

Supporting Information
for
Synthesis of trifluoromethyl-substituted pyrazolo[4,3-*c*]pyridines –
sequential versus multicomponent reaction approach

Barbara Palka¹, Angela Di Capua^{1,2}, Maurizio Anzini², Gyté Vilkauskaité^{1,3}, Algirdas Šačkus³ and Wolfgang Holzer,^{1*}

Address: ¹Division of Drug Synthesis, Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria, ²Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100, Siena, Italy and

³Institute of Synthetic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania

Email: Wolfgang Holzer* - wolfgang.holzer@univie.ac.at

*Corresponding author

Experimental details and characterization data

1. General

Melting points were determined on a Reichert–Kofler hot-stage microscope and are uncorrected. Mass spectra were obtained on a Shimadzu QP 1000 instrument (EI, 70 eV) and on a Bruker maXis 4G instrument (ESI-TOF, HRMS). IR spectra were recorded on a Perkin-Elmer FTIR 1605 spectrophotometer. ¹H, ¹³C, ¹⁵N and ¹⁹F NMR spectra were recorded with a Bruker Avance III 400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C, 40 MHz for ¹⁵N, 376 MHz for ¹⁹F) or a Bruker Avance 500 spectrometer (500 MHz for ¹H, 125 MHz for ¹³C, 50 MHz for ¹⁵N, 470 MHz for ¹⁹F) at 297 K using “directly” detecting broadband observe (BBFO) probes. The center of the solvent signal was used as an internal standard which was related to TMS with δ 7.26 ppm (¹H in CDCl₃) and δ 77.0 ppm (¹³C in CDCl₃). ¹⁵N NMR spectra (gs-HMBC, gs-HSQC) were referenced against neat, external nitromethane, ¹⁹F NMR spectra by absolute referencing via \mathcal{E} ratio. Digital resolutions were 0.25 Hz/data point in the

¹H and 0.4 Hz/data point in the ¹H-coupled ¹³C-NMR spectra (gated decoupling). For the microwave reactions an Anton Paar Synthos 3000 oven was employed. For column chromatographic separations Merck Kieselgel 60 (70-230 mesh) was used. Light petroleum refers to the fraction with boiling point 40–65 °C. Yields are not optimized.

2. 5-Chloro-1-phenyl-3-(trifluoromethyl)-1H-pyrazole-4-carbaldehyde (2)

Phosphorus oxychloride (21.47 g, 140.0 mmol) was slowly added to dimethylformamide (2.56 g, 35.0 mmol) at 0 °C while stirring, then 1-phenyl-3-(trifluoromethyl)-1H-pyrazol-5-ol (**1**) (8.00 g, 35.0 mmol) was added and the mixture was heated at 95 °C for 4.5 h. After cooling to rt, it was slowly poured into ice-water (200 mL) under vigorous stirring, in the process an orange oil was formed. The mixture was extracted with EtOAc (3×50 mL), the combined organic phases were washed with brine, 5% aq NaHCO₃ solution and brine (each 30 mL), dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was subjected to column chromatography (SiO₂, EtOAc/light petroleum 1:1) to afford 8.65 g (90 %) of a colorless oil which slowly solidified while standing: mp 34–36 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.56 (m, 5H, Ph H), 10.06 (s, 1H, CHO) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 116.6 (²J_{C4,CHO} = 28.9 Hz, C-4), 120.1 (q, ¹J_{CF3} = 270.7 Hz, CF₃), 125.5 (Ph C-2,6), 129.5 (Ph C-3,5), 130.3 (Ph C-4), 133.7 (³J_{C5,CHO} = 3.3 Hz, C-5), 136.1 (Ph C-1), 142.9 (²J_{C3,CF3} = 40.0 Hz, ³J_{C3,CHO} = 2.0 Hz, C-3), 181.1 (¹J = 183.9 Hz, CHO) ppm. ¹⁹F NMR (470 MHz, CDCl₃): δ -61.9 (CF₃) ppm. IR (KBr): ν = 1700 (C=O) cm⁻¹. EIMS, *m/z* (rel. int.): 276 (28), 275 (44), 274 (80) [M]⁺, 273 (100), 255 (4), 245 (6), 209 (5), 136 (6), 77 (51), 51 (22).

3. General procedure for the preparation of alkynylaldehydes **4a-c**

Triethylamine (5.06 g, 6.95 mL, 50 mmol), the appropriate arylalkyne **3** (**3a**: ethynylbenzene, **3b**: 3-ethynylthiophene, **3c**: 1-hexyne) (15 mmol), Pd(PPh₃)₂Cl₂ (701 mg, 1 mmol) and CuI (380 mg, 2 mmol) were added under argon atmosphere to a solution of pyrazole **2** (2.746 g, 10 mmol) in dry dimethylformamide (30 mL) and the reaction mixture was stirred at 80°C for 2 h. Then the solvents were evaporated under reduced pressure, the residue was dissolved in CH₂Cl₂ (20 mL), water (40 mL) was added, and the mixture was extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was purified by column chromatography (SiO₂, EtOAc/light petroleum 1:7) to afford compounds **4** as the less retarded fractions and occasionally small amounts of compounds **8** as the more retarded ones. For the synthesis of **4c** the reaction mixture was stirred at 50°C for 1.5 h and for the chromatographic separation the eluent acetone/*n*-hexane 1:10 was used.

