Supporting Information

for

Exploring architectures displaying multimeric presentations of a trihydroxypiperidine iminosugar

Camilla Matassini¹, Stefania Mirabella¹, Andrea Goti¹, Inmaculada Robina², Antonio J. Moreno-Vargas² and Francesca Cardona^{*,1}

Address: ¹Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy and ²Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, c/ Prof. García González 1, E-41012, Sevilla, Spain.

Email: Francesca Cardona - francesca.cardona@unifi.it

*Corresponding author

Characterization data, ¹H NMR and ¹³C NMR spectra of synthesized compounds and IC₅₀ graphics of compounds 11·HCl and 15

Table of contents

Figure S1. ¹ H NMR spectrum of compound 7	S3
Figure S2. ¹³ C NMR spectra of compound 7	S4
Figure S3. ¹ H NMR spectrum of compound 9	S5
Figure S4. ¹³ C NMR spectra of compound 9	S6
Figure S5. ¹ H NMR spectrum of compound 8	S7
Figure S6. ¹³ C NMR spectra of compound 8	S8
Figure S7. ¹ H NMR spectrum of compound 11	S9
Figure S8. ¹³ C NMR spectra of compound 11	S10
Figure S9. ¹ H NMR spectrum of compound 12	S11
Figure S10. ¹³ C NMR spectra of compound 12	S12
Figure S11. ¹ H NMR spectrum of compound 11-HCI	S13
Figure S12. ¹³ C NMR spectra of compound 11.HCI	S14
Figure S13. ¹ H NMR spectrum of compound 14	S15
Figure S14. ¹³ C NMR spectra of compound 14	S16
Figure S15. ¹ H NMR spectrum of compound 15	S17
Figure S16. ¹³ C NMR spectra of compound 15	S18
Figure S17. IC ₅₀ of compound 11 towards amyloglucosidase.	S19
Figure S18. IC ₅₀ of compound 15 towards amyloglucosidase.	S19

Figure S1: ¹H NMR spectrum of compound **7** (400 MHz, CDCl₃).

Figure S2: ¹³C NMR spectrum of compound **7** (50 MHz, CDCl₃).

Figure S3: ¹H NMR spectrum of compound **9** (400 MHz, CDCl₃).

Figure S4: ¹³C NMR spectrum of compound **9** (50 MHz, CDCl₃).

Figure S5: ¹H NMR spectrum of compound **8** (400 MHz, D₂O).

Figure S6: ¹³C NMR spectrum of compound **8** (50 MHz, D_2O).

Figure S7: ¹H NMR spectrum of compound **11** (400 MHz, D_2O).

Figure S8: 13 C NMR spectrum of compound **11** (100 MHz, D₂O).

Figure S9: ¹H NMR spectrum of compound **12** (400 MHz, CDCl₃).

Figure S10: ¹³C NMR spectrum of compound **12** (100 MHz, CDCl₃).

Figure S11: ¹H NMR spectrum of compound **11**·HCI (400 MHz, D₂O).

Figure S12: ¹³C NMR spectrum of compound **11**·HCI (100 MHz, D_2O).

Figure S13: ¹H NMR spectrum of compound **14** (400 MHz, CD₃OD).

Figure S14: ¹³C NMR spectrum of compound **14** (100 MHz, CD₃OD).

Figure S15: ¹H NMR spectrum of compound **15** (400 MHz, CD₃OD).

Figure S16: ¹³C NMR spectrum of compound **15** (50 MHz, CD_3OD).

Glycosidase inhibition assays

The experiments were performed essentially as previously described.¹ Briefly, 0.01-0.5 units/mL of enzyme and inhibitor were pre-incubated for 5 min at rt, and the reaction started by addition of the substrate, buffered to the optimal pH of the enzyme. After 20 min of incubation at 37 °C, the reaction was stopped by addition of sodium borate buffer pH 9.8. The *p*-nitrophenolate formed was measured by visible absorption spectroscopy at 405 nm.

Figure S17: IC₅₀ of compound **11** towards amyloglucosidase.

Figure S18: IC₅₀ of compound **15** towards amyloglucosidase.

¹ (a) Saul, R.; Chambers, J. P.; Molyneux, R. J.; Elbein, A. D. *Arch. Biochem. Biophys.* **1983**, *221*, 593–597; (b) Brandi, A.; Cicchi, S.; Cordero, F. M.; Frignoli, R.; Goti, A.; Picasso, S.; Vogel, P. *J. Org. Chem.* **1995**, *60*, 6806–6812.