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Abstract
Because of nicotine’s toxicity and the high levels found in tobacco and in the waste from tobacco processing, there is a great deal of

interest in identifying bacteria capable of degrading it. A number of microbial pathways have been identified for nicotine degrada-

tion. The first and best-understood is the pyridine pathway, best characterized for Arthrobacter nicotinovorans, in which the first

reaction is hydroxylation of the pyridine ring. The pyrrolidine pathway, which begins with oxidation of a carbon–nitrogen bond in

the pyrrolidine ring, was subsequently characterized in a number of pseudomonads. Most recently, a hybrid pathway has been de-

scribed, which incorporates the early steps in the pyridine pathway and ends with steps in the pyrrolidine pathway. This review

summarizes the present status of our understanding of these pathways, focusing on what is known about the individual enzymes

involved.

2295

Introduction
The toxic alkaloid (S)-nicotine (L-nicotine) is found at high

levels in tobacco leaves and the waste from tobacco processing.

The resulting interest in developing environmentally friendly

methods of degrading nicotine has driven studies of microbial

pathways for metabolizing the compound, with the possible ad-

ditional benefit of using the enzymes involved to synthesize

specialty chemicals [1,2]. To date, the best-characterized bacte-

rial pathways are those of Arthrobacter nicotinovorans and

several pseudomonads. These are, respectively, known as the

pyridine and pyrrolidine pathways due to the initial reactions in

each. More recently, additional pathways have been described

that combine steps from the pyridine and pyrrolidine pathways.

To a large extent the descriptions of this metabolism have

focused on the genes involved. An exception to this is the

review by Brandsch [3], which describes the Arthrobacter path-

way at a biochemical level. In the more than a decade since that

review was published, a great deal has been learned about other

pathways for nicotine metabolism and the enzymes involved.

https://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:fitzpatrickp@uthscsa.edu
https://doi.org/10.3762%2Fbjoc.14.204
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The goal of the present report is to summarize our present

understanding of the different pathways by which microbes

metabolize nicotine, focusing on the enzymes.

Review
The pyridine pathway
In A. nicotinovorans the enzymes involved in nicotine metabo-

lism are found on the plasmid pAO1 [4], and the sequencing of

this plasmid was a major step in elucidating the pathway [5]. A

similar pathway has been described for Nocardioides sp. JS614;

in this case the genes are chromosomal [6]. As shown in

Scheme 1, the pathway begins with hydroxylation of the pyridyl

ring of nicotine by the enzyme nicotine dehydrogenase to yield

6-hydroxynicotine [7]. Based on the gene sequence, this en-

zyme was identified as a member of the family of molyb-

dopterin enzymes that also includes xanthine oxidoreductase

and aldehyde oxidase [8]. Comparison of the pAO1 sequence

with that of xanthine oxidoreductase identified ndhs, ndhm, and

ndhl (initially designated ndhABC) as coding for three proteins:

a 14.9 kDa subunit containing an iron–sulfur cluster, a 30 kDa

subunit with an FAD binding site, and an 87.7 kDa subunit con-

taining the molybdopterin site, respectively [9,10]. Consistent

with this identification, expression of the active enzyme re-

quired molybdopterin [9], and pAO1 contains a number of

genes that have been identified as coding for proteins involved

in uptake of molybdenum and biosynthesis of the molyb-

dopterin cofactor [11]. The mechanism of Scheme 2 can be

written for nicotine dehydrogenase by analogy to the mecha-

nism of xanthine oxidoreductase [8]. Here, the oxygen that is

incorporated into the product initially comes from water, and

the two electrons produced are transferred through the

iron–sulfur subunit to the FAD and thence to the final electron

acceptor.

L-6-Hydroxynicotine oxidase (LHNO) catalyzes the subse-

quent oxidation of L-6-hydroxynicotine to 6-hydroxy-N-

methylmysomine [12]. Purified LHNO contains non-covalently

bound FAD [13], and the gene sequence is most similar to those

of eukaryotic monoamine oxidases [14]. Several high-resolu-

tion structures of the enzyme from A. nicotinovorans are avail-

able, including substrate and product complexes [15]. These

structures confirm that the protein is a member of the mono-

amine oxidase (MAO) family of flavoproteins (Figure 1) [16].

The reaction product was originally identified as arising from

oxidation of the C2–C3 bond of the pyrrolidine ring [17]. Based

on the structures and this product identification, a detailed

mechanism was proposed in which initial oxidation of L-6-

hydroxynicotine in the active site is followed by hydrolysis of

the oxidized amine in a second site to yield 6-hydroxypseudo-

oxynicotine (Scheme 3) [15]. However, a recent analysis of the

structure of the product of the LHNO reaction utilizing NMR

and continuous-flow mass spectrometry established that the en-

zyme catalyzes oxidation of the C2–N bond, not the C2–C3

bond, in line with the typical reactions catalyzed by members of

the MAO family [18]. In addition, mutagenesis of His187,

Glu300, and Tyr407 established that they are not involved in

catalysis. Subsequent mechanistic studies of the reaction using

pH and solvent isotope effects established that the reaction cata-

lyzed by LHNO is the same as other flavin amine oxidases,

direct hydride transfer from the uncharged amine to the flavin

(Scheme 4) [19,20]. Hydrolysis to form 6-hydroxypseudooxy-

nicotine occurs in solution after release of the oxidized amine

from the enzyme.

While the dominant form of nicotine found in tobacco is (S)-

nicotine, the (R)-stereoisomer is also found at detectable levels

[22]. Nicotine dehydrogenase is reported not to be stereospecif-

ic, in that it can catalyze the hydroxylation of (R)-nicotine to

(R)-6-hydroxynicotine; thus, this enzyme is a likely candidate

for the enzyme catalyzing the first step in the metabolism of

both stereoisomers [23]. The subsequent step requires an addi-

tional enzyme. The pAO1 plasmid contains the gene for a D-6-

hydroxynicotine oxidase (DHNO) in addition to that for LHNO.

The product of the reaction catalyzed by DHNO is identical to

that of the LHNO reaction, so that this enzyme was also initially

identified as catalyzing the oxidation of the C2–C3 bond [17].

However, NMR analysis of the product has also recently estab-

lished that DHNO catalyzes oxidation of the C2–N bond [24].

The sequence of DHNO from A. nicotinovorans identifies it as

a member of the p-cresol methylhydroxylase/vanillyl oxidase

family of flavoproteins [25]. As is common for members of this

family, the FAD in DHNO is covalently bound to the protein, in

this case through a C8α-histidyl linkage [26]. The subsequent

determination of the crystal structure of the enzyme confirmed

these conclusions (Figure 2) [27]. Docking of (R)-6-hydroxyni-

cotine into the structure yielded a model for substrate binding.

Vanillyl oxidase catalyzes the oxidation of 4-hydroxybenzyl

alcohols, the oxidative deamination of 4-hydroxybenzylamines,

and the oxidative demethylation of 4-(methoxymethyl)phenols

via a quinone methide intermediate [28,29]. Based on this

precedent and the assumption that DHNO oxidizes the C2–C3

bond, Koetter and Schultz [27] proposed the mechanism shown

in Scheme 5 for DHNO. However, members of the p-cresol

methylhydroxylase/vanillyl oxidase family catalyze an

extremely diverse set of reactions, including oxidation of non-

aromatic alcohols and amines [30], and DALI [31] identifies

several enzymes catalyzing oxidation of nonaromatic substrates

as having similar structures to DHNO. Indeed, recent mechanis-

tic studies of DHNO are more consistent with the simple mech-

anism of Scheme 4 (Fitzpatrick et al., manuscript in prepara-

tion). The proposed quinone methide is not detected during



Beilstein J. Org. Chem. 2018, 14, 2295–2307.

2297

Scheme 1: Nicotine catabolism in A. nicotinovorans. The respective gene names are given in parentheses.

stopped-flow analyses of either the wild-type enzyme or the

E352Q variant, (R)-6-chloronicotine and (R)-nicotine, which

would not form the quinone methide, are still substrates, and

there is no solvent isotope effect on amine oxidation. In addi-

tion, DHNO E350L/E352D has been developed as a reagent for

stereospecific oxidation of a variety of (R)-amines, including a
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Scheme 2: Hydroxylation of nicotine by the molybdopterin cofactor of nicotine dehydrogenase.

Scheme 3: Proposed mechanism of LHNO [21].

Figure 1: Overlay of the structure of LHNO (blue, pdb file 3NG7) with
that of human MAO B (orange, pdb file 2FXU). The bound 6-hydroxyni-
cotine is shown with green carbons.

nicotine analog that does not contain an aromatic ring [24].

These results provide further evidence against the mechanism

shown in Scheme 5 for DHNO.

Water reacts with the 6-hydroxy-N-methylmyosmine formed by

either LHNO or DHNO to form 6-hydroxypseudooxynicotine in

a reaction that appears to be non-enzymatic. 6-Hydroxypseudo-

oxynicotine dehydrogenase (also known as ketone dehydroge-
Scheme 4: Mechanism of LHNO.

nase [3]) then catalyzes the hydroxylation of the pyridyl

ring of 6-hydroxypseudooxynicotine to form 2,6-dihydroxy-

pseudooxynicotine [32]. Based on the sequence of pAO1, the

enzyme was identified as a molybdopterin enzyme containing

three subunits coded for by the kdha, dhb and kdhc genes [14].

The predicted sequences of Kdha and Kdhb show significant

similarity to the small and medium subunits of nicotine dehy-

drogenase, while that of Kdhc shows the highest similarity to

chicken xanthine dehydrogenase. The spectral properties of the

partially purified protein are consistent with 6-hydroxypseudo-

oxynicotine dehydrogenase being a molybdopterin protein, and

the recombinant Kdhc (also known as KdhL) contains Mo and a

cofactor derived from CTP [33]. While no mechanistic studies

of the enzyme have been reported, its mechanism is likely to

resemble those of nicotine dehydrogenase (Scheme 2) and other

molybdopterin enzymes [8].
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Scheme 5: Proposed mechanism for DHNO [27].

Scheme 6: Mechanism of 2,6-dihydroxypseudooxynicotine hydrolase [37].

Figure 2: Overlay of the structures of DHNO (blue, pdb file 2bvf) and
tirandamycin oxidase (orange, pdb file 2y3s), another member of the
p-cresol methylhydroxylase/vanillyl oxidase family. The carbon atoms
of tirandamycin are in green.

2,6-Dihydroxypseudooxynicotine hydrolase, the enzyme

catalyzing the next step in the pyridine pathway, the cleavage

of 2,6-dihydroxypseudooxynicotine to 2,6-dihydroxypyridine

and N-methylaminobutyrate [34], was identified only after

expression of a protein encoded by an open reading frame in

pAO1 located next to the kdhl gene for the large subunit of

6-hydroxypseudooxynicotine dehydrogenase [35]. This protein

was able to catalyze the cleavage of 2,6-dihydroxypseudooxyni-

cotine without any added cofactors. A BLAST analysis of the

sequence identified the protein as a member of the

α/ß hydrolase family, which catalyzes a broad range of hydro-

lase and lyase reactions [36]. The subsequent determination of

the crystal structure of the enzyme confirmed that it is an

α/ß hydrolase, and mutagenesis identified the members of the

catalytic triad as His329, Ser217, and Asp300 [37]. By analogy to

other members of the family, the mechanism shown in

Scheme 6 was proposed. There is an initial tautomerization to

the diketo form of the substrate; Glu248 acts as both the initial

proton acceptor and subsequent proton for this reaction.

Nucleophilic attack of Ser217 on the substrate carbonyl fol-

lowed by collapse of the tetrahedral intermediate generates an
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Scheme 7: Mechanism of 2,3-dihydroxypyridine 3-hydroxylase [42].

acyl–enzyme intermediate and the 2,6-dihydroxypyridine prod-

uct. The subsequent hydrolysis of the acyl–enzyme intermedi-

ate then yields the N-methylaminobutyrate product. Other than

the preliminary characterization of site-directed mutants of the

protein, no mechanistic studies have been reported.

Two pathways have been identified for further metabolism of

N-methylaminobutyrate. pAO1 contains separate genes for en-

zymes catalyzing the oxidative demethylation of N-methyl-

aminobutyrate to form 4-aminobutyrate, mabo, and its oxida-

tive deamination to form succinate semialdehyde and methyl-

amine, mao. The expression of both proteins is regulated by

nicotine [38,39], suggesting that both contribute in vivo. Mabo

(γ-N-methylaminobutyrate demethylating oxidase) is similar in

sequence to sarcosine dehydrogenase, and characterization of

purified Mabo showed that it contains covalently-bound FAD

and produces hydrogen peroxide as a product in addition to

4-aminobutryate [5,38]. Mabo also catalyzes the oxidative

demethylation of sarcosine. Based on these results, the mecha-

nism of the enzyme is similar to that of sarcosine oxidase, direct

oxidation of the C–N bond of the substrate methyl group by

hydride transfer [40]. The resulting 4-aminobutryrate is likely a

substrate for a chromosomally-encoded aminotransferase, pro-

ducing α-ketoglutarate and succinate semialdehyde. Mao (γ-N-

methylaminobutyrate oxidase) contains noncovalently-bound

flavin and catalyzes the oxidation of the other C–N bond of the

methyl group in N-methylaminobutyrate to form methylamine

and succinate semialdehyde, an MAO reaction [39]. While the

kcat/Km value of Mao with 4-aminobutyrate is only 8% that of

Mabo, A. nicotinovorans grown on [14C]-nicotine produce

[14C]-methylamine, suggesting that Mao operates in vivo.

Finally, pAO1 also contains the sad gene that codes for an

NADP+-dependent succinate semialdehyde dehydrogenase

forming succinate as product [39].

2,3-Dihydroxypyridine 3-hydroxylase (2,6-DHPH), the enzyme

converting 2,6-dihydroxypyridine to 2,3,6-trihydroxypyridine,

has been cloned and characterized [10]. DHPH contains FAD

and requires NADH and oxygen [41], and the sequence of the

protein is similar to that of salicylate hydroxylase, although the

sequence identity is only 21%. This allowed identification of

the enzyme as a flavin-dependent phenol hydroxylase, a conclu-

sion that was subsequently confirmed by the crystal structure of

the enzyme (Figure 3) [42]. Based on the mechanism of this

family of enzymes [43], the likely mechanism for this enzyme

is as shown in Scheme 7. Flavin reduction by NADH is fol-

lowed by the formation of the peroxyflavin hydroxylating inter-

mediate. Attack of the substrate, activated by deprotonation of a

substrate hydroxy group, on the peroxyflavin yields the hydrox-

ylated product after a tautomerization. Two histidyl residues

have been proposed to be involved in accepting the substrate

proton. The details of further catabolism of 2,3,6-trihydroxy-

pyridine are unclear. The compound can oxidatively dimerize to

form nicotine blue [44], which is secreted into the medium.

However, this has been proposed to be a byproduct, with the

major pathway involving formation of maleamate, maleate, and

fumarate [45].

Figure 3: Overlay of structures of salicylate hydroxylase (orange, pdb
file 5evy) and 2,3-dihydroxypyridine 3-hydroxylase (blue, pdb file
2vou). The salicylate bound to the latter is shown in green.

The pyrrolidine pathway
The metabolic pathway for nicotine degradation found in a

number of pseudomonads (Scheme 8) [46-50] has been de-
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Scheme 8: The pyrrolidine pathway for nicotine degradation by pseudomonads. The gene names for P. putida S16 (black), P. putida J5 (red), and
Pseudomonas sp. HZN6 (blue) are in parentheses.

scribed as the pyrrolidine pathway. The initial oxidation of the

pyrrolidine ring is catalyzed by the enzyme nicotine oxidase. In

P. putida S16, the nicA1 and nicA2 genes produce separate en-

zymes that are both reported to have the ability to catalyze this

reaction [48]. NicA1 was also reported to catalyze the subse-

quent oxidation of pseudooxynicotine to 3-succinylpyridine and

methylamine, but no kinetic parameters for the two reactions

were reported [51]. However, deletion of nicA2 but not of nicA1

prevents P. putida S16 from degrading nicotine, making it most

likely that NicA2 is the relevant nicotine oxidase for this path-

way [48]. In addition the amino acid sequence of NicA1 has no

similarities to bacterial oxidases or dehydrogenases, instead

resembling components of the bacterial electron transport chain.

Thus, the function of NicA1 remains unclear, and NicA2 is

likely the true nicotine oxidase. The ndaA gene in P. putida J5,

required for degradation of nicotine by that organism, codes for
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Scheme 9: The pseudooxynicotine amine oxidase reaction.

a protein that is 99% identical in sequence to that of NicA2

[52], so that NdaA is also likely to be a nicotine oxidase. The

structure of NicA2 was recently determined, showing that the

protein is a member of the MAO family with the same overall

structure as LHNO (Figure 4) [53]. As is the case with LHNO,

the NicA2-catalyzed reaction has generally been accepted to

involve oxidation of a carbon–carbon bond in (S)-nicotine to

form N-methylmyosmine. The recent evidence that the product

of the oxidation of 6-hydroxynicotine by LHNO and DHNO

arises from oxidation of a carbon–nitrogen bond [18,24] and the

similarity of the active sites of LHNO and NicA2 to that of

MAO makes it much more likely that the NicA2 instead

catalyzes oxidation of the substrate carbon–nitrogen bond as

shown in Scheme 4.

Figure 4: Overlay of the structure of LHNO (magenta, pdb file 3NG7)
with that of NicA2 (magenta, pdb file 5ttj) B (green, pdb file 2FXU). The
bound 6-hydroxynicotine is shown with green carbons.

Cloning and expression of the protein encoded by the nox gene

of Pseudomonas sp. HZN6 showed that it also catalyzes oxida-

tion of nicotine to pseudooxynicotine [54]. The sequence of the

protein is most similar to that of LHNO and several members of

the MAO family, consistent with Nox being a nicotine oxidase

similar to NicA2. Nox is reported to be able to oxidize both

stereoisomers of nicotine equally well, in contrast to the stereo-

specificity of LHNO and DHNO.

Pseudooxynicotine amine oxidase, the enzyme catalyzing the

next step in the pathway, has been characterized from both

P. putida S16 (Pnao) [48,55] and P. putida HZN6 (Pao) [47].

Both are FAD-containing enzymes whose sequences place them

in the MAO family of flavoproteins. The sequence of NdaC

from P. putida J5 is identical to that of Pnao, although the pro-

tein itself has not been characterized, and loss of ndaC elimi-

nates the ability of cells to metabolize pseudooxynicotine [52].

