Supporting Information

for

Novel amide-functionalized chloramphenicol base bifunctional organocatalysts for enantioselective alcoholysis of *meso*-cyclic anhydrides

Lingjun Xu, Shuwen Han, Linjie Yan, Haifeng Wang, Haihui Peng* and Fener Chen*

Address: Department of Chemistry, Fudan University, Shanghai 200433, PR China.

Email: Haihui Peng - haihui_peng@fudan.edu.cn; Fener Chen - rfchen@fudan.edu.cn *Corresponding author

Detailed experimental procedures, ¹H NMR files

Content

1 General procedure	S2
2. Preparation of the chloramphenicol base amide bifunctional organocatal	ystsS2–11
3. Typical procedure for alcoholysis of <i>meso</i> -cyclic anhydride	S11
4. Scale-up methanolysis of <i>meso</i> -cyclic anhydride 8h (4.26 g scale)	S11
5. Characterization of the monoesters	S12–18
6. Catalytic asymmetric synthesis of (<i>S</i>)-GABOB by 7i	S19–23
7. References	S23
8. Copies of NMR spectra and chiral HPLC spectra	S24–79

1. General procedure

Unless otherwise specified, all reagents and solvents were purchased from commercial sources and used as received. ¹H (400 MHz) and ¹³C (100 MHz) NMR were recorded on a Bruker Avance 400 spectrometer in CDCl₃ or d_6 -DMSO using tetramethylsilane (TMS) as internal standards. Coupling constant (J) values are given in Hz. Multiplicities are designated by the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; br, broad; m, multiplet. Melting points were measured on WRS-1B digital melting-point apparatus. Products were purified by flash column chromatography on silica gel purchased from Qingdao Haiyang Chemical Co. Ltd. Optical rotations were measured by a Rudolph AUTOPOL I Automatic Polarimeter. EIMS were recorded on an Agilent 6890N/5975 spectrometer and ESI-MS were recorded on a Waters Micromass Quattro Micro spectrometer. HRMS were recorded on a Bruker micrOTOF spectrometer. HPLC analysis were performed with Daicel Chiralpak AD-H column (25 cm \times 4.6 mm \times 5 μ m), Chiralpak OD-H column (25 cm \times 4.6 mm \times 5 μm) and Chiralpak IA-H column (25 cm \times 4.6 mm \times 5 μm).

2. Preparation of the chloramphenicol base amide bifunctional organocatalysts General procedure

To a solution of chloramphenicol base (1 g, 2 mmol) and in CH_2Cl_2 (20 mL) was added the solution of Et_3N (1.15 mL, 8 mmol) in CH_2Cl_2 (10 mL) under N_2 atmosphere. After cooling to 0 °C, R³COCl (3 mmol) was added dropwise over 20 min. After addition, the reaction mixture was stirred for 3 h at room temperature and then quenched by water (10 mL). The organic phase was washed with NaHCO₃ (20 mL), H₂O (20 mL), brine (20mL), dried over Na₂SO₄ and concentrated under reduced pressure to give a yellow solid. The crude product was purified by flash chromatography using PE/EA 10:1 to give product **7**.

N-((1*R*,2*R*)-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-(trifluoromethyl)benzamide (7a)

Yellow solid, yield 80%; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.20$ (s, 1H), 8.06 (d, J = 8.6 Hz, 2H), 7.90 (d, J = 8.1 Hz, 2H), 7.72 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.5 Hz, 2H), 7.28-7.23 (m, 15H), 4.69 (d, J = 10.3 Hz, 1H), 3.30-3.22 (m, 2H), 3.01-2.97 (m, 1H), 2.46 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 165.9$, 148.8, 147.0, 143.0, 137.1, 133.2, 128.5, 128.2, 127.7, 127.4, 127.1, 125.6, 125.6, 123.6, 87.6, 67.7, 58.17, 54.1, 41.4 ppm; HRMS (ESI⁺) calcd for C₃₈H₃₄F₃N₃O₄ [M+H]⁺ = 654.2580, found: 654.2574.

N-((1*R*,2*R*)-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-nitrobenzamide (7b)

Yellow solid, yield 73%; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.30$ (d, J = 8.7 Hz, 2H), 8.26 (s, 1H), 8.07 (d, J = 8.6 Hz, 2H), 7.94 (d, J = 8.7 Hz, 2H), 7.37 (d, J = 8.6 Hz, 2H), 7.26-7.23 (m, 15H), 4.69 (dd, J = 10.2, 1.9 Hz, 1H), 3.31-3.22 (m, 2H), 3.01-2.96 (m, 1H), 2.47 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 165.2$, 149.7, 148.5, 147.0, 143.0, 139.4, 128.5, 128.2, 128.1, 127.7, 127.2, 123.8, 123.7, 87.6, 67.6, 58.1, 54.2, 41.4 ppm; HRMS (ESI⁺) calcd for $C_{37}H_{34}N_4O_6$ [M+H]⁺ = 631.2557, found: 631.2568.

N-((1*R*,2*R*)-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluorobenzamide (7c)

Yellow solid, yield 85%; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.12$ (s, 1H), 8.06 (d, J = 8.6 Hz, 2H), 7.82-7.78 (m, 2H), 7.38 (d, J = 8.6 Hz, 2H), 7.25 (m, 15H), 7.11 (t, J = 8.6 Hz, 2H), 4.70 (d, J = 10.3 Hz, 1H), 3.29-3.22 (m, 2H), 3.02-2.99 (m, 1H), 2.46 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 166.2$, 149.1, 146.9, 143.0, 129.4, 129.3, 128.5, 128.3, 127.7, 127.1, 123.6, 115.7, 115.4, 87.6, 67.6, 58.1, 53.9, 41.3 ppm; HRMS (ESI⁺) calcd for C₃₇H₃₄FN₃O₄ [M+H]⁺ = 604.2612, found: 604.2625.

4-Chloro-*N*-((1*R*,2*R*)-2-(dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)benzamide (7d)

Yellow solid, yield 80%; ¹H NMR (400 MHz, CDCl₃) δ = 8.13 (s, 1H), 8.06 (d, *J* = 8.6 Hz, 2H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 7.37 (d, *J* = 8.6 Hz, 2H), 7.28-7.23 (m, 15H), 4.69 (d, *J* = 8.7 Hz, 1H), 3.29-3.21 (m, 2H), 3.02-2.97 (m, 1H), 2.46 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 166.2, 149.0, 146.9, 143.0, 137.9, 132.2, 128.8, 128.5, 128.4, 129.2, 127.7, 127.1, 123.6, 87.6, 67.6, 58.1, 54.0,

41.3 ppm; HRMS (ESI⁺) calcd for $C_{37}H_{34}ClN_3O_4$ [M+H]⁺ = 620.2316, found: 620.2305.

4-Bromo-*N*-((1*R*,2*R*)-2-(dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)benzamide (7e)

Yellow solid, yield 88%; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.09$ (s, 1H), 8.05 (d, J = 8.6 Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.5 Hz, 2H), 7.27-7.23 (m, 15H), 4.66 (d, J = 10.1 Hz, 1H), 3.29-3.20 (m, 2H), 2.99-2.95 (m, 1H), 2.45 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 166.3$, 149.0, 146.9, 143.0, 132.7, 131.8, 128.6, 128.5, 128.2, 127.7, 127.1, 126.4, 123.6, 87.6, 67.7, 58.1, 54.0, 41.4 ppm; HRMS (ESI⁺) calcd for C₃₇H₃₄BrN₃O₄ [M+H]⁺ = 664.1811, found: 664.1809.

N-((1*R*,2*R*)-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)benzamide (7f)

Yellow solid, yield 75%; ¹H NMR (400 MHz, CDCl₃) δ = 8.15 (s, 1H), 8.06 (d, *J* = 8.6 Hz, 2H), 7.80 (d, *J* = 7.3 Hz, 2H), 7.52 (d, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 8.7 Hz, 2H), 7.27-7.23 (m, 15H), 4.72 (dd, *J* = 10.4, 2.3 Hz, 1H), 3.30-3.21 (m, 2H), 3.03-2.99 (m, 1H), 2.47 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 167.2, 149.3, 146.8, 143.1, 133.9, 131.6, 128.5, 128.3, 127.7, 127.1, 127.0, 123.6,

87.5, 67.7, 58.2, 53.9, 41.3 ppm; HRMS (ESI⁺) calcd for $C_{37}H_{35}N_3O_4$ [M+H]⁺ = 586.2706, found: 586.2705.

N-((1*R*,2*R*)-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-methylbenzamide (7g)

Yellow solid, yield 77%; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.12$ (s, 1H), 8.05 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.6 Hz, 2H), 7.27-7.23 (m, 17H), 4.72 (d, J = 10.4 Hz, 1H), 3.28 – 3.21 (m, 2H), 3.03 – 3.01 (m, 1H), 2.46 (s, 6H), 2.41 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 167.3$, 149.4, 146.8, 143.1, 142.1, 131.0, 129.2, 128.5, 128.3, 127.7, 127.1, 127.0, 123.6, 87.5, 67.6, 58.2, 53.8, 41.3, 21.4 ppm; HRMS (ESI⁺) calcd for C₃₈H₃₇N₃O₄ [M+H]⁺ = 600.2862, found: 600.2859.

