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Abstract

Background: The carboxylesterase Notum has been shown to act as a key negative regulator of the Wnt signalling pathway by
mediating the depalmitoleoylation of Wnt proteins. LP-922056 (1) is an orally active inhibitor of Notum. We are investigating the
role of Notum in modulating Wnt signalling in the central nervous system and wished to establish if 1 would serve as a peripher-
ally restricted control. An accessible and improved synthetic route would allow 1 to become more readily available as a chemical
tool to explore the fundamental biology of Notum and build target validation to underpin new drug discovery programs.

Results: An improved, scalable synthesis of 1 is reported. Key modifications include: (1) the introduction of the C7-cyclopropyl
group was most effectively achieved with a Suzuki—-Miyaura cross-coupling reaction with MIDA-boronate 11 (5 — 6), and (2) C6
chlorination was performed with 1-chloro-1,2-benziodoxol-3-one (12) (6 — 7) as a mild and selective electrophilic chlorination
agent. This 7-step route from 16 has been reliably performed on large scale to produce multigram quantities of 1 in good efficiency
and high purity. Pharmacokinetic studies in mouse showed CNS penetration of 1 is very low with a brain/plasma concentration
ratio of just 0.01. A small library of amides 17 were prepared from acid 1 to explore if 1 could be modified to deliver a CNS pene-
trant tool by capping off the acid as an amide. Although significant Notum inhibition activity could be achieved, none of these
amides demonstrated the required combination of metabolic stability along with cell permeability without evidence of P-gp medi-
ated efflux.
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Conclusion: Mouse pharmacokinetic studies demonstrate that 1 is unsuitable for use in models of disease where brain penetration

is an essential requirement of the compound but would be an ideal peripherally restricted control. These data will contribute

to the understanding of drug levels of 1 to overlay with appropriate in vivo efficacy endpoints, i.e., the PK-PD relationship. The

identification of a suitable analogue of 1 (or 17) which combines Notum inhibition with CNS penetration would be a valuable

chemical probe for investigating the role of Notum in disease models.

Introduction

The Wnt signalling pathway has been shown to regulate crucial
aspects of cell fate determination, organogenesis, cell migra-
tion and polarity [1]. Importantly, compromised Wnt signalling
has been implicated in the perturbation of synaptic integrity and
function in Alzheimer’s disease (AD) [2]. Palmitoleoylation of
Whnt proteins is required for efficient binding to Frizzled recep-
tors and the subsequent signal transduction. The carboxyl-
esterase Notum has been shown to act as a key negative regu-
lator of the Wnt signalling pathway by specifically mediating
the depalmitoleoylation of Wnt proteins [3,4].

LP-922056 (1, Figure 1) is an orally active inhibitor of Notum
recently reported by Lexicon Pharmaceuticals [5,6]. Their
research with 1 has shown that Notum is a potential drug target
for stimulating bone formation and treating osteoporosis [7].
However, although 1 demonstrates low plasma clearance, the
structure contains an essential carboxylic acid and acids tend to
have low passive brain penetration [8-12]. We are investigating
the role of Notum in modulating Wnt signalling in the central
nervous system (CNS) [13] and wished to establish if 1 would
serve as a peripherally restricted control compound. Hence, we
required a synthetic route to 1 that could be reliably and safely
performed on large scale.

Figure 1: Chemical structure of Notum inhibitor LP-922056 (1).

A synthesis of 1 has been published in the patent literature [6],
although many of the experimental procedures are described in
terms of ‘general procedures’ which do not seem to work well
when applied to 1 which contains functional groups sensitive to
certain reagents employed (vide infra). An improved synthetic
route should allow 1 to become more readily available as a
chemical tool to explore the fundamental biology of Notum and
build target validation to underpin new drug discovery

programs for non-CNS disease.

Results and Discussion

Improved synthesis of 1; first generation

Our first complete synthesis of 1 is presented in Scheme 1 (see
Supporting Information File 1 for experimental procedures and
characterisation data).

This short sequence starts with 4-chlorothieno[3,2-d]pyrimi-
dine (3), which is readily available from commercial suppliers,
and generally follows published procedures [5,6] but with key
modifications to increase yields/selectivities and significantly
improve ease of purification of key intermediates. Our modifi-
cations include: (1) the introduction of the C7-cyclopropyl
group was most effectively achieved with a Suzuki-Miyaura
cross-coupling reaction with MIDA-boronate 11 (5§ — 6); and
(2) C6 chlorination was performed with 1-chloro-1,2-benz-
iodoxol-3-one (12) (6 — 7) as a mild selective electrophilic
chlorination agent.

4-Chlorothieno[3,2-d]pyrimidine (3) was either purchased or
prepared from thieno[3,2-d]pyrimidin-4(3H)-one (2) by C4
chlorination with oxalyl chloride/DMF following the method of
Mitchell et al. [14]. Treatment of 3 with NaOMe displaced the
C4—Cl to give 4 in a good yield as described by Atheral et al.
[15]. Thieno[3,2-d]pyrimidine 4 is now suitably functionalised
for the introduction of the C7-cyclopropyl group, the C6-chlo-
rine atom and elaboration of the thioacetic acid moiety at C4.

Electrophilic bromination at C7 with N-bromosuccinimide gave
5 as the major regioisomer reproducibly on 100 mmol scale in
modest yield (41-48%). This proved to be the least efficient
step in our sequence and justified further optimisation (vide
infra). Suzuki-Miyaura cross coupling of bromide § with cyclo-
propylboronic acid (2.5 equiv) produced 6 in good yield
(62-89%) but the product required extensive chromatographic
purification. We reasoned that switching from the boronic acid
(c-PrB(OH),) to the corresponding MIDA-boronate 11 would
improve the quality of the reagent and slow release of the active
boron species during the course of the reaction would allow us
to reduce the number of molar equivalents required to improve
conversion [16]. Palladium-mediated cross coupling of 5 with
11 (1.5 equiv) gave 6 in reproducibly high yield (ca. 95%) when
performed on gram scale. However, when performed on larger

scale (9.3 g), the reaction stalled after ca. 90% conversion and
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Scheme 1: Synthesis of LP-922056 (1). Reagents and conditions?: (a) (COCI)» (3.3 equiv), DMF, CHxCly, 55 °C , 16 h, 63—78%; (b) NaOMe

(5 equiv), 1,4-dioxane, 0 °C then rt, 16 h, 92-93%; (c) NBS (1.1 equiv), AcOH/MeCN (1:100), 85 °C, 16 h, 41-48%; (d) 11 (1.5 equiv), Pd(PPhg3)2Cl>
(5 mol %), K3POy4 (6 equiv), PhMe/H20 (3:1, 0.25 M), 100 °C, 16 h, 94-95%; (e) 1-chloro-1,2-benziodoxol-3-one (12, 1.5 equiv), DMF, 50 °C, 16 h,
77-94%,; (f) HCI (12 M, 40 equiv), 70 °C, 16 h; (g) POCI3 (20 equiv), 90 °C, 16 h, 81% over 2 steps; (h) HSCHoCOoMe (13, 1.2 equiv), NEt3

(2.1 equiv), MeOH, 0 °C to rt, 16 h, 84%; (i) NaOH (1 M, 2 equiv), THF, 0 °C, 1 h, then HCI (1 M), 0 °C, 30 min, 98%. @These reactions have been
performed several times but have not been systematically optimised. Yields are the ranges obtained from repeated reactions. DMF, N,N-dimethyl-

formamide; NBS, N-bromosuccinimide; THF, tetrahydrofuran.

addition of extra catalyst Pd[(PPh3),Cl,] and/or 11 failed to
drive the reaction to completion. We found the most efficient
way to complete the reaction conversion was to isolate the
crude product (mostly 6) and subject this material to a repeat
reaction; this procedure gave 6 in a good yield 95% and simpli-

fied purification.

With multigram quantities of 6 in hand, attention was turned to
the C6 chlorination step. Unfortunately, despite this reaction
being reported in the literature, there were no experimental
details for this specific transformation as only a ‘general proce-

dure’ was described [6]. Our attempts to use this procedure with

N-chlorosuccinimide (NCS) as the chlorinating agent gave poor
yields of the desired product 7 (ca. 15-32%) due to competing
ring opening reactions of the 7-cyclopropyl group (Scheme 2).
Clearly, a better procedure was required.

A large number of electrophilic chlorinating reagents for the
direct chlorination of aromatic rings have been reported [17].
Recently, Xue et al. described the electrophilic chlorination of
arenes and heterocycles by 1-chloro-1,2-benziodoxol-3-one
(12) [18,19]. The hypervalent iodine(IIl) reagent 12 is reported
to be a mild and effective reagent for the chlorination of

nitrogen containing heterocycles which is easy to prepare and is
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Scheme 2: Chlorination of 6 with N-chlorosuccinimide (NCS). Reagents and conditions: (a) NCS (1.2 equiv), AcOH, 55 °C, 7 h, 15-32%.

air- and moisture-stable. The scope of published substrates
includes chlorination of 7H-pyrrolo[2,3-d]pyrimidines and we
wished to see if we could extend the scope to include sulphur
containing heterocycles such as thieno[3,2-d]pyrimidines (e.g.,
6). It was also important to explore if 12 would efficiently chlo-
rinate 6 at the less activated C6 position in the presence of the
C7 cyclopropyl group.

Treatment of 6 with 12 (1.5 equiv) in DMF at 50 °C for 16-24 h
gave the desired chloro product 7 in 77-94% isolated yield.
Analysis of the crude reaction mixture showed only trace
amounts of cyclopropyl ring opened products such as 14/15 as
detectible by LC-MS. Hence, 12 proved to be a far superior
reagent, when compared to NCS, for the C6 chlorination of
thieno[3,2-d]pyrimidine 6 (i.e., 6 — 7).

Completion of our synthesis of 1 followed established proce-
dures although it proved expedient to carry material through
several of these later steps without the need for extensive purifi-
cation beyond a simple work-up procedure (7 — 8 — 9). Acti-
vation of C4 was accomplished by a two-step procedure of acid
hydrolysis of the C4-OMe of 7 to give thieno[3,2-d]pyrimidin-
4(3H)-one 8, followed by chlorination with POCl; to give 9.
Finally, nucleophilic displacement of the C4—Cl of 9 by methyl
thioglycolate (13) gave ester 10 which was hydrolysed with
NaOH to afford 1. This route has been reliably performed on
large scale to produce multigram quantities of 1 in good effi-
ciency (total yield over 8-steps from 3: 18-26%) and high
purity (>99%).

Improved synthesis of 1; second generation

A shorter synthesis was then developed by accessing bromide 5
by an alternative route. The low-yielding C7 bromination of 4
with NBS to give 5 as described above (Scheme 1, step c) was
avoided by starting with 7-bromo-4-chlorothieno[3,2-d]pyrimi-
dine (16) which is readily available from commercial suppliers.
Treatment of 16 with NaOMe displaced the C4—Cl to give 5 in
good yield on 10 g scale (Scheme 3). Even though 16 is some-

what more expensive than 2 or 3 per unit cost (by ca. 5-fold),

this updated route shortens the sequence to just 7 steps from 16
and improves the overall yield to 40-50 %.

cl OMe
SNy . S N
N N/) 2 \ N/)
Br Br
16 5

Scheme 3: Improved synthesis of 5. Reagents and conditions:
(a) NaOMe (5 equiv), 1,4-dioxane, 0 °C thenrt, 16 h, 84%.

Mouse pharmacokinetics for 1

Assessment of 1 in mouse liver microsomes (MLM) showed
excellent metabolic stability (Cl; 1.0 uL/min/mg protein) which
predicts for low clearance in vivo. Binding to mouse plasma
proteins (mPPB) was very high with percent unbound drug (f,,)
of just 0.1%; this mPPB value can be used to calculate free drug
concentrations from measured drug levels in plasma taken
during in vivo experiments. The high mPPB is entirely consis-
tent with the physicochemical properties of 1 as a lipophilic
acid (mw 300; cLogP 3.1; c¢pK, 3.1).

Pharmacokinetic (PK) data for 1 was generated in vivo in

mouse to evaluate brain penetration (Table 1; Figure 2) (see

Table 1: Mouse pharmacokinetic data for 1; oral (p.o.) dose at
10 mg/kg.2

PK Parameter Plasma Brain

T2 8.8h 7.1h

Trmax 20h 2.0h

Cmax 35,400 ng/mL 500 ng/g
AUCq-.t 303,000 h-ng/mL 3,700 h-ng/g
AUCo- o 354,000 h-ng/mL 4,080 h-ng/g

aMale fed CD1 mouse; suspension formulation in 0.1% Tween80 in
water; n = 3 per time point; terminal blood and brain levels measured
at seven time points: 0.17, 0.50, 1, 2, 5, 7.5 and 24 h.
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Figure 2: Concentrations of 1 in mouse following oral administration (p.o.) at 10 mg/kg.