3.1. 1-Phenyl-5-(phenylethynyl)-3-(trifluoromethyl)-1H-pyrazole-4-carbaldehyde (**4a**)

Yield: 2.824 g (83%); light brown crystals; mp 77–78 °C. ^1H NMR (500 MHz, CDCl_3): δ 7.39 (m, 2H, CPh H-3,5), 7.45 (m, 1H, CPh H-4), 7.51 (m, 2H, CPh H-2,6), 7.52 (m, 1H, NPh H-4), 7.57 (m, 2H, NPh H-3,5), 7.82 (m, 2H, NPh H-2,6), 10.2 (q, J = 0.7 Hz, 1H, CHO) ppm. ^{13}C NMR (125 MHz, CDCl_3): δ 75.4 ($\text{C}\equiv\text{CPh}$), 102.3 ($^3J = 5.5$ Hz, $\text{C}\equiv\text{CPh}$), 120.2 (q, $^1J_{\text{CF}_3} = 270.6$ Hz, CF_3), 120.4 (CPh C-1), 122.3 ($^2J_{\text{C-4,CHO}} = 27.6$ Hz, $^3J_{\text{C-4,CF}_3} = 0.8$ Hz, C-4), 124.1 (NPh C-2,6), 128.7 (CPh C-3,5), 129.3 (NPh C-3,5), 129.6 (NPh C-4), 130.4 (CPh C-4), 130.6 ($^3J_{\text{C-5,CHO}} = 2.8$ Hz, C-5), 132.0 (CPh C-2,6), 138.0 (NPh C-1), 142.0 (q, $^2J_{\text{C-3,CF}_3} = 39.9$ Hz, $^3J_{\text{C-3,CHO}} = 2.9$ Hz, C-3), 181.9 ($^1J_{\text{CHO}} = 181.8$ Hz, CHO) ppm. ^{15}N NMR (50 MHz, CDCl_3): δ -159.0 (N-1) ppm, N-2 not detected. ^{19}F NMR (470 MHz, CDCl_3): δ -61.6 (CF_3) ppm. IR (KBr): ν = 2220 ($\text{C}\equiv\text{C}$), 1682 (C=O) cm^{-1} . EIMS, m/z (rel. int.): 340 (33) $[\text{M}]^+$, 339 (100) $[\text{M}-\text{H}]^+$, 263 (34), 253 (20), 77 (60), 51 (31). HRMS (ESI), m/z : calcd. for $\text{C}_{19}\text{H}_{11}\text{F}_3\text{N}_2\text{OH}^+$ 341.0896 $[\text{M}+\text{H}]^+$; found 341.0895.

3.2. 1-Phenyl-5-(3-thienylethynyl)-3-(trifluoromethyl)-1H-pyrazole-4-carbaldehyde (**4b**)

Yield: 2.875 g (83%); light brown crystals; mp 100–102 °C. ^1H NMR (500 MHz, CDCl_3): δ 7.17 (dd, $^3J_{\text{Th H-4,Th H-5}} = 5.0$ Hz, $^4J_{\text{Th H-2,Th H-4}} = 1.2$ Hz, 1H, Th H-4), 7.35 (dd, $^3J_{\text{Th H-4,Th H-5}} = 5.0$ Hz, $^4J_{\text{Th H-2,Th H-5}} = 3.0$ Hz, 1H, Th H-5), 7.51 (m, 1H, Ph H-4), 7.56 (m, 2H, Ph H-3,5), 7.65 (dd, $^4J_{\text{Th H-2,Th H-5}} = 3.0$ Hz, $^4J_{\text{Th H-2,Th H-4}} = 1.2$ Hz, 1H, Th H-2), 7.80 (m, 2H, Ph H-2,6), 10.15 (q, J = 0.8 Hz, 1H, CHO) ppm. ^{13}C NMR (125 MHz, CDCl_3): δ 75.2 (s, $\text{C}\equiv\text{CTh}$), 97.7 (m, $\text{C}\equiv\text{CTh}$), 119.6 ($^2J_{\text{Th C-3,Th H-2}} = 3.2$ Hz, $^2J_{\text{Th C-3,Th H-4}} = 5.0$ Hz, $^3J_{\text{Th C-3,Th H-5}} = 11.2$ Hz, Th C-3), 120.2 (q, $^1J_{\text{CF}_3} = 270.5$ Hz, CF_3), 122.3 ($^2J_{\text{C-4,CHO}} = 27.6$ Hz, $^3J_{\text{C-4,CF}_3} = 0.8$ Hz, C-4), 124.1 (Ph C-2,6), 126.3 ($^1J_{\text{Th C-5,Th H-5}} = 2.0$ Hz, $^2J_{\text{Th C-5,Th H-4}} = 1.2$ Hz, $^3J_{\text{Th C-5,Th H-2}} = \text{higher order, not detectable}$, Th C-5), 129.2 (Ph C-3,5), 129.46 ($^1J_{\text{Th C-4,Th H-4}} = 171.7$ Hz, $^2J_{\text{Th C-4,Th H-5}} = 5.5$ Hz, $^3J_{\text{Th C-4,Th H-2}} = 8.2$ Hz, Th C-4), 129.54 (Ph C-4), 130.6 (C-5), 132.1 ($^1J_{\text{Th C-2,Th H-2}} = 188.9$ Hz, $^3J_{\text{Th C-2,Th H-4}} = 8.4$ Hz, $^3J_{\text{Th C-2,Th H-5}} = 4.8$ Hz, Th C-2), 138.0 (Ph C-1), 142.0 (q, $^2J_{\text{C-3,CF}_3} = 39.7$ Hz, $^3J_{\text{C-3,CHO}} = 2.9$ Hz, C-3), 181.9 ($^1J_{\text{CHO}} = 181.9$ Hz, CHO) ppm. ^{15}N NMR (50 MHz, CDCl_3): δ -159.1 (N-1) ppm, N-2 not detected. ^{19}F NMR (470 MHz, CDCl_3): δ -61.5 (CF_3) ppm. EIMS, m/z (rel. int.): 346 (48) $[\text{M}]^+$, 345 (100) $[\text{M}-\text{H}]^+$, 77 (20), 51 (30). HRMS (ESI), m/z : calcd. for $\text{C}_{17}\text{H}_9\text{F}_3\text{N}_2\text{OSH}^+$ 347.0460 $[\text{M}+\text{H}]^+$; found 347.0462.