N-((1*R*,2*R*)-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-methoxybenzamide (7h)

Yellow solid, yield 68%; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.02$ (d, J = 8.6 Hz, 2H), 7.98 (s, 1H), 7.74 (d, J = 8.6 Hz, 2H), 7.35 (d, J = 8.5 Hz, 2H), 7.24-7.21 (m, 15H), 6.92 (d, J = 8.6 Hz, 2H), 4.65 (d, J = 10.3 Hz, 1H), 3.84 (s, 3H), 3.26-3.18 (m, 2H), 2.96-2.93 (m, 1H), 2.43 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 167.1$, 162.4, 148.7, 147.1, 142.9, 129.0, 128.7, 128.6, 127.9, 127.3, 126.1, 123.8, 113.7, 87.7, 66.7, 57.9, 55.3, 53.3, 41.0 ppm; HRMS (ESI⁺) calcd for $C_{38}H_{37}N_3O_5$ [M+H]⁺ = 616.2811, found: 616.2804.

N-((1*R*,2*R*)-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-3,5-bis-(trifluoromethyl)benzamide (7i)

White solid, yield 90%; ¹H NMR (400 MHz, CDCl₃) δ = 8.26 (br, 1H), 8.20 (s, 2H), 8.06 (d, *J* = 8.6 Hz, 2H), 8.02 (s, 1H), 7.38 (d, *J* = 8.6 Hz, 2H), 7.24-7.23 (m, 15H), 4.70 (d, *J* = 10.7 Hz, 1H), 3.30-3.22 (m, 2H), 3.04-3.03 (m, 1H), 2.47 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 164.5, 148.3, 147.1, 143.0, 136.0, 132.4, 132.0, 128.5, 128.3, 127.7, 127.2, 127.2, 123.7, 87.6, 67.6, 60.3, 54.2, 41.3 ppm; HRMS (ESI⁺) calcd for C₃₉H₃₃F₆N₃O₄ [M+H]⁺ = 722.2454, found: 722.2455.

N-((1*R*,2*R*)-1-(4-Nitrophenyl)-2-(pyrrolidin-1-yl)-3-(trityloxy)propyl)-3,5-bis-(trifluoromethyl)benzamide (7j)

Light yellow solid, yield 92%; ¹H NMR (400 MHz, CDCl₃) δ = 8.37 (br, 1H), 8.16 (s, 2H), 8.08 (d, *J* = 8.4 Hz, 2H), 7.99 (s, 1H), 7.41 (d, *J* = 8.3 Hz, 2H), 7.21-7.19 (m, 15H), 5.05 (d, *J* = 5.5 Hz, 1H), 3.36-3.33 (m, 1H), 3.26-3.20 (m, 2H), 2.64 (d, *J* = 28.8 Hz, 4H), 1.73-1.69 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 164.4, 148.6, 147.2, 143.2, 136.4, 132.5, 132.2, 128.6, 128.1, 128.0, 127.4, 124.3, 123.8, 121.6,

87.8, 65.1, 60.1, 54.6, 49.7, 23.7 ppm; HRMS (ESI⁺) calcd for $C_{41}H_{35}F_6N_3O_4$ [M+H]⁺ = 748.2610, found: 748.2592.

N-((1*R*,2*R*)-1-(4-Nitrophenyl)-2-(piperidin-1-yl)-3-(trityloxy)propyl)-3,5-bis-(trifluoromethyl)benzamide (7k)

Light yellow solid, yield 89%; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.72$ (s, 1H), 8.29 (s, 2H), 8.07-8.02 (m, 3H), 7.36 (d, J = 8.2 Hz, 2H), 7.25-7.21 (m, 15H), 4.60 (d, J = 10.4 Hz, 1H), 3.34-3.30 (m, 1H), 3.24 (d, J = 10.3 Hz, 1H), 2.94 (s, 1H), 2.80-2.76 (m, 2H), 2.60 (s, 2H), 1.63 (s, 2H), 1.51 (s, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 163.8$, 148.7, 147.2, 143.2, 136.0, 132.6, 132.4, 128.7, 128.5, 127.9, 127.3, 125.2, 124.5, 123.9, 87.8, 69.1, 58.8, 53.6, 27.4, 27.0, 24.5 ppm; HRMS (ESI⁺) calcd for C₄₂H₃₇F₆N₃O₄ [M+H]⁺ = 762.2767, found: 762.2731.

N-((1*R*,2*R*)-2-Morpholino-1-(4-nitrophenyl)-3-(trityloxy)propyl)-3,5-bis(trifluoromethyl)benzamide (7l)

Yellow solid, yield 82%; ¹H NMR (400 MHz, CDCl₃) δ = 8.38 (s, 1H), 8.26 (s, 2H), 8.07 (s, 1H), 8.04 (s, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.25-7.21 (m, 15H), 4.70 (d, *J* = 10.4 Hz, 1H), 3.76-3.73 (m, 2H), 3.73-3.68 (m, 2H), 3.35-3.31 (m, 1H), 3.28-3.26 (m, 2H), 3.28-3.28 (m, 2H), 3.28 (m, 2H), 3.28-3.28 (m, 2H), 3.28-3.28 (m, 2

1H), 3.00-2.98 (m, 1H), 2.85 (m, 2H), 2.72-2.71 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 163.8, 148.1, 147.3, 143.1, 135.8, 132.4, 128.6, 128.4, 127.9, 127.4, 127.2, 124.3, 123.9, 88.0, 68.4, 68.0, 58.9, 53.3, 27.0 ppm; HRMS (ESI⁺) calcd for C₄₁H₃₅F₆N₃O₅ [M+Na]⁺ = 786.2379, found: 786.2349.

N-((1*R*,2*R*)-3-((*tert*-Butyldimethylsilyl)oxy)-2-(dimethylamino)-1-(4-nitrophenyl)propyl)-3,5-bis(trifluoromethyl)benzamide (7m)

White solid, yield 88%; ¹H NMR (400 MHz, CDCl₃) δ = 8.23-8.20 (m, 4H), 8.00 (s, 1H), 7.64 (d, *J* = 8.3 Hz, 2H), 5.10 (d, *J* = 9.5 Hz, 1H), 3.83 (d, *J* = 11.4 Hz, 1H), 3.37 (dd, *J* = 11.4, 4.1 Hz, 1H), 2.51 (s, 6H), 1.26 (s, 1H), 0.91 (s, 9H), 0.01 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 164.8, 147.5, 136.3, 132.5, 132.2, 128.6, 127.5, 125.3, 123.9, 121.6, 68.2, 56.7, 52.9, 41.8, 25.9, 18.2, -5.5 ppm; HRMS (ESI⁺) calcd for C₂₆H₃₃F₆N₃O₄Si [M+H]⁺ = 594.2223, found: 594.2209.

N-((1*R*,2*R*)-3-((*tert*-Butyldimethylsilyl)oxy)-1-(4-nitrophenyl)-2-(pyrrolidin-1-yl)propyl)-3,5-bis(trifluoromethyl)benzamide (7n)

7n

Yellow solid, yield 85%; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.39$ (s, 1H), 8.24 (s, 2H), 8.20 (d, J = 8.1 Hz, 2H), 8.03 (s, 1H), 7.60 (d, J = 8.0 Hz, 2H), 5.29 (s, 1H), 3.71-3.63 (m, 2H), 3.04 (s, 1H), 2.80 (s, 2H), 2.68 (s, 2H), 1.83-1.77 (m, 4H), 0.88 (s, 9H), 0.01 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 164.1$, 148.5, 147.2, 136.3, 132.4, 132.1, 127.9, 127.3, 123.6, 121.5, 66.5, 59.8, 53.5, 50.2, 25.8, 23.5, 18.1, -5.6 ppm; HRMS (ESI⁺) calcd for $C_{28}H_{35}F_6N_3O_4Si [M+H]^+ = 620.2379$, found: 620.2377. *N*-((1*R*,2*R*)-3-((*tert*-Butyldimethylsilyl)oxy)-1-(4-nitrophenyl)-2-(piperidin-1-yl)propyl)-3,5-bis(trifluoromethyl)benzamide (70)

Light yellow solid, yield 83%; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.68$ (s, 1H), 8.31 (s, 2H), 8.20 (d, J = 8.1 Hz, 2H), 8.03 (s, 1H), 7.60 (d, J = 8.1 Hz, 2H), 4.94 (d, J = 10.3 Hz, 1H), 3.79 (d, J = 11.2 Hz, 1H), 3.42 (dd, J = 11.2, 4.3 Hz, 1H), 2.86-2.81 (m, 2H), 2.74 (d, J = 8.8 Hz, 1H), 2.62 (s, 2H), 1.66 (s, 2H), 1.54 (s, 4H), 0.90 (s, 9H), 0.01 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 164.0$, 149.0, 147.4, 136.1, 132.6, 132.2, 128.4, 127.3, 125.3, 123.9, 121.7, 70.0, 57.3, 52.2, 27.5, 25.9, 24.6, 18.1, -5.5 ppm; HRMS (ESI⁺) calcd for C₂₉H₃₇F₆N₃O₄Si [M+H]⁺ = 634.2536, found: 634.2521. *N*-((1*R*,2*R*)-3-((*tert*-Butyldimethylsilyl)oxy)-2-morpholino-1-(4-nitrophenyl)-propyl)-3,5-bis(trifluoromethyl)benzamide (7p)