Supporting Information File 1, Tables S1-S3). The route of
administration and dose were selected to most closely match
relevant published mouse disease model studies [5,7].
Following single oral dose (p.o.) of 10 mg/kg, plasma exposure
was high and plasma clearance was low relative to liver blood
flow resulting in a plasma elimination half-life of 8.8 hours.
The plasma parameters from these mouse PK experiments
(Cmax and AUC) are consistent with published preclinical PK
data [5].

CNS penetration of 1 was very low with a brain/plasma concen-
tration ratio of ~0.01 at all time points measured and was also
0.01 based on AUC ). At this level of exposure, a signifi-
cant proportion of the compound detected in brain samples is

likely to have arisen from residual blood in the brain tissue.

Amide analogues of 1 to explore CNS pene-
tration and future opportunities

With a peripherally restricted control in hand, we elected to
explore if 1 could be modified to deliver a CNS penetrant tool
by capping off the acid as an amide. A small library of amides
17 were prepared from acid 1 by activation with HBTU and
then subsequent reaction with the amine 18 (Scheme 4). These
amides 17 were designed to have molecular properties (mw,
cLogP, tPSA, HBD, pK,) consistent with CNS drug-like space
[20].

Although significant Notum inhibition activity could be
achieved (ICsy < 100 nM), none of these specific amides
demonstrated the required combination of sufficient MLM
stability along with cell permeability as measured by transit
performance across a MDCK-MDR1 monolayer without evi-
dence of P-gp mediated efflux. This collection of data for
amides 17a-r is shared as ‘open data’ to assist others in
evaluating these results with the objective of solving this chal-
lenge (see Supporting Information File 1, Table S4 and Sup-
porting Information File 2). Our own efforts took us to an alter-
native chemotype [21].

Conclusion

An improved, scalable synthesis of Notum inhibitor 1 is re-
ported. Key modifications include: (1) the introduction of the
C7-cyclopropyl group was most effectively achieved with a
Suzuki-Miyaura cross-coupling reaction with MIDA-boronate
11 (5§ — 6); and (2) C6 chlorination was performed with
1-chloro-1,2-benziodoxol-3-one (12) (6 — 7) as a mild selec-
tive electrophilic chlorination agent. This 7-step route from 16
has been reliably performed on large scale to produce multi-
gram quantities of 1 in good efficiency.

Pharmacokinetic studies in mouse showed CNS penetration of 1

is very low with brain/plasma concentration ratio of just
0.01 based on AUC(g-). Hence, 1 is unsuitable for use in
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Scheme 4: Preparation of amides 17. Representative reagents and conditions?®: (a) HBTU (1.1 equiv), iProNEt (2.5 equiv), DMF, rt, 15 min; then
amine 18 (1.05 equiv). @These reactions were performed once for each amide and have not been optimised. DMF, N,N-dimethylformamide; HBTU,

O-(1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate.

models of disease where brain penetration is an essential
requirement of the compound but would be an ideal
peripherally restricted control. These data will contribute
to the understanding of drug levels of 1 to overlay with
appropriate in vivo efficacy endpoints, i.e., the PK-PD relation-
ship. The full PK data set is presented and shared as ‘open
data’. This complete data set (along with others) will also assist
with the creation of improved predictive pharmacokinetic
models.

A small library of amides 17 were prepared from acid 1 to
explore if 1 could be modified to deliver a CNS penetrant tool
by capping off the acid as an amide. Although significant
Notum inhibition activity could be achieved, none of these
amides demonstrated the required combination of metabolic
stability along with cell permeability without evidence of P-gp
mediated efflux. The identification of a suitable analogue of 1
(or 17) which combines Notum inhibition with CNS penetra-
tion would be a valuable chemical probe for investigating the
role of Notum in disease models. This collection of data for
amides 17a-r is shared as ‘open data’ to assist others in
evaluating these results with the objective of solving this chal-

lenge.

Supporting Information

(1) experimental procedures and characterisation data for
3-10 and 1; (2) mouse PK data which includes: study
design summary; plasma concentrations; brain
concentrations; (3) Notum ICs¢ (nM), MLM C;
(uL/min/mg protein) and MDCK-MDR1 AB/BA Py,

(x 107% cm/s) data for 17a-r.

To view the NMR spectra, use the file within the pdata
folder of Supporting Information File 3.

Supporting Information File 1

Experimental section, mouse pharmacokinetics and profiles
of amides.

[https://www beilstein-journals.org/bjoc/content/
supplementary/1860-5397-15-271-S1.pdf]

Supporting Information File 2

Profiles of amides.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-15-271-S2.csv]
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Supporting Information File 3

Raw NMR data files for compound LP-922056.
[https://www beilstein-journals.org/bjoc/content/
supplementary/1860-5397-15-271-S3.zip]
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Abstract

Bioscientists reading papers or patents strive to discern the key relationships reported within a document “D* where a bioactivity
“A” with a quantitative result “R” (e.g., an ICs¢) is reported for chemical structure “C” that modulates (e.g., inhibits) a protein
target “P”. A useful shorthand for this connectivity thus becomes DARCP. The problem at the core of this article is that the
community has spent millions effectively burying these relationships in PDFs over many decades but must now spend millions
more trying to get them back out. The key imperative for this is to increase the flow into structured open databases. The positive
impacts will include expanded data mining opportunities for drug discovery and chemical biology. Over the last decade commer-
cial sources have manually extracted DARCP from ~300,000 documents encompassing ~7 million compounds interacting with
~10,000 targets. Over a similar time, the Guide to Pharmacology, BindingDB and ChEMBL have carried out analogues DARCP
extractions. Although their expert-curated numbers are lower (i.e., #2 million compounds against ~3700 human proteins), these
open sources have the great advantage of being merged within PubChem. Parallel efforts have focused on the extraction of docu-
ment-to-compound (D-C-only) connectivity. In the absence of molecular mechanism of action (mmoa) annotation, this is of less
value but can be automatically extracted. This has been significantly accomplished for patents, (e.g., by IBM, SureChEMBL and
WIPO) for over 30 million compounds in PubChem. These have recently been joined by 1.4 million D-C submissions from three
major chemistry publishers. In addition, both the European and US PubMed Central portals now add chemistry look-ups from
abstracts and full-text papers. However, the fully automated extraction of DARCLP has not yet been achieved. This stands in
contrast to the ability of biocurators to discern these relationships in minutes. Unfortunately, no journals have yet instigated a flow
of author-specified DARCP directly into open databases. Progress may come from trends such as open science, open access (OA),
findable, accessible, interoperable and reusable (FAIR), resource description framework (RDF) and WikiData. However, we will

need to await the technical applicability in respect to DARCP capture to see if this opens up connectivity.
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Introduction

This article assesses a key aspect of data sharing that has the
potential to accelerate the progress and impact of medicinal
chemistry. To achieve this the community needs to increase the
outward flow of experimental results locked-up in millions of
published PDFs into structured open databases that explicitly
capture the connectivity between structures, documents and
bioactivity results. But isn’t there enough of this out there
already? This can be answered in two parts. The first is that a
conservative estimate of the capture backlog would be at least
two-fold more data still entombed in PDFs that is not currently
indexed in database records. The second part is the imperative
to enable open science data mining at all scales. This applies
not only to individual documents (i.e., small data) but scaling
up to all papers and patents (i.e., big data). The potential of the
latter is huge, especially since artificial intelligence (Al) is
being increasingly applied to knowledge distillation. This report
will outline the principles of connectivity capture, selected
sources, progress, impediments and prospects for their amelio-
ration.

Review

Defining terms
It is necessary to outline the topics covered:

Medicinal chemistry: As directed towards drug discovery this
needs no introduction. However, in the broader context of bio-
active chemistry, it becomes indivisible from the related
domains of chemical biology (directed towards mechanistic
insight rather that direct drug discovery), enzymology, pharma-
cology, and toxicology in addition to the development of insec-
ticides or herbicides.

Connectivity: This term is used for an explicit link (e.g., a
URL) between a published document and the chemical struc-
tures specified therein. Implicit is not only manual navigation
(e.g., link-clicking) but also that such connectivity can be made
machine-readable and thus computationally interrogated at
large scale via an application programming interface (API) or a

resource description framework (RDF).

Papers as documents: This typically refers to research papers
from journals but increasingly needs to encompass their associ-
ated supplementary data. Note also that by far the majority of
medicinal chemistry, biological chemistry and pharmacology
papers are still behind subscription paywalls. However, the full-
text for some of them is not only open but also available to be
mined in both PubMed Central (PMC) [1] and European
PubMed Central (EPMC) [2]. Connectivity can extend to other
document types such as review articles and vendor catalogues.

In this article the main document type referred to will be
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the PubMed identifier (PMID). These have open abstracts
and are also indexed in the digital object identifier system
(DOI). However, significant numbers of papers in the
bioactive chemistry domain (including preprints) may be DOI-
only.

Patents as documents: Academics tend to overlook that
patents a) include several fold more medicinal chemistry than
papers b) appear years earlier ¢) most academic drug discovery
operations apply for them d) they include a proportion of high
quality data that never appears in journals e) they can be text-
mined and d) consequently, over 30 million structures have

entered PubChem via automated extraction [3].

Non-document sources: While this article has to be restricted
to documents an increasing amount of drug discovery data
is beginning to surface on the web that may never be
instantiated in document form. Although this started with
PubChem Bioassay as far back as 2004, the more recent
proliferation is via open-notebook science. More projects are
using open electronic laboratory notebooks (ELNs) that are
not only accessible to anyone by web browsing, but also,
crucially, crawled by Google and indexed for chemistry
searching [4,5].

Structures: A necessary focus of this article will be traditional
small-molecule chemistry that is not too far outside the rule-of-
five lead-like property space. In terms of connectivity anti-
bodies, other protein biotherapeutics, as well as large peptides
or polynucleotides, are also important to encompass. However,
capture into structured records is more challenging for these
larger therapeutic modalities than for small-molecules that can
be merged on the basis of chemistry rules. Notwithstanding,
space limitations mean that non-small molecule connectivity is

out of scope for this article.

Bioactivity: This covers a wide spectrum of assay read-outs but
with a focus on in vitro, in cellulo, in vivo and in clinico.
Ideally this should also include low or inactive analogues which
are crucial for SAR elucidation but documents are (understand-
ably) biased towards positive results.

Open: As the theme of this special issue this term will
doubtless be expanded on in other articles. However, brief
qualification in the context of this work is necessary. Regard-
less of licensing complications, open is taken here to mean
public data sources accessible via a web browser (signing in
may be an impediment but not a stopper). These are thus
distinct from commercial offerings where access has to be pur-

chased.
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Relationship representation

As outlined in the abstract the connectivity between documents,
structures and bioactivity can be expressed in shorthand as
“D-A-R-C-P” (DARCP). This is shown schematically in
Figure 1.

The entity specifications can be adapted to different use-
cases. For example, the substitution of “P” with target “T” can
be used where “T” is a cell or a microorganism. Another exam-
ple would be where an SAR series can be represented as a
multiplexed set of one-A-to-many-R-C. It can also be extended
to “D-A-R-C-L-P” where L refers to the explicit location refer-
ences for C in the document (e.g., “compound 10b” in a paper
or “example 503” in a patent). However, as a formalism for
bioactivity there are exceptions and mechanistic nuances that do
not fit a DARCP simplification. An example would be heparin
(GtoPdb ligand 4214). This could be a commercial partially
purified extract of 1200-1500 Mw which consequently does not
have a defined chemical structure as “C”. However, as a curato-
rial expedient, the chemically defined form (as PubChem CID
22833565 with 1040 Mw) has been annotated (even though the
sodium salt is the active form in vivo). Note also that while for-
mally “P” in the heparin case is SERPINC1 (ATIII) the mecha-
nism is an indirect one involving the activation of binding to F2
(activated thrombin) for inhibition. Another problematic exam-
ple is mechanism-based covalent inhibition where the time de-

pendence of IC50 for “A” is not captured.

The structured capture of DARCLP by curation (or at least
DARCP) has very high value from the additional relationships
that can be explored via the entities and attributes as outlined
below:

* Documents: clustering by content relatedness, position
within citation networks, connections via authors or

institutional affiliations.

