINAP and
SEGPHOS derivatives, as well as P,N-type ligands like oxa-
zoline-type ligands, were utilized as chiral ligands [26]. On the
other hand, several groups have recently reported new chiral
ligands with axial chirality for Pd-catalyzed asymmetric allylic
substitution reactions. For example, the Zhou group reported a
P,olefin-type chiral ligand 3 with C—C bond axial chirality for
this reaction (Figure 2) [27]. Additionally, we have recently re-
ported chiral ligands with C-N bond axial chirality, such as
N-alkyl-N-cinnamyl-type chiral ligands 4 [28,29] and § [30],
and a P,olefin-type chiral ligand 6 [31] with a cinnamoyl group
instead of a cinnamyl group. In particular, the chiral ligand 6 is
effective in the Pd-catalyzed asymmetric allylic substitution
reaction of allylic esters with indoles. Here, we describe the
Pd-catalyzed asymmetric allylic amination of allylic esters with
isatin as a nucleophile using chiral ligand 6 and its derivative 7.
Compared to chiral ligand 6, which has a secondary alkyl group
(cyclohexyl) as a substituent on the nitrogen and has already
been reported, compound 7 has a primary alkyl group

(n-propyl). This difference reduces steric hindrance and lowers
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the rotational barrier around the carbon—nitrogen bond, increas-

ing the likelihood of racemization.
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Figure 2: Chiral ligands 3-7.

Results and Discussion
N-Propyl-N-cinnamoylamide 7 was prepared from phosphine
oxide 8 [32] via an SyAr reaction with nucleophilic lithium
amide from n-propylamine, the reduction of phosphine oxide 9
by trichlorosilane/triethylamine, and the N-acylation of 10 with
cinnamoyl chloride in three steps (Scheme 1). We also analyzed
amide compound 7 by HPLC analysis using a chiral stationary
phase column with a CD detector and found that the
C(aryl)-N(amide) bond axial chirality exists in amide com-
pound 7. We attempted the optical resolution of racemic com-
pound (£)-7 and obtained (+)-7 and (—)-7 using a semi-prepara-
tive chiral HPLC on 50 milligram scales. We also investigated
the racemization process associated with the axial chirality of
compound 7 (see Supporting Information File 1). The racemiza-
tion barrier (AGimc) of (—)-7 in n-dodecane was determined to
be 25.0 kcal/mol at 25 °C, as calculated using the Arrhenius and
Eyring equations [33-35]. Therefore, the half-life of racemiza-
tion of ligand (—)-7 at 25 °C in n-dodecane is approximately
1.3 days, which is faster compared to ligand 6, which has a half-
life of about 3.7 days [31].

We next investigated the ability of optically active amides (aR)-
(—)-6 and (—)-7 as chiral ligands for the Pd-catalyzed asym-
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Scheme 1: Preparation and optical resolution of 7.
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metric allylic amination of allylic acetate, such as a 1,3-
diphenyl-2-propenyl acetate (12) with isatin (11a). We began
the investigation under conditions using 5 mol % of
[Pd(C3H5)Cl], (Pd = 10 mol %) and 12 mol % of chiral ligands
(Table 1).

The reaction with (aR)-(—)-6 as the chiral ligand and K,COj5 as
the base in CHCl; gave the desired product (S)-13a in 72%
yield with 87% ee (Table 1, entry 1). In contrast, the reaction
with (—)-7 afforded (S)-13a in significantly lower yield, albeit
with an enantioselectivity similar to that of the reaction with 6
(Table 1, entry 2). This result clarifies that (—)-7, with a racemi-
zation half-life of only approximately 1.3 days, also has a chiral
induction ability. However, improvement is required in terms of
the reactivity of the catalytic reaction. Subsequently, we investi-
gated the effect of the base using (aR)-(—)-6 by testing various
bases. The reaction in the presence of NayCOs3 delivered the
product in 99% yield, although the enantioselectivity slightly
decreased compared to the reaction using K,CO3 (see Table 1,
entry 1 vs entry 3). The use of Cs,CO3 resulted in a significant
drop in the yield (Table 1, entry 4), whereas NaOAc improved
the yield but slightly lowered the enantioselectivity (Table 1,
entry 5). Other potassium salts such as K3POy led to a low yield

Table 1: Optimization of conditions for the Pd-catalyzed asymmetric allylic amination of acetate 12 with isatin (11a).2

[Pd(n3-allyl)Cl], (Pd = 10 mol %)