3.3. 5-(1-Hexyn-1-yl)-1-phenyl-3-(trifluoromethyl)-1H-pyrazole-4-carbaldehyde (**4c**)

Yield: 1.890 g (59%); brownish oil. ^1H NMR (400 MHz, CDCl_3): δ 0.91 (t, J = 7.4 Hz, 3H, CH_3CH_2), 1.39 (m, 2H, CH_2CH_3), 1.57 (m, 2H, $\text{CH}_3\text{CH}_2\text{CH}_2$), 2.49 (t, J = 7.0 Hz, 2H, $\text{C}\equiv\text{CCH}_2$), 7.50 (m, 1H, Ph H-4), 7.52 (m, 2H, Ph H-3,5), 7.73 (m, 2H, Ph H-2,6), 10.6 (q, J = 0.7 Hz, 1H, CHO) ppm. ^{13}C NMR (100 MHz, CDCl_3): δ 13.4 (CH_3CH_2), 19.4 ($\text{C}\equiv\text{CCH}_2$), 21.9 (CH_2CH_3), 29.7 ($\text{CH}_2\text{CH}_2\text{CH}_3$), 67.2 ($^3J_{\text{C}\equiv\text{CCH}_2} = 4.4$ Hz, $\text{C}\equiv\text{CCH}_2$), 105.5 ($\text{C}\equiv\text{CCH}_2$), 120.2 (q, $^1J_{\text{CF}_3} = 270.4$ Hz, CF_3), 122.2 ($^2J_{\text{C-4,CHO}} = 27.3$ Hz, $^3J_{\text{C-4,CF}_3} = 0.9$ Hz, C-4), 124.2 (Ph C-2,6), 129.1 (Ph C-3,5), 129.4 (Ph C-4), 131.6 (C-5), 138.0 (Ph C-1), 141.6 (q, $^2J_{\text{C-3,CF}_3} = 39.8$ Hz, $^3J_{\text{C-3,CHO}} = 3.4$ Hz, C-3), 182.1 ($^1J_{\text{CHO}} = 181.4$ Hz, CHO) ppm. ^{15}N NMR (40 MHz,

CDCl_3): δ -158.8 (N-1) ppm, N-2 not detected. ^{19}F NMR (376 MHz, CDCl_3): δ -61.9 (CF_3) ppm. EIMS, m/z (rel. int.): 320 (0.4) $[\text{M}]^+$, 278 (20), 277 (53), 162 (36), 105 (54), 92 (22), 91 (100), 79 (42), 78 (45), 77 (58), 65 (20), 63 (21), 51 (20), 41 (37). HRMS (ESI), m/z : calcd. for $\text{C}_{19}\text{H}_{12}\text{F}_3\text{N}_3\text{H}^+$ 321.1209 $[\text{M}+\text{H}]^+$; found 321.1210.

3.4. 5-(2-Oxo-2-phenylethyl)-1-phenyl-3-(trifluoromethyl)-1H-pyrazole-4-carbaldehyde (8a)

Yield: 286 mg (8%), brownish oil. ^1H NMR (500 MHz, CDCl_3): δ 4.68 (s, 2H, CH_2CO), 7.46 (m, 2H, NPh H-2,6), 7.48 (m, 3H, NPh H-3,4,5), 7.49 (m, 2H, CPh H-3,5), 7.62 (m, 1H, CPh H-4), 7.96 (m, 2H, CPh H-2,6), 10.09 (q, $J = 0.9$ Hz, 1H, CHO) ppm. ^{13}C NMR (125 MHz, CDCl_3): δ 36.4 (CH_2CO), 118.5 ($^2J_{\text{C-4,CHO}} = 26.2$ Hz, C-4), 120.9 (q, $^1J_{\text{CF}_3} = 270.4$ Hz, CF_3), 125.8 (NPh C-2,6), 128.3 (CPh C-2,6), 128.8 (CPh C-3,5), 129.7 (NPh C-3,5), 130.2 (NPh C-4), 133.9 (CPh C-4), 135.8 (CPh C-1), 137.0 (NPh C-1), 142.8 (C-5), 143.6 (q, $^2J_{\text{C-3,CF}_3} = 38.9$ Hz, C-3), 184.3 ($^1J_{\text{CHO}} = 181.6$ Hz, $^4J_{\text{CHO,CF}_3} = 1.7$ Hz, CHO), 193.5 (CO) ppm. ^{15}N NMR (50 MHz, CDCl_3): δ -157.2 (N-1) ppm, N-2 not detected. ^{19}F NMR (470 MHz, CDCl_3): δ -59.5 (CF_3) ppm. HRMS (ESI), m/z : calcd. for $\text{C}_{19}\text{H}_{13}\text{F}_3\text{N}_3\text{O}_2\text{H}^+$ 359.1002 $[\text{M}+\text{H}]^+$; found 359.1000.

3.5. 5-(2-Oxohexyl)-1-phenyl-3-(trifluoromethyl)-1H-pyrazole-4-carbaldehyde (8c)

Yield: 338 mg (10%), yellowish oil. ^1H -NMR (400 MHz, CDCl_3): δ 0.90 (t, $J = 7.1$ Hz, 3H, CH_3CH_2), 1.28 (m, 2H, CH_2CH_3), 1.58 (m, 2H, $\text{CH}_3\text{CH}_2\text{CH}_2$), 2.60 (m, 2H, COCH_2CH_2), 4.06 (s, 2H, CH_2CO), 7.41 (m, 2H, Ph H-2,6), 7.52 (m, 3H, Ph H-3,4,5), 10.07 (q, $J = 0.9$ Hz, 1H, CHO) ppm. ^{13}C NMR (100 MHz, CDCl_3): δ 13.7 (CH_3CH_2), 22.1 (CH_2CH_3), 25.5 ($\text{CH}_2\text{CH}_2\text{CH}_3$), 39.8 (CH_2CO), 42.9 (COCH_2CH_2), 118.2 (C-4), 120.8 (q, $^1J_{\text{CF}_3} = 270.4$ Hz, CF_3), 125.9 (Ph C-2,6), 129.6 (Ph C-3,5), 130.2 (Ph C-4), 138.1 (Ph C-1), 142.6 (C-5), 143.5 (q, $^2J_{\text{C3,CF}_3} = 38.9$ Hz, C-3), 184.3 (CHO), 204.2 (CO). ^{15}N NMR (40 MHz, CDCl_3): δ -157.6 (N-1) ppm, N-2 not detected. ^{19}F NMR (376 MHz, CDCl_3): δ -59.6 (d, $J = 0.9$ Hz, CF_3) ppm. HRMS (ESI), m/z : calcd. for $\text{C}_{17}\text{H}_{17}\text{F}_3\text{N}_2\text{O}_2\text{H}^+$ 339.1315 $[\text{M}+\text{H}]^+$; found 339.1313.