Discovery of AM-6494: APotent SRS FE T B 001
and Orally Efficacious B-Site AT i
Amyloid Precursor Protein A S AN E T 20001
Cleaving Enzyme 1 (BACE1) o

Inhibitor with in Vivo Selectivity WETNE NG —
over BACE2. AN

T v v v r—
Blank 10* 107 107 10? 10 10* NS
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» Assays: classified by various assay ontologies.

* Results: log transformations (e.g., pICsq or pK;) for po-
tency ranking and implicit molecular mechanism of
action (mmoa), (e.g., where A-R indicates C to be a po-
tent inhibitor of P).

* Compounds: a full range of cheminformatic analysis in-
cluding 2D or 3D clustering, property prediction and
chemical ontology assignments.

* Proteins: a full range of bioinformatic analysis including
gene ontology (GO) assignments, pathway annotation,
structural homology, disease associations and genetic
variation (e.g., for target validation).

Those cases where the link is only compound-to-document can
be referred to as D-C (or c2d). These have become available in
a large excess over full DARCLP since they are technically
easier to obtain and can be automated to a usable level of speci-
ficity. This needs the introduction of the intuitive concept of
“aboutness” (ABNS). The title of a document from which D-C
could be extracted usually includes an explicit ABNS statement.
For example, the code name of a lead compound would be what
a medicinal chemistry journal article would be “about”. In the
same way, the ABNS of a clinical pharmacology journal article
some years later could be describing the clinical trial results for
the identical structure which, by then, could have an interna-
tional non-proprietary name (INN). However, the extraction of
multiple compounds (i.e., one-D-to-many-Cs) immediately
becomes problematic in the absence of full relationship chains.
For example, the medicinal chemistry article may describe the
testing of a useful set of analogues for SAR but (as is usually
the case) the A-R-P data was not extracted.

At this point we need to introduce the additional concept of
name-to-structure (n2s). This is an important determinant of
both ABNS and D-C utility. Using the example again from a
paper this would mean that both the code name and the INN

Figure 1: A schematic of the document > assay > result > compound > protein target relationships, D-A-R-C-P [microplate photo adapted from
https://commons.wikimedia.org/wiki/File:Microtiter_plate.JPG by Jeffrey M. Vinocur, source licensed under the Creative Commons Attribution Generic

2.5 license (CC-BY 2.5), https://creativecommons.org/licenses/by/2.5/].
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would be included in the D-C capture record (i.e., n2s) even if
50 analogues were also tested. Other examples that present par-
ticular ABNS problems are review articles, synthetic chemistry
papers and patents. A review could exemplify 20 lead com-
pounds all with different company code numbers and/or INNs,
an extended synthesis report could give rise to 200 D-C records
and a patent could have over 500. Discerning the ABNS for
patents can be especially problematic since frankly obfuscatory

titles and abstracts are common (e.g., “Novel Compounds”).

The “hamburger” problem

This can be summarised by the following (unattributed) quote
“We have spent millions putting data into the literature but now
have to spend millions more getting it back out”. This alludes to
entombing the DARCP “meat” within a PDF “hamburger”. The
paradox is that electronic text formats typically used for
drafting papers are machine-readable (certainly with modern
parsing techniques). However, this is systematically obviated by
the PDF conversion. For example, a chemist may have SMILEs
and/or InChls in their ELN and/or molfiles in an institutional
data repository. However, they have to convert this to a Chem-
Draw proprietary file format in order to render the structural
image that eventually appears in the PDF. This means getting
the structures “back out” for database capture needs either
manual re-sketching or use of an image-to-structure (i2s) tool
such as optical structure recognition (OSRA) [6], both of which

are error-prone processes.

The common practice of including tables of Markush represen-
tations, while they improve SAR readability, makes the extrac-
tion problem worse. While most medicinal chemistry journals
will include IUPAC names in the synthesis descriptions, these
also have to be pulled “back out” of the PDF. This can be done
via PDF-to-text optical character recognition (OCR) or curated
by pasting across to the Open Parser for Systematic [IUPAC
Nomenclature (OPSIN) tool [7]. Here again, both the automatic
and manual procedures are error prone. Locally-stored SAR
data from an Excel sheet or an ELN can be used to populate
draft manuscripts (and with lower error rates) but the irony is
conversion to PDF (i.e., entombment) makes the ARC in result
tables more difficult to extract.

A specific example of the problem can be given for a 2017
article on new antimalarial compounds entering development
[8]. Because the chemistry representations were restricted only
to images in the PDF a blog post was necessary to manually
map the structures to PubChem identifiers [9]. The MyNCBI
link to the 16 CID entries given at the top of the blog post is
still live (indicating reassuring persistence for this system after
four years). While this initial connectivity was only D-C (and

where D was a review article rather than a primary activity
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report) this example had an important sequel. During the cura-
tion of the new Guide to Malaria Pharmacology 14 of the 16
compounds now have full DARCLP annotation where D is the
primary activity report, P is the Plasmodium target and activity
values against the parasite are included in the records [10].

Commercial capture

Since this report is about open connectivity it might not seem
pertinent to review commercial resources. However, a brief
assessment of these is relevant in several contexts. The first is
that, despite occasional use of the adjective “proprietary” in
their descriptions, the primary content of commercial databases
is almost entirely derived from open sources. Notwithstanding,
they capture, curate, annotate, collate, integrate and index this
in value-added ways (including user-friendly query front-ends
and customer-specific APIs) to justify subscription costs. The
second aspect is that by virtue of being able to apply more
internal resources than open databases, their statistics give some
indication of where the practical upper limits might lie. The
third aspect is that they can give insights into the challenges of
extraction, although technical details of how this is done are

sparingly presented externally.

The largest relevant commercial source is CAS-SciFinder [11]
While the mmoa may be indexed (i.e., providing C-P mappings)
it does not include a complete DARCP capture. Consequently,
this has to be classified as primarily D-C-only source. By
November of 2019 SciFinder reached 157 million unique
organic plus inorganic substances, having passed 100 million in
June 2015. While some of these are virtual structures (i.e.,
never been synthesised) this large enterprise (with over 4,500
employees according to LinkedIN) has the de facto largest
searchable collection of small-molecule structures extracted
from papers, patents and other sources. A presentation
from 2016 declared that in the first 7 months of that year
~10.5 million substances were extracted from ~0.5 million
patents and ~1.0 million documents. In addition, ~75% of cur-
rent novel structures are from patents. However, the 157 million
is exceeded by the latest public UniChem release of just under
160 million [12]. In addition, a 2019 scaffold diversity analysis
stringently filtered the CAS collection down to only ~30 million
compounds with direct links to literature and patents [13]. Since
its first release in 2009 Elsevier Reaxys has emerged as another
large-scale D-C capture endeavour, the statistics and search
characteristics of which have recently been compared with
SciFinder [14]. It has reached 31 million structures but also
subsumes PubChem which brings it up to 105 million.

The two leading commercial sources that capture DARCLP at

scale are the Global Online Structure Activity Relationship
Database (GOSTAR) [15] from Excelra (formerly GV000Bio)
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and Elsevier Reaxys Medicinal Chemistry [16]. The current

statistics for these are shown in Table 1.

The GOSTAR numbers have a more detailed breakdown in a
paper from 2013 (see Table 1 in that reference) which includes
the calculated averages of 12 compounds per paper and 43 per-
patent [17]. GOSTAR’s compound total has doubled in the
intervening six years but the extraction averages and ratio of
compounds from papers: patents of ~1:2.7 recorded in 2013 are
likely to be similar. Comparable metrics for RMC curation have
not been disclosed so it remains unclear what procedural differ-
ences that might explain their considerably larger activity,
target and document counts compared to GOSTAR but
connected to a million less compounds. Notwithstanding, using
nominally the same medicinal chemistry corpus the extracted
chemical structure ratios between SciFinder, Reaxys, GOSTAR
and RMC are very approximately 30:30:8:7. Several technical
differences may explain these ratios but the most important is
the primary focus of the latter two on full DARCLP and SAR
capture rather than just D-C. This selectivity in the choice of
which journals and patents are curated, maintains the quality of

target and activity mappings.

Public DARCP resources

The first relevant web-instantiated curated resource, Bind-
ingDB, was published in 2001 [18]. This was followed by the
IUPHAR Ion Channels Compendium of papers in 2003. This
had developed into the IUPHAR-DB website by 2009 and was
updated to the current [IUPHAR/BPS Guide to Pharmacology
(GtoPdb) by 2012 [10]. That same year also saw the first
ChEMBL publication for which the website was live by 2010
[19]. All three of these resources focus on expert-curated
DARCEP extractions from the literature. In addition, PubChem,
first appearing in 2004 has now become the de facto global hub

Beilstein J. Org. Chem. 2020, 16, 596—606.

for DARCP because all the three databases above submit their
structures that are integrated with ~700 other sources [20].

Comparative statistics of the four are shown below in Table 2.

As for the commercial sources, comparing content statistics be-
tween databases is not straightforward because the numbers in
Figure 2 were generated in slightly different ways. Not all the
nuances can be addressed here but some salient ones can be
pointed out. Moving across the columns there is an element of
circularity in the compounds. The first reason is that ChEMBL
subsumes 0.53 million compounds from confirmed PubChem
BioAssays and 1.3 million curated from papers. The second
reason is that BindingDB and ChEMBL have a reciprocal
mirroring collaboration where BindingDB subsumes the pro-
tein target assay results from ChEMBL and the latter subsumes
BindingDB patent extraction data (e.g., the 137,000 com-
pounds in release 25). This is separated from their total data
counts in rows three and four. It also means that the overlap of
compound structures, target and document identifiers between
the two sources have extensive circularity (but some are inde-
pendently curated). The PubChem figures for bioactivities seem
large because these are factored by substances not compounds,
whereas ChEMBL (as the dominant contributor to PubChem
BioAssay) collapses their assay counts to compounds. For
GtoPdb the lower count reflects the curation of mainly lead

compounds with curated binding constants from papers.

The 18000 targets in PubChem include automated assignments
that result in an element of over-counting. Those in the other
three sources are classified manually and have species-specific
cross-references in UniProt [26]. These give the following
human Swiss-Prot counts of 3644, 2585 and 1457 for
ChEMBL, BindingDB and GtoPdb, respectively. We can see
the document counts for the curated sources in column five of

Table 1: Statistics of GOSTAR (top row, from their website [15]) and RMC (from the information sheet [16]).

compounds (millions) bioactivities (millions)

binding assays (millions) targets (1000s)

papers (1000s) patents (1000s)

7.8 9.7 8.7 9 191 76

6.8 352 - 27 370 133
Table 2: Content statistics for three DARCP sources and PubChem.

database reference  compounds nioactivities targets papers patents
PubChem (9/19) [21] 96 million 268 million 18000 14.2 million 3.2 mil
ChEMBL(release 25) [22] 1.9 million 15.5 million 124000 72000 -
BindingDB (9/19) [23] 772000 1.7 million 52000 29000 -
BindingDB patents [24] 225000 406000 1000 - 3000
GtoPdb (2019.4) [25] 75000 17000 20000 11000 600
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Table 2. From the ChEMBL release notes their literature extrac-
tion average out at ~15 compounds-per-document (n.b., the
majority will have ARCP connectivity but some have only non-
bioactivity A-R data such as plasma clearance).

Content overlaps and differences

Despite differences in the way their internal statistics are com-
puted, standardised content comparison between open data-
bases can use outputted lists for D,C and P (comparing A-R is
not so straightforward). The intersects and differences between
these are shown in the series of three Venn diagrams (Figures
2-4). See also Supporting Information File 1 for technical
details on how these were prepared.

ChEMBL 62206

BindingDB 29116

GtoPdb 11144

Figure 2: PMID content with totals appended to each segment. Those
for ChREMBL were downloaded from European PubMed Central
(EPMC) via the query (HAS_CHEMBL.y). For BindingDB the list was
provided with courtesy of Michael Gilson. For GtoPdb the list was
downloaded via the PubMed connectivity for the SIDs. The OR union
is 73500 PMIDs (but all three sources also curate a proportion of DOI-
only documents).

While there are technical caveats, we can briefly consider the
implications of Figures 2—4. The PMID capture in Figure 2
shows a pattern of intersects and differences that is to some
extent reflected for the other entities also. Each indicates some
unique capture but ChEMBL and BindingDB overlap for
~25000 papers. Despite being the smallest of the three, GtoPdb
shows proportionally more unique PMIDs. This is substantially
due to the curators adding additional references into the SID
records beyond those from which the binding data were
extracted (e.g., in vivo and clinical reports published after the
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ChEMBL 1.87 mill

BDB 0.78 mill

GtoPdb 7612

Figure 3: Chemistry content comparison for the three sources with
totals appended to each segment, selected and downloaded as
PubChem CID lists. The OR total is 2,033,127. Note that the unique-
ness in the Venn sectors is just between these three. Overall unique-
ness in PubChem as whole is 266000, 49000 and 143 for ChEMBL,
BindingDB and GtoPdb, respectively.