In the case of Pnao the source of the oxygen in the 3-succi-

noylsemialdehyde pyridine product has been shown to be water

[55], establishing the reaction catalyzed by the enzyme as

shown in Scheme 9, with the hydrolytic step being nonenzy-

matic. This is essentially the same reaction as that catalyzed by

A. nicotinovorans γ-N-methylaminobutyrate demethylating

oxidase (Mabo).

E. coli expressing the sap gene from Pseudomonas sp. HZN6

will catalyze the NADP+-dependent oxidation of 3-succi-

noylsemialdehyde pyridine to 3-succinoylpyridine [47], making

SAP the likely 3-succinoylsemialdehyde dehydrogenase in the

pyrrolidine pathway. The sequence of the enzyme identifies it

as an aldehyde dehydrogenase [56], but the protein itself does

not appear to have been characterized. In P. putida S16 and J5,

sequence analyses have identified Spad and ndaD, respectively,

as the likely 3-succinoylsemialdehyde pyridine dehydrogenases,

and ndaD is required for P. putida J5 to convert 3-succi-

noylsemialdehyde pyridine to 3-succinoylpyridine [48,52].

Growth of P. putida S16 on nicotine results in increased expres-

sion of NicA2, Pnao, Sapd, SpmABC, and HspB, but not NicA1

or HspA [48]. The sequences of SpmA, SpmB, and SpmC are

similar to those of nicotine dehydrogenase and other members

of the xanthine dehydrogenase family. In addition, disrupting

spma prevents P. putida S16 from converting 3-succi-

noylpyrimidine to 6-hydroxy-3-succinoylpyridine [48]. These

results support the identification of SpmABC as a molyb-

dopterin enzyme that catalyzes this step in the pathway. En-
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Scheme 10: Mechanism of HspB [59].

zymes with this activity do not appear to have been identified as

yet for P. putida S5 and Pseudomonas sp. HZN6.

HspA in P. putida S16 was originally identified as a 6-hydroxy-

3-succinoylpyridine hydroxylase catalyzing the formation of

2,5-dihydroxypyridine from 6-hydroxy-3-succinoylpyridine

based on the location of the gene in a gene cluster that conferred

on E. coli the ability to degrade nicotine to 2,5-dihydroxypyri-

dine [57]. The sequence of the protein is not similar to that of

any proteins with known functions. Purified recombinant HspA

was reported to require NADH to catalyze the cleavage of

6-hydroxy-3-succinoylpyridine, but detailed kinetic analyses

were not done. However, levels of HspA do not increase when

P. putida S16 is grown on nicotine, while levels of HspB do

[48]. Subsequent analysis of recombinant HspB showed that it

contains FAD and catalyzes the NADH-dependent conversion

of 6-hydroxy-3-succinoylpyridine to 2,5-dihydroxypyridine

[58,59]. The new oxygen atom in 2,5-dihydroxypyridine comes

from O2, while that in succinate comes from H2O. The se-

quence of HspB is closest to those of a number of FAD-depend-

ent hydroxylases, and a peroxyflavin was detected in stopped-

flow analyses of the enzyme-catalyzed reaction. These results

led to the mechanism shown in Scheme 10 for HspB. A similar

enzyme has been isolated from Pseudomonas sp. ZZ-5 [60].

The subsequent steps in metabolism of 2,5-dihydropyridine by

P. putida S16 were identified when the gene cluster nic2 that

contained hspb was sequenced, with the demonstration that in-

corporation of nic2 into E. coli allowed cells to convert

6-hydroxy-3-succinoylpyridine to fumarate [61]. In addition to

hspB and an unidentified open reading frame, four genes could

be identified by sequence analyses as likely to code for proteins

catalyzing the final steps in nicotine catabolism. These four pro-

teins were expressed individually in E. coli and characterized.

Hpo catalyzes the Fe(II)-dependent formation of N-formyl-

maleamate from 2,5-dihydroxypyridine in the absence of other

cofactors or substrates; it was designated DHP dioxygenase.

Both oxygen atoms in the product come from O2 and mutagen-

esis of the predicted iron ligand His257, His310, or Asp312

results in loss of activity, consistent with Hpo being a non-heme

Fe(II)-dependent dioxygenase [62]. Nfo catalyzes the forma-

tion of maleamate from N-formylmaleamate and was desig-

nated N-formylmaleamate deformylase; its sequence identifies

it as a member of the α/ß hydrolase superfamily [36]. Ami is a

maleamate amidase that catalyzes the hydrolysis of maleamate

to maleic acid plus ammonium; it also belongs to the

α/ß hydrolase superfamily. Finally, Iso catalyzes the reversible

isomerization of maleate to fumarate. Orthologues of all four of

these enzymes have been identified as being involved in the

metabolism of nicotinic acid by P. putida KT25440, which

begins with the hydroxylation of nicotinic acid by the molyb-

dopterin enzyme NicAB to form 6-hydroxynicotinic acid and its

subsequent conversion to 2,5-dihydroxypyridine by the NADH-

and FAD-dependent hydroxylase NicC [63,64].

The hybrid pathway
While the pyridine and pyrrolidine pathways are the best under-

stand reactions by which bacteria degrade nicotine, additional

pathways continue to be discovered. The best-characterized is a

hybrid of the pyridine and pyrrolidine pathways (Scheme 11).

Based on phylogenetic analysis, the pathway is more closely

related to the pyrrolidine pathway, with both found predomi-

nantly in Gram-negative bacteria [65]. This pathway is best

characterized for Agrobacter tumefaciens S33, Ochrobactrum
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Scheme 11: Hybrid pyridine/pyrrolidine pathway for nicotine metabolism in Agrobacter tumefaciens S33 (black), Ochrobactrum sp. SJY1 (red), and
Sphingomonas melonis Ty (blue).

sp. SJY1, Sphingomonas melonis TY, and Shinella sp. HZN7,

but has been identified in other bacteria as well [65-70]. The

pathway begins with the hydroxylation of nicotine, as in the

pyridine pathway, but diverges after the formation of

6-hydroxypseudooxynicotine. The oxidative deamination of

6-hydroxypseudooxynicotine yields 6-hydroxy-3-succi-

noylsemialdehyde pyridine, an intermediate that is not present

in the other two pathways; its oxidation forms 6-hydroxy-3-

succinoylpyridine, which is processed further as in the pyrrol-

idine pathway. Elucidation of the hybrid pathway has relied on

identification of intermediates and on comparison of gene se-

quences with those coding for enzymes known to be involved in

nicotine catabolism in the pyridine and pyrrolidine pathways.

The identification of 6-hydroxy-L-nicotine, 6-hydroxy-N-

methylmyosmine, 6-hydroxypseudooxynicotine, 6-hydroxy-3-

succinoylpyridine, and 2,5-dihydroxypyridine as metabolites in

cells of A. tumefaciens S33 degrading nicotine provided the

initial evidence for a pathway different from those shown in

Scheme 1 and Scheme 8 [66]. The complete genome of

A. tumefaciens S33 was recently sequenced, allowing identifica-

tion of candidate genes for all of the steps for the hybrid path-

way for nicotine degradation in that organism (Scheme 11) [69].

The nicotine dehydrogenase Ndh and the 6-hydroxypseudooxy-

nicotine oxidase Pno, one of the two novel enzymes in this

pathway, have both been purified and characterized; they are re-

ported to form a complex [71]. The sequences of the two en-
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zymes identify Ndo as a member of the family of molyb-

dopterin enzymes such as xanthine dehydrogenase and Pno as a

member of the trimethylamine dehydrogenase family of flavo-

proteins [72]. Consistent with this identification, purified Pno

contains FMN and a 4Fe/4S center. Preliminary kinetics have

been reported for both enzymes. 6-LHNO activity has been

detected in crude cell lysates of A. tumefaciens S33 grown on

nicotine, but the pure enzyme has not been described [66]. The

NADH-dependent 6-hydroxy-3-succinoylpyridine hydroxylase

Hsh has been partially purified from this organism; this enzyme

is likely an FAD-dependent hydroxylase similar to HspB, but

succinate has not been shown to be a product in this case [66].

6-Hydroxy-L-nicotine, 6-hydroxy-N-methylmyosmine,

6-hydroxypseudooxynicotine, 6-hydroxy-3-succinoylpyridine,

and 2,5-dihydroxypyridine have also been isolated from cells of

Ochrobactrum sp. SJY1 growing on nicotine [68]. The

sequencing of its genome allowed identification of several of

the genes involved in nicotine degradation (Scheme 11) [73].

VppB, VppD, and VppE have all been expressed in recombi-

nant form [68]. VppB is a flavin amine oxidase that catalyzes

the oxidation of 6-hydroxynicotine, establishing it as an LHNO,

although the sequence of the protein is closer to that of

P. putida S16 NicA2 than LHNO from A. nicotinovorans.

VppD is an NAD(P)-dependent flavin monooxygenase whose

sequence is 62% identical to that of P. putida S16 HspB. The

crude recombinant VppE catalyzes the iron-dependent oxida-

tion of 2,5-dihydroxypyridine to N-formylmaleamate, the

same reaction as is catalyzed by the dioxygenase Hpo from

P. putida S16.

In Sphingomonas melonis TY, the genes for the metabolism of

nicotine are found in the ndp gene cluster [65]. The mRNA

levels for ndpA-H all increase 10 to 100-fold upon growth in the

presence of nicotine. Sequence similarities of >35% in all cases

to genes in P. putida S16 involved in nicotine metabolism sug-

gested that the roles of each are as those shown in Scheme 11.

NdpA-D were all expressed in recombinant form and shown to

confer on cells the ability to catalyze the proposed reactions,

confirming the identification of NdpA as a nicotine dehydroge-

nase, NdpB as an LHNO, NdpC as an oxidative demethylase,

and NdpD as 6-hydroxy-3-succinoylpyridine 3-monooxygen-

ase. The enzyme catalyzing formation of 6-hydroxy-3-succi-

noylpyridine from the aldehyde was not identified in the ndp

cluster; this activity was attributed to a non-specific semialde-

hyde dehydrogenase.

Characterization of the enzymes involved in the hybrid path-

way in Shinella sp. HZN7 is less complete. 6-Hydroxynicotine,

6-hydroxy-N-methylmyosmine, 6-hydroxypseudooxynicotine,

6-hydroxy-3-succinoylpyridine, and 2,5-dihydroxypyridine

have been confirmed as intermediates in the degradation of

nicotine by this organism [67]. This bacterium is also able to

utilize 2,5-dihydroxypyridine as a sole carbon source, estab-

lishing the presence of the complete pathway. 6-Hydroxy-3-

succinoyl semialdehyde pyridine was not reported as a

detectable intermediate, but it might not have accumulated to

sufficient levels for detection. The genes nctA1 and nctA2 code

for proteins with sequences identical to the nicotine hydroxy-

lase VppAB from Ochrobactrum sp. SJY1 [74]. The gene nctB

was identified as required for nicotine degradation using genetic

approaches; NctB was expressed in E. coli and the purified pro-

tein shown to be an LHNO similar to the enzyme from

A. nicotinovorans in its kinetic properties [18,75]. The genes re-

sponsible for the other enzymes were tentatively identified by

comparison with the sequences of the enzymes from Ochrobac-

trum sp. SJY1 and A. tumefaciens when the complete genome

of Shinella sp. HZN7 was sequenced [76].

Conclusion
This review has attempted to summarize our present under-

standing of the microbial metabolism of nicotine, with an

emphasis on the enzymes involved. It has not attempted to

address the less understood fungal metabolism of nicotine.

Elucidation of the details of nicotine metabolism remains one of

intense investigation, and the rapid increase in genomic se-

quences means that additional organisms capable of degrading

nicotine are frequently being described. Many of the enzymes

involved are poorly characterized even if mechanisms can be

proposed for them based on their homology to known families

of enzymes, and not all of the enzymes have been identified in

some cases. Still, these enzymes are already being used to

produce new synthetically catalysts, while the pathways are

being retooled to produce useful synthetic intermediates.
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Abstract
Phosphoribosyltransferases are the tools that allow the synthesis of nucleotide analogues using multi-enzymatic cascades. The

recombinant adenine phosphoribosyltransferase (TthAPRT) and hypoxanthine phosphoribosyltransferase (TthHPRT) from Thermus

thermophilus HB27 were expressed in E.coli strains and purified by chromatographic methods with yields of 10–13 mg per liter of

culture. The activity dependence of TthAPRT and TthHPRT on different factors was investigated along with the substrate speci-

ficity towards different heterocyclic bases. The kinetic parameters for TthHPRT with natural substrates were determined. Two

nucleotides were synthesized: 9-(β-D-ribofuranosyl)-2-chloroadenine 5'-monophosphate (2-Сl-AMP) using TthAPRT and 1-(β-D-

ribofuranosyl)pyrazolo[3,4-d]pyrimidine-4-one 5'-monophosphate (Allop-MP) using TthНPRT.

3098

Introduction
Bacterial phosphoribosyltransferases are used in multi-enzy-

matic cascades that perform nucleotide synthesis de novo [1,2].

Recently, we reported on the possibility of cascade synthesis,

where enzymes of thermophilic microorganisms Thermus ther-

mophilus HB27 (phosphoribosylpyrophosphate synthetase –

PRPPS and adenine phosphoribosyltransferase – APRT) and

Thermus sp. 2.9 (ribokinase – RK) carry out successive trans-

formations of ribose and adenine heterocyclic bases into the

corresponding nucleotides (Figure 1). The use of thermophilic

phosphoribosyltransferases allows carrying out reactions at a

higher temperature, so the concentrations of heterocyclic bases

can be increased [1-3].

There is great interest in the development of multi-enzymatic

cascades [4-9] for the preparation of nucleosides and

nucleotides due to the regio- and stereospecificity of enzymes

https://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:kid1968@yandex.ru
mailto:esipov@ibch.ru
https://doi.org/10.3762%2Fbjoc.14.289
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Figure 1: A multi-enzymatic synthesis of modified adenosine -5'-monophosphates.

[4,10,11], performing metabolic transformations of substrates.

Phosphoribosyltransferases are increasingly being widely used

as key enzymes in multi-enzymatic systems [2]. The substrate

specificity of APRT limits the number of possible nucleotides

that can be synthesized. Thus, for Thermus thermophilus HB27

APRT (TthAPRT), nucleotide synthesis is limited to the closest

structural homologs of adenine (Table 1) [1].

Table 1: Substrates for TthAPRT.

Base Conversion into nucleotide
(24 h, %)a

2,6-diaminopurine 16.80
2-chloroadenine 97.58
2-fluoroadenine 36.50
adenine 50.02
2-methoxyadenine 60.88
N1-methyladenine 78.2
N6-benzyladenine 1.87
2-aminobenzimidazole 0.09

aReaction mixtures (0.5 mL, 20 mM Tris-HCl, pH 8.0, 75 °C) contained
0.4 mM heterocyclic base, 0.4 mM PRPP, 0–5 mM MgCl2, 1.25 μg
TthAPRT [1].

Unfortunately, 1,2,4-triazole-3-carboxamide, its analogues,

guanine, hypoxanthine, and 7-deazapurins are not substrates for

TthAPRT. This severely limits the usability of multi-enzymatic

cascades in the synthesis of nucleotides, including the modified

ones.

To expand the possible repertoire of nucleotides that could be

synthesized, we obtained the recombinant form of hypoxathine

phosphoribosyltransferase Thermus thermophilus (TthHPRT),

investigated its substrate specificity and optimal conditions for

catalytic activity, and determined the kinetic parameters of the

enzyme. A comparative study of the substrate specificity of

TthAPRT and TthHPRT was performed to determine the

usability of thermophilic transferases in nucleotide synthesis. A

scheme of purine nucleotide synthesis using TthAPRT and

TthHPRT is shown in Figure 2.

Figure 2: Nucleotide synthesis using phosphoribosyltransferases.

Results and Discussion
Genes TT_RS08985 and TT_RS06315 from T. thermophilus

HB27, coding TthHPRT and TthAPRT, were cloned into

expression plasmid vectors pET 23a+ and pET 23d+, respec-

tively. The resulting recombinant plasmid pER-TthHPRT

contained fusion gene HPRT-HisTag coding TthHPRT with a

C-terminal His-Tag. The resulting recombinant plasmid pER-

TthAPRT contained the gene APRT coding TthAPRT without

any additional sequences. Nucleotide sequences of the cloned

genes were verified by sequencing. The codone GGG→AGG

substitution corresponding to amino-acid Arg27Gly replace-

ment was found in the gene encoding the TthHPRT.
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The screening of available producer strains was performed to

find strains, which produce target enzymes in soluble form. The

resulting strains E. coli BL21(DE3)/pER- TthAPRT and E. coli

C3030/pER- TthHPRT produced enzymes mainly in soluble

form (>80%).

The established procedure for isolation and purification of

TthHPRT includes heat treatment, immobilized metal affinity

chromatography, final size-exclusion chromatography, and con-

centration. For TthAPRT, the protocol include heat treatment,

anion exchange chromatography, hydrophobic chromatography,

final size-exclusion chromatography, and concentration. Yields

of both transferases were no less than 10–13 mg per liter of cul-

ture, with a purity of about 96% (as determined by SDS-

PAGE).

The influence of temperature and Mg2+ concentration on the ac-

tivity of TthHPRT was investigated. The results were compared

with data for adenine phosphoribosyltransferase Thermus ther-

mophilus, obtained earlier [1].

The TthAPRT is active over a wide temperature range

(Figure 3). A maximal activity of TthHPRT (1.1 unit/mg) is ob-

served at 60 °C. The activity at 36 °C is 5% from the maximal

one and at 90 °C it is 3% from the maximal one. It is interest-

ing, that TthAPRT shows its maximal activity at 75 °C.

Figure 3: Dependence of TthHPRT and TthAPRT activity on tempera-
ture (reaction mixtures (0.5 mL) contained 20 mM Tris-HCl, pH 8.0,
1 mM 5-phosphoribosyl-1-α-pyrophosphate, and 5 mM MgCl2; in the
case of TthHPRT mixtures contained 1 mM hypoxanthine and 0.18 μg
of enzyme, in the case of TthAPRT – 1 mM adenine and 0.125 μg of
enzyme).