4. General procedure for the preparation of pyrazolo[4,3-c]pyridines 5a-c

Method A: The appropriate 5-alkynylpyrazole **4a-c** (1 mmol) was dissolved in dimethylformamide (12 mL) and *tert*-butylamine (730 mg, 10 mmol) was added. The reaction was performed under microwave irradiation conditions with an Anton Paar Synthos 3000 reactor and P-Program (800 W, p-Rate 2.0 bar s^{-1} , IR: 150°C, p: 80 bar for 2 h). After completion, the solvents were removed under reduced pressure and the residue was purified by column chromatography (SiO_2 , EtOAc/light petroleum 1:10).

Method B: Pyrazole **2** (275 mg, 1 mmol) was dissolved in dimethylformamide (12 mL). The appropriate arylacetylene **3a-c** (2 mmol), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (42 mg, 0.06 mmol) and *tert*-butylamine (730 mg, 10 mmol) were added under argon. The reaction was performed under

microwave irradiation conditions with an Anton Paar Synthos 3000 reactor and P-Program (800 W, p-Rate 2.0 bar s⁻¹, IR: 150°C, p: 80 bar for 2 h). After completion, the solvents were removed under reduced pressure and the residue was purified by column chromatography (SiO₂, EtOAc/light petroleum 1:10).

Method C: A mixture of **8** (0.3 mmol) and ammonium acetate (150 mg, 1.93 mmol) in acetic acid (5 mL) was heated at 80 °C for 1 h with stirring. After the solution reached room temperature it was poured onto ice-water (20 mL). The mixture was exhaustively extracted with EtOAc, the combined organic phases were washed with H₂O and brine and dried over anhydrous Na₂SO₄. The solvents were removed under reduced pressure and the residue was subjected to column chromatography (SiO₂, EtOAc/light petroleum 1:10).

4.1. 1,6-Diphenyl-3-(trifluoromethyl)-1H-pyrazolo[4,3-c]pyridine (**5a**)

Yield: method A: 240 mg (71%), method B: 300 mg (89%), method C: 72 mg (71%); yellow crystals; mp 121–123 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.45 (m, 1H, CPh H-4), 7.51 (m, 2H, CPh H-3,5), 7.52 (m, 1H, NPh H-4), 7.63 (m, 2H, NPh H-3,5), 7.74 (m, 2H, NPh H-2,6), 7.96 (d, *J* = 1.1 Hz, 1H, H-7), 8.04 (m, 2H, CPh H-2,6), 9.34 (s, 1H, H-4). ¹³C NMR (125 MHz, CDCl₃): δ 101.4 (¹J_{C-7,H-7} = 166.7 Hz, ⁴J_{C-7,H-4} = 1.8 Hz, C-7), 117.4 (C-3a), 121.2 (q, ¹J_{CF₃} = 269.6 Hz, CF₃), 123.4 (NPh C-2,6), 127.4 (CPh C-2,6), 128.6 (NPh C-4), 128.9 (CPh C-3,5), 129.3 (CPh C-4), 129.9 (NPh C-3,5), 136.7 (q, ²J_{C-3,CF₃} = 39.7 Hz, ³J_{C-3,H-4} = 0.9 Hz, C-3), 138.2 (NPh C-1), 138.9 (CPh C-1), 144.1 (²J_{C-7a,H-7} = 1.1 Hz, ³J_{C-7a,H-4} = 6.2 Hz, C-7a), 144.5 (¹J_{C-4,H-4} = 185.8 Hz, C-4), 154.9 (C-6). ¹⁵N NMR (50 MHz, CDCl₃): δ -184.5 (N-1), -84.1 (N-5) ppm, N-2 not detected. ¹⁹F NMR (470 MHz, CDCl₃): δ -60.8 (d, *J* = 0.9 Hz, CF₃). EIMS, *m/z* (rel. int.): 340 (21), 339 (100) [M]⁺, 338 (81) [M-H]⁺, 270 (23). HRMS (ESI), *m/z*: calcd. for C₁₉H₁₂F₃N₃H⁺ 340.1056 [M+H]⁺; found 340.1059.

4.2. 1-Phenyl-6-(3-thienyl)-3-(trifluoromethyl)-1H-pyrazolo[4,3-c]pyridine (**5b**)

Yield: method A: 180 mg (52%), method B: 175 mg (51%); light brown crystals; mp 118–121 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.42 (dd, ³J_{Th H-4,Th H-5} = 5.1 Hz, ⁴J_{Th H-2,Th H-5} = 3.1 Hz, 1H, Th H-5), 7.52 (m, 1H, Ph H-4), 7.63 (m, 2H, Ph H-3,5), 7.67 (dd, ³J_{Th H-4,Th H-5} = 5.1, ⁴J_{Th H-2,Th H-4} = 1.3 Hz, 1H, Th H-4), 7.73 (m, 2H, Ph H-2,6), 7.82 (d, *J* = 1.2 Hz, 1H, H-7), 8.04 (dd, ⁴J_{Th H-2,Th H-5} = 3.1 Hz, ⁴J_{Th H-2,Th H-4} = 1.3 Hz, 1H, Th H-2), 9.26 (qd, *J* = 1.2, 0.9 Hz, 1H, H-4). ¹³C NMR (100 MHz, CDCl₃): δ 100.6 (¹J_{C-7,H-7} = 166.6 Hz, ⁴J_{C-7,H-4} = 1.8 Hz, C-7), 117.2 (C-3a), 121.2 (q, ¹J_{CF₃} = 269.7 Hz, CF₃), 123.4 (Ph C-2,6), 124.7 (¹J_{Th C-2,Th H-2} = 185.8 Hz, ³J_{Th C-2,Th H-4} = 8.6 Hz, ³J_{Th C-2,Th H-5} = 4.6 Hz, Th C-2), 126.1 (¹J_{Th C-4,Th H-4} = 167.2 Hz, ²J_{Th C-4,Th H-5} = 5.1 Hz, ³J_{Th C-4,Th H-2} = 8.5 Hz, Th C-4), 126.7 (¹J_{Th C-5,Th H-5} = 185.7 Hz, ²J_{Th C-5,Th H-4} = 7.7 Hz, ³J_{Th C-5,Th H-2} = 6.0 Hz, Th C-5), 128.6 (Ph C-4), 129.9 (Ph C-3,5), 136.8 (q, ²J_{C-3,CF₃} = 39.8 Hz, C-3), 138.3 (Ph C-1), 141.5 (Th C-3), 144.0 (C-7a), 144.6 (¹J_{C-4,H-4} = 185.6 Hz, ⁴J_{C-4,H-7} = 1.3 Hz, ⁴J_{C-4,CF₃} = 0.9 Hz, C-4), 150.7 (C-6). ¹⁵N NMR (40 MHz, CDCl₃): δ -184.6 (N-1), -85.1 (N-5) ppm, N-2 not detected. ¹⁹F NMR (376 MHz, CDCl₃): δ -60.8 (d, *J* = 0.9 Hz,