Light yellow solid, yield 80%; ¹H NMR (400 MHz, CDCl₃) δ = 8.35 (s, 1H), 8.28 (s, 2H), 8.21 (d, *J* = 8.0 Hz, 2H), 8.04 (s, 1H), 7.61 (d, *J* = 8.1 Hz, 2H), 5.07 (d, *J* = 10.2 Hz, 1H), 3.84 (d, *J* = 11.4 Hz, 1H), 3.76 (d, *J* = 6.0 Hz, 2H), 3.68 (s, 2H), 3.41-3.38 (m, 1H), 2.87 (s, 2H), 2.79 (d, *J* = 10.1 Hz, 1H), 2.74-2.70 (m, 2H), 0.91 (s, 9H), 0.02

(s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 164.1, 148.3, 147.5, 136.0, 132.7, 132.3, 128.5, 127.2, 123.9, 121.6, 69.2, 68.0, 57.2, 52.0, 50.4, 25.9, 18.1, -5.5 ppm; HRMS (ESI⁺) calcd for C₂₈H₃₅F₆N₃O₅Si [M+Na]⁺ = 658.2148, found: 658.2124.

3. Typical procedure for alcoholysis of meso-cyclic anhydride

An alcohol (5 mmol) was added dropwise at room temperature under nitrogen to a stirred solution of an anhydride **8** (0.5 mmol) and **7i** (36.1 mg, 0.05 mmol) in MTBE (20 mL). The reaction was monitored by using thin-layer chromatography. Once anhydride consumption was complete, the solvent was evaporated under reduced pressure and the residue was dissolved in CH_2Cl_2 (10 mL). The solution was washed with saturated Na₂CO₃ (2 × 5 mL) and the combined aqueous phase were acidified with excess 2 N HCl, followed by extraction with EtOAc (3 × 10 mL). The combined organic phases were dried over Na₂SO₄ and concentrated to afford the corresponding monoester, without further purification by flash chromatography.

4. Scale-up methanolysis of *meso*-cyclic anhydride 8h (4.26 g scale)

MeOH (10.1 mL, 250 mmol) was added dropwise at 0 °C under nitrogen to a stirred solution of *meso*-cyclic anhydride **8h** (4.26 g, 25 mmol) and **7i** (1.80 g, 2.5 mmol) in MTBE (2 L). The reaction was monitored by using thin-layer chromatography. After 96 h, the anhydride consumption was complete. The solvent was evaporated under reduced pressure and the residue was dissolved in CH₂Cl₂ (300 mL). The solution was washed with saturated Na₂CO₃ (3 × 150 mL) and the combined aqueous layers were acidified with excess 2 N HCl, followed by extraction with EtOAc (3 × 300 mL). The combined organic layers were dried over Na₂SO₄ and concentrated to afford the corresponding monoester **9h**, without further purification by flash chromatography. Monoester **9h**, light yellow oil, yield 97%, 81% ee; $[\alpha]_D^{25} = -3.5$ (*c* = 1.0 in CHCl₃); Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 95/5, Flow rate: 0.6 mL/min, UV detection at 220 nm, T = 30 °C, retention time: t(minor) = 50.6 min, t(major) = 56.1 min.

5. Characterization of the monoesters

All monoesters except **9h** are known compounds and their NMR spectra data were identical to those reported in the literature.^[2-7] The enantiomeric excess of the monoester was determined by chiral HPLC, analysis of the diastereoisomeric mixture of the corresponding amide ester derived from (*S*)-1-phenylethylamine according to the reported procedure.^[2]

Thionyl chloride (0.6 mmol, 45 μ L) was added to a solution of the momoester (0.5 mmol) in dry toluene (10 mL) at 0 °C. The mixture was stirred at 0 °C for 30 minutes, and triethylamine (1.5 mmol, 0.14 mL) and (*S*)-1- phenylethylamine (0.55 mmol, 71 μ L) were added successively. The mixture was stirred at 0 °C for 1 h and at room temperature for an additional 1 h. The residue was then dissolved in ethyl acetate (50 mL). The organic solution was washed with HCl (2 N, 50 mL), saturated aq NaHCO₃ (50 mL), water (50 mL) and brine (50 mL). The organic phase was dried over Na₂SO₄ and concentrated in vacuo to give the diastereoisomeric mixture. The enantiomeric excess was determined by comparison of chiral HPLC.

(1*S*,6*R*)-6-(Methoxycarbonyl)cyclohex-3-enecarboxylic acid (9a)

9a

White solid, yield 98%, 95% *ee*; $[\alpha]_D^{25} = -4.3$ (*c* = 1.0 in CHCl₃) (lit.^[2] $[\alpha]_D^{20} = -4.9$ (*c* = 1.5 in CHCl₃)); Chiral HPLC (Chiralcel OD-H column), Hexane/*i*-PrOH = 93/7, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(major) = 33.1 min, t(minor) = 45.3 min; ¹H NMR (400 MHz, CDCl₃) δ = 4.93 (dd, *J* = 24.1, 3.6 Hz, 2H), 3.67 (s, 3H), 3.05-2.99 (m, 2H), 1.84-1.82 (m, 2H), 1.56-1.51 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 179.7, 173.7, 125.1, 125.0, 51.9, 39.6, 39.4, 25.7, 25.5 ppm.

(1*S*,2*R*)-2-(Methoxycarbonyl)cyclohexanecarboxylic acid (9b)

Colorless oil, yield 97%, 90% *ee*; $[\alpha]_D^{25} = +3.6$ (*c* = 1.0 in CHCl₃) (lit.^[2] $[\alpha]_D^{20} = +3.5$ (*c* = 1.43 in CHCl₃)); Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 93/7, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(minor) = 23.2 min, t(major) = 29.9 min; ¹H NMR (400MHz, DMSO): δ = 3.67 (s, 3H), 2.84 (s, 2H), 2.00 (br, 2H), 1.78 (br, 2H), 1.54-1.47 (m, 2H), 1.42-1.39 (m, 2H) ppm; ¹³C NMR (100 MHz, DMSO) δ = 180.2, 174.2, 51.8, 42.6, 42.4, 26.3, 26.0, 23.8, 23.7 ppm.

(1*S*,2*R*,3*S*,4*R*)-3-(Methoxycarbonyl)-7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid (9c)

White solid, yield 94%, 73% *ee*; $[\alpha]_D^{25} = +6.3$ (*c* = 1.0 in CHCl₃) (lit.^[2] $[\alpha]_D^{20} = +8.7$ (*c* = 1.08 in CHCl₃)); Chiral HPLC (Chiralcel OD-H column), Hexane/*i*-PrOH = 85/15, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(major) = 23.8 min, t(minor) = 37.8 min; ¹H NMR (400 MHz, CDCl₃) δ = 7.69 (br, 1H), 6.49-6.45 (m, 2H), 5.29 (d, *J* = 16.7 Hz, 2H), 3.71 (s, 3H), 2.88-2.83 (m, 2H) ppm; ¹³C NMR (100 MHz, DMSO) δ = 173.0, 172.5, 137.1, 137.0, 80.4, 80.1, 51.9, 47.0, 46.3 ppm.

(1*R*,2*S*,3*R*,4*S*)-3-(Methoxycarbonyl)bicyclo[2.2.1]hept-5-ene-2-carboxylic acid (9d)

White solid, yield 95%, 84% *ee*; $[\alpha]_D^{25} = -5.8$ (*c* = 1.0 in CHCl₃) (lit.^[2] $[\alpha]_D^{20} = -7.4$ (*c* = 1.53 in CHCl₃)); Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 96/4, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(minor)

= 47.8 min, t(major) = 50.7 min; ¹H NMR (400 MHz, CDCl₃) δ = 6.31 (dd, *J* = 5.1, 2.9 Hz, 1H), 6.22 (dd, *J* = 5.3, 2.8 Hz, 1H), 3.59 (s, 3H), 3.35-3.26 (m, 2H), 3.18 (d, *J* = 12.9 Hz, 2H), 1.49 (d, *J* = 8.6 Hz, 1H), 1.34 (d, *J* = 8.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 178.3, 172.9, 135.5, 134.3, 51.5, 48.7, 48.2, 48.0, 46.5, 46.1 ppm.