The influence of the magnesium ion concentration on the

TthHPRT activity is nonlinear. The activity increases rapidly

while the magnesium chloride concentration increases from 0 to

1 mM (Figure 4). Further increasing of the concentration (up to

5 mM) does not increase the activity significantly. Since the

reaction rate increases rapidly with increasing the magnesium

chloride concentration to values equivalent to the concentration

of 5-phosphoribosyl-α-1-pyrophosphate (1 mM), it can be

assumed that the presence of magnesium ions promotes the

proper spatial orientation of the substrate. The reaction also

proceeds in the absence of magnesium ions in solution. A simi-

lar dependence is observed for TthAPRT.

Figure 4: Dependence of TthHPRT and TthAPRT activity on the Mg2+

concentration (reaction mixtures (0.5 mL) contained 20 mM Tris-HCl,
pH 8.0, 1 mM 5-phosphoribosyl-1-α-pyrophosphate, and 0–5 mM
MgCl2; in case of TthHPRT mixtures contained 1 mM hypoxanthine
and 0.18 μg of enzyme, in case of TthAPRT – 1 mM adenine and
0.125 μg of enzyme; reactions were performed at 70 °C; 100% – activi-
ty at 1 mM concentration).

After optimization of the reaction conditions, kinetic parame-

ters for TthHPRT were determined (Table 2).

Based on the Km values, the affinity of 5-phosphoribosyl-α-1-

pyrophosphate for the active site is much lower than that of

heterocyclic bases. The similar situation we observed for

TthAPRT [1]. Comparison of the synthesis rates of inosine-5'-

monophosphate and guanosine-5`-monophosphate showed that

the first is synthesized 4.6 times faster. The literature data for

similar enzymes (see Table 2) confirm a poor affinity of PRPP

to the active site: Km for hypoxanthine is 17 fold less then for

PRPP, although for the human enzyme Km is only 5 fold less.

Comparing two enzymes from different strains of Thermus ther-

mophilus, we can conclude that TthAPRT from HB8 (in

contrast with HB27), synthesizes guanosine-5`-monophosphate

faster. This may be due to the difference in reaction conditions.

Kinetic data are displayed by double reciprocal plot (Figure 5).

Determination of substrate specificity of TthHPRT was per-

formed in comparative experiments with TthAPRT. The process

of nucleotide synthesis was monitored by a liquid chromatogra-

phy–mass spectrometry analysis of the reaction mixture.

The data is presented in the Table 3. As expected, TthHPRT is

specific to 6-oxopurines, while TthAPRT is specific to

6-aminopurines. Both enzymes do not recognize thymine as a

substrate. This is consistent with data that pyrimidine hetero-

cyclic bases are substrates for uracyl phosphoribosyltransferase
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Table 2: Kinetic parameters of inosine-5'-monophosphate and guanosine-5'-monophosphate synthesis using HPRT from various organisms.

Substrate Km, μМ Vmax, μmol/min·mg kcat, 1/s kcat/Km, 1/M·s

Thermus thermophilus HB27
hypoxanthine 13 ± 4 28 ± 9 9 ± 3 6.9 × 105

guanine 28 ± 9 6 ± 2 2.0 ± 0.7 7.1 × 104

PRPP 220 ± 60 17 ± 5 6 ± 2 2.7 × 104

Thermus thermophilus HB8 [12]
hypoxanthine 3.9 ± 1.5 – 9.1 ± 0.8 –
guanine 7.4 ± 1.7 – 18 ± 1 –
PRPP 68 ± 18 – 20 ± 2 –

Homo sapiens [13]
hypoxanthine 3.8 ± 0.3 – 2.6 ± 0.6 7 × 105

PRPP 19.1 ± 1.6 – 2.5 ± 0.05 1 × 105

Escherichia coli [14]
Hypoxanthine 37 – – –
PRPP 330 – – –

Figure 5: Lineweaver–Burk plot for synthesis of inosine-5'-monophos-
phate and guanosine-5'-monophosphate.

and orotate phosphoribosyltransferase only [2]. Unfortunately,

we did not find any product in reactions with compounds based

on 1,2,4-triazole-3-carboxamide, which was also observed for

E. сoli HPRT [15,16]. However, allopurinol and 8-azaguanine

are substrates for TthHPRT, and 2-chloroadenine is a substrate

for TthAPRT. For 2-chloroadenine and 8-azaguanine, reaction

at a higher temperature is preferable because of their low solu-

bility in water (less than 1 mM at 37 °C). Interestingly, allo-

purinol proved to be a good substrate for both TthHPRT and

TthAPRT, unlike hypoxanthine, which differs only in the posi-

tion of one of the nitrogen atoms. Probably, the presence of

nitrogen atom at C7 position of purine heterocycles plays an im-

portant role in reactions catalyzed by phosphoribosyltrans-

ferase, and also affects the substrate properties of TthHPRT and

TthAPRT.

Table 3: Substrate specifity of TthHPRT and TthAPRT.

Base Conversion (24 h, %)a

TthHPRT TthAPRT

adenine 5.3 48.1
hypoxanthine 91.0 6.4
guanine 73.9 25.6
2-chloroadenine 0 52.9
2-fluoroadenine 0 31.1
6-mercapopurine 85.1 4.8
allopurinol 39.3 57.4
8-azaguanine 80.6 1.0
thymine 0 0
1,2,4-triazole-3-carboxamide 0 0
1,2,4-triazole-3-carboxy-N-methyl-
amide

0 0

aReaction mixtures (0.125 mL, 20 mM Tris-HCl, pH 8.0, 60 °C)
contained 0.5 mM heterocyclic base, 0.5 mM PRPP, 0.5 mM MgCl2,
5 mМ KH2PO4 and 0.4 μg of TthHPRT or TthAPRT.

Two nucleotides were synthesized using TthHPRT or TthAPRT

(see Figure 6). Synthesis of 2-Cl-AMP was performed at 75 °C.

This allowed to achieve a concentration of 0.5 mM of the initial

2-chloroadenine. The reaction progress was monitored by

HPLC. After 2 days (the product content in the reaction mix-

ture was 54%), the reaction mixture was concentrated and the

desired product was isolated by column chromatography on ion-

exchange sorbents (anion and then cation-exchange). The yield

of 2-Сl-AMP was 37%. A second nucleotide (Allop-MP) was

synthesized at a lower temperature (60 °C). After 2 days, the

product content in the reaction mixture was 55%. The product

was isolated in the same way, with a yield of 32%.
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Figure 6: Synthesis of nucleotides 2Cl-AMP and Allop-MP using phos-
phoribosyltransferases TthAPRT or TthHPRT respectively.

Conclusion
The recombinant adenine phosphoribosyltransferase and hypox-

anthine phosphoribosyltransferase from Thermus thermophilus

HB27 were purificated with yields no less than 10–13 mg per

litre of culture. A comparative study of substrate specificity of

these enzymes towards different heterocyclic bases was carried

out and temperature-dependence and magnesium chloride con-

centration-dependence of enzymes activity were determined.

TthHPRT can be used for the synthesis of nucleotides contain-

ing different purine derivatives including 8-aza- and 8-aza-7-

deazapurine. The use of hypoxanthine and adenine transferases

in multi-enzyme cascades significantly extends the spectrum of

synthetic purine nucleotides. Two nucleotides were synthesized:

9-(β-D-ribofuranosyl)-2-chloroadenine 5'-monophosphate

(2-Сl-AMP) using TthAPRT and 1-(β-D-ribofuranosyl)pyra-

zolo[3,4-d]pyrimidine-4-one 5'-monophosphate (Allop-MP)

using TthНPRT with yields of 37% and 32%, respectively.

Using of hypoxanthine and adenine transferases in multi-en-

zyme cascades significantly extends the spectrum of synthetic

purine nucleotides.

Experimental
Tris-buffer, acetic acid, sodium chloride, glycerol, acrylamide,

N,N'-bisacrylamide, ATP, bromophenol blue, agarose, EDTA,

IPTG, ampicillin, sodium dodecylsulfate, imidazole and DMF

were purchased from Panreac (Spain, Barselona). Ethanol was

purchased from MedChemProm. Coomassie Brilliant Blue

R-250 was purchased from Bio-Rad (USA, CA). Bacto yeast

extract, bacto tryptone, and bacto agar were purchased from

Becton Dickinson Biosciences (USA, NJ). NaOH and HCl were

purchased from Merck (USA, MA). Sodium persulfate,

TEMED, ethidium bromide, and sodium azide were purchased

from Helicon (Russia). dNTP was purchased from Thermo

Fisher Scientific (USA, MA). DTT, phenylmethylsulfonyl chlo-

ride, magnesium chloride, nickel sulfate, potassium dihy-

droorthophosphate, Ni-IDA sepharose, 5-phosphoribosyl-α-1-

pyrophosphate and all bases (adenine, hypoxanthine, guanine,

2-chloroadenine, etc.) were purchased from Sigma-Aldrich

(USA, MO).

Bacterial strains: a) E. coli C3030 [MiniF lysY (CamR) / fhuA2

lacZ::T7 gene1 [lon] ompT ahpC gal λatt::pNEB3-r1-cDsbC

(SpecR, lacIq) ΔtrxB sulA11 R(mcr-73::miniTn10--TetS)2 [dcm]

R(zgb-210::Tn10 --TetS) endA1 Δgor ∆(mcrC-mrr)114::IS10]

New England Biolabs (USA, MA), b) E.coli BL21(DE3) fhuA2

[lon] ompT gal (λ DE3) [dcm] ΔhsdS λ DE3 = λ sBamHIo

ΔEcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 Δnin5.

Plasmid vector: pET 23a+, pET 23d+ (Merck Millipore, USA,

MA).

Enzymes: NdeI, XhoI, NcoI, T4 DNA-ligase (Thermo Scien-

tific, USA, MA), Encyclo-polymerase (Eurogen, Russia).

The protein concentration was determined by the Bradford

method [17], using BSA as a standard.

Protein purity was determined by electrophoresis in a polyacryl-

amide gel under denaturing conditions [18].

Cloning and creation of producer strain:  Genes

TT_RS08985 and TT_RS06315, encoding TthHPRT and

TthAPRT, respectively, were amplified on the genomic DNA

template of the T. thermophilus HB27 strain by a polymerase

chain reaction (PCR) using synthetic primers. The genes were

cloned into the expression vectors pET-23a+ and pET-23d+ re-

spectively. The E. coli strains BL21(DE3)/pER- TthAPRT and

C3030/pER- TthHPRT produced the target enzymes mainly in

soluble form (culturing conditions: 4 h grow at 37 °С after

supplementing with 0.4 mM IPTG).

Isolation and purification of TthHPRT: A cell pellet was

resuspended in 50 mM Tris-HCl, 200 mМ NaCl, and 1 mМ

phenylmethylsulfonyl fluoride (PMSF) рН 8.0 (1:10 w/v). The

cells were disrupted by sonication for 30 min at 20 kHz at

+4 °С. The cell debris was pelleted by centrifugation at

12,000 rpm for 30 min at +4 °С. The cell lysate was heat-treated

(65 °С, 10 min) and the pellet was removed by centrifugation.

The supernatant was applied to a column XK 16/20 (GE Health-

care, USA) packed with Ni-IDA Sepharose (Sigma Aldrich,
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USA) pre-equilibrated with 50 mM Tris-HCl and 200 mM NaCl

at pH 8.0. Ballast proteins were eluted with a solution, contain-

ing 50 mM Tris-HCl, 50 mM imidazole, and 200 mM NaCl,

pH 8.0 (4 CV, flow rate 2 mL/min). The target enzyme was

eluted with solution, contained 50 mM Tris-HCl, 250 mM

imidazole, and 200 mM NaCl, pH 8.0 (4 CV, flow rate

2 mL/min). Pooled fractions were concentrated by a polysul-

fonic membrane PBGC 10 kDa (Millipore, USA). The result-

ing solution was applied to a column with HiLoad 16/60

Superdex 75pg (GE Healthcare, USA), equilibrated by 20 mM

Tris-HCl, 50 mM NaCl, 0.04% NaN3, and 10% glycerol,

pH 8.0. Fractions, containing the target enzyme with a purity of

more than 96 %, were pooled and concentrated up to a concen-

tration of 13 ± 1 mg/mL.

Isolation and purification of TthAPRT: Cell biomass disrup-

tion and heat-treatment was performed as described in section

"Isolation and purification of TthHPRT". The resulting solution

was diluted (2-fold) with solution, comtained 50 mM Tris-HCl,

2 M (NH4)2SO4, pH 8.0, and applied to column XK 16/20

packed with Phenyl Sepharose HP (GE Healthcare, USA). The

column was eluted by linear gradient of (NH4)2SO4 (1.0 – 0 M,

12 CV, flow rate 2 mL/min). Fractions, contained the target en-

zyme, were pooled and concentrated on polysulphonic mem-

brane PBGC 10 kDa. The resulting solution was applied to

column with HiLoad 16/60 Superdex 200, equilibrated by

20 mM Tris-HCl, 50 mM NaCl, 0.04% NaN3, and 5% glycerol,

pH 8.0. Fractions, contained the target enzyme with purity more

than 96%, were pooled and concentrated up to concentration

12 ± 1 mg/mL.

Enzyme assay: Each reaction mixture (0.5 mL, 20 mM Tris-

HCl, pH 8.0) contained 1 mM 5-phosphoribosyl-1-α-pyrophos-

phate, 1 mM hypoxanthine, 5 mM MgCl2, and hypoxanthine

phosphoribosyltransferase Thermus thermophilus (0.18 μg).

Reaction mixtures were incubated at 70 °C. Substrate and prod-

uct quantities were determined using HPLC (Waters 1525,

column Ascentis Express C18, 2.7 μm, 3.0 × 75 mm, eluent A

0.1% aqeous TFA, eluent B 0.1% TFA / 70% acetonitrile in

water, detection at 254 nm, Waters 2489).

Kinetic parameters determination: Each reaction mixture

(1.0 mL, 20 mM Tris-HCl, pH 8.0) contained 5 mM MgCl2,

hypoxanthine phosphoribosyltransferase Thermus thermophilus

(0.18 μg), and the following components: a) hypoxanthine

(0.01–0.50 mM) or guanine (0.01–0.20 mM) and 1 mM 5-phos-

phoribosyl-1-α-pyrophosphate to determine Km and Vmax for

hypoxanthine and guanine, and b) 5-phosphoribosyl-1-α-

pyrophosphate (0.05–1.20 mM) and 0.50 mM hypoxanthine to

determine Km and Vmax for 5-phosphoribosyl-1-α-pyrophos-

phate. Reaction mixtures were incubated at 70 °C for 2 min.

Product quantities were determined as described in the "En-

zyme assay" section. Each experiment was repeated three times.

Kinetic parameters were determined by nonlinear regression

analysis using SciDAVis v0.2.4 software (free software, web

site: scidavis.sourceforge.net). Catalytic constants (kcat) were

calculated per 1 subunit (20.3 kDa, calculated based on amino

acid sequence).

Mass spectra were measured on an Agilent 6224, ESI-TOF,

LC/MS (USA) in positive ion mode (ESI), LCQ Fleet ion trap

mass spectrometer (Thermo Electron, USA) and Agilent 1100

LC/MSD VL (Agilent Technologies) equipped an APCI and

ESI source (positive and negative mode of ionization), 1100

DAD and ELSD PL-ELS 1000 (Polymer Laboratories).

Nucleotides synthesis
9-(β-D-Ribofuranosyl)-2-chloroadenine 5'-monophosphate

(2-Сl-AMP): 2-Chloroadenine (17 mg, 0.10 mmol) was dis-

solved in water (203 mL) under stirring and heating at 90 °C ,

and after cooling to 70 °C, magnesium chloride hexahydrate

(41 mg, 0.21 mmol) and potassium dihydroorthophosphate

(276 mg, 2.03 mmol) were added. The pH of the solution was

adjusted to 8.0 by 2 N potassium hydroxide. The pentasodium

salt of 5-phosphoribosyl-α-1-pyrophosphate (70 mg,

0.14 mmol) and TthAPRT (5 units) were added, and the reac-

tion mixture was incubated at 75 °C for 2 days; the reaction

progress was monitored by HPLC. The reaction mixture was

neutralized with 2 N hydrochloric acid and concentrated in

vacuo to ca. 10 mL. The precipitate was filtered off, the filtrate

was applied to the column with DEAE-Toyopearl 650C, bicar-

bonate form, 40 × 140 mm, and the product was eluted with tri-

ethylammonium bicarbonate (0.1 M). Fractions were concen-

trated in vacuo to ca. 10 mL, applied to the column with

CM-Sephadex C-25, sodium form, 20 × 160 mm, and the prod-

uct was eluted with water to give, after evaporation and drying

in vacuo under P2O5, 16 mg (0.037 mmol; 37%) of 9-(β-D-ribo-

furanosyl)-2-chloroadenine 5'-monophosphate of 99% purity

(HPLC).  HRMS (ESI+ ) :  m/z  [M + H]+  ca lcd  for

C10H13N5O7P1Cl1: 382.0315; found, 382.0353; [2M + H]+,

found, 763.0606; [Base + H]+, found, 170.0244; 1Н NMR

(DMSО-d6) δ ppm) 8.52 (s, 1Н, H8), 7.78 (br. s., 2H, NH2),

5.83 (d, J1’,2’ = 6 Hz, 1Н, H1’), 4.61 (m, 1Н, H2’), 4.23 (m, 1Н,

H3’), 4.06 (m, 1Н, H4’), 3.84 (m, 2Н, H5a’, H5b’) ppm;
13C NMR (DMSО-d6) δ 156.61 (C2 or C6), 153.01 (C6 or

C2), 150.73 (C4), 139.68 (C8), 117.57 (C5), 86.40 (C1’),

84.52 (C4’), 74.13 (C2’), 71.06 (C3’), 3.94 (C5’) ppm;
15N NMR (DMSО-d6) δ 242.7 (N7), 171.3 (N9), 86.84 (NH2)

ppm.

1-(β-D-Ribofuranosyl)pyrazolo[3,4-d]pyrimidine-4-one

5'-monophosphate (Allop-MP): Allopurinol (14 mg,
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0.10 mmol) was dissolved in water (203 mL) under stirring and

heating at 90 °C, and after cooling to 50 °C, magnesium chlo-

ride hexahydrate (41 mg, 0.21 mmol) and potassium dihy-

droorthophosphate (276 mg, 2.03 mmol) were added. The pH of

the solution was adjusted to 8.0 with 2 N potassium hydroxide.