CF_3). EIMS, m/z (rel. int.): 346 (23), 345 (100) $[M]^+$, 344 (33) $[M-H]^+$, 339 (21), 77 (20). HRMS (ESI), m/z : calcd. for $C_{17}H_{10}F_3N_3SH^+$ 346.0620 $[M+H]^+$; found 346.0621.

4.3. 6-Butyl-1-phenyl-3-(trifluoromethyl)-1H-pyrazolo[4,3-c]pyridine (**5c**)

Yield: method B: 294 mg (92%), method C: 67 mg (70%); brownish oil. 1H NMR (500 MHz, $CDCl_3$): δ 0.94 (t, J = 7.4 Hz, 3H, CH_3CH_2), 1.40 (m, 2H, CH_2CH_3), 1.76 (m, 2H, $CH_3CH_2CH_2$), 2.94 (m, 2H, CCH_2), 7.43 (s, 1H, H-7), 7.48 (m, 1H, Ph H-4), 7.59 (m, 2H, Ph H-3,5), 7.69 (m, 2H, Ph H-2,6), 9.19 (s, 1H, H-4). ^{13}C NMR (125 MHz, $CDCl_3$): δ 13.9 (CH_3CH_2), 22.5 (CH_2CH_3), 32.2 ($CH_2CH_2CH_3$), 38.4 (CCH_2), 103.1 ($^1J_{C-7,H-7}$ = 166.6 Hz, C-7), 116.8 (C-3a), 121.2 (q, $^1J_{CF_3}$ = 269.6 Hz, CF_3), 123.2 (Ph C-2,6), 128.4 (Ph C-4), 129.8 (Ph C-3,5), 136.6 (q, $^2J_{C-3,CF_3}$ = 39.7 Hz, C-3), 138.3 (Ph C-1), 143.8 ($^3J_{C-7a,H-4}$ = 6.3 Hz, C-7a), 144.2 ($^1J_{C-4,H-4}$ = 184.8 Hz, C-4), 159.7 (C-6). ^{15}N NMR (50 MHz, $CDCl_3$): δ -185.9 (N-1), -80.8 (N-5) ppm, N-2 not detected. ^{19}F NMR (470 MHz, $CDCl_3$): δ -60.8 (d, J = 0.8 Hz, CF_3). EIMS, m/z (rel. int.): 319 (1.4) $[M]^+$, 278 (16), 277 (100), 77 (23). HRMS (ESI), m/z : calcd. for $C_{17}H_{16}F_3N_3H^+$ 320.1369 $[M+H]^+$; found 320.1371.

5. General procedure for the preparation of oximes **6a-c**

The appropriate pyrazole aldehyde **4a-c** (1 mmol) was dissolved in EtOH (5 mL) and hydroxylamine hydrochloride (70 mg, 1 mmol) and sodium acetate (136 mg, 1 mmol) were added. The reaction mixture was stirred at room temperature for 1 h, then it was poured into ice-cold water. The solid product was filtered off and purified by column chromatography (SiO_2 , EtOAc/light petroleum 1:5).

5.1. (E)-1-Phenyl-5-(phenylethynyl)-3-(trifluoromethyl)-1H-pyrazole-4-carbaldehyde oxime (**6a**)

Yield 282 mg (79%); light yellow, crystals; mp 128–130 °C. 1H NMR (500 MHz, $CDCl_3$): δ 7.35 (m, 2H, CPh H-3,5), 7.40 (m, 1H, CPh H-4), 7.46 (m, 2H, CPh H-2,6), 7.48 (m, 1H, NPh H-4), 7.54 (m, 2H, NPh H-3,5), 7.81 (m, 2H, NPh H-2,6), 8.29 (s, 1H, NCH), 8.92 (br s, 1H, OH). ^{13}C NMR (125 MHz, $CDCl_3$): δ 76.4 (s, $C\equiv CPh$), 101.3 (m, $C\equiv CPh$), 116.3 ($^2J_{C-4,NCH}$ = 7.3 Hz, $^3J_{C-4,CF_3}$ = 1.1 Hz, C-4), 120.7 (q, $^1J_{CF_3}$ = 269.8 Hz, CF_3), 121.0 (CPh C-1), 124.1 (NPh C-2,6), 126.1 ($^3J_{C-5,NCH}$ = 4.7 Hz, C-5), 128.5 (CPh C-3,5), 129.07 (NPh C-4), 129.1 (NPh C-3,5), 129.8 (CPh C-4), 131.7 (CPh C-2,6), 138.5 (NPh C-1), 140.1 (q, $^2J_{C-3,CF_3}$ = 38.5 Hz, $^3J_{C-3,NCH}$ = 3.5 Hz, C-3), 140.4 (NCH) ^{15}N NMR (50 MHz, $CDCl_3$): δ -160.0 (N-1), -15.6 (NOH) ppm, N-2 not detected. ^{19}F NMR (470 MHz, $CDCl_3$): δ -61.7 (CF_3). EIMS, m/z (rel. int.): 355 (12) $[M]^+$, 354 (23) $[M-H]^+$, 339 (27), 338 (50), 269 (27), 268 (23), 77 (100), 69 (59), 51 (44). HRMS (ESI), m/z : calcd. for $C_{19}H_{12}F_3N_3OH^+$ 356.1005 $[M+H]^+$; found 356.1003.