ChEMBL 8150 BindingDB 5403

GtoPdb 2017

Figure 4: Target comparisons with totals in each segment. These were
downloaded as UniProt ID lists selected via the chemistry cross-refer-
ences in UniProt. These include all species but, as expected, human
and rodent predominate in each case. The total of human proteins
covered by the three is 3745 representing 18% of the UniProt 20,365
proteome.
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initial in vitro results). Notably, the public total from all four of
~75000 is less than 50% of the journal document counts
declared by the two commercial sources (Table 1). While the
limited resources of the public sector are clearly a factor, it
would be informative to know explicitly what was behind the
differences. Journal selectivity is likely to be dominant but
other factors may come into play.

The chemistry content in Figure 3 shows similar disproportion-
ation with ChEMBL, as expected, dominating unique content at
over 1.2 million. While this is skewed by the BioAssay
subsumation of ~0.5 million, most will be a consequence of ex-
tracting ~35000 unique PMIDs. For BindingDB most of their
153000 unique structures are from the ~200000 protein-ligand
binding data points that were curated from 1,100 US Patents
during 2019 (n.b., these will eventually be subsumed into
ChEMBL release 26). We can further rationalise the proportion-
ality between compounds and PMIDs by noting that GtoPdb
extract on average ~1 lead compound per paper, ChEMBL ~14
per paper with BindingDB extracting similar numbers from

papers but ~40 per patent.

The differences in target coverage (i.e., as “P” in DARCP)
shown in Figure 4 are noteworthy and persist despite the
ChEMBL/BindingDB selective mirroring. As for PMID cover-
age it would be useful to know which types of selectivity were
responsible for this divergence in connectivity. For BindingDB
some unique proteins are likely to be patent-only but exploring
further causes of complementary target coverage are outside the
scope of this work.

Journals connecting to PubChem

As anomalous as it may seem, no individual journals have put
in place a direct feed of author-specified DARCP into PubChem
BioAssay (or any other database for that matter). Historically,
four journals have initiated D-C feeds in PubChem but two of
these, Prous Science Drugs of the Future and Nature Communi-
cations, ceased in 2012 and 2014 respectively. This has left
only Nature Chemical Biology and Nature Chemistry as still
active with 12481 and 15276 author-specified CID structures
respectively (plus some on-hold submissions) but the latter
journal does not typically include bioactivity reports. Some
Elsevier journals do list CIDs in their abstracts but without
submitted links.

One journal that has pioneered a first approximation to DARCP
flow into PubChem is the British Journal of Pharmacology (al-
though the links are technically indirect) [27]. The annotation
task was initially done by editors but since 2016 authors have
been incorporating GtoPdb ligand and target identifiers in their
text that became clickable out-links in the published HTML and
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PDF versions. This has the additional advantage of setting up a
virtuous circle of reciprocal connectivity with PubMed where
DARCEP curated by GtoPdb has been submitted to PubChem.
This is outlined in Figure 5.

Anomalies in the system

The wider informatics ecosystem exhibits a range of quirks
related to DARCP and DC capture. These can complicate
connectivity, confound standardisation and make navigation
difficult, especially where they are non-obvious. The technical
decisions that have caused such anomalies were generally been
made to accommodate different submitter requirements (i.e., no
one is trying to make the system more complicated, it just

seems that way). The following is a selection:

1.) PubChem presents users with the complexity of parallel
systems of D-C connectivity [28]. For medical subject head-
ings (MeSH) the publication links are biased towards common
name matches in many papers (e.g., the MeSH category for
chemicals and drugs links 127000 PubChem CIDs to over
14 million PMIDs). Somewhat surprisingly, the largest D-C
source by far is the IBM automated patent extraction system.
This has operated on not only patents but also PubMed (plus
MeSH terms in those abstracts) as well as full text from PMC
articles. By 2016 this was responsible for 56% of all PMID-CID
mappings (although IBM made what may have been their final
submission in 2017). PubChem has a third substantial category
of D-C connectivity from the publishers Springer, Thieme and
most recently Wiley. These three sources have added document
links for 660, 740 and 118 thousand CIDs respectively (with an
overlap of only 74000). However, those having DOI-only docu-
ment links are not connected into Entrez. They are made acces-
sible via cross-references in the CIDs for Thieme and Wiley but
only via SIDs for Springer. Since these publishers have provi-
ded a proof of concept for these D-C efforts it is to be hoped
that they will be followed by equivalent undertakings from
other chemistry publishers, for example ACS, Elsevier and
ChemRxiv.

2.) The three DARCP sources with conceptually equivalent
curated links (Table 2) are indexed within the NCBI systems in
different ways. GtoPdb links into Entrez via reciprocal connec-
tivity between 11000 PMIDs and 9800 SIDs. It also has just
under 2000 BioAssay links by target class. ChEMBL has just
over 1 million BioAssay entries largely as per publication
indexing and also has its own target hierarchy in PubChem.
While the SIDs have no PMID links 34000 of the ChEMBL-
extracted PMIDs are indexed in Entrez but only via BioAssay.
BindingDB has neither extensive BioAssay links nor Entrez
SID connectivity. However, the 28000 curated PMIDs in this

case are connected into the NCBI system as a LinkOut source.
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3.) As a commendable initiative the Journal of Medicinal
Chemistry requires authors to provide SMILES [29] and in
some cases, they may also add activity values, as supplemen-
tary data. These are made available as comma-separated (.csv)
files. However, while this was envisaged to facilitate auto-
mated extraction, no one actually does this (or at least has not
openly surfaced the results). These files thus useful contain C-R
but A and P remain in the paper (although DARCP from this
journal is extensively curated by GtoPdb, ChEMBL and Bind-
ingDB).

4.) Despite the pioneering efforts of Nature Chemical Biology
there are caveats associated with their D-C mappings. The first
is that in their SID records they index DOIs in the Depositor
Comments but not PMIDs. This means there is no connection
into the Entrez system (although this may have been an expe-
dient choice to avoid the lag time associated with post-publica-
tion PMID assignments). As another quirk, there are 2,447

structures submitted by the journal that do not have an exact

match to those extracted by the Springer automated pipeline for
the same documents. It would be advantageous (including in-
creasing traffic to the journal) if they could extend the author
data submissions to enable full DARCP representation in
PubChem BioAssay for suitable data sets.

5.) The transfer of data from the literature into on-line open
resources (by an individual or a curation enterprise) could
conceivably come up against copyright issues. The complexi-
ties of permissions to mine scholarly content were reviewed in
2016 [30]. It was reported therein that small amounts of data
(e.g., presumably encompassing DARCP) would not generally
be considered “creative expression” and thus should be exempt
from copyright. We can also note that, after the fact, many
public databases have been adding both curated and automati-
cally mined “data facts” for well over a decade.

6.) The extraction of DARCP and D-C connectivity from

patents presents a number of anomalies specific to this docu-
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ment type. The first is that, compared to journal articles in
which a proportions of the same data are later republished, in
terms of compound structures in-common the appropriate
PubChem query records a CID intersect of 29% between
ChEMBL and all the major automated patent chemistry extrac-
tion sources adding up to 29.7 million), the document corpus
has no paywalls. This means it is not only free-to-mine but also
the HTML (before hamburgerisation) available from the
USPTO greatly facilitates automated extraction. The second is
that, in contrast to the commercial DARCP curation efforts by
Excelra and Elsevier (implying the perceived high value),
public extraction of patent ARCP is limited almost exclusively
to BindingDB. However, as a consequence of being free-to-
mine a number of operations have carried out public large-scale
automated D-C extractions. These include, SureChEMBL [31],
IBM, World Intellectual Property Organization (WIPO) and
most recently Google Patents. However, the problem arises in
PubChem and other sources) of what could be called
“swamping” from the continual re-indexing (i.e., D-C linking)
of common chemistry and structures without any ARCP data.
As an example, in PubChem CID2244 for aspirin there are
143,180 connections to patent documents.

Conclusion

Comparing the historical connectivity between bioinformatics
and cheminformatics points towards the root of the problems
we currently face. Over more than three decades the links be-
tween sequence data and the literature have become a blazing
success, first for molecular biology followed by genomics. This
was driven mainly by the combination of journal mandates for
author inclusion of sequence accession numbers and somewhat
later, pointers to genomic and expression data sets. This has
needed herculean technical integration efforts not only from the
NCBI Entrez system and the equivalent EBI resources but also
global coordination by the International Nucleotide Sequence
Database Collaboration (INSDC) [32]. While compliance is not
100%, extensive literature and data set connections are now
captured by both PubMed, PMC and EPMC.

The paradox is that no open equivalent ever emerged in the
chemistry domain, in part due to the dominance of SciFinder.
Thus, despite PubChem CIDs appearing in 2004 and the InChl
identifier being implemented in 2013, publishers (with a few
exceptions) have neither mandated nor encouraged the inclu-
sion of open, machine readable chemical representations and/or
open chemical database identifiers in their journals (external to
the PDFs). The consequent shortfall for chemistry capture in
general and DARCP in particular, shows no signs of dimin-
ishing. A rough estimate, derived from comparing commercial
numbers from Figure 3 with public ones in Table 1, would be a

chemical structure ratio of roughly 2 million to 7 million (i.e., a
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public shortfall in the order of ~5 million although the major

part of the later comes from patents).

An important corollary is that despite progress in automated
chemical and biomedical entity recognition from text (e.g., via
Natural Language Processing, NLP) [33] the fully automated
extraction of explicit DARCLP relationships from documents
has not yet been achieved (although Al efforts are doubtless
pushing towards this). This stands in contrast to the ability of
biocurators to discern such relationships from a paper in
minutes (but needing extra minutes for a patent) [34]. The
expansion of automated D-C capture in PubChem (e.g., by
Springer, Thieme and Wiley) as well as automated chemical
look-up in PMC and EPMC are certainly welcome develop-
ments. Notwithstanding, the associated ABNE problems
severely limit knowledge distillation from D-C connections

alone.

So, where do we go from here? The good news is that GtoPdb,
ChEMBL and BindingDB should continue their expert capture
role. The bad news is that it looks like, even by 2020, no journal
will yet have instigated a formal process to extract DARCP and
pipe it directly into open databases. One can only surmise that
there is neither sufficient publisher “pull” nor author-incen-
tivised “push” to make this happen. An alternative solution
would be for authors to independently facilitate the transfer of
their own annotated DARCP data into, for example, PubChem
BioAssay. While the key connectivity to a PMID (via Entrez)
could be added later, the necessary database submissions
(possibly directly from an ELN) could, in principle, be
de-coupled from the publishing process and thereby bypass
PDF-entombment. Here again, we come up against the impasse
of which stakeholders would value this high enough to insti-

gate it.