The pentasodium salt of 5-phosphoribosyl-α-1-pyrophosphate

(70 mg, 0.14 mmol) and TthHPRT (5 units) were added, and the

reaction mixture was incubated at 60 °C for 2 days; the reaction

progress was monitored by HPLC. The reaction mixture was

neutralized by 2 N hydrochloric acid and concentrated in vacuo

to ca. 10 mL. The precipitate was filtered off, the filtrate was

placed on the column with DEAE-Toyopearl 650C, bicar-

bonate form, 40 × 140 mm, and the product was eluted with tri-

ethylammonium bicarbonate (0.2 M). Fractions were concen-

trated in vacuo to ca. 10 mL, applied to the column with

CM-Sephadex C-25, sodium form, 20 × 160 mm, and the prod-

uct was eluted with water to give, after evaporation and drying

in vacuo under P2O5, 11 mg (0.032 mmol; 32%) of 1-(β-D-ribo-

furanosyl)pyrazolo[3,4-d]pyrimidine-4-one 5'-monophosphate

of 97% purity (HPLC). HRMS (ESI+): m/z [M + H]+ calcd for

C10H13N4O8P1: 349.0545; found, 349.0520; [2M + H]+, found,

697.0952; [3M + H]+, found, 1045.1374; [Base + H]+ found,

137.0453; 1Н NMR (DMSО-d6) δ 12.44 (br. s, 1H, NH), 8.15

(s, 1H, H3), 8.13 (s, 1H, H6), 6.06 (d, J = 4.1 Hz, 1H, H1’),

4.56 (dt, 1H, H2’, J = 4.54; <0.5), 4.31 (t, 1H, H3’, J = 4.8),

4.04 (m, 1H, H4’), 3.85 (ddd, J = 11.0, 7.6; 6.2 Hz, 1H, H5’a),

3.66 (ddd, J = 11.0, 7.2, 6.1 Hz 1H, H5’b) ppm; 13C NMR

(DMSО-d6) δ 157.03 (C4), 152.90 (C7a), 148.53 (C6), 135.38

(C3), 106.06 (C4a), 88.16 (C1’), 83.27 (C4’), 73.39 (C2’),

71.38 (C3’), 64.76 (C5’) ppm; 15N NMR (DMSО-d6) δ 302.8

(N2), 210.6 (N7), 204.9 (N1), 171.1 (N5).

Abbreviations
APRT – adenine phosphoribosyltransferase; HPRT –

hypoxathine phosphoribosyltransferase; PRPPS – phosphoribo-

sylpyrophosphate synthetase; RK – ribokinase; Tth - Thermus

thermophilus; 2-Сl-AMP – 9-(β-D-ribofuranosyl)-2-chloro-

adenine 5'-monophosphate; Allop-MP – 1-(β-D-ribofuranosyl)-

pyrazolo[3,4-d]pyrimidine-4-one 5'-monophosphate
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Abstract
The Michaelis–Menten equation is usually expressed in terms of kcat and Km values: v = kcat[S]/(Km + [S]). However, it is impos-

sible to interpret Km in the absence of additional information, while the ratio of kcat/Km provides a measure of enzyme specificity

and is proportional to enzyme efficiency and proficiency. Moreover, kcat/Km provides a lower limit on the second order rate con-

stant for substrate binding. For these reasons it is better to redefine the Michaelis–Menten equation in terms of kcat and kcat/Km

values: v = kSP[S]/(1 + kSP[S]/kcat), where the specificity constant, kSP = kcat/Km. In this short review, the rationale for this asser-

tion is explained and it is shown that more accurate measurements of kcat/Km can be derived directly using the modified form of the

Michaelis–Menten equation rather than calculated from the ratio of kcat and Km values measured separately. Even greater accuracy

is achieved with fitting the raw data directly by numerical integration of the rate equations rather than using analytically derived

equations. The importance of fitting to derive kcat and kcat/Km is illustrated by considering the role of conformational changes in en-

zyme specificity where kcat and kcat/Km can reflect different steps in the pathway. This highlights the pitfalls in attempting to inter-

pret Km, which is best understood as the ratio of kcat divided by kcat/Km.

16

Review
When Henri, Michaelis and Menten derived the equation for

steady state enzyme turnover, they chose to define the rate in

terms of Vmax and the substrate dissociation constant for the

hypothetical enzyme–substrate complex, KS [1,2].
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At the time, the choice of the terms Vmax and KS was logical

because the concentrations of enzymes could not be determined

and even the chemical makeup of enzymes was unknown. By

including the unknown enzyme concentration in the term for the

maximum velocity of turnover, the equation contained two vari-

ables, Vmax and KS, consistent with the information content of

the data and a minimal model.

In 1913, Michaelis and Menten provided evidence for the exis-

tence of an enzyme–substrate complex by careful rate measure-

ments and rigorous quantitative analysis, fulfilling the major

goal of their work [1,2]. Estimating the binding affinity for the

substrate as KS was an added bonus. These were profound

discoveries that laid the foundation for enzymology throughout

the 20th century.

The Michaelis–Menten equation was originally derived

assuming that substrate binding was at equilibrium, and was

later expanded by Briggs and Haldane [3] who used the steady

state approximation to include the rates of substrate and prod-

uct release in defining Km according to a minimal model.

A century later, we know the structures of enzymes and can

accurately determine their concentrations so we divide the

measured rates by the known enzyme concentration to get the

common form of the Michaelis–Menten equation:

(1)

Using this equation, the two parameters derived in fitting data

are kcat and Km, from which we can calculate kcat/Km. However,

kcat/Km is the most important parameter as it is used to quantify

enzyme specificity, efficiency and proficiency [4,5]. In fact, kcat

and kcat/Km should be considered as the two primary steady

state kinetic parameters, rather than kcat and Km. A half century

ago Cleland stressed that the two fundamental steady state

kinetic parameters were kcat and kcat/Km and that Km represents

an “apparent dynamic dissociation constant under steady state

conditions”, but noted that Km is not an independent parameter

[6]. This statement was based on the use of a Lineweaver–Burk

(double-reciprocal) plot [7] to fit data where the intercept

defines 1/kcat and the slope defines 1/kcat/Km.

In Cleland’s analysis, the two primary steady state kinetic pa-

rameters were kcat and kcat/Km because they were the parame-

ters derived in fitting data displayed on a double reciprocal plot.

Today, the emphasis is on interpreting the steady state kinetic

parameters in terms of enzyme structure and individual steps in

the reaction pathway. This leads to a new justification for

choosing kcat/Km rather than Km as a primary kinetic parameter.

Of the three steady state parameters (kcat, Km, and kcat/Km)

kcat/Km is the most important as it quantifies enzyme specificity,

efficiency and proficiency [4]. Moreover, both kcat and kcat/Km

place lower limits on rate constants for individual steps in the

pathway, while Km is largely un-interpretable.

Cleland published the first computer programs [8] to fit data

based on linear regression of data displayed on a double-recip-

rocal plot, and including a kind of global analysis in resolving

steady state inhibition patterns, which are defined by the effects

of inhibitors on the slope and intercept, i.e., kcat and kcat/Km.

However, there are serious disadvantages in using a double reci-

procal plot due to the unequal weighting of errors and the

compression of the most accurate data leading to a distorted

view of the results. The unequal weighting of errors can be

overcome if the standard deviations of the individual measure-

ments are included in the linear regression analysis, but that is

not always done.

Regardless of the method used to fit data, there is merit in

fitting to derive kcat and kcat/Km, rather than fitting to derive kcat

and Km individually then calculating kcat/Km from the ratio.

There are large errors in kcat and Km since these estimates each

rely on extrapolation to infinite concentration of substrate,

leading to larger errors in the calculated kcat/Km value. On the

other hand, the value of kcat/Km is generally well defined from

the initial slope of the concentration dependence, as illustrated

in Figure 1. Thus, kcat/Km can be understood as the apparent

second order rate constant for substrate binding. More precisely,

kcat/Km is equal to the true second order rate constant for sub-

strate binding to the enzyme multiplied by the probability that

the bound substrate will be converted to product and released

into solution. This principle can be illustrated using the simplest

model:
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The term, k2/(k−1 + k2), gives the probability that the substrate

reacts rather than dissociating. With more realistic models, the

more complex equations for kcat/Km can still be understood as

the product of the rate constant for substrate binding times the

probability of forward reaction.

Figure 1: Michaelis–Menten plot. The rate of product formation is
plotted versus substrate concentration and fit to a hyperbola. The
dashed lines illustrate kcat/Km (slope) and kcat. The intersection of the
two lines gives the substrate concentration at which kcat/Km [S]i = kcat,
so [S]i = kcat/(kcat/Km) = Km.

Interpretation of steady state kinetic parameters takes on new

significance in the current era of enzymology where the

emphasis is on relating the parameters to individual rate con-

stants and to structural and chemical transitions for each reac-

tion in the pathway. While kcat/Km can be directly interpreted in

terms of enzyme specificity, it also provides a lower limit

for the second order rate constant for substrate binding.

Similarly, kcat provides a lower limit for each first order

rate constant following substrate binding through product

release. On the other hand, the Michaelis constant cannot be

interpreted unambiguously in the absence of additional

information. In fact, Km can be less than, greater than, or equal

to the Kd for substrate binding. Here, the overly simplified

model  gives the wrong answer in  suggest ing that

Km is always greater than or equal to the dissociation constant

(Kd).

However, for a more complete model we come to a different

conclusion:

(2)

We can now see that depending on the intrinsic rate constants,

Km can be less than, greater than, or equal to the Kd. Thus, in

the absence of additional information, Km cannot be interpreted

to imply anything about the intrinsic rate and equilibrium con-

stants governing enzyme catalysis. Although the Km defines the

concentration of substrate giving half maximal velocity, that is a

phenomenological description without any mechanistic implica-

tions. On the other hand, kcat and kcat/Km provide meaningful

lower limits on intrinsic rate constants.

The best understanding of Km is as the ratio of kcat and kcat/Km,

so we consider that the Michaelis constant is a derivative of the

two primary steady state kinetic parameters.

Although this statement appears as trivial algebra, it is profound

because kcat and kcat/Km can reflect different steps in the en-

zyme pathway as will be described below. Moreover, it shows

that the Km value represents the balance point between the rate

of turnover and the rate of substrate binding. The Km represents

substrate binding affinity only in the special case of rapid equi-

librium binding.

A primary goal of fitting steady state data should be to accu-

rately define kcat/Km. Rather than fitting to obtain estimates for

kcat and Km and then calculating kcat/Km as a ratio, a more accu-

rate view is to consider kcat and kcat/Km as the primary steady

state constants while Km is obtained from their ratio. Tradition-

ally, data have been fit using the standard form of the

Michaelis–Menten equation to derive estimates of kcat and Km

which are then used to calculate kcat/Km. However, there are

often large errors in kcat and Km because these parameters are

based on extrapolation to infinite substrate concentration, and

these errors are compounded in calculating kcat/Km. Thus it is

better to fit the data using an equation that provides kcat/Km

directly using the following form of the Michaelis–Menten

equation:
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(3)

We use the term kSP = kcat/Km to emphasize that the specificity

constant (kSP) is a single parameter rather than a ratio and to

stress that it represents the apparent second order rate constant

for substrate binding. The use of the new term, kSP, overcomes

the awkward use of kcat/Km, which is not only more difficult to

say and write, but it also presents the mistaken impression that

it is simply a function of the rate of enzyme turnover divided by

the substrate binding affinity. The awkwardness is the result of

historical precedent. Defining the specificity constant as kcat/Km

carries with it the baggage of thinking of the specificity con-

stant as a ratio rather than a single parameter. Logic is influ-

enced by the words we use to describe observations. It actually

might help to avoid confusion in interpretation of Km if we re-

ferred to the Michaelis constant as kcat/kSP.

Measuring kcat/Km
In order to get the best estimates of kcat/Km from steady state

kinetic data, it is preferable to fit the data to Equation 3 in

which kcat and kcat/Km are the two fitted parameters rather than

kcat and Km (Equation 1). To test this assertion, synthetic data

were generated by computer simulation with kcat = 50 s−1 and

Km = 20 μM. Data were generated at various concentrations of

substrate (5, 10, 20, 30, and 40 μM), with a Gaussian distribu-

tion of random noise added to the data with a standard devia-

tion of 0.5. The synthetic data were then fit to a straight line to

estimate the rate (Figure 2A), which was then plotted versus

substrate concentration and fit by nonlinear regression using

either Equation 1 or Equation 3, defining kcat and Km or kcat and

kcat/Km, respectively.

As shown in Figure 2B,C, the fitted curves derived from either

equation were indistinguishable, but as shown in Table 1 the

error estimates in the fitted parameters were markedly different.

The known standard deviation (sigma) values were included in

the linear regression to estimate the rates and then the standard

error estimates in fitted parameters were propagated to yield

error estimates in kcat/Km. That is in computing z from the ratio

of x and y, we compute the errors according to:

Figure 2: Fitting data to derive kcat and Km. A) Synthetic data were fit
to a straight line and then the observed rate was plotted versus sub-
strate concentration (B, C). In B), the data were fit to standard
Michaelis–Menten equation while in C), the data were fit to a modified
form equation. The equations used are shown in each figure.

where dx, and dy represent the error estimates on the variables x

and y, respectively.
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Table 1: Summary of fitted parameters. Synthetic data were generated as described in the text and then fit to derive estimates of steady state kinetic
parameters using different equations and different means of data fitting. Here we list the methods for fitting and the chosen fitted parameters for each
method. The values for kcat, Km and kcat/Km are shown. Values in brackets were calculated from the other parameters. For example, in the first row,
kcat/Km was calculated from kcat and Km, whereas in the second row, Km was calculated from estimates of kcat and kcat/Km. Standard error estimates
for calculated parameters were obtained by propagation of errors as described in the text. Note that the fitted parameters need not reproduce the
input parameters used to generate synthetic because of the added errors and the limited set of data. A more complete data set with lower errors
would return the input parameters.

method fitted parameters kcat (s−1) Km (μM) kcat/Km (μM−1s−1)

equations kcat and Km 58.6 ± 25 44.4 ± 31 [1.32 ± 1.08]
kcat and kSP 58.7 ± 25 [44.4 ± 23] 1.32 ± 0.37

simulation kcat and Km 57.2 ± 5.9 27.2 ± 5.1 [2.11 ± 0.45]
kcat and kSP 57.3 ± 6.1 [27.8 ± 4.1] 1.62 ± 0.21

simulation full reaction kcat and Km 54.3 ± 4.9 23.6 ± 4.0 [2.30 ± 0.44]
kcat and kSP 55.2 ± 3.9 [24.9 ± 2.2] 2.22 ± 0.12

input values 50 20 2.5

Table 1 illustrates the improvements in error estimates when

fitting the data to derive kcat/Km (kSP) directly rather than calcu-

lating the value from the ratio of kcat and Km. This is due to the

large errors in estimating kcat and Km which are both based on

extrapolation to infinite substrate concentration. In essence, the

extrapolation errors are counted twice since they are reflected in

both kcat and Km values. In contrast, when fitting to derive kcat

and kcat/Km, only kcat is based on extrapolation while

kSP = kcat/Km is obtained from the initial slope of the concentra-

tion dependence of the measured rate (Figure 1).

Admittedly, the “experiment” was set up to provide data only

up to twice the Km value to mimic those situations where the

substrate concentrations available for testing are limited, so the

exercise may not accurately reflect all laboratory settings. In

that sense, the example may be biased in favor of fitting to

derive kcat/Km directly. However, as a counterpoint, the only

“experimental errors” in the data are random since the added

noise conforms to a normal distribution, so this may make the

fitting to define kcat and Km more accurate than seen in the labo-

ratory. The “experiment” was repeated three times by gener-

ating new synthetic data and then fitting the data to derive inde-

pendent kcat and Km values. The averages from this analysis

were kcat = 45.4 ± 15.9 s−1 and Km = 33.2 ± 18.3 μM, which

give kcat/Km = 1.36 ± 0.9 μM−1s−1. Averaging multiple experi-

ments did not help to reduce errors as much as simply fitting

data to a better equation.

One could argue that the choice of which equation to use is

somewhat arbitrary. However, the common form of the equa-

tion was chosen over one hundred years ago for reasons that are

no longer valid. Therefore, this historical precedent should no

longer be followed given the advantage of fitting data to an

equation that affords kcat/Km directly.

Fitting by simulation
Significant errors are introduced when fitting the primary data

(product versus time) to a straight line because of the indepen-

dent variables for slope and intercept for each trace. In fitting

this data set with six concentrations of substrate and then fitting

the rate versus concentration to a hyperbola, a total of 14 inde-

pendent parameters were used. It is better to fit the data glob-

ally to derive only the two independent parameters from the pri-

mary data using computer simulation based on numerical inte-

gration of the rate equations [9].

In fitting steady state data by simulation, we start with the full

realistic model for an enzyme-catalyzed reaction including five

rate constants and then make approximations to simplify the

model to be consistent with the information content of the data

and the desired steady state parameters.

One could fit the data using all five rate constants, then calcu-

late the steady state kinetic parameters from Equation 2. It is

well known that steady state kinetics cannot define intrinsic rate

constants; a corollary of that statement is that a large combina-

tion of intrinsic rate constants can be found to fit the data and

provide estimates of steady state kinetic parameters. Thus, any

combination of rate constants that fit the data provides valid

estimates for the steady state parameters (kcat, Km and kcat/Km).

However, there will be large errors on each rate constant
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because of the large number of combinations of rate constants

that can account for the data. The large errors would then propa-

gate to large error estimates for each steady state parameter,

which would not provide a realistic estimate of the uncertainty

in measuring each parameter.

To limit the number of variables, we lock three of the parame-

ters at reasonable values to reduce the model to only two

unknowns. For example, we can modify the model to mimic

rapid equilibrium binding. To do so, we use a conservative esti-

mate for diffusion-limited substrate binding (k1 = 100 μM−1s−1)

then make the chemistry step irreversible and product release at

least 100-fold faster than k2 so that the rate of chemistry defines

kcat. This represents the standard (often erroneous) interpreta-

tion of kcat and Km. However, because we are only using this

approximation to fit steady state kinetic data, this model need

not to be true physically to give valid estimates of the steady

state kinetic parameters. The simplified model shown below

gives estimates of kcat and Km directly.

(4)

We can also use an alternative form of the model to obtain esti-

mates of kcat and kcat/Km directly. Here by setting k−1 = 0, after

substrate binds it is always converted to product so kcat/Km is

defined by the value of k1. This model gives estimates of kcat

and kcat/Km from the global fit.