(aR)-(=)-6 (12 mol %)
base (2.0 equiv)

o]
OAc
+
@i:,gio Ph/\)\Ph
H
(2.0 equiv)
11a 12

Entry Base Solvent
1 KoCO3 CHCl3
od KoCO3 CHCl3
3 Nao,CO3 CHCl3
4 CsoCO3 CHCl3
5 NaOAc CHCl3
6 K3POq4 CHCl3
7 NagPOq4 CHCl3
8 NazgPOy4 CHJClo
9 NazPOq4 CH3CN
10 NagPOy4 THF

11 NagPO, DMF
12 NagPOy4 PhCF3
13¢ NagPOy4 PhCF3
14f NaszPO4 PhCF3

solvent (0.2 M)

25°C,48h o p
(S)-13a

Yield (%)° ee (%)°
72 87

3 84

99 85

19 86

89 86

12 86

60 88

88 92

75 93

74 93
trace -

84 95

50 86

80 94

aThe reaction was carried out at 0.1 mmol scale. Plsolated yield. °Determined by chiral HPLC analysis using a chiral column. Absolute configuration
was assigned by comparison of HPLC analysis with reported data [26]. 9This reaction was carried out using (-)-7 instead of (aR)-(-)-6 as a chiral
ligand. €This reaction was carried out using 1,3-diphenylallyl pivalate (14) instead of acetate 12. This reaction was carried out at a 1.0 mmol scale.
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of the product (Table 1, entry 6). Meanwhile, when Na3POy
was tested, the yield decreased, but the enantioselectivity im-
proved to 88% ee (Table 1, entry 7). With Na3zPOy as the
optimum base, which showed the highest enantioselectivity, we
conducted a solvent screening. The reaction in CH,Cl; resulted
in better yield and enantioselectivity than in CHCIl3 (Table 1,
entry 8). The coordinating solvents, CH3CN and THF, further
improved the enantioselectivity to 93% ee (Table 1, entries 9
and 10). In contrast, the reaction barely proceeded when DMF
was used (Table 1, entry 11). The reaction in PhCF3 afforded
the target product in a good yield with the highest enantioselec-
tivity compared to other solvents (Table 1, entry 12). Further-
more, when (E)-1,3-diphenyl-2-propenyl pivalate (14) was
tested as the allyl ester, the desired product (S)-13a was ob-
tained with a yield of 50% and an enantioselectivity of 86% ee
(Table 1, entry 13). Additionally, the scale-up reaction using
1 mmol of isatin (11a) as the nucleophile under the optimal
conditions (Table 1, entry 12) afforded the desired product

Beilstein J. Org. Chem. 2025, 21, 1018-1023.

(S)-13a with nearly the same yield and enantioselectivity as the

0.1 mmol scale reaction (entry 14).

Next, we investigated the substrate scope of the palladium-cata-
lyzed asymmetric allylic amination of 1,3-diphenyl-2-propenyl
acetate (12) with isatin derivatives 11 as nucleophiles under the
optimized conditions using (aR)-(—)-6 as the ligand and Na3PO,
as the base in PhCFj as the solvent (Scheme 2). An isatin deriv-
ative bearing a chloro group at the 4-position afforded the
desired product (S)-13b with good yield and enantioselectivity.
Similarly, an isatin derivative with a methyl group as an elec-
tron-donating group at the 5-position gave (S)-13c¢ in good
yield, although with slightly decreased enantioselectivity. The
introduction of the chloro group at the same position led to a
moderate yield for (S)-13d, while the enantioselectivity
remained high. In contrast, the reaction with the isatin deriva-
tive bearing a nitro group at the 5-position did not proceed, and
(8)-13e was not produced. Likewise, no reaction occurred with

0 [Pd(n3-allyl)Cl], (Pd = 10 mol %) RS ) o
OAc  (aR)-(-)-6 (12 mol %), NazPOy, (2.0 equiv) N
= ’ 3 4 qu
R{\/I\#o NN - N O
XN Ar” T A PhCF3 (0.2 M)
H (2.0 equiv) 25°C, 48 h AN
11 12 or 15 (S)-13
o
0 0 Me 0 Cl 0 02N 0
:@ © N O :rsj © :uj © iuj ©
X : ¥ H H H
PR " ph P N"pp P N"pp PN pp P " pp
(S)>-13a (S)-13b (S)-13¢ (S)-13d (S)-13e
84%, 95% ee 89%, 94% ee 99%, 92% ee 49%, 95% ee no reaction
FaCO o) o) 0 0 o)
N0 N0 N0 N0 NT O
P N"pp " P " ph P "ph P "pp
(S)-13f (S)>-13g (S)>-13h (S)-13i (S)-13j
no reaction 85%, 92% ee 91%, 94% ee 79%, 93% ee 66%, 93% ee