Notwithstanding, we can take a more optimistic look at recent
developments in the wider context of knowledge sharing in-
cluding semantics and linked data that have the potential to
improve the situation for DARCP capture. These include open
data [35], open access (OA) [36], FAIR (findable, accessible,
interoperable and reusable) [37,38], resource description frame-
work (RDF) [39] and [40] WikiData [40]. While there is
certainly momentum behind these trends, the persistence of
publisher paywalls still remains a serious obstacle (e.g., of the
62000 papers curated by ChEMBL in EPMC only 85000 are
full-text and only 600 OA). Strong community adoption (in-
cluding from publishers) is also being seen for FAIR, which, in
principle, should encompass accessibility to D, A, R, C and P
(even if not their explicit connectivity) Planning is underway
for the capture of FAIR data in various repositories (e.g.,

Figshare) but quite how this would practically expedite the flow
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of connected DARCP into major databases (including core
resources of the ELIXIR - distributed infrastructure for biologi-
cal data [41]) is not yet clear. Another new development in the
list, WikiData [40], is a community-maintained knowledge base
that builds on the principles of FAIR. Here again, we will have
to see how the practicalities of crowdsourcing DARCP curation
and feeds into open databases can be accomplished.
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Abstract

Helminths, including cestodes, nematodes and trematodes, are a huge global health burden, infecting hundreds of millions of
people. In many cases, existing drugs such as benzimidazoles, diethylcarbamazine, ivermectin and praziquantel are insufficiently
efficacious, contraindicated in some populations, or at risk of the development of resistance, thereby impeding progress towards
World Health Organization goals to control or eliminate these neglected tropical diseases. However, there has been limited recent
progress in developing new drugs for these diseases due to lack of commercial attractiveness, leading to the introduction of novel,
more efficient models for drug innovation that attempt to reduce the cost of research and development. Open science aims to
achieve this by encouraging collaboration and the sharing of data and resources between organisations. In this review we discuss
how open science has been applied to anthelmintic drug discovery. Open resources, including genomic information from many
parasites, are enabling the identification of targets for new antiparasitic agents. Phenotypic screening remains important, and there
has been much progress in open-source systems for compound screening with parasites, including motility assays but also high
content assays with more detailed investigation of helminth physiology. Distributed open science compound screening programs,
such as the Medicines for Malaria Venture Pathogen Box, have been successful at facilitating screening in diverse assays against
many different parasite pathogens and models. Of the compounds identified so far in these screens, tolfenpyrad, a repurposed insec-
ticide, shows significant promise and there has been much progress in creating more potent and selective derivatives. This work

exemplifies how open science approaches can catalyse drug discovery against neglected diseases.
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Review
The need for anthelmintic drug discovery

Anthelmintic drugs is the collective term for the group of drugs
which treat infections of animals or humans infected with para-
sitic worms (helminths). Parasitic worms infect a wide range of
species and as such present a major burden on not only human
health, but also livestock production and crop production. There
are two major phyla of helminths — nematodes (also known as
roundworms) and platyhelminths (also known as flatworms).
The nematodes include the soil-transmitted human helminths,
e.g., Ascaris lumbricoides, and the vector transmitted tissue
dwelling filarial worms, e.g., Wuchereria bancrofti while the
platyhelminths include trematodes (also known as flukes) e.g.
Schistosoma mansoni and cestodes (also known as tapeworms),

e.g., Taenia solium.

Although the current review focusses on the unmet need in
anthelmintic drug discovery to tackle the burden of human
helminth infections, infection of livestock with parasitic worms
has important animal welfare implications and can result in con-

siderable economic losses to the livestock industry. In industri-

Beilstein J. Org. Chem. 2020, 16, 1203—-1224.

alised countries most livestock are routinely given anthelmintics
to control or prevent infections and it is estimated the number of
sheep, goats and cattle treated annually is hundreds of millions
[1]. Treatment of horses, other equids, and companion animals
is also a major use of anthelmintics.

Anthelmintic drug discovery has been a continued emphasis in
the animal health industry, driven by the spread of resistance to
the macrocyclic lactones [2]. In the past 25 years, three new
classes of anthelmintic drugs have reached the market:
derquantel, emodepside and monepantel. However, the contin-
uing emergence of anthelmintic resistance combined with less
predictable infection patterns due to changes in climate have

resulted in a breakdown of control of these parasites [3].

Human helminth infections are neglected tropical diseases
(NTDs). The most common infections, which we will highlight
in this review, are caused by soil transmitted helminths (STHs),

schistosomes and lymphatic filarial worms (Table 1). These

Table 1: Prevalence of and morbidity caused by major human helminth infections. DALY’ are disability-adjusted life years.

disease main etiologic helminth number DALYs morbidity
infected (million)
(million)
soil-transmitted helminths
ascariasis Ascaris 819 [8,9] 1.3[5] infections (due in part to size and number of worms)
lumbricoides and intestinal blockages (potentially requiring
surgery) growth stunting and effects on cognition
[10-12].
hookworm Necator americanus; 439 [8,9] 1.7 [5] anaemia which can cause complications during
Ancylostoma duodenale pregnancy and post-birth; growth stunting and effects
on cognition [13,14].
trichuriasis Trichuris trichiura 465 [8,9] 0.3 [5] inflammatory foci and haemorrhaging,
growth stunting and effects on cognition [15-17].
filarial nematodes
lymphatic Wuchereria bancroft; 120 [18] 1.2[5] lymphedema (elephantiasis), hydrocele, renal
filariasis Brugia malayi pathology manifesting as chyluria, and acute
dermatolymphangioadenitis causing regular fevers.
onchocerciasis  Onchocerca volvulus 20 [19] 1.0 [5] itching, skin inflammation and visual impairment or
blindness
platyhelminth trematodes
schistosomiasis  Schistosoma Over 250 1.9[5] acute infection: myalgia, abdominal pain in the right
haematobium, [20] upper quadrant, diarrhoea, fatigue, malaise, fever,

Schistosoma mansoni,
Schistosoma japonicum

chronic infection: reactions against eggs trapped in
host tissues lead to inflammatory and obstructive
symptoms; the tissues and organs affected depend
on the Schistosoma spp.

schistosomiasis is also associated with
undernutrition, exercise intolerance, diarrhoea
(sometimes bloody), chronic pain and anaemia [20].
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infections are largely confined to rural, impoverished areas in
tropical and subtropical regions of the developing world and
co-infections with several different helminths are common [4].
In general, helminth infections are associated with morbidity
(see Table 1) rather than mortality and high-intensity infections
are associated with increased morbidity. Combined, they repre-
sent a massive global burden estimated at 6.4 million disability-
adjusted life years (DALYs) [5] with life-long implications as
they limit the educational prospects of children and reduce
worker productivity [6,7]. Thus, they effectively trap whole

countries in poverty.

Current anthelmintics — STHs

Helminth infections are predominantly located in unseen, rural
areas of low income countries; thus despite their prevalence
they have been coined the “forgotten diseases of forgotten
people” [21]. It is perhaps not a surprise, therefore, that almost
all the drugs available for human treatment were initially de-
veloped as veterinary medicines.

Effective and safe anthelmintic drugs can reduce prevalence, in-
tensity and morbidity associated with STHs. Two main strate-
gies for delivery exist: the management of diagnosed patients
and preventative chemotherapy, which relies on mass scale
administration of a single dose treatment to undiagnosed indi-
viduals; otherwise known as mass drug administration (MDA)
[22-24]. MDA programs are the cornerstone control strategy for
these infections and usually target treatment to pre-school or
school-attending children.

Currently, the World Health Organization (WHO) recommends
annual or biannual (where baseline prevalence is over 50%)
intervention with the anthelmintics albendazole (ALB, 1) or
mebendazole (MEB, 2), to treat STHs [25,26]. While achieving
cure rates approaching 100% for Ascaris, these drugs, when
used as single dose monotherapies, are less effective against
hookworm [27,28] and have shockingly poor cure and egg
reduction rates against T. trichiura [29]. (It is important to note
that these drugs do have much better efficacy when adminis-
tered as a course of treatment. However, given the practicalities
and huge scale of mass drug administration programs, single
dose efficacy is the benchmark for MDA.) As a result, single
dose combination therapies, for example, with the tetrahydropy-
rimidines pyrantel pamoate (PYP, 3) and oxantel pamoate
(OXP, 4) have been advocated over recent years with some
success (Table 2, Figure 1) [30].

Unfortunately, drug resistance against benzimidazoles 1 and 2
and other anthelmintics have been detected in veterinary para-
sites, with mutations in the beta-tubulin gene [31,32]. To date

there is limited evidence of resistance to benzimidazoles in

Beilstein J. Org. Chem. 2020, 16, 1203—-1224.

human STHs [33], although benzimidazole resistance alleles
have been found with increased frequency following
anthelmintic treatment [34,35]. However, as the use of these
anthelmintics has increased in the past decade, thanks to the
donation of millions of doses of these drugs to enable mass drug
administration, the selective drug pressure on the STHs has in-
creased. This could trigger the emergence of drug resistance
[36]. Additionally, the terrestrial stage of STHs can survive as
eggs in the soil for several months (A. lumbricoides and T.
trichiura) and larvae several weeks (hookworms), dependent on
prevailing environmental conditions [37]. This environmental
pool of the infectious lifecycle stage makes even those individ-
uals successfully treated by MDA schemes at risk of reinfec-
tion [38]. It has therefore been proposed that, as well as
targeting improvements in sanitation to tackle this issue, an en-
vironmentally-acting, egg-targeting agent could play a comple-
mentary role to help break transmission [39]. The WHO has set
a global target to eliminate morbidity due to soil-transmitted
helminth disease in children by 2020 through the regular treat-
ment of at least 75% of the children in endemic areas (an esti-
mated total number of 873 million) [40]. It looks unlikely that
this target will be met, thus the development of new potent
anthelmintic drugs that act via novel mechanisms of action are

urgently needed.

Current anthelmintics — schistosomiasis
Praziquantel (PZQ, 5), an N-acylated tetrahydroisoquinoline-
piperazinone derivative has been the basis of schistosomiasis
treatment for over 30 years [20]. PZQ is currently administered
as a racemic mixture (Figure 1), despite the (R)-enantiomer
being the biologically active form [41]. As will be discussed
later in this review, there has been success in producing the
active species in enantiomerically pure form. A clinical trial
examining the bioavailability of orally dispersible tablets of
levo-praziquantel has been completed [42], and a Phase III trial
evaluating safety and efficacy is underway (NCT03845140).

Oral PZQ is safe and efficacious against adult worms of all
Schistosoma spp., although only very recently have indications
of its mechanism of action been advanced [43]. PZQ is the
foundation of the global community-based schistosomiasis
control programmes which use MDA, to reduce morbidity. A
meta-analysis showed that the WHO-recommended dose of
PZQ (40 mg/kg) achieved cure rates (CR) of between 76-95%
for different Schistosoma species and 63.5% for mixed
S. haematobium and S. mansoni infections and mean egg reduc-
tion rates (ERR) between 86-95% [44].

However, although PZQ is safe and efficacious against adult

worms, it is only given once, and as the drug does not act

against the migrating schistosomula stage of the parasite, if
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Figure 1: Structures of some current front-line anthelmintics discussed in this review. *Denotes the stereogenic centre: praziquantel is administered
as a racemic mixture.

Table 2: Drug combinations show increased single-dose cure rates for soil-transmitted helminths. CR: cure rate — the proportion of infected individ-
uals who become negative when tested after treatment with the indicated drug(s). ERR: egg reduction rate — the reduction in egg count after treat-
ment expressed as a proportion of the egg count before treatment. Data from [30].

MEB (1)

CR ERR
Ascaris lumbricoides 96.8 99.5
Necator americanus and Ancylostoma 41.6 65.1
duodenale
Trichuris trichiura 44 .4 80.7

these larvae are present a new infection will arise. Moreover,
PZQ does not prevent re-infection and therefore transmission
can rapidly re-establish from just a few infected patients who
can contaminate the aquatic environment.

Additionally, the emergence of drug resistance is a concern with

some reports of infections that respond poorly to PZQ in areas

ALB (2) ALB (2) + PYP (3) + MEB (1) + PYP (3)
OXP (4) + OXP (4)

CR ERR CR ERR CR ERR

96.5 99.7 90.4 98.3 100.0  100.0

785 92.1 92.8 96.7 84.7 93.4

32.1 64.3 84.2 92.7 75.2 90.7

where there has historically been heavy use of the drug [45].
However, as is the case for benzimidazoles, there is no clear
confirmation that clinically relevant praziquantel resistance has
developed [46]. Nevertheless, there is a widespread concern of
the risk associated with relying on a single drug, particularly as
MDA is being further scaled up, with hundreds of millions of
doses of praziquantel being donated every year [20]. Another
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unknown influence in the future of schistosomiasis treatment is
the effect which climate change may have on aquatic environ-
ments (and the intermediate freshwater snail host Biomphalaria
glabrata) and therefore on the distribution of water-borne
diseases like schistosomiasis [47].

Similarly to the STHs, the WHO 2020 target for schistosomi-
asis is morbidity control by reducing the prevalence of heavy-
intensity infections to less than 5% amongst school age chil-
dren. However, whilst these guidelines look likely to be met in
lower prevalence regions based on the current WHO MDA
guidelines there is a low likelihood that these goals will be
achievable in high-prevalence regions where the transmission
potential is greater [48].

Current anthelmintics — lymphatic filariasis
Lymphatic filariasis (LF) treatment has been overseen through
the WHO Global Program to Eliminate Lymphatic Filariasis
(GPELF) which was launched in 2000. To achieve the WHO
goal of the elimination of LF as a public health problem, the
GPELF has a two-pronged approach involving not only preven-
tative chemotherapy through MDA to treat the at-risk popula-
tion, thereby interrupting transmission, but also management of
disease morbidity.

By 2018, the GPELF had delivered over seven billion treat-
ments to more than 910 million people [49]. Fourteen countries
have eliminated LF as a public health problem, and a further ten
countries have been able to stop MDA due to progress in
controlling the infection.