(5)

Again, it is important to note that this need not represent physi-

cal reality in defining the intrinsic rate constants; the approxi-

mations are acceptable because we are only using the results to

compute the steady state kinetic parameters. In fact, we illus-

trate below that either model can be used to fit the data to give

identical steady state parameters although the standard errors

will differ.

In Figure 3, we show the results of fitting the same data used in

Figure 2. In Figure 3A, the curves represent the global data fit

using only two unknown parameters, kcat and Km (Equation 4)

Figure 3: Fitting steady state data by simulation. A) Synthetic data
from Figure 2A were fit globally to derive estimates of kcat and Km or
kcat and kcat/Km as described in the text. B) Confidence contour analy-
sis from fitting to derive kcat and Km. C) Confidence contour analysis
from fitting to derive kcat and kcat/Km. The bar gives the color coding for
the normalized χ2 values [10].

or kcat and kcat/Km (Equation 5). Because the results of the two

fitting methods are indistinguishable graphically, we only show

one figure to represent both methods (Figure 3A). However, as

summarized in Table 1, the error estimates vary depending on
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the method used. As seen previously with equation-based data

fitting, using the model to define kcat/Km directly is more

precise than computing kcat/Km from individual estimates of kcat

and Km. It should also be noted that either method of fitting data

by simulation is more accurate than the corresponding equation-

based data fitting. This is because we are fitting the entire data

set using only two parameters rather than fourteen. Using extra-

neous parameters introduces additional errors in data fitting.

Fitting by simulation also affords confidence contour analysis to

more precisely estimate errors in data fitting and to reveal rela-

tionships between parameters [10]. In Figure 3B we show the

confidence contour analysis from fitting to derive kcat = k2 and

Km = k−1/k1. In this analysis, the two parameters are varied

systematically and then we compute χ2, which we plot using a

color scale to represent z-axis values on the plot of k2 versus

k−1. The colors represent the values of χ2 normalized relative to

the best fit so the red area defines the combinations of rate con-

stants that give a good fit while the yellow band shows the

χ2 boundary surrounding a good fit [10]. The elongated zone of

good fit illustrates the linear relationship between k2 (defining

kcat) and k−1 (defining Km). That is, this analysis clearly shows

that the ratio of k2/k−1 is known with greater certainty

than either parameter alone. In this simplified model

kcat/Km = k2k1/k−1 (k1 is fixed). Thus, the confidence contour

analysis reveals that the data define kcat/Km more accurately

than either kcat or Km.

The confidence contours for the global fit to derive k1 (kcat/Km)

and k2 (kcat) are shown in Figure 3C. The curvature of the red

area fits an equation of the form k1 × k2 = constant. This merely

states that the net rate of product formation is a function of the

combined rates of substrate binding and chemistry and that the

net rate is known with greater certainty than either rate constant

alone.

This analysis supports two important conclusions: (1) it is better

to fit steady state data to define kcat and kcat/Km rather than kcat

and Km; and (2) simulation affords more accurate data fitting

than the traditional methods of fitting to equations. Fitting data

to equations necessarily involves limitations to conform to the

approximations in defining the initial velocity of turnover

before the substrate is consumed and product builds up, and it

requires that the data be fit a second time in the form a plot of

estimated rate versus concentration. Fitting by computer simula-

tion overcomes these limitations.

Full progress curve analysis
The ability to fit data by simulation based on the numerical inte-

gration of rate equations frees the experimentalist from the

confines of initial velocity measurements. One can easily follow

the reaction to completion beyond the linear phase and even fit

the entire time course to derive estimates of kcat and kcat/Km. To

illustrate this, we simulated ten data points at the same concen-

trations of substrate examined in Figure 2, but here we allow the

reaction to go to completion (Figure 4A). The same standard

deviation (0.5) now leads to less apparent noise because of the

larger signal. The synthetic data were then globally fit to derive

estimates of either kcat and Km (Equation 4) or kcat and kcat/Km

(Equation 5). Like before, the choice of method for data fitting

did not affect the appearance of the fitted curves so we show

only one (Figure 4A). However, the confidence contour analy-

sis again shows the linear relationship between k2 (defining kcat)

and k−1 (defining Km), demonstrating that kcat/Km is

more accurately defined by the data than either constant indi-

vidually (Figure 4B). This analysis also revealed the lower

standard errors estimated for kcat/Km measured directly com-

pared to values calculated from the ratio of kcat and Km (see

Table 1).

Analysis of full progress curve kinetics provides the most accu-

rate estimates. Given the experimental constraints of limited

substrate concentrations and the same number of data points

collected, it is better to spread the data points out and follow the

reaction to completion rather than restrict the measurement to

the initial velocity. One could stop data collection at any time

and still be able to fit the data without regard for maintaining

initial velocity conditions. Fitting data as was done by

Michaelis and Menten more than 100 years ago imposes signifi-

cant limitations on the quality of data that can be collected

because it restricts data fitting to the earliest part of the curve

with the only small amounts of product formed. It is more accu-

rate to monitor the reaction for longer times, allow the reaction

rate to fall off as substrate is consumed but account for the devi-

ation from linearity by fitting the data using computer simula-

tion. Product inhibition can also be resolved if it contributes sig-

nificantly to the data [11].

Standards for data collection
When it is possible, data should be collected at substrate con-

centrations exceeding the Km by at least 4-fold so that the data

reach 80% saturation. Concentrations 9-fold greater than the Km

are required to reach 90% saturation. The question of how high

to go in substrate concentration must also be considered rela-

tive to the availability and solubility of the substrate. The stan-

dard rules apply for measurement of initial velocities requiring

that less than 10% of the substrate should be consumed during

the measurement to support the steady state approximation. Of

course, this requirement does not apply if the data are fit by

computer simulation, so more accurate data can be obtained

based on formation of a larger signal in measuring product for-

mation.
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Figure 4: Fitting full progress curve data by simulation. A) Synthetic
data were generated and then were fit globally to derive estimates of
kcat and Km or kcat and kcat/Km as described in the text. B) Confidence
contour analysis from fitting to derive kcat and Km. C) Confidence
contour analysis from fitting to derive kcat and kcat/Km. The bar gives
the color coding for the normalized χ2 values [10].

It is always important to carefully select the minimal number of

measurements to provide the needed information to optimally

use limited resources. Here, full time course measurements are

by far the best, as described above. In the absence of product

inhibition, steady state kinetic parameters can be derived from a

single sample starting at a substrate concentration 8–10 fold

higher than the Km and following the reaction to completion. To

test for product inhibition, two replicates at lower substrate con-

centrations will suffice. At larger substrate concentrations,

larger concentrations of product formed toward the end of the

reaction alter the rate of approach to equilibrium if the

rebinding of product to the enzyme occurs appreciably. Glob-

ally fitting measurements at three substrate concentrations may

be sufficient to define kcat and kcat/Km and Ki for product inhibi-

tion. The ready availability of computer programs for fitting by

numerical integration of the rate equations renders the initial

velocity measurements obsolete.

In setting up initial velocity measurements one must first decide

on the range of concentrations to use and whether to space the

points evenly. It is generally accepted that concentrations

should be more closely spaced below and slightly above the Km

and spaced further apart at higher concentrations. The data at

low concentration define kcat/Km while the data at the higher

concentrations are only needed to extrapolate to get kcat.

Cleland has suggested collecting data with points evenly spaced

on a Lineweaver–Burk plot [12]. However, this conclusion

represents a mistake rooted in the distortion of the data when

viewed on a double reciprocal plot as shown in Figure 5A.

Spacing points evenly on a double reciprocal plot does not

provide the best distribution of data given the importance of

accurately defining kcat and kcat/Km. A better alternative is to

space points evenly on a logarithmic scale (Figure 5B,C). Here

11 points can be distributed on a log scale with [S]/Km ratios of

0.16, 0.25, 0.4, 0.6, 1, 1.6, 2.5, 4, 6 and 10 (rounded off). This

provides a convenient series that most accurately defines both

kcat and kcat/Km. These guidelines are predicated on having an

estimate of kcat and kcat/Km before setting up the measurements.

Since all experiments must be replicated prior to publication,

the first experiment can be used to explore the range of concen-

trations and time for data collection. A second experiment can

then be designed based upon the initial estimates to achieve an

optimal distribution of data points to get publication quality

data.

Another question is whether to collect triplicates at each con-

centration or to sample at three times as many concentrations.

Because all independent measurements are treated equally in

fitting by nonlinear regression, it is better to collect data at more

concentrations rather than in triplicate at fewer concentrations.

The average standard deviation of the measurements is

evident in the scatter of the data from the fitted curve

and can be estimated from the χ2 valued derived in fitting the

data.
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Figure 5: Optimal spacing of data points. Different scenarios for
computing the distribution of data points for steady state measure-
ments are shown. A) Linear distribution on a double reciprocal plot.
Sample data were calculated with kcat = 1 s−1 and Km = 0.2 (arbitrary
units). The inset shows the same data on a double reciprocal plot. B)
Logarithmic distribution of data points. Sample data were calculated
with kcat = 1 s−1 and Km = 1 (arbitrary units). C) Data in B on a loga-
rithmic x-axis. The smooth lines show the fitted curve.

Active site concentration
Interpretation of steady state turnover rates is dependent on an

accurate estimate of the concentration of active sites. There are

significant systematic errors in measurements of protein con-

centrations using dye-binding assays or by absorbance measure-

ments, and the fraction of protein that is active is not known

without direct measurement. For these reasons, it is important to

perform an active site titration to establish the concentration of

active sites. One method is isothermal titration calorimetry

relying on the heat change upon binding of a substrate analog.

Because the method is relatively insensitive it requires high

concentrations of protein (usually μM) so the stoichiometry is

easy to determine when titrating with a known concentration of

a substrate analog [13]. In addition, many proteins show a

change in fluorescence (tyrosine and tryptophan residues) upon

substrate binding, affording accurate measurements of the stoi-

chiometry and dissociation constant for binding from an equi-

librium titration [14]. Other methods, such as rapid gel filtra-

tion and filter binding assays are limited by the rate of ligand

dissociation relative to the time required to perform the separa-

tion. Alternatively, the kinetics of a pre-steady state burst of

product formation can be used to estimate the concentration of

active sites under favorable conditions [15]. In any event,

kinetic data should be normalized by dividing the rate by the

concentration of enzyme active sites, and the basis for esti-

mating enzyme concentration should be clearly stated. It is no

longer acceptable to report enzyme specific activity in units of

product/min/mg of enzyme; rather, report values of kcat and

kcat/Km.

Interpretation of kcat/Km
The steady state kinetic parameter, kcat/Km is not merely the

ratio of kcat and Km; rather, it should be considered as a single

parameter because it quantifies enzyme specificity, efficiency

and proficiency [4,5]. Intuitively, it may seem that the substrate

with the greater kcat reacts faster and would be preferred, but

that is not necessarily the case when two competing substrates

are present as the one with a lower Km would occupy more of

the enzyme. However, simple algebra shows that the relative

rate of turnover of two competing substrates is defined by their

relative concentrations and kcat/Km values for substrates A and

B.

Thus, enzyme specificity is quantified by kcat/Km. It is for this

reason that kcat/Km is called the specificity constant. Specificity

is a function of the apparent second order rate constants for sub-

strate binding and conversion to product. When competing sub-

strates are both present, the one that binds to the enzyme the

fastest and is then converted to product wins the competition. In

contrast, kcat defines how fast the enzyme catalyzes a given

reaction, not which substrate the enzyme prefers.
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Although kcat/Km provides a quantitative measure of enzyme

specificity, it does not define the underlying basis for speci-

ficity. Therefore, a major effort is currently underway to under-

stand how elementary steps in catalysis contribute to the ob-

served specificity and to understand how enzymes evolve to

acquire new specificities. Analysis of enzyme families has

revealed that members within a family share a common catalyt-

ic core and a variable loop domain that closes over the sub-

strate and confers substrate specificity [16,17]. Moreover, speci-

ficity could be dependent on conformational changes in the loop

domain after substrate binding. The concept of induced-fit,

where the substrate induces a change in enzyme structure to

align catalytic residues, was first proposed in somewhat vague

terms by Koshland [18] in an attempt to understand how

an enzyme can exclude a smaller substrate than the preferred

one.

The induced-fit model proposes a two-step binding pathway in

which the substrate first binds to an open form of the enzyme

and then the enzyme closes leading to tighter binding and orga-

nization of catalytic residues.

For decades debate raged as to whether a two-step binding

mechanism could lead to increased enzyme specificity. Most

notably, Fersht argued that because a two-step binding se-

quence has the same net free energy change as a corresponding

one-step mechanism, a two-step binding sequence could not

lead to greater enzyme specificity [5]. This logic is flawed

because it follows from the simple definition of Km as equal to

the Kd for substrate binding and assumes the conformational

change step is fast and at equilibrium preceding catalysis. Thus,

the conclusion is a restatement of the assumptions used to

define the model.

More recently, Warshel has asserted that pre-chemistry barriers

cannot contribute to enzyme specificity unless they are rate

limiting [19]. In his arguments, Warshel fails to appreciate the

distinction between steps in the pathway that govern specificity

(kcat/Km) versus those that govern the net turnover rate (kcat).

The terminology in which the specificity constant is given by

the ratio of kcat divided by Km contributed to the confusion.

Throughout his recent paper, Warshel continually referred to

the rate-limiting step as if it also defined specificity. In general,

it does not.

To resolve this controversy, a direct measurement of the rates of

the conformational change and the chemical reaction at the

active site of the enzyme was required. Steady state kinetic

methods do not suffice. Transient state kinetic analysis

are needed to measure events occurring during a single

enzyme cycle, but in the end, we must account for steady

state kinetic parameters calculated from intrinsic rate

constants. Resolution of the longstanding controversy over

the role of induced-fit in enzyme specificity illustrates the

importance of properly interpreting kcat and kcat/Km based on

asking how each step in the reaction contributes to

the observed kcat/Km values for the correct and incorrect sub-

strates.

Figure 6 shows three possible scenarios for the effect of the

conformational change on kcat and kcat/Km. In this figure, we

show free energy profiles computed from different combina-

tions of rate constants for a minimal three-step reaction where

product release is fast after the chemistry step.

In each figure, the slow step in the pathway defines kcat and is

identified as the step with the largest local barrier (relative to

the local minimum) in the free energy profile. On the other

hand, the specificity constant, kcat/Km, can be identified as the

steps leading from the starting state up to the highest overall

barrier.

Case 1
In Figure 6A, kcat/Km and kcat are both governed by the chem-

istry step. In this model, the initial binding and conformational

change are both rapid equilibrium reactions leading up to chem-

istry. In this case, kcat and kcat/Km can be approximated as

follows (Note Ki = ki/k−i):

Note that kcat is not simply defined by k3; rather, the equilib-

rium constant for the conformational change step defines the

fraction of the bound substrate that is in the FS state

(K2/(1 + K2)). An unfavorable equilibrium constant for

the conformational change (K2) could reduce both kcat and

kcat/Km.



Beilstein J. Org. Chem. 2019, 15, 16–29.

26

Figure 6: Free energy profiles. Free energy profiles are shown for a
three step model with different rate constant relationships as de-
scribed in the text and summarized on each figure. The free energy
profile was calculated using transition state theory:
ΔG‡ = −RT·ln(k/(kBT/h)), where k is the rate constant, kB is the Boltz-
mann constant and h is Planck’s constant. Second order rate con-
stants were converted to pseudo-first order rate constants using an
estimated physiological concentration of substrate.

Case 2
We next consider the case shown in Figure 6B where the con-

formational change is rate-limiting. Here it can be seen that

the rate of the conformational change governs both kcat and

kcat/Km.

This model mimics the standard view of catalysis with a single

equilibrium binding step followed by a single rate limiting step,

but in this case, the conformational change, not chemistry, is

rate limiting.

Case 3
Finally, we consider the case where chemistry is rate-limiting,

but the reverse of the conformational change step is slower than

the rate of chemistry (Figure 6C). Here we see that the confor-

mational change step governs specificity (kcat/Km) but the rate

of chemistry governs kcat.

This leads to a surprising result that had not been anticipated in

decades of research. To fully understand this, it is instructive to

examine the equation for kcat/Km calculated from the three-step

model (Equation 2).

When k−2 << k3, this reduces to:

By dividing the numerator and denominator by k3, this reduces

to an equation that no longer includes kcat (k3).

This equation can be further reduced by assuming that the sub-

strate binding to the open state is in rapid equilibrium, i.e.,

k−1 >> k2.
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This leads to the surprising result that the Km is defined by:

The product, K1k2 defines the second order rate constant for

substrate binding. Thus the Km is defined the balance between

the rate of enzyme turnover relative to the rate of substrate

binding. Because the reverse of the conformational change step

is very slow, the two-step binding reaction does not come to

equilibrium. Rather, the substrate binds and the enzyme closes

leading to rapid catalysis and product release. Because the

reverse of the conformational change step is so much slower

than chemistry, the initial weak substrate binding and the con-

formational change are the primary determinants of specificity.

DNA polymerase fidelity
DNA polymerases provide ideal model systems to study en-

zyme specificity because fidelity is high and physiologically

relevant, and the alternate substrates are well known. Moreover,

it is easy to perform single turnover kinetic measurements to ex-

amine steps leading up to the chemical reaction by mixing an

enzyme DNA complex with only one nucleoside triphosphate.

Recent work on DNA polymerase fidelity has shown that the

rate of the conformational change from open to closed state is

much faster than chemistry [20,21]. If we were only concerned

with defining the rate-limiting step (kcat) we would stop at this

point and simply conclude that chemistry was rate limiting; and

since kcat/Km defines specificity, the chemistry step must also

define specificity. However, that would be wrong. An addition-

al experiment was required to measure the rate of substrate

release using dideoxy-terminated DNA to allow the conforma-

tional change but prevent chemistry. This experiment allowed

the measurement of the rate of enzyme reopening to release

substrate before chemistry. The results showed that once the en-

zyme closes over a correct substrate, it almost always continues

to react rather than release the bound substrate. Globally fitting

multiple experiments yielded the following rate constants [21]:

where EDn represents an enzyme–DNA complex in the open

state with a primer strand n residues long, while FDnN

Figure 7: Free energy profile for DNA polymerization. Free energy
profiles for a correct base pair (solid blue line) and a mismatch
(dashed green line) were computed from data presented in [21].

represents the closed state with nucleotide (N) bound.

Note that we show 1/K1 = 200 μM for the initial weak binding

step.