5.2. (E)-1-*Phenyl*-5-(3-*thienylethynyl*)-3-(trifluoromethyl)-1*H*-pyrazole-4-carbaldehyde oxime (**6b**)

Yield 221 mg (61%); light brown crystals; mp 115–117 °C. ^1H NMR (500 MHz, CDCl_3): δ 7.13 (m, $^3J_{\text{Th H-4,Th H-5}} = 5.0$, $^4J_{\text{Th H-2,Th H-4}} = 1.2$ Hz, 1H, Th H-4), 7.31 (m, $^3J_{\text{Th H-4,Th H-5}} = 5.0$ Hz, $^4J_{\text{Th H-2,Th H-5}} = 3.0$ Hz, 1H, Th H-5), 7.48 (m, 1H, Ph H-4), 7.53 (m, 2H, Ph H-3,5), 7.59 (m, $^4J_{\text{Th H-2,Th H-5}} = 3.0$ Hz, $^4J_{\text{Th H-2,Th H-4}} = 1.2$ Hz, 1H, Th H-2), 7.78 (m, 2H, Ph H-2,6), 8.28 (s, 1H, NCH), 9.20 (br s, NOH). ^{13}C NMR (125 MHz, CDCl_3): δ 76.1 (s, $\text{C}\equiv\text{CTh}$), 96.8 (m, $\text{C}\equiv\text{CTh}$), 116.1 ($^2J_{\text{C-4,NCH}} = 7.4$ Hz, $^3J_{\text{C-4,CF}_3} = 1.1$ Hz, C-4), 120.1 ($^2J_{\text{Th C-3,Th H-2}} = 3.2$ Hz, $^2J_{\text{Th C-3,Th H-4}} = 4.9$ Hz, $^3J_{\text{Th C-3,Th H-5}} = 11.1$ Hz, Th C-3), 120.7 (q, $^1J_{\text{CF}_3} = 269.8$ Hz, CF_3), 124.1 (Ph C-2,6), 125.9 ($^1J_{\text{Th C-5,Th H-5}} = 189.2$ Hz, $^2J_{\text{Th C-5,Th H-4}} = 5.9$ Hz, $^3J_{\text{Th C-5,Th H-2}} = 5.9$ Hz, Th C-5), 126.0 ($^3J_{\text{C-5,NCH}} = 4.8$ Hz, C-5) 129.1 (Ph C-3,4,5), 129.5 ($^1J_{\text{Th C-4,Th H-4}} = 171.1$ Hz, $^2J_{\text{Th C-4,Th H-5}} = 6.0$ Hz, $^3J_{\text{Th C-4,Th H-2}} = 8.3$ Hz, Th C-4), 131.2 ($^1J_{\text{Th C-2,Th H-2}} = 188.9$ Hz, $^3J_{\text{Th C-2,Th H-4}} = 8.4$ Hz, $^3J_{\text{Th C-2,Th H-5}} = 4.8$ Hz, Th C-2), 138.5 (Ph C-1), 140.2 (q, $^2J_{\text{C-3,CF}_3} = 38.3$ Hz, $^3J_{\text{C-3,NCH}} = 3.3$ Hz, C-3), 140.3 (NCH). ^{15}N NMR (50 MHz, CDCl_3): δ –159.9 (N-1), –16.9 (NOH) ppm, N-2 not detected. ^{19}F NMR (470 MHz, CDCl_3): δ –61.6 (CF_3). EIMS, m/z (rel. int.): 361 (17) $[\text{M}]^+$, 345 (30), 344 (100), 275 (47), 274 (32), 77 (49). HRMS (ESI), m/z : calcd. for $\text{C}_{17}\text{H}_{10}\text{F}_3\text{N}_3\text{OSH}^+$ 362.0569 $[\text{M}+\text{H}]^+$; found 362.0569.

5.3. (E)-1-[5-(1-*Hexyn-1-yl*)-1-*phenyl*-3-(trifluoromethyl)-1*H*-pyrazole-4-carbaldehyde oxime (**6c**)

Yield 209 mg (64%); light brown crystals; mp 70–71 °C. ^1H NMR (400 MHz, CDCl_3): δ 0.89 (t, $J = 7.3$ Hz, 3H, CH_3CH_2), 1.37 (m, 2H, CH_2CH_3), 1.54 (m, 2H, $\text{CH}_3\text{CH}_2\text{CH}_2$), 2.46 (t, $J = 7.1$ Hz, 2H, $\text{C}\equiv\text{CCH}_2$), 7.46 (m, 1H, Ph H-4), 7.49 (m, 2H, Ph H-3,5), 7.72 (m, 2H, Ph H-2,6), 8.18 (s, 1H, NOH), 8.21 (q, $J = 0.5$ Hz, 1H, NCH). ^{13}C NMR (100 MHz, CDCl_3): δ 13.5 (CH_3CH_2), 19.4 ($\text{C}\equiv\text{CCH}_2$), 21.9 (CH_2CH_3), 29.8 ($\text{CH}_2\text{CH}_2\text{CH}_3$), 68.1 ($\text{C}\equiv\text{CCH}_2$), 104.0 ($\text{C}\equiv\text{CCH}_2$), 115.9 (C-4), 120.8 (q, $^1J_{\text{CF}_3} = 296.9$ Hz, CF_3), 124.1 (Ph C-2,6), 126.9 (C-5), 128.9 (Ph C-4), 129.0 (Ph C-3,5), 138.6 (Ph C-1), 139.9 (q, $^2J_{\text{C-3,CF}_3} = 38.5$ Hz, C-3), 140.7 ($^1J_{\text{NCH}} = 168.8$ Hz, NCH). ^{15}N NMR (40 MHz, CDCl_3): δ –160.2 (N-1), –15.3 (NOH) ppm, N-2 not detected. ^{19}F NMR (376 MHz, CDCl_3): δ –61.9 (d, $J = 0.5$ Hz, CF_3). EIMS, m/z (rel. int.): 335 (11) $[\text{M}]^+$, 293 (74), 277 (32), 276 (100), 77 (25). HRMS (ESI), m/z : calcd. for $\text{C}_{17}\text{H}_{16}\text{F}_3\text{N}_3\text{OH}^+$ 336.1318 $[\text{M}+\text{H}]^+$; found 336.1323.