MDA for LF involves combinations of three anthelmintics —
albendazole (ALB, 1), diethylcarbamazine citrate (DEC, 6),
ivermectin (IVE, 7, administered as a mixture of B, and B ).
A recent trial found that a single dose of the triple therapy (IVE
+ DEC + ALB) was able to clear W. bancrofti microfilariae
from the blood for three years in almost all treated individuals,
and this was superior to a single dose of two drug therapy (DEC
+ ALB) and non-inferior to three annual doses of the two drug
therapy [50]. This trial also provided evidence that, in addition
to clearance of microfilariae, both double and triple drug thera-
pies have partial macrofilaricidal effects, as measured by reduc-
tion in circulating filarial antigen levels. A second trial also
found that a single dose of the three drug (IVE + DEC + ALB)
therapy had a greater ability to reduce W. bancrofti microfi-
lariae for 24 months after treatment, compared to annual dosing
of two drug (IVE + ALB) therapy [51], although microfilarial
clearance was not sustained in the treatment population, likely
due to reinfection. Importantly, this study also found greater
inactivation of adult worm nests (clusters of active adult worms
in the lymphatic tissue) in the IVE + DEC + ALB group,

Beilstein J. Org. Chem. 2020, 16, 1203—-1224.

demonstrating the macrofilaricidal effect of this treatment com-
bination.

These studies and others have led to WHO recommending triple
therapy (IVE + DEC + ALB) for MDA in countries without
endemic onchocerciasis or loiasis [52]. Implementation of triple
therapy MDA has significant promise for elimination of LF in

many countries.

Unfortunately, in countries where onchocerciasis is endemic,
DEC (5) is contraindicated and achieving a cure is particularly
problematic in areas where additionally Loa loa is co-endemic
and the use of IVE (7) is therefore contraindicated. In these
circumstances, which apply to some African countries, annual
dual therapy (IVE + ALB) or biannual ALB monotherapy are
used for MDA as appropriate. Thus, alternative anthelmintics
are needed, ideally compounds which can achieve macrofilari-
cidal (i.e. curative) efficacy but which are safe in regions with
onchocerciasis and loiasis.

To this end there has been significant investment into anti-
Wolbachia treatments. These treatments target the bacterial
symbiont Wolbachia which is essential for development, growth
and survival of many filarial parasites. Targeting of Wolbachia
with antibiotics has been shown to have curative efficacy
against lymphatic filariasis [53] and importantly is safe to
administer in L. loa co-endemic regions [54]. However, current-
ly available effective antibiotics are unsuitable for public health
MDA strategies due to contraindications and treatment duration
and therefore novel compounds are required.

Current anthelmintics — onchocerciasis
Onchocerciasis (river blindness) is caused by infection by
Onchocerca volvulus. There have been great efforts, beginning
in the 1970s, to reduce the burden of this disease, first by
control of the insect vector, and later by MDA of donated iver-
mectin. In 2018, over 150 million people in affected areas
received ivermectin [55]. This macrocyclic lactone is an effec-
tive microfilaricide but does not kill the adult nematodes. Iver-
mectin must therefore be administered annually or twice-annu-
ally for many years to eliminate the parasite in the population.
Progress has been impressive: onchocerciasis has been largely
controlled as a public health problem in most of Africa [56],
and four countries in the Americas — Columbia, Ecuador,
Guatemala and Mexico — have achieved elimination of the para-
site [57,58].

There has also been success in attempts to improve MDA for
onchocerciasis by repurposing drugs from veterinary medicine.
It has recently been shown in a Phase III trial that moxidectin is

superior to ivermectin at reducing microfilarial density
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12 months after a single dose [59]. This greater duration of
action would be expected to reduce parasite transmission be-
tween annual rounds of MDA, accelerating progress towards
elimination. Emodepside is another veterinary drug that is very
promising for repurposing. It has shown activity in pre-clinical
models of a variety of human helminth pathogens and is
being pursued for treatment of onchocerciasis under an agree-
ment between Bayer and the Drugs for Neglected Diseases
Initiative [60]. Phase I safety trials have been completed
(NCT03383614).

The management and control of the STHs, schistosomes and
filarial parasites relies primarily on chemotherapy and educa-
tion. Whilst vaccines are being developed for roundworms and
whipworms, the development is still at the pre-clinical stage
[61-65]. A hookworm vaccine is at a more advanced stage of
development [66] and a schistosomiasis vaccine is in a clinical
Phase III trial [67], however, no vaccines are currently in use in
the field.

The current anthelmintic pipeline and the drug discovery land-
scape for parasitic helminth infections is sparse. This contrasts
with the situation for malaria and kinetoplastid infections,
where efforts, particularly by the Drug for Neglected Diseases
Initiative and Medicines for Malaria Venture, in partnership
with various pharmaceutical companies, are now paying off
with an improved pipeline of drug development and the
approval of tafenoquine (11) and fexinadole (10) [68,69]. With
increasing concerns over the potential emergence of resistance
to currently deployed anthelmintics, the possibility of climate
change altering the distribution of these parasites, coupled with
the inability of the currently available chemotherapies to impact
parasite transmission and the poor efficacies of some of these
drugs, e.g. against Trichuriasis, the need for new approaches to
anthelmintic development is pressing. Additionally, the
majority of anthelmintics are limited by their poor cross-phyla
activity, e.g., praziquantel (PZQ, 5) has efficacy against trema-
todes and cestodes but not nematodes. Only the benzimidazoles
1 and 2 show some broader effects but are much more active
against nematodes than against cestodes or trematodes [70].
Ideally an anthelmintic with broad activity against different
helminth infections would be desirable, although this may be
too much to hope for given the evolutionary distance between
the different target phyla.

As it stands, the WHO roadmap on NTDs, which set out a
comprehensive plan for the control, elimination and eradication
of NTDs, looks unlikely to deliver the desired outcomes by
2020. As the NTD 2030 roadmayp is being rolled out there is an
urgent need for novel anthelmintics to enable eradication of

these diseases of poverty.

Beilstein J. Org. Chem. 2020, 16, 1203—-1224.

Application of open science to anthelmintic

development

Commercial incentives for anthelmintic development
Despite the important need for new drugs and other control
solutions for human helminth infection, these indications have
been largely ignored by the pharmaceutical industry, presum-
ably for commercial reasons. Indeed, no new chemical entities
were approved between 2000 and 2011 [71,72]. Since then only
moxidectin (8, 2018) and triclabendazole (9, 2019) have been
approved. The major drugs used for control of human helminth
infections have been in clinical use for many years: ivermectin
(7, FDA approval in 1996), mebendazole (2, 1974), albenda-
zole (1, 1996), praziquantel (5, 1982), diethylcarbamazine (6,
1950). The scarcity of new drugs reflects the limited economic
incentive to spur commercial investment in neglected tropical

diseases such as human helminth infection.

Efforts have been made to promote such investments. The FDA
Tropical Disease Priority Review Voucher Program aims to
create a commercial incentive to develop new drugs for other-
wise neglected diseases [73,74]. Organisations that have an
eligible drug successfully approved receive a transferrable
voucher for a further priority review that has substantial value.
In recent years two anthelmintic drugs have received the
support of this program: moxidectin (8) showing superiority to
ivermectin (7) for onchocerciasis [59], and triclabendazole (9)
approved for fascioliasis, although both drugs were originally
developed for veterinary indications and triclabendazole (9) was
used for the treatment of fascioliasis for many years before
FDA approval associated with the voucher program (Figure 2).

Public-private partnerships (PPPs), which typically bring
together diverse organisations such as pharmaceutical compa-
nies, governments and charitable organisations are now proving
successful at bringing drugs through to approval for neglected
tropical diseases. For example, fexinidazole (10) was de-
veloped by the non-profit Drugs for Neglected Disease Initia-
tive, in partnership with Sanofi, the Swiss Tropical and Public
Health Institute, and other organisations. It has now been ap-
proved as the first all-oral treatment for all stages of human
African trypanosomiasis [69,75]. A partnership between Medi-
cines for Malaria Venture and GSK developed tafenoquine (11),
which is effective as a single-dose treatment for the radical cure
of Plasmodium vivax malaria [68]. While neither of these exam-
ples is for helminth infection, they show that these organisa-
tional models can be successful at bringing new molecules
through to clinical practice. At an earlier stage of development,
the anti-Wolbachia (A-WOL) consortium, a partnership includ-
ing the Liverpool School of Tropical Medicine and AbbVie
discovered ABBV-4083 (12), an antibiotic effective in preclin-

ical models as a macrofilaricide by acting on the Wolbachia
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Figure 2: Structures of new anthelmintics drugs developed through repurposing, and new drugs or drug candidates for other neglected diseases de-
veloped through public—private-partnership (PPP) initiatives. *Denotes the stereogenic centre: tafenoquine (11) is administered as a racemic mixture.

bacterial endosymbiont [76] (Figure 2). WIPO Re:Search is
another public—private partnership that facilitates work in
neglected tropical diseases by bringing together intellectual
property, expertise, facilities and funding from pharmaceutical
companies, universities, and non-profit organisations. The num-
ber and breadth of projects, including many in the area of
helminthiasis, that have been facilitated by this organisation
since it was founded in 2011 is impressive [77].

Open science: an efficient model for drug innovation
An alternative way to promote anthelmintic drug discovery is to

reduce the cost, by introducing research strategies that make

drug innovation more efficient [72]. Open source drug
discovery is a model that seeks to completely open up the
research process [78]. This has several radical advantages that
challenge traditional drug discovery. Secrecy and the hoarding
of data in silos, such as individual research groups waiting for
publication of their data, stifle our ability to access the best
ideas. Openness can create communities that collaborate and
attract new expertise when needed or serendipitously create new
directions as different people from around the world and differ-
ent fields bring fresh insights. Timely sharing of data speeds up
research and avoids inadvertent repetition of effort. The wider
drug discovery community is gradually adapting to these types
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of challenges, with notable examples being ChEMBL (Euro-
pean Molecular Biology Laboratory) and PubChem (NIH). Both
focus on characterising drug-like molecules and providing
information to the public domain. The former is a manually
curated database of bioactive molecules, which aims to bring
together chemical, bioactivity and genomic data to aid the trans-
lation of genomic information into effective new drugs [79].
The latter is an open database for researchers to upload scien-
tific data, including biological results, so that others may use it
[80].

Perhaps the biggest example of open source drug discovery in
its pure form is the Open Source Malaria project [81,82]. This is
a platform for malaria-related research, with an emphasis on
drug development. At the heart of this project are the complete-
ly open online electronic lab notebooks, that immediately share
all work being done on the various strands of research of the
project. Results are shared and publicly discussed, and priori-
ties set on the Github issues page of the project. Importantly,
anyone is free to jump in with suggestions, and indeed the Open
Source Malaria Project has been successful at receiving high-
quality contributions, from a wide range of sources. A highlight
of this work has been the detailed exploration of an arylpyrrole
antimalarial series [82]. We are not aware of a similar real-time,
fully open source effort being applied to anthelmintic discovery,
but this would be an exciting prospect for the field. However,
researchers have been freely releasing open tools useful for
drug discovery, openly describing their compound screening
efforts, and participating in distributed open library screening
projects such as the Medicines for Malaria Venture Pathogen
Box. The point has recently been made by Tim Geary and
colleagues that millions of compounds have been screened in
industrial and academic labs on isolated helminths, but that the
rate of drug discovery has been very low, so efforts must be
made to enhance cooperation among the various groups
pursuing this strategy [83]. They go on to suggest that sharing
of both positive and negative screening data via online data-
bases is a priority to focus attention on the most promising com-
pounds and to reduce the redundancy of effort. Such a collabo-

rative data-sharing structure must be a priority for the field.

C. elegans: a model organism for
parasitology and an exemplar of an open
community

C. elegans as a model nematode

Caenorhabditis elegans (C. elegans) is a non-parasitic nema-
tode worm that is found worldwide and was selected by Sydney
Brenner as a genetic model organism for biological research
with strong potential to contribute to our understanding of
developmental biology and neurobiology [84]. In 1998 it be-
came the first complex eukaryote to have its genome sequenced
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[85]. C. elegans occurs as hermaphrodites and males and its
capacity for hermaphroditic reproduction (selfing) facilitates the
long-term maintenance of genetic strains. The capacity to freeze
and store strains in glycerol adds to its utility. The transparency
of the worm facilitates studies on the development, and
C. elegans remains the only complex organism for which the
entire cell lineage has been described [86]. For this pioneering
work, Brenner, Horvitz and Sulston were awarded the 2002
Nobel Prize in Physiology/Medicine. The nervous system,
which makes up 358 of the hermaphrodite’s 959 somatic cells,
is the only one for which a complete wiring diagram is known
[87], facilitating studies on neural signalling and nervous and
neuromuscular disorders [88] as well as research in under-
standing the anthelmintic drug action [89,90].