The initial weak binding of nucleotide to the open state

(Kd = 200 μM) is followed by a very fast conformational

c h a n g e  t o  t h e  c l o s e d  s t a t e  t o  a f f o r d  a  n e t

Kd = 1/(K1(1 + K2)) = 200 nM. Because the chemistry step (k3)

is so much faster than the rate at which the enzyme opens to

release the substrate (k−2), the FDnN state goes forward 95% of

the time. Thus, the conformational change is the primary deter-

minant of enzyme specificity because it commits the substrate

to forward reaction. For the DNA polymerase studied, the

rate of product release is much faster than chemistry

so the model reduces to a three-step model. Accordingly

the specificity constant is defined by the two-step binding

reaction, while kcat is defined by the rate of the chemical reac-

tion.

This result was a big surprise, which had not been anticipated in

attempts to foresee the ways in which induced-fit could contrib-

ute to specificity [22]. For 20 years numerous investigators in

the DNA polymerase field had attempted to resolve whether the

conformational change or chemistry was rate limiting. We had

neglected to measure the rate of the reverse of the conforma-

tional change (enzyme opening to allow release of bound sub-

strate) relative to the rate of chemistry, and that proved to be the

key to understanding specificity. As shown in Figure 7, the free

energy profile shows that after the conformational change, the

enzyme is committed to go forward because there is a larger

barrier to going backwards. The highest overall barrier is the

conformational change step, thus defining the specificity con-

stant [21,23,24].
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We compare a free energy profile for correct nucleotide incor-

poration with that for a mismatch (Figure 7). With a mismatch

(dashed line), the chemistry step becomes very slow, while the

rate of enzyme opening is much faster. Thus, for a mismatch,

the conformational change step comes to equilibrium prior to

rate-limiting chemistry. In this case, the chemistry step governs

both specificity and rate-limiting steps.

Mismatch recognition by the enzyme leads to a change in the

specificity-determining step, but not the rate-limiting step.

We can now understand that the conformational change is the

major specificity-determining step. The substrate binds weakly

and then the enzyme closes. If the substrate shows the right ge-

ometry (structurally and electrostatically) the closed state is

stabilized and organization of catalytic residues leads to fast ca-

talysis. If the substrate is not the right size and shape, the en-

zyme fails to close tightly, chemistry is slow, and the enzyme

rapidly opens to release the mismatched substrate [23,24].

This new paradigm for enzyme specificity provides a very satis-

fying resolution of the long-standing controversy over the role

of induced fit in enzyme specificity. The conformation change

serves as a gate-keeper to facilitate catalysis of the favored sub-

strate while promoting release of alternate substrates.

Conclusion
This short review shows that the traditional Michaelis–Menten

equation defined in terms of kcat and Km should be replaced by

one in which the two variable parameters are kcat and kcat/Km.

There are two reasons for this change: (1) kcat/Km is the most

important steady state kinetic parameter because it quantifies

enzyme specificity, efficiency and proficiency; and (2) there are

smaller errors in fitting to derive kcat/Km directly rather than by

calculation of the ratio of kcat and Km derived independently in

fitting steady state kinetic data. In addition, there are significant

advantages in fitting by computer simulation rather than in

using the conventional approach using equations. Instead of

fitting steady state data to a straight and then fitting the concen-

tration dependence of the observed rate, the raw data can be fit

directly in a single step with fewer unknown variables, result-

ing in less error on the estimates for steady state kinetic parame-

ters.

The use of the ratio kcat/Km to describe the specificity constant

has long been a source of confusion. We now recognized that

kcat/Km and kcat can reflect different steps in the enzyme path-

way. Although kcat is a function of rate limiting steps in the

pathway, steps defining kcat/Km establish specificity and need

not be identical to the rate-limiting steps. Here the longstanding

use of kcat/Km as the specificity constant gets in the way of

proper understanding because, of course, one expects that kcat is

part of kcat/Km so they must be measuring the same step. This

simplified logic overlooks the situation where kcat in both the

numerator and denominator of kcat/Km cancel so that the ratio is

no longer related to kcat; such is the case for DNA polymerase

specificity.

Results presented here also document the advantages of fitting

kinetic data using computer simulation based on the numerical

integration of rate equations. Beyond what is shown here, one

can also simultaneously fit steady state data along with equilib-

rium binding and pre-steady data kinetic data to derive a single

unifying model to account for all of the results. This approach

provides the most robust and accurate method for data fitting to

ensure that the model fully accounts for all experimental obser-

vations. Moreover, confidence contour analysis provides a criti-

cal check to show the extent to which the fitted parameters are

constrained by the data, and thereby support the model.
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Abstract
Thiamin diphosphate (ThDP)-dependent enzymes constitute a large class of enzymes that catalyze a diverse range of reactions.

Many are involved in stereospecific carbon–carbon bond formation and, consequently, have found increasing interest and utility as

chiral catalysts in various biocatalytic applications. All ThDP-catalyzed reactions require the reaction of the ThDP ylide (the acti-

vated state of the cofactor) with the substrate. Given that the cofactor can adopt up to seven states on an enzyme, identifying the

factors affecting the stability of the pre-reactant states is important for the overall understanding of the kinetics and mechanism of

the individual reactions.

In this paper we use density functional theory calculations to systematically study the different cofactor states in terms of energies

and geometries. Benzoylformate decarboxylase (BFDC), which is a well characterized chiral catalyst, serves as the prototypical

ThDP-dependent enzyme. A model of the active site was constructed on the basis of available crystal structures, and the cofactor

states were characterized in the presence of three different ligands (crystallographic water, benzoylformate as substrate, and

(R)-mandelate as inhibitor). Overall, the calculations reveal that the relative stabilities of the cofactor states are greatly affected by

the presence and identity of the bound ligands. A surprising finding is that benzoylformate binding, while favoring ylide formation,

provided even greater stabilization to a catalytically inactive tricyclic state. Conversely, the inhibitor binding greatly destabilized

the ylide formation. Together, these observations have significant implications for the reaction kinetics of the ThDP-dependent en-

zymes, and, potentially, for the use of unnatural substrates in such reactions.
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Scheme 1: The variety of forms of enzyme-bound ThDP.

Introduction
Enzymes that depend on thiamin diphosphate (ThDP,

Scheme 1) can be found in a wide range of metabolic pathways.

Although they are known to catalyze the formation of C–N,

C–O and C–S bonds, ThDP-dependent enzymes generally cata-

lyze the breakdown and formation of C–C bonds adjacent to a

carbonyl group [1,2]. The resultant 2-hydroxyketones are often

chiral, so these enzymes are being increasingly studied for their

use as biocatalysts in the preparation of pharmaceuticals and

agrochemicals [3]. ThDP is an unusual cofactor in that, even

without the enzyme, it can catalyze many of these reactions [2].

For example, the decarboxylation of pyruvate in water can be

accomplished by ThDP, but when it is bound to the enzyme

pyruvate decarboxylase (PDC), the decarboxylation rate is in-

creased by 12 orders of magnitude [2,4]. Clearly, the catalytic

power of the cofactor is greatly enhanced by the enzyme-bound

environment. A fundamental understanding of how this en-

hancement is achieved could potentially lead to the develop-

ment of new and improved biocatalysts.

At a minimum, ThDP-catalyzed reactions all require the forma-

tion of a C2-carbanion or ylide [5] (Scheme 1). This is achieved

through a series of proton transfers during which several differ-

ent states of the cofactor are formed [6]. Starting from the

neutral form of ThDP (AP), the cofactor can be protonated at

the N1′ position, resulting in the APH+ state. With only one

known exception [7], the protonation/deprotonation of the

N1′ position is performed by a highly conserved glutamic acid

residue that is thought to stabilize the imino tautomer IP [6].

The subsequent loss of a proton from N4′ of APH+ gives the

IP state. Deprotonation of the C2 position results in the ylide

form which can be either protonated (YIH+) or deprotonated

(YI) at the N1′ position. The C2 deprotonation is believed to be

performed by the N4′ nitrogen [2,8,9], and is assisted by the

cofactor being held in a “V” conformation in which the imino

group is located within a hydrogen bonding distance of the C2

of the thiazolium ring [9-14].

While the importance of the catalytically critical ylide was

readily recognized, obtaining evidence for the participation of

the 4′-amino group and the imino tautomer IP proved more

challenging. Initially, model compounds were used to identify

the signature UV absorbances for the IP form of ThDP. These



Beilstein J. Org. Chem. 2019, 15, 145–159.

147

were then used to demonstrate the presence of IP on yeast PDC

[15]. Subsequently, the IP form was shown to have a positive

CD signal around 300–310 nm, while a negative peak around

320–330 nm, similar to that observed upon binding of ThDP to

apo transketolase [16], was assigned to the AP form [15].

These, along with signature CD and UV signals for intermedi-

ates further along the reaction pathway, have now been ob-

served for more than 10 ThDP-dependent enzymes [6,17]. As

yet, no electronic signature has been observed for the APH+

form. However, solid-state NMR using 15N and 13C-labeled

ThDP has been used to identify APH+ on pyruvate decarboxy-

lase and the E1 component of the pyruvate dehydrogenase com-

plex [18].

In addition to the plethora of experimental investigations, a

number of computational studies have addressed issues

regarding the various states of ThDP. For example, in some

very early work, Jordan used semi-empirical methods to study

the electronic structure and conformational space of the cofactor

in the gas phase, acknowledging the difficulty of comparing

these results to reactions in solution and on the enzyme [19,20].

Thirty years later, density functional theory (DFT) calculations

showed that the 4′-amino moiety of the cofactor can either

accept or donate a proton in the reactions, depending on the pro-

tonation state of N1′ [21].

Orbital analysis of the IP/YIH+ reaction showed that full for-

mation of ylide was dependent on deprotonation of N1′ and,

consistent with experimental findings, deprotonation was, in

turn, likely dependent on conformational changes induced by

the presence of substrate [22]. More recently, the relative stabil-

ities of a number of the ThDP states (AP, APH+, IP and YI)

were obtained using DFT methods, employing a model of the

cofactor along with the hydrogen-bonding carboxylate moiety

[23]. Subsequently, a similar approach was used to characterize

the nucleophilicity of the N1′ and N4′ centers [24]. In many

cases, rather than simply focus on the cofactor, computational

studies have been used to investigate full reaction mechanisms

of ThDP enzymes, including pyruvate decarboxylase (PDC)

[25-28], benzoylformate decarboxylase (BFDC) [29,30], aceto-

hydroxy acid synthase [24,31-35], pyruvate dehydrogenase

(PDH) [36], benzaldehyde lyase [37], cyclohexane dione hydro-

lase [38], oxalyl-CoA decarboxylase [39], DXP synthase [40]

and transketolase [41,42].

It is surprising that almost none of these studies acknowledged

that there is a second, albeit less well discussed, path for the

ThDP cofactor, i.e., the formation of a tricyclic, dihydrothia-

chromine species from the AP form [43-45]. Nucleophilic

attack of N4′ on C2 results in the formation of a C2–N4′ bond,

giving rise to the tricyclic intermediate TCH+. Loss of the N1′

proton TCH+ will result in the TC form of the cofactor [45].

While admittedly not common, the tricyclic form of the cofactor

has been observed on at least two ThDP-dependent enzymes.

Dihydrothiachromine diphosphate (TC) was observed in the

X-ray structure of phosphoketolase from Bifidobacterium breve

[46], and its hydroxyethyl derivative was identified in the struc-

ture of acetolactate synthase from Klebsiella pneumoniae whose

crystals had been soaked with pyruvate [47].

In a very recent study, we used quantum chemical methodolo-

gy to investigate the detailed reaction mechanism of benzoylfor-

mate decarboxylase (BFDC) [29]. A model of the active site

was designed on the basis of the X-ray structure of BFDC in

complex with the substrate analog inhibitor, (R)-mandelate. In

that study all intermediates and transition states were located

and characterized. Intriguingly, we identified the tricyclic

TCH+ state of the cofactor as an off-cycle intermediate species.

It was found to be about 5 kcal/mol lower in energy than the

IP state, thereby raising the barrier for the formation of the

cofactor–substrate adduct (C2α-mandelyl–ThDP). Of course

this has important implications for the overall kinetics of any

BFDC-catalyzed reaction and, potentially, for all THDP-de-

pendent enzymes [29].

This unexpected result prompted us to conduct a systematic

study of the energetics of the various enzyme-bound states of

ThDP (Scheme 1). To this end, we have used BFDC as a repre-

sentative ThDP-dependent enzyme, and employed the quantum

chemical approach used to study the BFDC reaction mecha-

nism to characterize the various states of the ThDP cofactor.

Models representing different enzymatic and non-enzymatic

environments have been generated and, for each model, the

cofactor has been characterized in terms of energies and geome-

tries.

Results
The various states of the cofactor have been studied using five

different models. In all cases the diphosphate group is omitted

since it is thought to act primarily as an anchor for the cofactor

and, consequently, was not deemed relevant to the current

study. Model A is the simplest, representing the cofactor alone

in solution. It comprises 31 atoms and has a net charge of +1.

Models B–E represent the cofactor in the BFDC active site in

the absence and presence of bound ligands. The active site

model is built on the basis of the crystal structure (PDB ID

1MCZ) and is identical to that used in the mechanistic study

[29]. As shown in Figure 1, the model comprises all groups that

make up the active site pocket, including residues that surround

the ThDP cofactor and the ligand. A detailed description of the

residues included in the model and the choice of protonation

states is provided in reference [29].
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Figure 1: A) 2D representation of ThDP (blue) and the residues included in the active site models, and B) optimized structure of model B with an
empty active site. Asterisks mark atoms that were kept fixed to their crystallographic positions during the geometry optimization. The BFDC active site
has contributions from two monomers and primes re-used to indicate residues from the second monomer. For clarity, the non-polar hydrogens of the
residues are not included.

In model B the active site does not contain any ligand, and is

considered for comparative purposes. It has a total of 291 atoms

and a net charge of 0. In model C the active site contains a crys-

tallographic water molecule and includes 294 atoms with net

charge of 0. In model D the water is replaced by the benzoylfor-

mate substrate in its deprotonated form and has thus 307 atoms
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Figure 2: Optimized structures of the states of ThDP in the absence of enzyme (model A). Relative energies are indicated in kcal/mol.

and a net charge of −1. Finally, in model E the active site

contains (R)-mandelate, again in its deprotonated form, and

consists of 309 atoms with a net charge of −1. In the active site

models B–E a number of atoms are kept fixed in the geometry

optimizations in order to preserve the overall structure of the

active site and avoid excessive movements of the various

groups. The fixed atoms are indicated by asterisks in Figure 1B.

The states of the ThDP cofactor considered here are shown in

Scheme 1. The starting point for each model is the AP state, the

energy of which is set to zero, and the energies of the other

states are then compared to it.

Model A: cofactor in solution
In order to analyze the effect of the enzyme environment on the

properties of the various ThDP states, it is important to first

consider the solution states of the cofactor in the absence of en-

zyme. The calculations show that the difference in energy be-

tween the lowest energy conformer and the typical V-conforma-

tion of enzyme-bound ThDP [48] is 4.2 kcal/mol. Interestingly,

the lowest energy structure also adopts a V-shape, but one in

which thiazolium ring is perpendicular to the pyrimidine ring

(see Supporting Information File 1 for an optimized structure).

Given that this study compares enzyme-bound states of ThDP,

it is appropriate to use the typical V-conformation of the AP

form as the starting/reference point. With that in mind, the opti-

mized geometries of the various V-states of the cofactor alone

are displayed in Figure 2.

Calculations on model A show that the AP state is the most

stable, but the tricyclic form TCH+ is only 2.8 kcal/mol higher

in energy (Table 1). Presumably the proximity of N4' to C2 in

the V-conformation makes this state more accessible than it

would be if ThDP was unconstrained in solution. Both the IP

and YIH+ states are considerably higher in energy, at +6.4 and

+15.2 kcal/mol, respectively. It should be noted that the acid/

base conjugates of these states (APH+, TC and YI, respective-

ly) were not calculated, as these structures would have different
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Figure 3: Optimized structures of the states of BFDC-bound ThDP in the absence of ligand (model B). Relative energies are indicated in kcal/mol. For
clarity, only a selected part of the model is shown, for full model, see Figure 1.

numbers of atoms and so the energies would not be directly

comparable.

Table 1: Calculated relative energies (kcal/mol) of the various ThDP
states. The most stable state for each model is indicated in bold face.

state model A model B model C model D model E

AP 0.0 0.0 0.0 0.0 0.0
APH+ – +1.2a +1.9a +3.0 −0.3

IP +6.4 +12.8 +16.0 −0.9 +10.2
YI – +11.6 +11.0 +3.0 +23.2

YIH+ +15.2 +11.3a +11.1a +6.0 +20.2
TC – +2.6 +8.9 −4.9 +7.9

TCH+ +2.8 +2.0a +8.5a −6.3 +11.3
aValues are calculated with the N1′–H distance constrained to 1.15 Å
(see text).

Model B: ThDP in the empty active site
Model B represents ThDP in the active site of BFDC in the

absence of ligand. The geometries of the different ThDP states

were optimized (Figure 3) and their energies evaluated

(Table 1). Here, the enzyme provides both electrostatic and

steric interactions with ThDP, all of which are expected to

affect the cofactor’s geometry and energy. Of particular interest

is the conserved Glu47 residue which forms a hydrogen bond to

N1' of the pyrimidine ring. It is important to note that, during

the geometry optimizations of the three states YIH+, APH+

and TCH+, the N1' proton invariably transferred spontaneously

to the carboxylate of Glu47 thereby yielding the conjugated

states YI, AP and TC. In order to assess independently the

effect of the N1′ protonation state, approximate energies of

YIH+, APH+ and TCH+ were calculated by restraining the

N1′–H distance to 1.15 Å. Even with that constraint the ener-

gies obtained are within 2 kcal/mol of those of their conjugates

(Table 1), showing that N1′ protonation/deprotonation has
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Figure 4: Optimized structures of the ThDP states for the model including the crystallographic water (model C). Relative energies are indicated in
kcal/mol.

only marginal impact on the relative energies of the cofactor

states.

In the AP state, His70 interacts with the cofactor through a

hydrogen bond between the Nε and the exocyclic N4' amino

group, a bond that is not present in the other states. With that

notable exception, the overall geometries of the different states

are quite similar, and bond distances are also fairly consistent

(Figure 3).