(R)-5-Methoxy-3-methyl-5-oxopentanoic acid (9e)

Yellow oil, yield 87%, 81% *ee*; $[\alpha]_D^{25} = +3.1$ (*c* = 1.0 in CHCl₃) (lit.^[2] $[\alpha]_D^{20} = +1.1$ (*c* = 1.36 in CHCl₃)); Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 96/4, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(minor) = 38.3 min, t(major) = 44.1 min; ¹H NMR (400 MHz, CDCl₃) δ = 3.67 (s, 3H), 2.50-2.39 (m, 3H), 2.31-2.24 (m, 2H), 1.05 (d, *J* = 6.3 Hz, 3H) ppm; ¹³C NMR (100 MHz, DMSO) δ = 173.8, 172.8, 51.6, 40.6, 40.3, 27.3, 19.8 ppm.

(R)-3-Ethyl-5-methoxy-5-oxopentanoic acid (9f)

Yellow oil, yield 91%, 80% *ee*; $[\alpha]_D^{25} = -1.36$ (*c* = 1.0 in CHCl₃) (lit.^[8] $[\alpha]_D^{20} = -0.92$ (*c* = 1.0 in CHCl₃)); Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 94/6, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(minor) = 26.7 min, t(major) = 30.3 min; ¹H NMR (400 MHz, CDCl₃) δ = 3.67 (s, 3H), 2.39 (t, *J* = 7.3 Hz, 4H), 2.31-2.24 (m, 1H), 1.42 (p, *J* = 7.3 Hz, 2H), 0.92 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, DMSO) δ = 174.0, 173.0, 51.6, 38.1, 37.8, 33.4, 26.4, 11.1 ppm.

(R)-3-Isopropyl-5-methoxy-5-oxopentanoic acid (9g)

Yellow oil, yield 90%, 94% *ee*; $[\alpha]_D^{25} = -2.7$ (*c* = 1.0 in CHCl₃); Chiral HPLC (Chiralcel IA-H column), Hexane/*i*-PrOH = 94/6, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(minor) = 24.4 min, t(major) = 31.0 min; ¹H NMR (400 MHz, CDCl₃) δ = 10.97 (br, 1H), 2.44 (d, *J* = 12.4 Hz, 3H), 2.37-2.30 (m, 2H), 1.67-1.60 (m, 1H), 1.23 (t, *J* = 6.6 Hz, 2H), 0.91 (d, *J* = 6.4 Hz, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 179.4, 178.1, 43.9, 38.9, 29.8, 25.1, 22.4, 20.8 ppm.

(R)-3-(Allyloxy)-5-methoxy-5-oxopentanoic acid (9h)

Light yellow oil, yield 97%, 81% *ee*; $[\alpha]_D^{25} = -3.5$ (*c* = 1.0 in CHCl₃); Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 95/5, Flow rate: 0.6 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(minor) = 50.4 min, t(major) = 58.8 min; ¹H NMR (400 MHz, CDCl₃) δ = 5.91-5.82 (m, 1H), 5.25 (dd, *J* = 17.2, 1.2 Hz, 1H), 5.16 (d, *J* = 10.4 Hz, 1H), 4.21 (p, *J* = 6.2 Hz, 1H), 4.06 (d, *J* = 5.7 Hz, 2H), 3.69 (s, 3H), 2.68-2.57 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 176.6, 171.3, 134.2, 117.2, 71.9, 70.9, 51.7, 39.2, 39.1 ppm.

(R)-5-Methoxy-5-oxo-3-phenylpentanoic acid (9i)

White solid, yield 89%, 77% *ee*; $[\alpha]_D^{25} = +7.5$ (*c* = 1.0 in CHCl₃) (lit.^[2] $[\alpha]_D^{20} = +8.1$ (*c* = 1.62 in CHCl₃)); Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 90/10, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(minor) = 43.2 min, t(major) = 49.2 min; ¹H NMR (400 MHz, CDCl₃) δ = 7.31-7.28 (m, 2H), 7.23-7.21 (m, 3H), 3.67-3.61 (m, 1H), 3.58 (s, 3H), 2.80-2.62 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 177.7, 172.1, 142.3, 128.7, 127.2, 127.1, 51.6, 40.4, 40.2, 37.9 ppm.

(R)-3-(4-Chlorophenyl)-5-methoxy-5-oxopentanoic acid (9j)

White solid, yield 87%, 78% *ee*; $[\alpha]_D^{25} = +3.2$ (*c* = 1.0 in CHCl₃) (lit.^[7] $[\alpha]_D^{25} = -8.0$ (*c* = 0.88 in CHCl₃) for (*S*)-**9j**); Chiral HPLC (Chiralcel OD-H column), Hexane/*i*-PrOH = 92/8, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(minor) = 47.7 min, t(major) = 53.3 min; ¹H NMR (400 MHz, DMSO) δ = 7.24 (s, 2H), 7.14 (d, J = 8.4 Hz, 2H), 3.63-3.57 (m, 4H), 2.77-2.56 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 177.3, 171.8, 140.7, 132.8, 128.8, 128.6, 51.7, 40.2, 40.0, 37.3 ppm.

(R)-5-Methoxy-5-oxo-3-(p-tolyl)pentanoic acid (9k)

White solid, yield 92%, 79% *ee*; $[\alpha]_D^{25} = +5.7$ (*c* = 1.0 in CHCl₃) (lit.^[8] $[\alpha]_D^{20} = +5.2$ (*c* = 1.0 in CHCl₃)); Chiral HPLC (Chiralcel IA-H column), Hexane/*i*-PrOH = 95/5, Flow rate: 1.0 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(minor) = 41.1 min, t(major) = 47.8 min; ¹H NMR (400MHz, CDCl₃): δ = 7.10 (s, 4H), 3.63–3.56 (m, 4H), 2.78–2.60 (m, 4H), 2.31 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 177.6, 172.1, 139.3, 136.6, 129.3, 127.0, 51.6, 40.5, 40.3, 37.5, 21.0 ppm.

(R)-5-Methoxy-3-(4-methoxyphenyl)-5-oxopentanoic acid (91)

White solid, yield 91%, 80% *ee*; $[\alpha]_D^{25} = -4.7$ (*c* = 1.0 in EtOH) (lit.^[6] $[\alpha]_D^{20} = +7.6$ (*c* = 0.6 in EtOH) for (*S*)-**91**); Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 93/7, Flow rate: 0.6 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(minor) = 87.91 min, t(major) = 103.9 min; ¹H NMR (400 MHz, CDCl₃) δ = 7.13 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 3.77 (s, 3H), 3.62-3.54 (m, 4H), 2.77-2.58 (m, 4H) ppm; ¹³C NMR (100 MHz, DMSO) δ = 173.2, 172.2, 158.3, 135.4, 128.8, 114.0, 55.3, 51.6, 40.7, 40.6, 37.7 ppm.

(1S,6R)-6-(Ethoxycarbonyl)cyclohex-3-enecarboxylic acid (9m)

White solid, yield 97%, 93% *ee*; $[\alpha]_D^{25} = -1.2$ (*c* = 1.0 in CHCl₃); Chiral HPLC (Chiralcel IA-H column), Hexane/*i*-PrOH = 94/6, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(minor) = 25.7 min, t(major) = 29.5 min; ¹H NMR (400 MHz, CDCl₃) δ = 11.14 (br, 1H), 5.68 – 5.62 (m, 2H), 4.13 (q, *J* = 7.0 Hz, 2H), 3.03-3.02 (m, 2H), 2.58-2.51 (m, 2H), 2.34 (d, *J* = 18.4 Hz, 2H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 179.9, 173.2, 125.2, 125.0, 60.8, 39.7, 39.6, 25.9, 25.5, 14.0 ppm.

(1S,6R)-6-(Isopropoxycarbonyl)cyclohex-3-enecarboxylic acid (9n)

9n

White solid, yield 93%, 89% *ee*; $[\alpha]_D^{25} = -7.5$ (*c* = 1.0 in CHCl₃); Chiral HPLC (Chiralcel IA-H column), Hexane/*i*-PrOH = 94/6, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(minor) = 30.4 min, t(major) = 36.1 min; ¹H NMR (400 MHz, CDCl₃) δ = 11.18 (br, 1H), 5.69-5.62 (m, 2H), 5.00 (dt, *J* = 12.4, 6.2 Hz, 1H), 3.02 (s, 2H), 2.58-2.50 (m, 2H), 2.33 (d, *J* = 16.5 Hz, 2H), 1.19-1.18 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 180.2, 172.6, 125.3, 125.0, 68.3, 39.7, 25.9, 25.4, 21.7, 21.6 ppm.

(1S,6R)-6-((Allyloxy)carbonyl)cyclohex-3-enecarboxylic acid (90)

White solid, yield 90%, 85% *ee*; $[\alpha]_D^{25} = -0.7$ (*c* = 1.0 in CHCl₃); Chiral HPLC (Chiralcel IA-H column), Hexane/*i*-PrOH = 94/6, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30°C, retention time: t(minor) = 30.3 min, t(major) = 36.2

min; ¹H NMR (400 MHz, CDCl₃) δ = 11.11 (br, 1H), 5.92-5.82 (m, 1H), 5.69-5.64 (m, 2H), 5.28 (d, *J* = 17.2Hz, 1H), 5.19 (d, *J* = 10.5Hz, 1H), 4.62-4.54 (m, 2H), 3.06 (d, *J* = 5.9 Hz, 2H), 2.62-2.53 (m, 2H), 2.39-2.34 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 179.7, 172.9, 132.1, 125.2, 118.1, 65.4, 39.7, 39.6, 25.9, 25.6 ppm.