6. General procedure for the preparation of pyrazolo[4,3-*c*]pyridine 5-oxides **7a-c**

Method A: AgOTf (13 mg, 0.05 mmol) was added to a solution of the appropriate pyrazole oxime **6a-c** (1 mmol) in dichloromethane (5 mL) and the reaction mixture was stirred at room temp. for 1.5 h. The mixture was directly loaded onto a silica gel column and eluted with dichloromethane/methanol 9:1.

Method B: A mixture of oxime **9** (145 mg, 0.5 mmol), the appropriate alkyne **3** (0.6 mmol), $\text{Pd}(\text{OAc})_2$ (5 mol %), PPh_3 (20 mol %), K_2CO_3 (276 mg, 3 mmol) in anhydrous DMF (6 mL) was treated under microwave irradiation (100 W) for 1 h at 80 °C. Then the solvent

was evaporated under reduced pressure, the residue was dissolved in dichloromethane (30 mL), water (20 mL) was added, and the mixture was extacted with dichloromethane (3×30 mL). The combined organic layers were washed with brine and dried over anhydrous Na_2SO_4 . The solvent was evaporated and the residue was purified by column chromatography (SiO_2 , acetone/light petroleum 1:4).

6.1. 1,6-Diphenyl-3-(trifluoromethyl)-1H-pyrazolo[4,3-c]pyridine 5-oxide (7a)

Yield: method A: 336 mg (94%), method B: 53 mg (30%); colorless crystals; mp 126–128 °C. ^1H NMR (500 MHz, CDCl_3): δ 7.50 (m, 3H, CPh H-3,4,5), 7.51 (m, 1H, NPh H-4), 7.60 (m, 2H, NPh H-3,5), 7.69 (m, 2H, NPh H-2,6), 7.70 (d, J = 0.7 Hz, 1H, H-7), 7.75 (m, 2H, CPh H-2,6), 8.99 (t, J = 0.8 Hz, 1H, H-4). ^{13}C NMR (125 MHz, CDCl_3): δ 108.8 ($^1J_{\text{C-7,H-7}} = 170.9$ Hz, $^4J_{\text{C-7,H-4}} = 1.2$ Hz, C-7), 118.2 (C-3a), 120.7 (q, $^1J_{\text{CF}_3} = 269.6$ Hz, CF_3), 123.2 (NPh C-2,6), 128.4 (CPh C-3,5), 129.1 (NPh C-4), 129.6 (CPh C-2,6), 130.0 (CPh C-4), 130.1 (NPh C-3,5), 131.5 (C-4), 132.6 (CPh C-1), 134.8 (q, $^2J_{\text{C-3,CF}_3} = 40.3$ Hz, $^3J_{\text{C-3,H-4}} = 1.7$ Hz, C-3), 135.6 ($^2J_{\text{C-7a,H-7}} = 1.8$ Hz, $^3J_{\text{C-7a,H-4}} = 7.1$ Hz, C-7a), 149.9 (C-6). ^{15}N NMR (50 MHz, CDCl_3): δ –182.2 (N-1), –99.7 (N-5) ppm, N-2 not detected. ^{19}F NMR (470 MHz, CDCl_3): δ –61.0 (d, J = 0.8 Hz, CF_3). EIMS, m/z (rel. int.): 355 (73), 354 (100), 327 (22), 326 (29), 301 (39), 77 (25). HRMS (ESI), m/z : calcd. for $\text{C}_{19}\text{H}_{12}\text{F}_3\text{N}_3\text{OH}^+$ 356.1005 [M+H]⁺; found 356.1009

6.2. 1-Phenyl-6-(3-thienyl)-3-(trifluoromethyl)-1H-pyrazolo[4,3-c]pyridine 5-oxide (7b)

Yield: method A: 306 mg (85%), method B: 51 mg (28%); light brown crystals; mp 179–181 °C. ^1H NMR (500 MHz, CDCl_3): δ 7.42 (dd, $^3J_{\text{Th H-4,Th H-5}} = 5.1$, $^4J_{\text{Th H-2,Th H-5}} = 3.1$ Hz, 1H, Th H-5), 7.53 (m, 1H, Ph H-4), 7.62 (dd, $^3J_{\text{Th H-4,Th H-5}} = 5.1$, $^4J_{\text{Th H-2,Th H-4}} = 1.3$ Hz, 1H, Th H-4), 7.63 (m, 2H, Ph H-3,5), 7.69 (m, 2H, Ph H-2,6), 7.86 (d, J = 0.7 Hz, 1H, H-7), 8.48 (dd, $^4J_{\text{Th H-2,Th H-5}} = 3.1$, $^4J_{\text{Th H-2,Th H-4}} = 1.3$ Hz, 1H, Th H-2), 8.98 (quint, J = 0.7 Hz, 1H, H-4). ^{13}C NMR (125 MHz, CDCl_3): δ 106.8 ($^1J_{\text{C-7,H-7}} = 170.0$ Hz, $^4J_{\text{C-7,H-4}} = 1.2$ Hz, C-7), 117.5 (C-3a), 120.7 (q, $^1J_{\text{CF}_3} = 269.5$ Hz, $^4J_{\text{CF}_3,\text{H-4}} = 0.7$ Hz, CF_3), 123.2 (Ph C-2,6), 125.5 ($^1J_{\text{Th C-5,Th H-5}} = 186.8$ Hz, $^2J_{\text{Th C-5,Th H-4}} = 7.4$ Hz, $^3J_{\text{Th C-5,Th H-2}} = 6.0$ Hz, Th C-5), 127.8 ($^1J_{\text{Th C-4,Th H-4}} = 169.6$ Hz, $^2J_{\text{Th C-4,Th H-5}} = 5.4$ Hz, $^3J_{\text{Th C-4,Th H-2}} = 8.5$ Hz, Th C-4), 129.1 (Ph C-4), 129.5 ($^1J_{\text{Th C-2,Th H-2}} = 190.2$ Hz, $^3J_{\text{Th C-2,Th H-4}} = 8.4$ Hz, $^3J_{\text{Th C-2,Th H-5}} = 4.5$ Hz, Th C-2), 130.1 (Ph C-3,5), 131.8 ($^1J_{\text{C-4,H-4}} = 192.2$ Hz, C-4), 132.0 (Th C-3), 134.7 (q, $^2J_{\text{C-3,CF}_3} = 40.3$ Hz, $^3J_{\text{C-3,H-4}} = 1.9$ Hz, C-3), 135.6 ($^2J_{\text{C-7a,H-7}} = 2.1$ Hz, $^3J_{\text{C-7a,H-4}} = 7.2$ Hz, C-7a), 137.8 (Ph C-1), 144.9 (C-6). ^{15}N NMR (50 MHz, CDCl_3): δ –183.0 (N-1), –101.0 (N-5) ppm, N-2 not detected. ^{19}F NMR (470 MHz, CDCl_3): δ –61.0 (d, J = 0.85 Hz, CF_3). EIMS, m/z (rel. int.): 362 (20), 361 (100) [M]⁺, 333 (23), 332 (85), 328 (31), 288 (97), 77 (38). HRMS (ESI), m/z : calcd. for $\text{C}_{17}\text{H}_{10}\text{F}_3\text{N}_3\text{OSH}^+$ 362.0569 [M+H]⁺; found 362.0574.