As with model A, the AP state is found to be the lowest energy

state in model B. The stability of TC state in model B is similar

to that of the TCH+ in the model of the cofactor alone (+2.6

compared to +2.8 kcal/mol, respectively).The energy of the YI

state is also reasonably close to that of YIH+ in the cofactor

alone (+11.6 vs +15.2 kcal/mol, relative to their respective

AP states). Indeed, it was not until the energy of the IP state

was calculated that the enzyme showed any significant effect. In

this instance the IP state was calculated to be 12.8 kcal/mol

higher than AP, i.e., more than 6 kcal/mol higher than the value

calculated in the absence of enzyme.

Model C: active site including the
crystallographic water
In the X-ray structure of unliganded BFDC, there is a crystallo-

graphic water molecule that is displaced when a ligand is

present [13,49]. In model C, that water molecule is included

and is found to bind in the same position regardless of the state

of the cofactor. A superposition with the crystal structure with-

out substrate (PDB 1BFD) shows that the model calculations

reproduce very well the position of this water (see Supporting

Information File 1), even though the hydrogen-bonding pattern

of the water molecule changes somewhat between the states

(Figure 4). Interestingly, there is a hydrogen bond from the
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water to the anionic C2 carbon in the YI state (OH…C distance

of 1.91 Å), with the negative charge on C2 further stabilized by

interaction with the exocyclic NH2 group (NH…C distance of

2.17 Å). The superposition of the structures of model B and

model C reveals that inclusion of the water molecule causes

also a slight movement of the thiazolium ring of the cofactor

towards the interior of the active site cavity (see Supporting

Information File 1).

Energetically, we note that the IP state is destabilized com-

pared to that in model B, now being 16.0 kcal/mol higher than

AP, an increase of 3.2 kcal/mol. Conversely, the stability of the

YI state was very similar (+11.0 vs +11.6 kcal/mol) to that ob-

served for model B suggesting the water molecule has little

effect on the stability of the ylide. However, the water mole-

cule reserves its largest effect for the TC state which now is

8.9 kcal/mol less stable than AP, an increase of 6.3 kcal/mol

over that observed in model B. Overall, it would appear that the

effect of the water molecule is to stabilize the AP state com-

pared to the other states. The exception is the YI state, which

seemingly benefits from the new hydrogen bond from the water

molecule to the C2 carbanion.

Finally, as with model B, the geometries for the YIH+, APH+

and TCH+ states could not be obtained, as geometry optimiza-

tions lead to their respective conjugates. However, constrained

optimizations again show that the energies are not affected sig-

nificantly by the protonation (see Table 1).

Model D: active site including benzoylformate
In model D, which includes the native substrate, benzoylfor-

mate (BF), all the states shown in Scheme 1 could be located by

the geometry optimizations. As with the crystallographic water

in model C, the presence of the substrate pushes the thiazolium

ring somewhat towards the interior of the cavity. In all ThDP

states the carboxylate of BF forms hydrogen bonds to the side

chain hydroxy group and the backbone NH of Ser26, and to the

Nε of His281 (Figure 5). In the AP and APH+ states, the Nδ of

His70 accepts a hydrogen bond from the exocyclic NH2 group,

with an N…HN distance of 2.1 Å. In the other states, the Nε of

His70 is protonated and donates a hydrogen bond to the carbon-

yl of the substrate. In YI and YIH+, the exocyclic NH2 inter-

acts with the C2 carbanion of the thiazolium ring.

Strikingly, the presence of the substrate has a dramatic impact

on the relative stabilities of the various states as compared to

the water (model C) or the empty cavity (model B). Presum-

ably this effect is primarily due to the overall negative charge of

the benzoylformate and the bulk of the phenyl substituent. The

most significant changes are seen in the energies of the two cat-

alytically productive states, IP and YI. Now, the former is more

stable, by 0.9 kcal/mol, than the AP state. This may not seem

much but the overall change is substantial as the IP state was

calculated to be 6.4, 12.8 and 16.0 kcal/mol higher in energy

than the AP state in models A, B, and C, respectively. The

energy of the ylide is also lowered in the presence of the sub-

strate and the YI state is now only +3.0 kcal/mol compared

to AP. In the other models the difference was more than

11 kcal/mol (Table 1).

Although these results clearly suggest that substrate binding

results in catalytically productive states of the cofactor, this is

not the whole story. Model D also indicates that substrate

binding produces a major stabilization of the two non-produc-

tive tricyclic species. In fact, the most stable state is found to be

TCH+, which is calculated to be 6.3 kcal/mol more stable than

the AP state. Also the deprotonated TC state is 4.9 kcal/mol

more stable than AP, and both tricyclic states are at least

4 kcal/mol lower in energy than the IP form. While substrate

binding favoring the non-productive species is surprising and

seems counterintuitive, benzoylformate binding also makes the

catalytically essential IP and YI forms more accessible than in

any of the other models. Importantly, as detailed in our recent

paper on the reaction mechanism of BFDC, this model is

consistent with the kinetics of the BFDC reaction [29].

In a final note on model D, although the calculations show that

proton transfer from N1' to Glu47 is not spontaneous in this

model, the energy difference between the conjugated pairs

AP/APH+, TC/TCH+, YI/YIH+ remains very low, suggesting

the forms are readily interchangeable (Table 1).

Model E: active site of BFDC with
(R)-mandelate bound
In model E, in which the active site of BFDC contains the in-

hibitor (R)-mandelate, the hydrogen-bonding network is very

similar to that of benzoylformate in model D. However, as

shown in Figure 6, the benzylic hydroxy group provides a

source of additional interactions. In the AP and APH+ states,

the hydroxy group forms hydrogen bonds with His70 and the

exocyclic NH2. Support was lent to the validity of model E

when superposition of the structure of the APH+ form on the

structure of BFDC:(R)-mandelate complex (PDB 1MCZ)

showed no major movements (see Supporting Information

File 1). In the other states, the bond to His 70 is maintained

but that to the exocyclic NH2 is broken. Instead the hydroxy

group forms a hydrogen bond to the backbone carbonyl of

Gly401.

Energetically, we note that, in this model, AP/APH+ are by far

the most stable states with the IP, YI and TC states being 10.2,

23.2 and 7.9 kcal/mol higher than AP, respectively (Table 1).
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Figure 5: Optimized structures of the ThDP states in the BFDC active site containing the substrate, benzoylformate (model D). Relative energies are
indicated in kcal/mol.
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Figure 6: Optimized structures of the ThDP states for the model including (R)-mandelate (model E). Relative energies are indicated in kcal/mol.



Beilstein J. Org. Chem. 2019, 15, 145–159.

155

Further, each of these states is more than 10 kcal/mol higher in

energy relative to the AP state than its counterpart in model D

in which the substrate is bound (Table 1). Clearly the binding of

the (R)-mandelate causes a stabilization of the AP/APH+ states

relative to the others.

As seen from Table 1, despite having the same overall charge

and similar bulkiness of the substituents, the binding of the

benzoylformate (model D) and (R)-mandelate (model E) result

in quite different energies. The superposition of the AP states of

the two models (see Supporting Information File 1) shows that

the additional hydrogen bond provided by the benzylic hydroxy

group of (R)-mandelate (vide supra) contributes significantly to

this difference. Further, changing from the sp2 carbonyl carbon

to the sp3 benzylic carbon results in a substantial movement of

the substituent oxygen which also contributes to the energy

difference between the models.

According to Table 1 the AP/APH+ forms are the most stable

states for models C and E, i.e., BFDC in the absence of ligand

and in the presence of (R)-mandelate. The CD spectrum of

BFDC shows a small minimum at around 325 nm, attributed to

the AP form. Titrating BFDC with methyl benzoylphosphonate

(MBP), a mechanism-based inhibitor, gave rise to a new

maximum at around 300 nm, attributed to the IP form, with a

concurrent loss of signal at 325 nm [50]. Based on the data in

Table 1, it is not certain that the titration with benzoylformate

would give rise to the IP form. However, the data unambigu-

ously suggest that titration of BFDC with (R)-mandelate should

result in no change in its CD spectrum, even when the enzyme

is saturated. Accordingly, the titration was carried out and,

indeed, even at (R)-mandelate concentrations well in excess of

its Ki value of 1 mM [49], no change in the spectrum was ob-

served (see Supporting Information File 1 for details).

Discussion
Since it was first purified from beer yeast over 80 years ago

[51], the structure of ThDP and its related intermediates and

ionization states have undergone intensive investigation (sum-

marized in references [2,52]). Most of these investigations have

focused on the structure and properties of the covalently modi-

fied ThDP intermediates of diverse ThDP-dependent enzymes.

Less attention has been paid to the variety of states the cofactor

itself can adopt on the enzyme. As shown in Scheme 1, when

various tautomers and ionization states are included, ThDP can

adopt at least seven forms on any given ThDP-dependent en-

zyme. This is prior to any reaction taking place. Most of these

are accounted for in typical analyses [52] but the two tricyclic

forms, TC and TCH+, are rarely considered. Unlike the

tricyclic states, which could be regarded to be non-productive,

the IP and the YI forms arising from it are essential for cataly-

sis and always considered in any mechanistic study. However,

conceivably all seven states could be energetically accessible

and could influence the catalytic mechanism. Over the past

several years there has been an increasing use of ThDP-depend-

ent enzymes as chiral catalysts [53]. Given that all of these en-

zymes will require ready access to the IP and YI forms, it

seemed logical to take a closer look at the relative energies of

the various states and how those energies may be affected by

the binding of different ligands. Toward that end, we have used

DFT calculations to explore the energetics of the various states

of enzyme-bound ThDP using benzoylformate decarboxylase as

the model enzyme.

The work was predicated on two elements. First, that the

cofactor was held in a V-conformation on the enzyme, and

second, that the resting (reference) state of the cofactor was the

AP form. Both have been confirmed experimentally [13,49,50]

and are typical of most, if not all, of the ThDP-dependent en-

zymes studied to date. In total, five models were employed:

models A and B providing a comparison of the cofactor states

in the presence and absence of enzyme, and models C–E exam-

ining the effects of active site ligands.

Models A and B both predict the AP state to be the most stable,

vindicating its use as the reference state. Perhaps the first

surprise was the difference in magnitude and overall effect the

active site ligands had on the relative energy levels. For exam-

ple, the simple addition of a crystallographic water destabilized

both the IP and TC forms by 3 and 6 kcal/mol, respectively,

thereby ensuring that BFDC largely exists as the AP form. Even

more surprising was the comparison of the substrate, benzoyl-

formate, and the inhibitor, (R)-mandelate. With the exception of

an sp3 rather than sp2 hybridized benzylic carbon, (R)-mande-

late is identical to benzoylformate. However, they have

markedly different effects on the states of the cofactor. In model

C, corresponding to the native enzyme, the IP form is

16 kcal/mol less stable than the AP form. When benzoylfor-

mate binds (model D), the IP form becomes energetically

favored by 0.9 kcal/mol, an overall change of 17 kcal/mol. This

is accompanied by an 8 kcal/mol stabilization of the catalytical-

ly essential YI form. Conversely, when the inhibitor is bound

(model E), the IP and YI forms are ca. 10 and 20 kcal/mol less

stable than in model D. Clearly the substrate-induced changes

combine to facilitate catalysis, while those brought about by the

inhibitor make reaction more difficult.

Considering that they have been largely ignored in previous

studies, the next surprise was that the tricyclic forms TC and

TCH+ were relatively stable, in both the absence and presence

of enzyme. In fact, it seemed that the primary effect of the

binding of ThDP to the enzyme was to bring about the destabi-
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lization of the IP form. Over all five models, the tricyclic forms

were consistently more energetically stable than the catalytical-

ly essential IP and YI forms (Table 1). While it may be argued

that stabilization of the tricyclic forms could prove to be en-

zyme specific, the relatively low energy of the tricyclic state in

the absence of enzyme cannot be disregarded, and certainly sug-

gests that the TC/TCH+ forms may be more common than pre-

viously recognized. Further, and consistent with results for the

YI/YIH+ forms, the relative stabilities of TC/TCH+ states

proved to be ligand specific. In model C, the AP form is ca.

9 kcal/mol more stable than the TC/TCH+ forms. However,

after substrate binding (model D) the TC/TCH+ states are ca.

5 kcal/mol more stable than AP. Thus, the presence of benzoyl-

formate shifts the relative energies by 14 kcal/mol and, concom-

itantly, makes the tricyclic forms the most stable species. The

inhibitor again provides the contrast, for the binding of

(R)-mandelate (model E) has virtually no effect on the relative

energy levels of the tricyclic forms, and AP remains clearly the

most stable state.

At this point, it is reasonable to assess the validity of the cur-

rent computational results in light of available experimental

information. In the first instance the results confirm that the

AP state is the lowest energy, i.e., resting state. This was one of

the elements on which the work was predicated and is consis-

tent with data obtained from, among others, BFDC, benzalde-

hyde lyase, pyruvate oxidase, pyruvate decarboxylase and the

E1 subunit of the pyruvate dehydrogenase complex (summa-

rized in [54]). In fact, there are only two cases in which the

IP form has been observed in the resting enzyme, namely pyru-

vate oxidase and the pyruvate dehydrogenase complex. In both

cases, the AP state was the predominant form [54].

Secondly, the results show that substrate binding dramatically

lowers the energy of the IP and YI states, which would,

presumably, increase the rate and extent of ylide formation.

This observation is more difficult to demonstrate experimental-

ly. While H/D exchange experiments have been used as a

measure of the rate of ylide formation, substrate activation has

only been observed with allosteric enzymes such as yeast PDC

[8]. Further, even though there is a CD signature for the

IP state, it is usually associated with formation of a tetrahedral

reaction intermediate. As a result it is difficult to separate any

increase in the IP signal arising from substrate binding from

that due to intermediate formation. Possibly the closest to ex-

perimental support came from an experiment in which the reac-

tion of BFDC with MBP was monitored by stopped-flow mea-

surements at 308 nm using the intrinsic absorbance of the

IP state. In that case the results implied that there was a tran-

sient formation of a Michaelis complex which was accompa-

nied by an increase in the IP form [55].

Next, the calculations suggest that the binding of (R)-mandelate

should not change the state of the cofactor. Again, somewhat

difficult to prove conclusively but titration of BFDC with the

substrate analogue, MBP, provided clear evidence for the

conversion of the AP to the IP state for the former. Conversely,

and consistent with predictions, the AP state remained un-

changed when a similar titration was carried out with the inhibi-

tor, (R)-mandelate (see Supporting Information File 1).

Finally, what evidence is there for the formation of tricyclic

states? As noted in the introduction, there has been little or no

effort to identify tricyclic intermediates on ThDP-dependent en-

zymes. Critically, even though they were treated dismissively,

there are two X-ray structures which, at a minimum, provide

unambiguous evidence for the formation of stable tricyclic

intermediates on an enzyme [46,47]. Additional evidence, albeit

more indirect, comes from an inhibition study using omepra-

zole, which was predicted to possibly interact with ThDP-de-

pendent enzymes. The prediction was based on the similarity of

omeprazole to the tricyclic form of thiamin. This was con-

firmed experimentally when omeprazole was subsequently

shown to be a competitive inhibitor of both transketolase and

PDC, with a Ki value for the latter only ca. 20 times the Km for

ThDP measured in the same experiment [56].

The current calculations show that, in the presence of substrate,

TC/TCH+ are the most stable states of ThDP on BFDC. Yet,

even though a large number of high-resolution structures of

BFDC variants, in the presence and absence of ligands, have

been determined, none of them shows the tricyclic intermediate.

This may seem surprising but it must be considered that when

benzoylformate is present the catalytic cycle is in operation,

reactions are running and covalent ThDP intermediates are

being formed. As detailed in our recent paper, the enamine is

the most stable reaction intermediate [29], which makes it

unlikely that the TC state will be detected experimentally.

Furthermore, in the absence of the substrate (model C) or in the

presence of the inhibitor (model E), the TC states are clearly

disfavored, with calculated energies of +8.9 and +7.9 kcal/mol,

respectively, relative to the AP state.

Are the tricyclic forms even relevant? That is really the crux of

the matter, and the answer is, for BFDC at least, yes! It is im-

portant to note that the tricyclic forms TC/TCH+ are calculated

to be more stable than the ylide forms YI/YIH+ in all consid-

ered models. Further, the calculations on model D indicate that

an energy penalty of ca. 5 kcal/mol must be paid to go from

the TCH+ to the YI state, which is the catalytically active

form of the cofactor. This, in turn, effectively increases the

barrier for formation of the first reaction intermediate. In fact,

as shown in the paper on the catalytic mechanism that inspired
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this work, the energy barrier brought about by the stable

tricyclic state fits well with the experimental evidence for

the slow first step, i.e., formation of the mandelylThDP adduct

[29].

In addition to BFDC, the X-ray structures of tricyclic intermedi-

ates suggest that an even greater stabilization is present on

phosphoketolase and acetolactate synthase. It could well be

argued that TC stabilization may prove to be rare and specific

to only a few enzymes. Yet, the relatively low energy of the

tricyclic state in the absence of enzyme cannot be disregarded,

and certainly suggests that the TC forms may be more common

than previously thought. Over the past few years, a rapid-

quench NMR technique has been employed to determine micro-

scopic rate constants for elementary steps in several ThDP-de-

pendent enzymes. It is notable that, in addition to BFDC [55],

E. coli AHAS I and II [57], glyoxylate carboligase [7], DXP

synthase [58] and indolepyruvate decarboxylase [59] all have

formation of the first tetrahedral intermediate as the rate-deter-

mining step. Of course, in the absence of the corresponding

calculations it is impossible to definitively state that this is due

to stabilization of the TC state, but the question is worth asking.

The pyruvate oxidase from Lactobacillus plantarum provides

some support in that both the AP and IP forms are present in

the resting enzyme [54] and decarboxylation, rather than forma-

tion of the first intermediate, was found to be rate limiting [60].

On the other hand, product release was the slowest step for

ZmPDC and ScPDC [61], so clearly not all ThDP-dependent en-

zymes behave in the same manner.

Of course, while the relative stability of the TC form may slow

down the BFDC reaction, it is conceivable that it may also play

a beneficial role. As the pKa of the C2 proton decreases, the ac-

tivity of the ThDP cofactor increases [62]. However, concomi-

tantly, the thiazolium ring becomes more susceptible to hydro-

lysis to a catalytically inactive form [44]. The stable tricyclic

form of the cofactor, which can readily revert to its active form,

may provide a protective mechanism against hydrolysis [44].