(15,6R)-6-((Benzyloxy)carbonyl)cyclohex-3-enecarboxylic acid (9p)

эþ

White solid, yield 98%, 86% *ee*; $[\alpha]_D^{25} = -1.0$ (*c* = 1.0 in CHCl₃); Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 95/5, Flow rate: 0.2 mL/min, UV detection at 210 nm, T = 30°C, retention time: t(major) = 69.6 min, t(minor) = 75.6 min; ¹H NMR (400 MHz, CDCl₃) δ = 10.51 (br, 1H), 7.37-7.29 (m, 5H), 5.69 (s, 2H), 5.19-5.11 (m, 2H), 3.11 (t, *J* = 5.2 Hz, 2H), 2.66-2.57 (m, 2H), 2.42-2.35 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 179.8, 173.0, 135.9, 128.5, 128.2, 128.1, 125.2, 125.1, 66.6, 39.7, 39.6, 25.8, 25.6 ppm.

(1S,6R)-6-((Cinnamyloxy)carbonyl)cyclohex-3-enecarboxylic acid (9q)

White solid, yield 99%, 90% *ee*; $[\alpha]_D^{25} = -3.6$ (*c* = 1.0 in CHCl₃); Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 94/6, Flow rate: 0.5 mL/min, UV detection at 254 nm, T = 30°C, retention time: t(minor) = 31.1 min, t(major) = 34.6 min; ¹H NMR (400 MHz, CDCl₃) δ = 7.42-7.29 (m, 5H), 6.64 (d, *J* = 3.2 Hz, 2H), 6.41-6.36 (m, 1H), 5.73 (s, 2H), 4.34-4.33 (m, 2H), 3.14-3.09 (m, 2H), 2.66-2.62 (m, 2H), 2.43-2.39 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 177.7, 173.2, 136.7, 131.0, 128.5, 127.6, 126.4, 125.1, 123.1, 65.3, 63.4, 39.7, 39.6, 25.8, 25.6 ppm.

6. Catalytic asymmetric synthesis of (S)-GABOB by 7i

Dimethyl 3-(allyloxy)pentanedioate (14)

Under N₂ atmosphere, to a stirred solution of dimethyl 3-hydroxypentanedioate (40 g, 0.23 mol) and allyl 2,2,2-trichloroacetimidate (91.9 g, 0.46 mol) in 1000 mL of 4:1 c-hexane/CH₂Cl₂ at 0 °C was added TfOH (4 mL, 46 mmol). After addition, the reaction mixture was stirred for 24 h at room temperature and then filtered. The filtrate was washed with NaHCO₃ (2 × 200 mL), dried over Na₂SO₄ and concentrated under reduced pressure to give yellow oil. The crude product was purified by flash chromatography using PE/EA 9:1 to give product **14** (45.6 g, 93%) as colourless oil; ¹H NMR (400 MHz, CDCl₃) δ = 5.90-5.81 (m, 1H), 5.24 (dd, *J* = 17.2, 1.3 Hz, 1H), 5.15 (d, *J* = 10.5 Hz, 1H), 4.21 (p, *J* = 6.3 Hz, 1H), 4.04 (d, *J* = 5.7 Hz, 2H), 3.68 (s, 6H), 2.60 (qd, *J* = 15.5, 6.3 Hz, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 170.8, 134.0, 116.5, 71.7, 70.4, 51.1, 38.8 ppm; HRMS (ESI⁺) calcd for C₁₀H₁₆O₅ [M+Na]⁺ = 239.0895, found: 239.0892.

3-(Allyloxy)pentanedioic acid (15)

To a stirred solution of **14** (45 g, 0.21 mol) in 750 mL of 4:1 THF/H₂O was added LiOH·H₂O (22.03 g, 0.53 mol) at 0 °C. The reaction mixture was stirred at room temperature for 24 h before the THF was evaporated. The aqueous layer was washed with EtOAc (2 × 100 mL), acidified with 2 N HCl, and then extracted with EtOAc (3 × 200 mL). The organic phase was washed with brine (300 mL), dried over Na₂SO₄ and concentrated to afford **15** (35.6 g, 91%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.23$ (br, 2H), 5.93 – 5.83 (m, 1H), 5.27 (dd, *J* = 17.2, 1.5 Hz, 1H), 5.19-5.16 (m, 1H), 4.22 (p, *J* = 6.2 Hz, 1H), 4.08 (d, *J* = 5.7 Hz, 2H), 2.69 (qd, *J* = 15.8, 6.2 Hz, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 176.9$, 134.1, 117.5, 71.7, 71.0, 39.1 ppm; HRMS (ESI⁺) calcd for C₈H₁₃O₅ [M+H]⁺ = 189.0763, found: 189.0757.

3-(Allyloxy)glutaric anhydride (8h)

To a stirred suspension of **15** (33 g, 0.18 mol) in 500 mL of CH₂Cl₂ at 0 °C was added AcCl (124 mL, 1.8 mmol). The reaction mixture was stirred at room temperature for 12 h and concentrated. The crude product was dissolved in 500 mL of CH₂Cl₂, washed with NaHCO₃ (3 × 300 mL) and brine (300mL), dried over Na₂SO₄ and concentrated to afford **8h** (26.5 g, 89%) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) $\delta = 5.89-5.79$ (m, 1H), 5.30-5.21 (m, 2H), 4.08-4.03 (m, 3H), 3.09 (dd, J = 16.6, 3.5 Hz, 2H), 2.75 (d, J = 18.9 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 165.0$, 133.4, 118.1, 69.9, 67.0, 35.7 ppm; HRMS (ESI⁺) calcd for C₈H₁₀O₄ [M+H]⁺ = 171.0657, found: 171.0652.

(R)-3-(Allyloxy)-5-methoxy-5-oxopentanoic acid (9h)

MeOH (10.1 mL, 250 mmol) was added dropwise at 0 °C under nitrogen to a stirred solution of *meso*-cyclic anhydride **8h** (4.26 g, 25 mmol) and **7i** (1.80 g, 2.5 mmol) in

MTBE (2 L). The reaction was monitored by using thin-layer chromatography. After 96 h, anhydride consumption was complete, the solvent was evaporated under reduced pressure and the residue was dissolved in CH₂Cl₂ (300 mL). The solution was washed with saturated Na₂CO₃ (3×150 mL) and the combined aqueous layers were acidified with excess 2 N HCl, followed by extraction with EtOAc (3×300 mL). The combined organic layers were dried over Na₂SO₄ and concentrated to afford momoester **9h** (4.9 g, yield 97%, 81% *ee*) as light yellow oil; $[\alpha]_D^{25} = -3.5$ (*c* = 1.0 in CHCl₃); Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 95/5, Flow rate: 0.6 mL/min, UV detection at 220 nm, T = 30 °C, retention time: t(minor) = 50.6 min. t(major) = 56.1 min; Chiral HPLC (Chiralcel AD-H column), Hexane/i-PrOH=95/5, Flow rate: 0.6 mL/min, UV detection at 220 nm, t(minor) = 50.6 min, t(major) = 56.1 min; ¹H NMR (400 MHz, CDCl₃) δ = 5.91-5.82 (m, 1H), 5.25 (dd, J = 17.2, 1.2 Hz, 1H), 5.16 (d, J = 10.4 Hz, 1H), 4.21 (p, J = 6.2 Hz, 1H), 4.06 (d, J = 5.7 Hz, 2H), 3.69 (s, 3H), 2.68-2.57 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 176.6, 171.3, 134.2, 117.2, 71.9, 70.9, 51.7, 39.2, 39.1 ppm; HRMS$ (ESI^{+}) calcd for C₉H₁₄O₅ $[M+Na]^{+} = 225.0739$, found: 225.0733.

```
(S)-Methyl 3-(allyloxy)-4-(((benzyloxy)carbonyl)amino)butanoate (11)
```


Diphenylphosphoryl azide (6.5 mL, 30 mmol) was added to a dry toluene solution (100 mL) of **9h** (5 g, 25 mmol) and triethylamine (4.2 mL, 30 mmol) at room temperature. The reaction mixture was stirred for 30 min and then it was slowly warmed to 90 °C. When the evolution of nitrogen ceased (30 min), benzyl alcohol (3.1 mL, 30 mmol) was added, and the mixture was heated at reflux overnight. The reaction mixture was washed with NaNO₂ (1% aq., 2 × 250 mL), NaHCO₃ (2 × 250 mL), H₂O (250 mL), dried over Na2SO4 and concentrated to afford brown oil. The crude product was purified by flash chromatography using PE/EA 10:1 to give product **11** (5.7 g, 75%) as light yellow oil; $[\alpha]_D^{25} = +5.4$ (c = 1.0 in CHCl₃); ¹H NMR

(400 MHz, CDCl₃) δ = 7.35-7.30 (m, 5H), 5.89-5.80 (m, 1H), 5.23 (d, *J* = 17.2 Hz, 1H), 5.15 (d, *J* = 10.2 Hz, 2H), 5.09 (s, 2H), 4.02 (d, *J* = 4.9 Hz, 2H), 3.92-3.90 (m, 1H), 3.67 (s, 3H), 3.42-3.37 (m, 1H), 3.33-3.27 (m, 1H), 2.59-2.45 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 171.4, 156.6, 136.5, 134.4, 128.5, 128.2, 128.1, 117.4, 74.4, 70.8, 66.8, 51.8, 43.8, 37.4 ppm; HRMS (ESI⁺) calcd for C₁₆H₂₁NO₅ [M+Na]⁺ = 330.1317, found: 330.1306.