To grow and maintain C. elegans in the laboratory is relatively
straightforward. Their small size (1 mm in length as adults)
means ease of storage. Their rapid life cycle (approximately
3 days from egg to adult), and short lifespan (approximately
2-3 weeks) when fed on a diet of E. coli facilitates genetic
studies. Forward and reverse genetics are pursued conveniently
in C. elegans. A rich diversity of mutants is available via the
Caenorhabditis Genetics Centre [91]. The discovery of RNA
interference delivered via feeding worms double-stranded DNA
[92] has opened the door to genome-scale gene knockdown in
the search for new drug targets. These approaches can expedite
the validation of drug targets and the identification of new

candidate molecular targets.

So how can a free-living worm contribute to our understanding
of parasitic nematodes and the development of anthelmintic
drugs? A key advantage is the ease of culture of C. elegans.
Large numbers can be generated rapidly and at low cost which
enables high-throughput chemical and genetic screening
studies. It is often difficult or impossible to undertake compa-
rable studies on parasitic worms due to the challenges of main-
taining parasitic worms outside their host, although rodent

models are available for many classes of helminth [93].

Although C. elegans is clearly not a target organism, it can be
deployed in the search for new anthelmintics for animal health
and human health applications. Screens can be pursued for new
chemical leads which may then be applied to other parasitic
species. C. elegans chemistry-to-gene screens, facilitating
deconvolution of the molecular target and mechanism of action,
are also useful. For example, Burns and colleagues screened
67,012 compounds to identify those that kill C. elegans and fol-
lowed this by rescreening hits in two parasitic nematode species
and two vertebrate models (HEK293 cells and zebrafish). By
this means, they identified 30 structurally distinct anthelmintic

lead molecules [94]. They also determined the target (complex
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II of the electron transport chain) of one lead compound, that
showed nematode specificity and nanomolar potency. This
work shows that C. elegans can be effective, cost-efficient, and

has a role to play in the anthelmintic drug discovery process.

Another potential attribute in the context of investigating para-
sites is the ease with which the C. elegans genome can be
manipulated, enabling the generation of transgenic C. elegans
expressing anthelmintic drug targets from a parasitic worm
[95,96]. These approaches are still in their infancy, but such
genetic modifications can give rise to scorable phenotypes
reflecting the properties of the parasite drug target which may in
future lend themselves to high-throughput chemical and genetic
(RNAI) screening approaches.

There are, however, limitations to using C. elegans as a
research tool, notably its innate physical and enzymatic
defences to xenobiotics, factors important for the survival in its
natural environment. As a result, C. elegans is somewhat inac-
cessible to some chemicals, meaning that high concentrations of
certain compounds may be required to observe changes in the
phenotype [90,97].

Aroian and colleagues [98], in line with the work of Burns et al.
[94], counsel caution on relying on data from C. elegans alone,
which makes perfect sense as it is never the primary target or-
ganism. They screened a compound library against both adult

and free-living larval stages (egg to L3i larval development

HaN NH,

pararosoaniline hydrochloride
15
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assay, E2L) of the human hookworm parasite Ancylostoma
ceylanicum and against C. elegans. They found that the
A. ceylanicum E2L assay was more successful at identifying
compounds active against A. ceylanicum adults than C. elegans
assays (lower false negative rate). This works lead to the testing
of four compounds with in vitro activity in an in vivo
A. ceylanicum hamster infection model — sulconazole (13),
econazole (14), pararosaniline (15) and cetylpyridinium
chloride (16) (Figure 3). Of these pararosaniline (15) showed a
significant reduction in parasite egg production in this model,
despite no activity in C. elegans assays.

Perhaps one of the best reasons for integrating C. elegans into
the discovery process is that if interesting new molecules are
identified which are active on both the target parasite and the
genetic model organism, but the precise target remains unclear,
then C. elegans genetics can offer a route to target identifica-
tion that would be difficult by any other route.

The C. elegans community: historically an open
science model

Research into C. elegans was pioneered by researchers includ-
ing Victor Nigon, Ellsworth Dougherty and Jean-Louis Brun
[99]. However, the use of C. elegans as a model organism in
fields such as genetics, developmental biology and neuro-
science was established by Sydney Brenner in the 1960s at the
MRC Laboratory of Molecular Biology in Cambridge, UK
[100]. An important feature of C. elegans research has been the

econazole
14

cetylpyridinium hydrochloride
16

Figure 3: Compounds with anthelmintic activity identified by a combination of screening against Ancylostoma ceylanicum, C. elegans, and T. muris

[98].
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community of researchers, with a long tradition of openness and
the sharing of ideas and reagents, which we today can recog-

nise as an example of open science [101].

This openness is exemplified by a newsletter for C. elegans
researchers, The Worm Breeder’s Gazette, which combines
advice and suggestions on methods with informal communica-
tion of new findings in advance of publication. For example, the
Nobel prize-winning use of a green fluorescence protein as a
marker was reported in the Gazette by Martin Chalfie and
colleagues five months before the peer-reviewed publication
[101-103].

A second example of the history of C. elegans open science is
the genetic map and genome sequencing project, led by John
Sulston and Bob Waterston, which made C. elegans in 1998 the
first multicellular organism to have its genome sequenced. The
project involved teams at the Genome Sequencing Center at the
Washington University School of Medicine (St Louis, Missouri,
USA) and the Sanger Centre (Hinxton, Cambridge, UK) sharing
a belief that ‘together, we can do more’, rather than ‘one against
the other’ [104]. An important feature was that genomic clones
were made freely available, enabling researchers to investigate
genes of interest [101]. Furthermore, genetic and genomic infor-
mation was rapidly distributed, in the form of the ACeDB data-
base, initially via gopher, an early internet service, and later via
WormBase [105,106].

These historical examples illustrate the strength of open science
in the C. elegans research tradition. In the following sections of
this review we discuss how open science approaches continue
to be important in the field of anthelmintic and antiparasitic

drug discovery.

Open approaches to target identification
Genomic resources are important for target identification, par-
ticularly in the case of parasites, as the life stages found in the
host are often difficult to obtain or culture, and few molecular
tools are available. WormBase ParaSite [107] is an important
central resource for helminth genomic data [108]. At the time of
writing, this database contains information on 142 species of
parasites and other helminths, including genomes, comparative
genomics data and RNAseq studies, along with a number of
tools facilitating access to this data including a genome
browser, BioMart (a tool for exporting tables of selected infor-
mation) and a REST API, an interface for programmatic access
to the database.

But how can we get from genomic information to new drug
targets? A recent comparative genomics study from a large

international consortium of researchers has really helped with
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this question, by comparing the genomes of 81 species of para-
sitic and non-parasitic worms (both nematodes and platy-
helminths) [109]. This work produced large open datasets, such
as expanded gene families relevant to parasitism, and analyses
of the metabolism in different parasites across the phyla, impor-
tant for exploring metabolism in the search for new drugs.
Furthermore, this study predicted promising anthelmintic
targets and compounds likely to interact with these targets,
thereby identifying drugs for potential repurposing as

anthelmintics.

Once targets have been identified, it is desirable to obtain
genetic/pharmacological proof-of-concept for target validation.
Whilst RNA interference and CRISPR methodologies are now
being applied to parasites themselves [110-112], inevitably,
large-scale functional genomic resources are mainly found in

C. elegans.

The C. elegans Gene Knockout Consortium has obtained puta-
tive knockout mutations in around 15,000 genes, and has now
adopted CRISPR/Cas9 to extend the resource to every gene in
the genome [113]. A complementary collection of knockout
mutants from the National Bioresource Project in Japan is also
available [114]. Both projects make the mutants openly avail-
able for low cost.

Another open source resource with immediate applicability to
target identification and validation is the Open Worm Move-
ment Database [115]. This is an open platform for analysing
and sharing worm behavioural data, such as that obtained from
worm tracking software. For example, the researcher can search
for worm strains with a particular movement phenotype, such as
low movement speed. These paralysed or poorly moving worm
mutants may be a source of novel neuromuscular anthelmintic
targets. The researcher can immediately view videos of the
identified worm strains on YouTube to confirm their hypoth-
esis.

Open tools for phenotypic screening

Recently, many laboratories throughout the world have recog-
nised the need for the development of new anthelmintic com-
pounds, so have initiated screening programmes against various
pathogens and models. Despite our growing knowledge about
potential targets for new anthelmintics, phenotypic screens
involving assays of parasites or models in vitro remain impor-
tant [83]. As a result, several methods and screening platforms
have been developed to improve the screening speed and relia-
bility.

In this section we discuss recent phenotyping methods and

systems, and how they have been applied to anthelmintic
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discovery. We concentrate on those where the software source
code and/or hardware design is made clearly and openly avail-
able. Methods, applications, and location of source code/design

are summarised in Table 3.

Open tools for phenotypic screening of motility and
viability

Several groups have developed image acquisition and analysis
systems for high-throughput phenotypic screening of parasites
(Table 3), typically using the approach of thresholding differ-
ence images/movies to quantify motility, sometimes segmenting

the image by recognising the organism of interest [116].

WormScan is a method that uses a flatbed scanner to capture
sequential images, where the scanner high-intensity light
usefully stimulates the worm movement [117]. This system has
been utilised to screen a 26000 compound library in a
C. elegans growth assay [119]. An updated version of this soft-
ware (Automated WormScan) has recently been published
[118]. The Lifespan Machine also uses a scanner to acquire
images, and has the ability to monitor thousands of worms si-
multaneously and determine mortality time for individual
worms on plates [120].

WormAssay is a combination of a video camera and an open
source software package. It uses two algorithms (Lucas—Kanade
optical flow estimation, and a pixel change method) to deter-
mine the motility of macroparasites in microtitre plates [122].
The Worminator builds on WormAssay for the use with micro-
scopic parasites [123]. This system has been validated for deter-
mining the anthelmintic activity against a variety of nematodes

and schistosomes. A screening using the Worminator identified
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auranofin as a promising candidate for repurposing as a treat-
ment for of lymphatic filariasis and onchocerciasis [144]. This
drug was originally approved as a treatment for rheumatoid
arthritis but is currently in trials for amoebiasis and giardiasis
(NCT02736968).

An ImagelJ [145] macro that determines the motility of
Echinococcus multilocularis protoscoleces within microtitre
plates by pixel difference thresholding has been used to iden-
tify an anthelmintic hit compound MMV665807 [125]. Wiggle
Index, another Image] macro for difference thresholding and
motility quantification has been extensively used for library-
scale screening of exsheathed Haemonchus contortus 1.3s [127-
130]. INVAPP Paragon, an imaging setup and MATLAB analy-
sis script that again uses difference thresholding for motility
quantification has been used for library screening with Trichuris
muris and C. elegans [39,135,136].

CellProfiler is a major open source package for quantitatively
measuring phenotypes from imaging data, particularly from
high-throughput screens [139]. Some groups have developed
helminth analysis methods using CellProfiler. A virtual
screening approach was used to identify inhibitors of
S. mansoni thioredoxin glutathione reductase [140]. These
virtual hits were then tested in a CellProfiler-based high content
screen using S. mansoni schistosomula, which determines both
the motility and a range of other phenotype scores, leading to
the identification of 2 new small molecules with distinct chemi-
cal scaffolds 17 and 18 with activity against schistosomula and
adult worms at low micromolar concentrations (Figure 4).
Another CellProfiler toolbox enables the quantitation of

C. elegans viability and fluorescence [141].

Table 3: Open tools for high-throughput phenotypic screening of motility and viability and their use for anthelmintic discovery.

tool validated with

WormScan [117]
automated WormScan
[118]

Lifespan Machine [120]

WormAssay [122]
Worminator [123]

Cestode motility Imaged
macro [125]

Wiggle index ImageJ
macro [126-128]

INVAPP paragon [135]
CellProfiler [139]
CellProfiler schistosome
pipeline [140]

CellProfiler WormToolbox
[141]

C. elegans lifespan analysis

C. elegans high-throughput screen [119]

Brugia malayi (adults and microfilariae), Cooperia spp. L3, Dirofilaria
immitis microfilariae, Schistosoma mansoni [122,123]

Echinococcus multilocularis protoscoleces
multiple high-throughput library screens with H. contortus [129-134]
library screens with T. muris and C. elegans [39,135-137]

S. mansoni thioredoxin glutathione reductase inhibitor screening [140],
C. elegans live/dead high-throughput screening [141]

source code/description
(license)

paper supporting
information [117,118]

Github [121] (GPLv3)

Github [124] (GPLv2 or
later)

paper supporting
information [125]
paper supporting
information [126]
Github [138] (MIT license)

Github [142] (BSD license)
CellProfiler published
pipelines website [143]
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17

schistosomula ECgy 3.23 uM
adult EC5 6.43 pM (male)
5.68 uM (female)
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18

schistosomula ECsy 2.62 uM
adult ECsg 21.1 pM (male)
4.91 uM (female)

Figure 4: Inhibitors of S. mansoni thioredoxin glutathione reductase with anthelmintic activity [140].