Two final thoughts: first, the current results show that even

when substrate is bound, the tricyclic state, not the ylide, is the

most energetically stable. This observation implies that starting

the computational investigations of the ThDP-dependent cata-

lytic mechanism directly from the ylide, as done in numerous

examples in the literature, may give rise to an incomplete, if not

inaccurate, picture of the energy profile of the reaction. Second,

many ThDP-dependent enzymes are being evaluated for use as

biocatalysts. The stark difference in the effect of two very simi-

lar ligands, benzoylformate and (R)-mandelate, on the activa-

tion of the cofactor suggests that the use of alternative sub-

strates or, possibly more importantly, the evolution of ThDP-de-

pendent enzymes to accept a wide range of non-native sub-

strates, might not be as simple as may have been expected.

Experimental
All calculations were performed with the B3LYP-D3(BJ)

[62-65] density functional method and using the Gaussian 09

package [66]. The geometries were optimized with the

6-31G(d,p) basis set, and the energy of the stationary points was

refined by single-point calculations with 6-311+G(2d,2p) basis

set. Frequency calculations were done at the same level of

theory as the optimizations to obtain zero-point energy correc-

tions, and solvation energies were calculated using the implicit

solvent method SMD [67] with a dielectric constant ε = 4.

Supporting Information
Supporting Information File 1
Lowest-energy conformation of model A, superpositions of

the AP state/model C and APH+ state/model E with crystal

structures, superposition of the AP state/models B and C,

superposition of the AP states/models D and E,

experimental CD spectra, calculated energies and energy

corrections, and Cartesian coordinates of all optimized

structures.
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Abstract
Biology is turning from an analytical into a synthetic discipline. This is especially apparent in the field of metabolic engineering,

where the concept of synthetic metabolism has been recently developed. Compared to classical metabolic engineering efforts, syn-

thetic metabolism aims at creating novel metabolic networks in a rational fashion from bottom-up. However, while the theoretical

design of synthetic metabolic networks has made tremendous progress, the actual realization of such synthetic pathways is still

lacking behind. This is mostly because of our limitations in enzyme discovery and engineering to provide the parts required to build

synthetic metabolism. Here I discuss the current challenges and limitations in synthetic metabolic engineering and elucidate how

modern day enzymology can help to build a synthetic metabolism of the future.

551

Introduction
One of the most important and disruptive events in the history

of chemistry was its transformation from a purely analytical-

descriptive into a synthetic-constructive discipline, which took

place more than one hundred years ago [1,2]. Understanding

the elemental composition of matter as well as the nature

and reactivity of the chemical bond enabled chemists to

use their knowledge to create new molecules and materials

[3,4]. This development provided humankind with new

chemical compounds, such as color dyes, pharmaceuticals,

as well as polymers and plastics. Given its transforming

nature, it is beyond any doubt that synthetic chemistry

has been one of the key enabling technologies of the

20th century, which has virtually changed the world we are

living in. Biology is currently at the verge of a similar transi-

tion [5]. Over the last decades, our ability to analyze and manip-

ulate living systems has provided the intellectual as well as

technological basis to create biological features that are new to

nature.
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Review
Classical metabolic engineering: Exploiting
natural metabolic networks
A fundamental feature of living systems is metabolism, which

can be defined as the dynamic chemistry that allows life to

organize itself in three and four dimensions [6]. The incredible

metabolic potential of biology is impressively demonstrated by

the more than 2,000 different chemical transformations that can

simultaneously take place inside of an Escherichia coli cell

[7,8], as well as by the more than 200,000 different molecules

that have been isolated from different biological systems so far

[9]. This diversity has inspired generations of biologists to use

living cells as small chemical factories for the production of

chemicals.

In the past, many efforts centered on manipulating the metabo-

lism of cells to obtain a target molecule. Most of these ap-

proaches were based on the concept of metabolic engineering

[10]. According to this concept, known pathways and enzymes

are manipulated in such a way that a certain molecule can be

produced at high purity and yield from a living bacterial cell

[7]. In respect to their complexity (Figure 1), these classical

metabolic engineering approaches can be classified as level 1

efforts, i.e., the optimization of a natural pathway in a native or-

ganism, or level 2 efforts, i.e., the transplantation or reconstruc-

tion of a natural pathway in a new host organism [11].

Classical metabolic engineering efforts, however, are limited in

a way that they are still bound to existing pathways and reac-

tions, which limit the accessibility of certain compounds, as

well as the efficiency with which those compounds can be pro-

duced. In an ideal world, the way a target molecule is produced

should not be dictated by the serendipity and constraints of

evolution, but be accessible through rational design. However,

this requires a fundamental understanding of those principles

that are necessary for designing, realizing and operating multi-

reaction sequences and metabolic networks de novo.

Metabolic retrosynthesis: Next level meta-
bolic engineering
Recently, the concept of “synthetic metabolism” was de-

veloped that aims at overcoming the limitations provided by

natural metabolism through the realization of completely novel

metabolic networks [11,12]. The novel networks are designed

from first principles based on simple physico-chemical consid-

erations, such as kinetics and thermodynamics. For the design, a

starting compound and a target molecule are defined and a

short, thermodynamically feasible and energetically efficient

route connecting the two molecules is identified. While level 3

engineering efforts aim at creating new pathway solutions by

mixing and matching known enzymes from different metabolic

Figure 1: The five levels of metabolic engineering and their definitions
according to [11]. The enzyme solution space describes the number of
available enzyme reactions. The pathway solution space corresponds
to the number of possible pathways that can be constructed. While
level 1, 2 and 3 metabolic engineering efforts do not differ in enzyme
solution space, because they all rely on known enzyme reactions, level
4 and 5 metabolic engineering efforts are built on new enzyme reac-
tions, which expands the number of pathway solutions.

pathways, the design efforts in their most advanced form (i.e.,

level 4 and level 5) do not build on existing enzymes, but only

consider plausible chemical transformations and feasible meta-

bolic intermediates [13-16]. In a subsequent realization phase,

the corresponding enzymes to realize the theoretical network

are identified and/or engineered and a first version of the syn-

thetic network is reconstructed. The network is further opti-

mized or evolved in following rounds in respect to production

rate and yield.

As an example, several novel level 3 and level 4 pathways for

the conversion of CO2 into organic acids were developed

recently [13,14]. These pathways are predicted to be more effi-

cient than the naturally evolved Calvin cycle of photosynthesis,

because they require less energy (ATP, redox power and/or

photons) and can be supposedly operated at higher catalytic

rates compared to natural carbon fixation. Accordingly, the syn-

thetic CO2-fixation cycles should be able to convert more car-

bon dioxide with less energy in a given time and hence succeed

natural photosynthesis in volumetric capacity and energetic effi-

ciency. One of these designs, the so-called CETCH cycle

(Figure 2a), a synthetic level 4 pathway for the conversion of

CO2 into organic acids, was experimentally realized in vitro by

combining 17 enzymes (including three engineered ones) from
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Figure 2: Two level 4 pathways that were recently realized in vitro. (a) The CETCH cycle for CO2 fixation [13] and (b) the formolase pathway for
formate assimilation [17]. Important enzymes that were engineered to establish these cycles and are mentioned in the text are highlighted in purple.

a total of nine different organisms from all three domains of life

[13]. Compared to the first version of the cycle, the system was

further improved until version 5.4 by almost a factor of 20, indi-

cating that subsequent system optimization might be as impor-

tant as initial reconstruction [13].

In a similar fashion, multiple level 3 and level 4 routes for the

transformation of the one-carbon compound formate into cellu-

lar building blocks were designed that should theoretically

outcompete natural formate assimilation pathways [18,19].

Some of the level 3 pathways were recently reconstructed in

vivo [20-23] and one of the level 4 solutions – the formolase

pathway (Figure 2b) – was demonstrated already in vitro [17].

This pathway relies on three new-to nature reactions, the most

prominent one being the name-giving formolase reaction, which

allows the subsequent condensation of three formaldehyde mol-

ecules into the three-carbon compound dihydroxyacetone phos-

phate [24]. In addition to that, several alternative photorespira-

tion, methanol assimilation, as well as glycolytic pathways of

levels 3 and 4 were developed that are supposedly more carbon

and energy efficient compared to their naturally evolved equiva-

lents [23,25-28].

Yet, while an increasing number of theoretical designs are pro-

posed, the successful experimental realization of many of these

designs in the lab is still falling short. This is especially true for

pathways of design levels 4 and 5 that feature novel reactions,

for which the corresponding enzymes are unknown (i.e., were

not described to date). The realization of these pathways is

severely restricted by our limited ability to discover and/or

engineer new-to-nature enzymes. Notable exceptions are the

formolase pathway and CETCH cycle that required each the

establishment of three novel enzymatic reactions for their suc-

cessful realization. However, other level 4 pathway designs

require the establishment of more than ten so-far unknown en-

zyme reactions, emphasizing the challenge to realize truly syn-

thetic metabolic networks [13].

The challenge of finding (new) enzymes for
synthetic metabolic networks
From above examples it becomes evident that for building com-

pletely novel pathways and/or complex reaction cascades,

resources are required that provide synthetic biologists with the

information to find individual enzymes for a given synthetic

metabolic network. More than 116 million proteins were

deposited into protein sequence databases, such as UniProtKB

[29]. More than 40,000 enzymes were biochemically character-

ized and the corresponding data is available in specialized en-

zyme databases, such as BRENDA [30]. This wealth of biologi-

cal information provides a good starting point to search for en-

zyme variants that possess a desired catalytic activity.

While existing databases might provide a good resource to find

the parts to reconstruct level 3 pathways, this task becomes
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more challenging in respect to level 4 and level 5 designs that

require new-to-nature reactions. How can these new enzyme

reactions be identified or established? One option is the de

novo-design of enzymes assisted by computational methods,

which have been developed over the last couple of years. When

combined with experimental evolution and elaborate screening

methods, these efforts have allowed to establish completely

novel enzyme reactions from scratch [31-34].

However, even though considerable progress has been made in

creating enzymes with the help of computational methods [35],

it is a complementary (and equally valid) approach to discover

and/or engineer novel reactions from the natural diversity of

enzymatic scaffolds [36-39]. One example is formaldehyde

lyase (or “formolase”) – the key enzyme of the formolase path-

way – that was crafted from a benzaldehyde lyase, which

showed initially some side reactivity with formaldehyde

[17,24]. Other examples are propionyl-CoA oxidase and

methylsuccinyl-CoA oxidase in the CETCH cycles that were

engineered from a promiscuous short chain acyl-CoA oxidase

and a FAD-dependent methylsuccinyl-CoA dehydrogenase, re-

spectively [13,40,41].

These efforts in exploiting the promiscuity of enzymes to create

novel catalysts might profit from new computational methods

that succeeded in creating active sites of remarkable promis-

cuous activities in the scaffold of existing enzymes [42]. Such

computationally-created “catalytically diverse active sites”

could be further developed towards a new activity through

directed evolution. Without any question, screening protein se-

quence and enzyme databases for suitable candidates is key to

advance metabolic retrosynthesis. However, there are still some

practical issues in extracting the necessary information from

different databases. One particular problem of sequence data-

bases like UniProtKB is the high number of misannotated pro-

teins, which is caused by automatized annotation algorithms

that are often based on “simple” sequence similarities [43,44].

In selected enzyme (super)families the annotation error can be

as high as 90% [45], which masks or even impedes the identifi-

cation of novel functions within a given enzyme (super)family.

An example are reducing enoyl-CoA carboxylases that were for

most of the time annotated as ordinary enoyl-CoA reductases,

with which they are phylogenetically related [46,47]. Another

example are RubisCO-like proteins [48] that are enolases [49],

isomerases [50] and transcarboxylases [51], respectively, which

are not capable of fixing CO2, but are still found very often

misannotated as their CO2 fixing homologs RubisCO, with

which they share a common evolutionary history [52].

A solution to overcome the problem of misannotation might

come from novel computational tools that were developed

recently to analyze the diversity of enzyme (super)families in

respect to new functions [53-55]. While these tools have been

successfully used to identify and discover new metabolic path-

ways (Balskus, etc.), they might as well be used to identify

interesting candidate enzymes to be screened for new catalytic

reactions in metabolic retrosynthesis. Further improvements in

homology modeling and virtual docking are expected to

increase accuracy and throughput, which will help to map and

predict the substrate and reactions catalyzed by an enzyme

superfamily and its individual members in the future.

Enzyme promiscuity: Key and challenge for
synthetic metabolism
Another problem is that even in databases that list the experi-

mentally confirmed activity of enzymes, an important aspect is

very often not well documented: substrate (and reaction)

promiscuity. Yet, this information is essential to identify suit-

able candidate templates to engineer or evolve a new activity

within the backbone of a given enzyme. For example, although

the BRENDA database is probably one of the best resources to

learn about the detailed catalytic properties of enzymes, it only

provides in selected cases detailed information on the activity of

a given enzyme with different substrate analogs. Besides pro-

viding the necessary information to identify interesting enzyme

candidates for level 4 and level 5 pathway construction, more

systematic data on enzyme promiscuity would also allow a

more holistic view onto the catalytic (and evolutionary) poten-

tial of a complete enzyme superfamily [56].

Note that the information on substrate and/or reaction promis-

cuity is not only important to establish novel enzyme reactions,

it is also of very practical information in the actual construction

and optimization of synthetic metabolic networks. One prob-

lem in realizing metabolic networks from scratch with enzymes

that did not evolve in the same physiological context is that the

individual enzymes in such mix-and-match networks are prone

to feature side reactivities with substrates or products of other

enzymes in the synthetic network, most likely because they lack

a common evolutionary history that selects for stringent sub-

strate specificity [57]. These unwanted side reactivities are able

to compete with the wanted reactions of the synthetic network

and can lead to the accumulation of dead-end products, thus de-

creasing or even inhibiting flux through the whole synthetic

network [58]. Consequently, it is important to learn of such

unwanted side reactivities before reconstruction of the network

to avoid unfruitful interactions and suboptimal functioning of

the system.

Again, the CETCH cycle provides a good example, why infor-

mation on the promiscuity of enzymes is so important for meta-

bolic retrosynthetic efforts. In the first versions of the synthetic
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pathway, a promiscuous methylmalyl-CoA lyase caused the

accumulation of malyl-CoA from an undesired side reaction of

the enzyme with acetyl-CoA, which stalled the cycle. To over-

come the problem of unwanted malyl-CoA accumulation, a

malyl-CoA thioesterase [59] had to be added to the synthetic

network. This enzyme effectively recycles the dead-end

metabolite back into two intermediates of the network, malate

and free CoA, thus serving as a “proof-reading” enzyme at the

periphery of the CETCH cycle to keep the system running.

Another problem was posed by the promiscuous activity of pro-

pionyl-CoA carboxylase with acetyl-CoA. This problem was

solved by replacing the problematic reaction with another enzy-

matic route. Finally, an initially promiscuous acyl-CoA oxidase

was further engineered to increase the catalytic efficiency for

the wanted substrate propionyl-CoA compared to the unwanted

substrate 4-hydroxybutyryl-CoA by a factor of 50 [13]. Having

had known these problematic side reactions beforehand would

have probably allowed a more rational design and/or avoided

some problems upfront [58].

Yet, it needs to be mentioned that even if complex synthetic

metabolic networks can be realized in vitro, this does not mean

that these metabolic networks can be easily transplanted into

living cells. The introduction of new reactions and metabolites

into a host cell is expected to create interactions with the native

metabolic and regulatory network of the host. Again, promis-

cuity poses a major challenge. Even though the metabolites and

reactions might be completely non-native to the cell, these inter-

mediates might be still drained due to unwanted side reactions

or create unwanted metabolic and regulatory effects that the

negatively affect or even prohibit operation of the synthetic

metabolic network inside the host. This problem is exacerbated

by the fact that for a well-studied organism like E. coli, the

function of a large number of enzymes remains still unknown

and there are likely to be hundreds if not thousands of unknown

reactions and metabolites, often described as catalytic or meta-

bolic “dark matter” [53,60]. Thus, a more detailed under-

standing of the promiscuity of native enzymes and the interac-

tion of small molecules with the native regulatory network of

cells is an important prerequisite to realize synthetic metabo-

lism in the future [61]. In this context, it might also be very

interesting to learn, which cellular hosts might be suited best for

the transplantation of a given artificial network, or if current ap-

proaches to build synthetic cells from the bottom-up might

represent a valuable alternative strategy [6].

Linking enzymology and synthetic biology
In summary, synthetic biology can develop its full potential, if it

becomes able to harness the diversity of the millions of differ-

ent enzyme variants and homologs that naturally exist. While

such information is collected and made available by many enzy-

mology and biochemistry laboratories worldwide in a commu-

nity effort, it is not provided in an optimal way so that it can be

used for the synthetic metabolism community. How could this

apparent gap be bridged?

First, it will be necessary to collect enzymatic data in a more

standardized fashion. As a matter of fact, standardization has

been an important driver in the development of synthetic

biology. This is probably best demonstrated by the BioBrick

System [62] and the multitude of standardized genetic elements

that are available for the assembly of complex genetic networks.

The STRENDA standard [63,64] might provide a good blue

print, how enzyme data could be organized and reported by

enzymologists in the future so that the synthetic biologist could

better compare and evaluate different enzymes in respect to

their suitability for a given pathway.

Second it will be important not only to investigate a given en-

zyme in respect to its native reaction, but also study its (poten-

tial) side reactivities more systematically. For every new en-

zyme characterized, it would be helpful if the enzymologist

tested at least a small set of substrate and/or cofactor analogs.

Even though a detailed kinetic data would not necessary be re-

quired, the fact that a certain side reactivity exists in the scaf-

fold of a given enzyme would already be a highly useful and

relevant information for the synthetic biologist. On the one

hand, this information could be used to identify a target en-

zyme for further engineering to develop the side reactivity as

main activity [38,39]. On the other hand, this data would allow

the synthetic biologist to anticipate potentially unwanted side

reactions in the metabolic network by a given part and take cor-

responding countermeasures [58].

Third and lastly, there cannot enough enzymes be described.

The discovery of new enzymes as well as the characterization of

homologs of known enzymes needs to be continued and eventu-

ally even intensified. Only these efforts will allow to build an

exhaustive library of enzyme parts for level 3, level 4 and level

5 metabolic engineering. At the same time the methods of

(re-)engineering and the de-novo design of enzymes need to be

further developed. This will allow to further develop and

improve catalytic activities in enzymes and create new enzyme

reactions that cannot be found naturally. Altogether, these activ-

ities will expand the limits of natural metabolism and pave the

way for synthetic metabolic networks. Enzymology is far from

being an old-fashioned business, its most fruitful era might just

have begun.
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