(S)-Methyl 4-(((benzyloxy)carbonyl)amino)-3-hydroxybutanoate (12)

To a solution of **11** (0.9 g, 3 mmol) and Pd/C (450 mg) in MeOH (30 mL) was added 4-methylbenzenesulfonic acid (57 mg, 0.3 mmol). The reaction mixture was heated at reflux for 3 h and filtered. The filtrate was concentrated to afford yellow oil. The crude product was purified by flash chromatography using PE/EA 5:1 to give product **12** (0.75 g, 96%) as light yellow oil; $[\alpha]_D^{25} = +2.5$ (c = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.34$ (s, 5H), 5.29 (br, 1H), 5.10 (s, 2H), 4.12 (br, 1H), 3.70 (s, 3H), 3.44 (s, 1H), 3.38 (s, 1H), 3.22-3.15 (m, 1H), 2.54-2.44 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 172.9$, 157.0, 136.4, 128.6, 128.3, 128.2, 67.5, 67.0, 52.0, 45.9, 38.4 ppm.

(S)-GABOB (13)

H₂N COOH

13, (S)-GABOB

(S)-methyl 4-(((benzyloxy)carbonyl)amino)-3-hydroxybutanoate (**12**, 5 g, 19 mmol) was added to 16 N HCl (60 mL) and then the reaction mixture was heated at reflux overnight. The mixture was concentrated under reduced pressure and the residue was crystallized from EtOH to give white solid, then dissolved in H₂O (5 mL) and added NaOH (0.54 g). The stirred suspention was added H₂O until the solid disappeared, then EtOH (20 mL) was added and filtered, oven dry the filter cake to afford (S)-GABOB (**13**, 1.63 g, 73%) as white solid; 96% *ee*, determined from optical

rotation, $[\alpha]_D{}^{25} = +19.7$ (c = 1.4 in H₂O) (lit.^[9] $[\alpha]_D{}^{25} = +20.56$ (c = 1.41 in H₂O)), recrystallization from 78% EtOH further increased the optical purity to 99% *ee*, $[\alpha]_D{}^{25} = +20.4$ (c = 1.5 in H₂O); ¹H NMR (400 MHz, D₂O) $\delta = 4.21-4.15$ (m, 1H), 3.15 (dd, J = 13.1, 3.0 Hz, 1H), 2.93 (dd, J = 13.1, 9.5 Hz, 1H), 2.41 (d, J = 6.5 Hz, 2H) ppm; ¹³C NMR (100 MHz, D₂O) $\delta = 178.6, 65.5, 44.1, 42.3$ ppm; HRMS (ESI⁺) calcd for C₄H₉NO₃ [M+H]⁺ = 120.0661, found: 120.0654.

7. References

- [1] M. N. Patil, R. G. Gonnade, N. N. Joshi, Tetrahedron 2010, 66, 5036-5041.
- [2] A. Peschiulli, Y. Gun'ko, S. J. Connon, J. Org. Chem. 2008, 73, 2454-2457.
- [3] Y.-G. Chen, S.-K. Tian, L. Deng, J. Am. Chem. Soc. 2000, 122, 9542-9543
- [4] S. -X. Wang, F. -E. Chen, Adv. Synth. Catal. 2009, 351, 547-552.
- [5] S. E. Park, E. H. Nam, H. B. Jang, J. S. Oh, S. Some, Y. S. Lee, C. E. Song, *Adv. Synth. Catal.* **2010**, *352*, 2211-2217.
- [6] A. Fryszkowska, M. Komar, D. Koszelewskia, R, Ostaszewski, *Tetrahedron: Asymmetry* **2005**,*16*, 2475-2485.
- [7] H. -J. Yang, F. -J. Xiong, J. Li, F. -E., Chen, Chinese. Chem. Lett. 2013, 24, 553-558.
- [8] L. -J. Yan, H. F. Wang, W. X. Chen, Y. Tao, K. J. Jin, F. E. Chen, *ChemCatChem*.
 2016, 8, 2249 2253.
- [9] T. Ivšić, I. Dokli, A. Rimac, Z. Hameršak, Eur. J. Org. Chem. 2014, 631-638.

8. Copies of NMR spectra and chiral HPLC spectra

N-((1*R*,2*R*)-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-(trifluoromethyl)benzamide (7a)

¹H NMR

benzamide (7b)

¹H NMR

¹³C NMR

HRMS

N-((1R,2R)-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluoro-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluoro-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluoro-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluoro-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluoro-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluoro-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluoro-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluoro-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluoro-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluoro-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluoro-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluoro-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluoro-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-fluoro-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(tritylox)propyl-3-(tritylox)propyl)-3-(tritylox)pr

benzamide (7c)

¹H NMR

benzamide (7d)

¹H NMR

¹³C NMR

HRMS

S29

4-Bromo-N-((1R,2R)-2-(dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-

benzamide (7e)

¹H NMR

¹³C NMR

(**7f**)

¹H NMR

¹³C NMR

HRMS

N-((1R,2R)-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-methyl-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-methyl-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-methyl-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-methyl-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-methyl-3-(trityloxy)propyl)-4-methyl-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-methyl-3-(trityloxy)propyl-3-(trityloxy)propyl)-4-methyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trityloxy)propyl-3-(trit

benzamide (7g)

¹H NMR

¹³C NMR

N-((1*R*,2*R*)-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-4-methoxy-

benzamide (7h)

¹H NMR

¹³C NMR

HRMS

N-((1*R*,2*R*)-2-(Dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-3,5-bis-(trifluoromethyl)benzamide (7i)

¹H NMR

¹³C NMR

N-((1R,2R)-1-(4-Nitrophenyl)-2-(pyrrolidin-1-yl)-3-(trityloxy)propyl)-3,5-bis-

(trifluoromethyl)benzamide (7j)

N-((1R,2R)-1-(4-Nitrophenyl)-2-(piperidin-1-yl)-3-(trityloxy)propyl)-3,5-bis-

(trifluoromethyl)benzamide (7k)

¹H NMR

N-((1*R*,2*R*)-2-Morpholino-1-(4-nitrophenyl)-3-(trityloxy)propyl)-3,5-bis(trifluoro -methyl)benzamide (7l)

¹H NMR

-8.38 -8.26 -8.07 -8.04 736 734 722 721 721 4.72
4.69 -6. 0E+08 -5. 5E+08 CF3 F₃C -5. 0E+08 -4. 5E+08 ΗN -4. 0E+08 OTr -3. 5E+08 O_2N -3. 0E+08 -2. 5E+08 -2. 0E+08 -1. 5E+08 -1. 0E+08 -5. 0E+07 ΧÅÅ 0. 0E+00 2.04 ± RHT194 000000 100000 3.0 ЧΨ~₩ Ψ $\frac{1}{2} \frac{1}{2} \frac{1}$ ۲v 2.00 8 2:01 0.1 -5. 0E+07 6.0 5.5 fl (ppm) 9.0 7.5 7.0 6.5 3.5 8.5 4.5 4.0 2.5 5.0 8.0

N-((1*R*,2*R*)-3-((*tert*-Butyldimethylsilyl)oxy)-2-(dimethylamino)-1-(4-nitrophenyl)propyl)-3,5-bis(trifluoromethyl)benzamide (7m)

N-((1*R*,2*R*)-3-((*tert*-Butyldimethylsilyl)oxy)-1-(4-nitrophenyl)-2-(pyrrolidin-1-yl)propyl)-3,5-bis(trifluoromethyl)benzamide (7n)

N-((1*R*,2*R*)-3-((*tert*-Butyldimethylsilyl)oxy)-1-(4-nitrophenyl)-2-(piperidin-1-yl)propyl)-3,5-bis(trifluoromethyl)benzamide (70)

N-((1R,2R)-3-((tert-Butyldimethylsilyl)oxy)-2-morpholino-1-(4-nitrophenyl)-2-morpholino-1-(

(1*S*,6*R*)-6-(Methoxycarbonyl)cyclohex-3-enecarboxylic acid (9a)

¹H NMR

(1*S*,2*R*)-2-(Methoxycarbonyl)cyclohexanecarboxylic acid (9b)

¹H NMR

 $(1S, 2R, 3S, 4R) \hbox{-} 3 \hbox{-} (Methoxy carbonyl) \hbox{-} 7 \hbox{-} oxabicyclo [2.2.1] hept \hbox{-} 5 \hbox{-} ene \hbox{-} 2 \hbox{-} carboxylic and the state of the st$

acid (9c)