0
QNQO

Cl
PN pp

(S)-13k
85%, 67% ee

et
’2‘ (0]

X

(S)-131 Cl

82%, 92% ee

Scheme 2: Pd-catalyzed asymmetric allylic amination of acetate 12 (Ar = Ph) or 15 (Ar = p-CICgH,4) with isatin derivatives 11 using (aR)-(-)-6 as a
chiral ligand: The reaction was carried out at 0.1 mmol scale; yields refer to isolated yields.
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a trifluoromethoxy-substituted derivative, resulting in no forma-
tion of (S)-13f. Reactions using isatin derivatives bearing
halogen substituents at the 6-position proceeded efficiently,
affording (§)-13g—i in good yields with high enantioselectivi-
ties. Conversely, the isatin derivative bearing a methoxy group
at the 6-position led to a decreased yield for (S5)-13j, though the
enantioselectivity remained high. Additionally, we tested the
reaction using an isatin derivative with a chloro group at the
7-position and obtained (S)-13k in good yield with moderate
enantioselectivity. Furthermore, when (E)-1,3-di(p-chloro-
phenyl)-2-propenyl acetate (15) was utilized as an allylic
acetate, the desired product (S)-131 was obtained in high yield
with excellent enantioselectivity. We confirmed that the prod-
uct 13 from the Pd-catalyzed asymmetric allylic amination of
allyl esters with isatin using (aR)-(—)-6 possesses an S-configu-
ration. This stereochemical outcome follows the same reaction
mechanism as the Pd-catalyzed asymmetric allylic substitution
of allyl esters with indoles using (aR)-(—)-6 [31]. To explore
further applications of this product, we treated (S)-13a (94% ee)
with malononitrile in the presence of FeCls as a catalyst [36]
and obtained the corresponding malononitrile derivative (S)-16

without any loss of optical purity (Scheme 3).

NC
O malononitrile CN
FeCl3 (10 mol %)
N © DMF (0.2 M) N ©
o X" pp, 50°C, 2h P X"pp,
(S)-13a (S)-16
94 % ee 70%, 94% ee

Scheme 3: Transformation of the reaction product (S)-13a: The reac-
tion was carried out at 0.1 mmol scale and the yield refers to the isolat-
ed yield.

Conclusion

In this study, N-propyl-N-cinnamoylamide 7 was synthesized in
three steps from phosphine oxide 8. Chiral HPLC analysis con-
firmed its axial chirality at the C(aryl)-N(amide) bond. The
optical resolution of ()-7 yielded (+)-7 and (—)-7. The racemi-
zation barrier of (—)-7 in n-dodecane was determined to be
25.0 kcal/mol at 25 °C, with a half-life of approximately
1.3 days. The chiral amides (aR)-(—)-6 and (—)-7 were evalu-
ated as ligands in Pd-catalyzed asymmetric allylic amination,
and while (—)-7 exhibited promising enantioselectivity, its yield
was lower than (aR)-(—)-6. Further optimization of reaction
conditions led to improved yields and enantioselectivities up to
95% ee. Moreover, the reaction was successfully scaled up to
1 mmol. The substrate scope was investigated using various
isatin derivatives, yielding high enantioselectivities (up to

95% ee) for most, except for those bearing certain electron-

Beilstein J. Org. Chem. 2025, 21, 1018-1023.

withdrawing groups. Additionally, we demonstrated the further
conversion of (§)-13a into the malononitrile derivative (S)-16

without loss of optical purity.

Supporting Information

Data of thermal racemization of 7, DFT calculations for
investigating racemization mechanism of 7, general
methods and materials, experimental procedures and
characterization data, 'H, 13C and 3'P NMR spectra for 9
and 10, 'H, '3C and 3'P NMR spectra and HPLC charts for
(#)-7, (+)-7 and (-)-7, 'H and 13C NMR spectra and HPLC
charts for (5)-13a-k (except (S)-13e) and (S)-16.

Supporting Information File 1

Experimental section and compounds characterization.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-21-83-S1.pdf]
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