6.3. 6-Butyl-1-phenyl-3-(trifluoromethyl)-1H-pyrazolo[4,3-c]pyridine 5-oxide (7c)

Yield: method A: 284 mg (85%); brownish oil. ^1H NMR (400 MHz, CDCl_3): δ 0.98 (t, $J = 7.3$ Hz, 3H, CH_3CH_2), 1.48 (m, 2H, CH_2CH_3), 1.74 (m, 2H, $\text{CH}_3\text{CH}_2\text{CH}_2$), 3.04 (m, 2H, CCH_2), 7.52 (m, 2H, H-7, Ph H-4), 7.62 (m, 2H, Ph H-3,5), 7.67 (m, 2H, Ph H-2,6), 8.92 (s, 1H, H-4). ^{13}C NMR (100 MHz, CDCl_3): δ 13.8 (CH_3CH_2), 22.5 (CH_2CH_3), 28.8 ($\text{CH}_2\text{CH}_2\text{CH}_3$), 31.2 (CCH_2), 106.2 ($^1J_{\text{C-7,H-7}} = 169.3$ Hz, C-7), 117.4 (C-3a), 120.7 (q, $^1J_{\text{CF}_3} = 269.6$ Hz, CF_3), 123.2 (Ph C-2,6), 129.0 (Ph C-4), 131.0 ($^1J_{\text{C-4,H-4}} = 191.3$ Hz, C-4), 130.1 (Ph C-3,5), 134.8 (q, $^2J_{\text{C-3,CF}_3} = 40.2$ Hz, C-3), 135.6 ($^2J_{\text{C-7a,H-7}} = 1.7$ Hz, $^3J_{\text{C-7a,H-4}} = 7.2$ Hz, C-7a), 137.8 (Ph C-1), 153.2 (C-6). ^{15}N NMR (40 MHz, CDCl_3): δ -183.5 (N-1), -99.1 (N-5) ppm, N-2 not detected. ^{19}F NMR (376 MHz, CDCl_3): δ -61.1 (d, $J = 0.9$ Hz, CF_3). EIMS, m/z (rel. int.): 335 (12) $[\text{M}]^+$, 318 (23), 293 (100), 277 (71), 276 (95), 77 (31), 43 (20). HRMS (ESI), m/z : calcd. for $\text{C}_{17}\text{H}_{16}\text{F}_3\text{N}_3\text{OH}^+$ 336.1318 $[\text{M}+\text{H}]^+$; found 336.1321.

6.4. (E)-1-[5-Chloro-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-4-yl]-N-hydroxymethanimine (9)

Carbaldehyde **2** (275 mg, 1 mmol) was dissolved in EtOH (5 mL) and hydroxylamine hydrochloride (70 mg, 1 mmol) and sodium acetate (136 mg, 1 mmol) were added. The reaction mixture was stirred at room temperature for 1 h, then it was poured into ice-cold water. The solid product was filtered off and purified by column chromatography (SiO_2 , EtOAc/light petroleum 1:5) to afford 223 mg (77%) of colorless crystals of mp 161-162 °C. ^1H NMR (400 MHz, CDCl_3): δ 7.50-7.58 (m, 5H, Ph H), 8.19 (s, 1H, NCH), 8.74 (m, 1H, OH) ppm. ^{13}C NMR (100 MHz, CDCl_3): δ 110.7 ($^2J_{\text{C-4,NCH}} = 7.3$ Hz, $^3J_{\text{C-4,CF}_3} = 0.9$ Hz, C-4), 120.5 (q, $^1J_{\text{CF}_3} = 270.2$ Hz, CF_3), 125.4 (Ph C-2,6), 128.6 (C-5), 129.4 (Ph C-3,5), 129.8 (Ph C-4), 136.8 (Ph C-1), 139.7 ($^1J_{\text{NCH}} = 169.9$ Hz, $^2J_{\text{NCH,OH}} = 10.2$ Hz, NCH), 140.7 ($^2J_{\text{C-3,CF}_3} = 38.8$ Hz, $^3J_{\text{C3,NCH}} = 3.2$ Hz, C-3) ppm. ^{15}N NMR (40 MHz, CDCl_3): δ -164.3 (N-1), -15.8 (NOH) ppm, N-2 not detected. ^{19}F NMR (376 MHz, CDCl_3): δ -62.3 (CF_3) ppm.