(1*R*,2*S*,3*R*,4*S*)-3-(Methoxycarbonyl)bicyclo[2.2.1]hept-5-ene-2-carboxylic acid (9d)

(R)-5-Methoxy-3-methyl-5-oxopentanoic acid (9e)

¹H NMR

(R)-3-Ethyl-5-methoxy-5-oxopentanoic acid (9f)

¹H NMR

90 80

40 30

20 10 0 -10 -20

60 50

70

180 170 160 150 140 130 120 110 100 fl (ppm)

20 210 200 190

(R)-3-Isopropyl-5-methoxy-5-oxopentanoic acid (9g)

¹H NMR

¹³C NMR

(R)-3-(Allyloxy)-5-methoxy-5-oxopentanoic acid (9h)

¹H NMR

HRMS

(R)-5-Methoxy-5-oxo-3-phenylpentanoic acid (9i)

 $(R) \hbox{-} 3 \hbox{-} (4 \hbox{-} chlorophenyl) \hbox{-} 5 \hbox{-} methoxy \hbox{-} 5 \hbox{-} oxopentanoic acid (9j)$

¹H NMR

(R)-5-Methoxy-5-oxo-3-(p-tolyl)pentanoic acid (9k)

¹H NMR

(R)-5-Methoxy-3-(4-methoxyphenyl)-5-oxopentanoic acid (9l)

 $(1S,\!6R)\text{-}6\text{-}(Ethoxycarbonyl) cyclohex-3\text{-}ene carboxylic acid (9m)$

(15,6R)-6-(Isopropoxycarbonyl)cyclohex-3-enecarboxylic acid (9n) $^1{\rm H}~{\rm NMR}$

(1*S*,6*R*)-6-((Allyloxy)carbonyl)cyclohex-3-enecarboxylic acid (9o) ¹H NMR

(1*S*,6*R*)-6-((Benzyloxy)carbonyl)cyclohex-3-enecarboxylic acid (9p) ¹H NMR

(1*S*,6*R*)-6-((Cinnamyloxy)carbonyl)cyclohex-3-enecarboxylic acid (9q) ¹H NMR

Dimethyl 3-(allyloxy)pentanedioate (14)

3-(Allyloxy)pentanedioic acid (15)

HRMS

3-(Allyloxy)glutaric anhydride (8h)

(S)-Methyl-3-(allyloxy)-4-(((benzyloxy)carbonyl)amino)butanoate (11)

¹H NMR

20 210 200

 -10

-20

(S)-Methyl 4-(((benzyloxy)carbonyl)amino)-3-hydroxybutanoate (12)

(S)-GABOB (13)

HRMS

Chiral HPLC:

(15,6R)-6-(Methoxycarbonyl)cyclohex-3-enecarboxylic acid (9a)

Chiral HPLC (Chiralcel OD-H column), Hexane/*i*-PrOH = 93/7, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30° C, retention time: t(major) = 33.1 min, t(minor) = 45.3 min.

100 A 1 100 B 100					VICE A	Researching to - 2014 mp (2014)	91	43) 	t. 	95	_СООМе `СООН 9а % ее		
Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%	Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%
1	38.91	6532.5	92.2	1.0816	0.441	49.899	1	33.145	51055.2	533.2	1.4091	0.326	97.239
2	51.278	6558.9	73.7	1.3092	0.523	50.101	2	45.337	1449.7	16.8	1.3058	0.691	2.761

(1*S*,2*R*)-2-(Methoxycarbonyl)cyclohexanecarboxylic acid (9b)

Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 93/7, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30° C, retention time: t(minor) = 23.2 min, t(major) = 29.9 min.

	VWD1 A, Waxwangtrx220 nm (0: OkTXXL)220170322 ALL-88 AAC D)		VW01 A. Wwwkngth=228 nm (310ATX01.J20115404.JL488.0)	
nA)			1	
1000	A		1200-	
			COOMe	
800		OMe	1000	
600		~ .		
		ОН	eoo	
	iac iac		00% aa	
			30/6 22	
	22 24 28 23 20 22 24 39 3		22 24 28 28 29 32 34 39	-

Entry	Time	Peak area	Peak	Peak width	Symmetric	Peak	Entry	Time	Peak area	Peak	Peak width	Symmetric	Peak
			height		factor	area%				height		factor	area%
1	23.312	52213.9	1065.4	0.7538	0.651	48.956	1	23.245	5106.3	105.2	0.7502	0.635	5.134
2	30.336	54440.7	793.9	1.009	0.302	51.044	2	29.915	94362.4	1335.7	1.0212	0.313	94.866

(1*S*,2*R*,3*S*,4*R*)-3-(Methoxycarbonyl)-7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid (9c)

Chiral HPLC (Chiralcel OD-H column), Hexane/*i*-PrOH = 85/15, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30° C, retention time: t(major) = 23.8 min, t(minor) = 37.8 min.

	VWD1 A, Warekegth-220 nm (2) CA1X2L3201794043L340.0)
nau 100 S	
380	
	-M002
* COOMe	L CCOOH
rac rac	
	* /3% ee
8	

Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%	Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%
1	24.655	21192.5	301.3	1.0076	0.254	56.593	1	23.879	8489.2	137.3	0.8673	0.267	86.657
2	39.409	16254.5	203.6	1.1914	0.401	43.407	2	37.883	1307.2	20.4	0.9131	0.565	13.343

(1*R*,2*S*,3*R*,4*S*)-3-(Methoxycarbonyl)bicyclo[2.2.1]hept-5-ene-2-carboxylic acid (9d)

Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 96/4, Flow rate: 0.5 mL/min, UV detection at 220 nm, $T = 30^{\circ}$ C, retention time: t(minor) = 47.8 min, t(major) = 50.7 min.

				A	COOH COOMe rac	Vacit A. #40 600 600 200 100 3	Arabert-28 - 90 CA1		No.		ß	COOH COOMe 9d 87% ee	
Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%	Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%

1

2

47.832

50.695

5769.2

83595.6

71.4

704.6

1.275

1.6271

0.545

0.257

6.456

93.544

(R)-5-Methoxy-3-methyl-5-oxopentanoic acid (9e)

1 4644

1.5524

0.265

0.416

1

2

46 569

50.781

40886.6

38981.2

406 5

360.2

Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 96/4, Flow rate: 0.5 mL/min, UV detection at 220 nm, $T = 30^{\circ}$ C, retention time: t(minor) = 38.3 min, t(major) = 44.1 min.

51.193

48.807

	VIIO1 A. Wavelength=220 nm (D-GATAXLA20170322-XL34F)	have a	V801 A. Wawkengtr=220 nm (D-DATA/L)/20170727-XL4F-6-COLD ()
~		ā l	NU B
10		COOMe	soo
10	5	Соон	400 100
8		rac	81% ee

Entry	Time	Peak area	Peak	Peak width	Symmetric	Peak	Entry	Time	Peak area	Peak	Peak width	Symmetric	Peak
			height		factor	area%				height		factor	area%
1	42.556	14359.8	176	1.2731	0.5	49.920	1	38.263	8261.4	88.7	1.3905	0.512	9.587
2	49.831	14405.7	155.6	1.3534	0.562	50.080	2	44.103	77907.3	635.3	1.8827	0.465	90.413

(R)-3-Ethyl-5-methoxy-5-oxopentanoic acid (9f)

Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 94/6, Flow rate: 0.5 mL/min, UV detection at 220 nm, $T = 30^{\circ}$ C, retention time: t(minor) = 26.7 min, t(major) = 30.3 min.

Entry	Time	Peak area	Peak	Peak width	Symmetric	Peak	Entry	Time	Peak area	Peak	Peak width	Symmetric	Peak
			height		factor	area%				height		factor	area%
1	26.921	42630.3	779.7	0.8209	0.423	49.262	1	26.674	11525.9	184.9	0.9433	0.538	9.690
2	30.97	43908.2	692.6	0.9216	0.372	50.738	2	30.282	107424.3	1140	1.4514	0.374	90.310

(R)-3-Isopropyl-5-methoxy-5-oxopentanoic acid (9g)

Chiral HPLC (Chiralcel IA-H column), Hexane/*i*-PrOH = 94/6, Flow rate: 0.5 mL/min, UV detection at 220 nm, $T = 30^{\circ}$ C, retention time: t(minor) = 24.4 min, t(major) = 31.0 min.

	VWD1 A, Wavelength-020 nm (21GATR01_A00170022-XL-A040 AAA.C)	VW01 A, Wawkingth 220 nm (D-DATA XL) 20170727 AL) 4046-COLD D)
80 70 80 40 30 20 10	Berne Coome	те те те те те те те те те те
		10 20 30 40 50 60 mm

Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%	Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%
1	23.192	48390.3	579	1.3929	0.349	47.324	1	24.406	963.8	17.1	0.8791	0.567	3.006
2	32.956	53862.4	402.2	2.2321	0.177	52.676	2	31.02	31101.6	263.7	1.72	0.347	96.994

(R)-3-(Allyloxy)-5-methoxy-5-oxopentanoic acid (9h)

Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 95/5, Flow rate: 0.6 mL/min, UV detection at 220 nm, $T = 30^{\circ}$ C, retention time: t(minor) = 50.4 min, t(major) = 58.8 min.