Open tools for more detailed analysis of helminth
physiology

Sophisticated software and hardware methods have been de-
veloped to phenotype more subtle aspects of worm biology than
paralysis/motility/viability assays. These methods could form a
fruitful basis for finding compounds that are anthelmintic in
vivo but do not cause paralysis, perhaps involving aspects of the
interaction with the host, interfering with the secretion of pro-
teins, or other ways of damaging the worm [146]. They are also
useful for understanding in more detail the mechanism of action
of anthelmintic compounds, since it has been recognised that we
do not fully understand how many anthelmintics work — for ex-
ample the concentrations of macrocyclic lactones that paralyse
worms in vitro are much greater than the concentration

achieved by effective doses in vivo [147].

Several different open source systems have been established for
tracking the worm movement of C. elegans [148-151].
These systems typically measure a number of parameters
in addition to speed such as bending, reversals, and other
aspects of behaviour. CeleST is a similar open source quantita-
tive locomotion analysis system that measures aspects of
nematode swim behaviour [152]. Such systems have, to our
knowledge, not been utilised with helminth parasites, but such
studies would be fruitful to dissect anthelmintic actions in
detail.

Microfluidic systems have great potential to aid anthelmintic
discovery by enabling finely detailed individual worm longitu-
dinal microscopy. They have the potential to greatly reduce the
amount of compound required for a screen hence enabling
larger libraries to be economically screened. Encouragingly,
some authors have made their microfluidic chip designs openly
available, enabling utilisation and modification by other groups.
Stress-Chip is a chip that allows the isolation of a hundred
worms in single-worm arenas and monitoring as chemicals flow
over the worms [153]. The CAD file for producing the micro-

fluidic device has been made available on Figshare under the

CC BY 4.0 license [154]. Another 10-chamber worm isolation
microfluidic device has been reported, originally for the
imaging of worms to quantify the sleep behaviour during devel-
opment, and the CAD file is made available in the supporting
information [155].

The cost of the equipment is of course often a concern, espe-
cially for groups working on neglected tropical diseases and/or
in developing countries. Recently, an open hardware project has
reported Incu-Stream, a long-term imaging system capable of
automatically scanning wells across microplates and recording
videos of worm movement for further analysis [156]. The
authors provided a parts list with a total materials cost of $184.
Schematics, CAD files and the associated software are provi-
ded on Github [157].

Open approaches to developing therapeutics
The Pathogen Box project

The Pathogen Box is a 400 compound collection that was made
freely available by the Medicines for Malaria Venture (MMV),
a not-for-profit product development partnership organisation
[158]. The compounds have demonstrated activity against a
variety of neglected tropical disease pathogens [159]. This is an
open access science project, with the only condition that
researchers agree to share their results. This model follows on
from the successful MMV Malaria Box, where 55 groups
compiled results from over 290 different assays in a diversity of
screens related not only to malaria, but also to other neglected
tropical diseases [160].

The Pathogen Box project is currently active, but several groups
have already reported anthelmintic screens using this library
[129,135,161-165]. We have compiled the results from these
published screens in Figure 5. These results already highlight
how the open approach enables the library to be tested against a
variety of different organisms, enabling researchers to identify
and prioritise compounds active against multiple pathogens. For

example MMV690102, which was originally developed as an
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inhibitor of kinetoplastid dihydrofolate reductase [159], is
active against three trematode species (F. hepatica,
S. haematobium, S. mansoni [161]) and the cestode E. multiloc-
ularis [162].

Perhaps the most promising lead from the Pathogen Box so far
is tolfenpyrad, a pyrazole-5-carboxamide insecticide, which was
first identified as an anthelmintic with activity against
exsheathed L3 and L4 parasitic life stages of Haemonchus
contortus, a major parasite of ruminants [129]. Subsequent
studies have demonstrated activity against the model nematode
C. elegans [135,163]. Tolfenpyrad (19) was found to be highly
potent, with an ICsq value between 0.02 and 3 uM in various
H. contortus assays and 0.2 pM in a C. elegans assay [129,135].
A follow-up study identified two additional pyrazole-5-carbox-
amide compounds with activity against H. contortus, although
not improving on the potency of tolfenpyrad [166]. Tolfen-
pyrad acts in arthropods as an inhibitor of mitochondrial com-
plex I [167]. It will be interesting if a tolfenpyrad derivative can

Beilstein J. Org. Chem. 2020, 16, 1203—-1224.

progress to trials as it would be a new mechanism of action for
an anthelmintic, although some mitochondrial uncouplers, such
as the veterinary medicine closantel, are active against Fasciola
hepatica [168].

Recently, a medicinal chemistry effort was undertaken to deter-
mine the anthelmintic structure—activity relationships for tolfen-
pyrad (19) [169]. The main objective of this work was to reduce
the lipophilicity of tolfenpyrad 19, which was considered unde-
sirable for an orally administered agent, as typical of
anthelmintics, compared to a surface-applied pesticide. This
was accomplished through systematic alteration of the pyrazole-
5-carboxamide and phenoxybenzyloxy moieties within tolfen-
pyrad 19 (Table 4).

The systematic variation of the p-methylphenyl ring within 19
gave rise to a number of aromatic and heteroaromatic ana-
logues with similar levels of potency to tolfenpyrad (Table 4).
For instance, replacement of a methyl group with a chlorine

Table 4: Potent anthelmintic activity of tolfenpyrad (19) derivatives against H. contortus. The activity is shown for two in vitro assays: one for motility of
xL3 (exsheathed L3 stage worms) and a second for development of xL3 into the L4 stage [169].

ID structure

ICs0 (UM) in xL3 motility [Csq (UM) in L4

assay development assay
19
(tolfenpyrad) O\ /@/\ A e - 003
N‘N
o c
Cl
N-
o Me/ N
o ¢
Me N
21 A N™ Nkt 4.0 0.03
| H /
= N-—-
0 Me/ N
22 = S —Me 3.33 0.01
N‘N
23 M 0.38 0.0007
N‘N
24 \©\ /©/\ J\KS 0.7 0.0008
/
N‘N
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atom in 20 maintained similar levels of potency in both the xL3
motility assay and the L4 development assay. Similarly,
replacement of p-methylphenyl group with a 2-methylpyrid-5-yl
group in 21 largely maintained potency whilst lowering
lipophilicity. Conversely, modifications to the pyrazole group
gave rise to more dramatic changes in the potency. For instance,
while changing the ethyl substituent within 20 to a methyl sub-
stituent in 22 gave a slight increase in potency, removal of the
ethyl group in 23 showed a substantial improvement in the ac-
tivity, with ICsqy value for the xL3 motility improved to
0.38 uM and for the L4 development to 0.7 nM, with a similar
activity for the corresponding fluoropyrazole derivative 24.
These latter two compounds 23 and 24 showed high selectivity
for the parasite, with low or no cytotoxicity. The authors went
on to demonstrate that 24 showed a broad activity against other
nematode parasite models: H. polygyrus, A. ceylanicum and
T. muris. A broadly-related 1-methyl-1H-pyrazole-5-carbox-
amide series has also been investigated in detail, with com-
pounds identified that show substantially improved potency and
selectivity compared to tolfenpyrad [131,170].

Praziquantel (5)

Schistosomiasis is a major tropical disease resulting from the
infection by a trematode parasite, the blood fluke Schistosoma
mansoni [171]. After malaria, it is the next most devastating

parasitic disease with millions affected worldwide. No vaccine

Beilstein J. Org. Chem. 2020, 16, 1203—-1224.

is available but the drug praziquantel (5) is an effective treat-
ment. It is administered to children or whole communities often
in mass drug administration (MDA) programmes [172]. An
unfortunate drawback is that the drug is currently generated and
administered as a racemic mixture. The pure active enantiomer
would be preferable for several reasons, for example, the inac-
tive enantiomer has been linked to unwanted side-effects and

also contributes a very bitter taste.

With a view to finding a synthetic route to the active enantio-
mer, an open website was established, and several groups be-
came involved, both academic and commercial laboratories. As
a result, two different approaches to the problem emerged
where hitherto there had been none (Figure 6). The hydrolysis
to an intermediate amine 25 which was then resolved with a de-
rivative of tartaric acid was a solution that emerged from this
open source approach. Another solution was identified by a
sponsored contract research team. This involved a different
intermediate 26 which was then, in turn, resolved using tartaric
acid itself. A detailed account of the successful resolution
process has been published by Matthew Todd and colleagues
[173]. This has not yet led to the pure enantiomer being widely
available, but the setting up of an open science project was the
stimulus to the solution of a challenging problem. A Phase III
clinical trial testing safety and efficacy of L-praziquantel is cur-
rently recruiting (NCT03845140).

o
H resolution with dibenzoyl H O)‘\d
A NH tartaric acid NH
NWH NWH
O o
(rac)-PZQamine enantiopure
(rac)-25 PZQamine
(R)-25
O
i) Cl)l\/m
i) hydrolysis
| = H o resolution with o]
_— tartaric acid M )
B N = N
NH ~ nH
(rac)-intermediate enantiopure
(rac)-26 intermediate
(R)-26

Figure 6: Two resolution approaches to enantiopure PZQ (R)-5 discovered through A) open science and B) contract research [173].
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Conclusion

The recent years have seen unprecedented investment and effort
to distribute anthelmintic drugs to millions of people in mass
drug administration programmes. Onchocerciasis has been
eliminated from four countries in the Americas [57,58], with the
prospect of elimination from African countries in the coming
decade. These advances have been made with our existing
major anthelmintic drugs. In addition, there has been great
progress in finding more effective combinations of drugs, as
well as bringing forward trials of veterinary anthelmintics to
combat human disease. However, the risk of mass drug admin-
istration leading to resistance, as well as the growing under-
standing that existing drugs are not ideal for all human helminth
infections, has led to new focus on the need to develop new
anthelmintics. Unfortunately, there is limited economic incen-

tive to fund drug development adequately.

Open source science seeks to radically open up the drug devel-
opment process, with the goal of increasing the efficiency,
reducing the cost of research duplication, reducing the hoarding
of data and creating collaborative communities [174]. This ap-
proach has been applied to the discovery of compounds with
antimalarial activity [82]. In the field of anthelmintic drug
discovery there is much open science. In this review we particu-
larly highlight open-source assay systems that have been de-
veloped and openly released by several groups that enabled
compound screening against different helminth parasites. The
genomic information about helminths is rapidly expanding and
most is released freely and can be queried by scientists around
the world, helping to find new anthelmintic drug targets. Proba-
bly the weakest area for open science is compound screening
and subsequent drug development. The authors of this review
are probably as guilty as other members of the community.
Despite having good intentions and releasing screening data
with publications, we could all do more to release data soon
after collection, rather than being constrained by academic and
publishing timescales. The MMV Pathogen box has demon-
strated how many different groups around the world can be
recruited to screen compound libraries in their specialist assays,
and release data in a relatively timely manner — researchers are
asked, as a condition of receiving the compounds, to share any
data generated in the public domain within two years.

What are the barriers to making anthelmintic drug discovery
more open? Perhaps more could be done to facilitate data
sharing. While existing databases such as PubChem and
ChEMBL can be used to share screening data, a specialised
anthelmintic screening and target database could promote more
widespread use and release of data in a consistent and acces-
sible format, enabling more collaborative working and reuse of

data. Wider awareness and sharing of open data, will also help

Beilstein J. Org. Chem. 2020, 16, 1203—-1224.

spread the knowledge that data can be shared before publica-
tion, without diluting academic credit and still allowing later
publication. We encourage the community, particularly journal
editors and reviewers, to support open science. Ultimately, we
are all working in this field to find new medicines to help the
millions of people infected with helminths, and data sharing and
open science can only expedite this aim.
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