	ни 25 25 25 25 25 25 25 25 25 25 25 25 25
--	--

Entry	Time	Peak area	Peak	Peak width	Symmetric	Peak	Entry	Time	Peak area	Peak	Peak width	Symmetric	Peak
-			height		factor	area%				height		factor	area%
1	49.26	14005	165	1.4149	0.701	48.505	1	50.35	3038.5	37.2	1.3626	0.709	9.490
2	59.689	14868.1	53.7	4.6156	0.23	51.495	2	58.792	28978.2	88.6	5.451	0.131	90.510

(R)-5-Methoxy-5-oxo-3-phenylpentanoic acid (9i)

Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 90/10, Flow rate: 0.5 mL/min, UV detection at 220 nm, $T = 30^{\circ}$ C, retention time: t(minor) = 43.2 min, t(major) = 49.2 min.

	VWD1 A, Weekingth=228 nm (D10A5k/0L2011H822-xL24K-RAC.0)			VWD1 A, Waxeeget=228 nm (2+24.1x3),2281394343,134K.0
	AU		n40	
	4		200	COOMe
1		Me	200	
			180	. — — — соон
		н		91
	a rac		100	77% 22
	28-		50	1170 88
			0	
	-12 5 -15 -1° 5 50 52 5 50 51 5 50	-		

Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%	Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%
1	43.826	10090.4	108.1	1.3476	0.367	51.235	1	43.263	3143.3	36.4	1.2708	0.391	11.420
2	50.759	9603.9	97.6	1.4637	0.481	48.765	2	49.243	24380.3	228.7	1.6055	0.376	88.580

(R)-3-(4-Chlorophenyl)-5-methoxy-5-oxopentanoic acid (9j)

Chiral HPLC (Chiralcel OD-H column), Hexane/*i*-PrOH = 92/8, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30° C, retention time: t(minor) = 47.7 min, t(major) = 53.3 min.

Entry	Time	Peak area	Peak	Peak width	Symmetric	Peak	Entry	Time	Peak area	Peak	Peak width	Symmetric	Peak
-			height		factor	area%				height		factor	area%
1	48.774	64414.3	629	1.5588	0.419	51.982	1	47.713	50226.6	535.1	1.5644	0.474	11.195
2	56.941	59502.5	474.5	1.787	0.358	48.018	2	53.382	398419.8	2307.4	2.8779	0.235	88.805

(*R*)-5-Methoxy-5-oxo-3-(*p*-tolyl)pentanoic acid (9k)

Chiral HPLC (Chiralcel IA-H column), Hexane/*i*-PrOH = 95/5, Flow rate: 1.0 mL/min, UV detection at 220 nm, $T = 30^{\circ}$ C, retention time: t(minor) = 41.1 min, t(major) = 47.8 min.

1990 A 1990 A 19	Entry Time Peak area Peak Peak width Symmetric Peak							Nondergel - V22 can (2) CATA ja	95.0017004 61.400 (2)))))	and the second sec		5 79 4 0	COOMe COOH 3k % gg
Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%	Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%
1	42.088	6702.8	75.9	1.2607	0.404	52.517	1	41.186	17155.6	193.4	1.2798	0.259	10.685

2

47.872 143428 1207.9

1.6013

0.632

89.315

47.483

(R)-5-Methoxy-3-(4-methoxyphenyl)-5-oxopentanoic acid (9l)

0.832

2

47.558 6060.2

72.7

1.3091

Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 93/7, Flow rate: 0.6 mL/min, UV detection at 220 nm, T = 30° C, retention time: t(minor) = 87.91 min, t(major) = 103.9 min.

VWD1 A, Wawking8+220 nm (21/06/TAXL,220170322 3L,2491 6AC.0)			VWD1 A, Wawaangtin-220 km (D1DATAXL320170404 XL34N D)	
ANU			- 180	d.
	(X)			
***	COOMe		800-	MeO-
noo-	Meo-(_)-(and the meo-() Meo-(600-	Соон
				91
	rac		B.w.	
200		2	200-	80% ee
•			0	
80 80 100	110 120 mi		007 BR 08 CB	104 110 118 #

Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%	Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%
1	85.045	215612.3	1038.6	2.829	0.245	50.581	1	87.925	27059.4	149	3.0272	0.469	10.176
2	103.224	210659.3	946.2	3.7107	0.577	49.419	2	103.935	238801.3	1072.6	3.7106	0.963	89.822

(1*S*,6*R*)-6-(Ethoxycarbonyl)cyclohex-3-enecarboxylic acid (9m)

Chiral HPLC (Chiralcel IA-H column), Hexane/*i*-PrOH = 94/6, Flow rate: 0.5 mL/min, UV detection at 220 nm, T = 30° C, retention time: t(minor) = 25.7 min, t(major) = 29.5 min.

Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%	Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%
1	26.039	59988.7	1226.1	0.7162	0.308	49.876	1	25.769	2073.5	59.1	0.5384	0.693	3.776
2	30.742	60287.5	1201.5	0.7554	0.422	50.124	2	29.55	52839.6	1047.8	0.7543	0.425	96.224

(15,6R)-6-(Isopropoxycarbonyl)cyclohex-3-enecarboxylic acid (9n)

Chiral HPLC (Chiralcel IA-H column), Hexane/*i*-PrOH = 94/6, Flow rate: 0.5 mL/min, UV detection at 220 nm, $T = 30^{\circ}$ C, retention time: t(minor) = 30.4 min, t(major) = 36.1 min.

VWD	N A, Wewkength-220 nm (0-YATK/0L/20176331-8L/J2PHOPANOL-RAC0) (0)	VW01 A, Weekingth=220 nm (210ATA01LA20170404-8L58A.4-PA.0)
128- 128- 100- 40- 40- 200- 0-		Verif A baseged (0) and () of () of () () () () () () () () () () () () ()
<u> </u>		

Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%	Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%
1	31.035	3401.2	73.5	0.6956	0.569	50.842	1	30.431	351.5	8.4	0.6174	0.826	5.766
2	37.42	3288.6	64.2	0.7824	0.622	49.158	2	36.101	5744.2	112.6	0.7721	0.538	94.234

(1*S*,6*R*)-6-((Allyloxy)carbonyl)cyclohex-3-enecarboxylic acid (90)

Chiral HPLC (Chiralcel IA-H column), Hexane/*i*-PrOH = 94/6, Flow rate: 0.5 mL/min, UV detection at 220 nm, $T = 30^{\circ}$ C, retention time: t(minor) = 30.3 min, t(major) = 36.2 min.

	VW01 A. Wavelength-220 nm (DVD#TAOL/200170301 AL2-ALLYLALCOHOL RAC D)			VW01 A. Weinelength=220 nm;D10ATX/XL220170404.XL24A-6.ALL1	n.aj		
nAU.	1	1.	mAU 175				
1200-	P A		100				
1000		~ .000	128			i.	~ ^{coor} ~
800		í Y ····	100			/	COOH
600-		Соон	75				90
400-		rac	24	â			959/ 00
200-							0370 88
	30 32 54	N N A A A A A		30 32	34	й	20 40 100

Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%	Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%
1	30.51	78338.6	1336.4	0.8559	0.3	50.991	1	30.314	539.9	12	0.7029	0.779	7.709
2	36.285	75294.9	1321.7	0.8626	0.495	49.009	2	36.196	6463.7	122.7	0.7786	0.52	92.291

(1*S*,6*R*)-6-((Benzyloxy)carbonyl)cyclohex-3-enecarboxylic acid (9p)

Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 95/5, Flow rate: 0.2 mL/min, UV detection at 210 nm, $T = 30^{\circ}$ C, retention time: t(major) = 69.6 min, t(minor) = 75.6 min.

Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%	Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%
1	64.198	124487.3	1252.9	1.4882	0.588	49.338	1	69.629	628799.9	2495.1	4.2003	0.277	92.693
2	68.293	127826.7	1132.9	1.5914	0.549	50.662	2	75.633	49565.7	316.5	2.6102	0.492	7.307

(1*S*,6*R*)-6-((Cinnamyloxy)carbonyl)cyclohex-3-enecarboxylic acid (9q)

Chiral HPLC (Chiralcel AD-H column), Hexane/*i*-PrOH = 94/6, Flow rate: 0.5 mL/min, UV detection at 254 nm, $T = 30^{\circ}$ C, retention time: t(minor) = 31.1 min, t(major) = 34.6 min.

1		VW01 A. Wavelength-054 mill (InDATABLA05176531-ALL-ONNEMTLALCOHOL 4AC-AD-2.0)		VW01 A. Wavelongth=254 nm (D10A1A04LA20170404.XL)	HEA-3-CINEMANYL-2.08			
	nAU	-	nAU	1				
	2500	-	1000	8-1 -		8		
						^		
	2000-		800			/ \		ſΥ I.
			470	3				
	1800-						\	∽ •соон
		Ссон	400	-			\	90
	1000-							24
		Tac	200	- 8				00% aa
	100-			3				90 /6 ee
			0	2				
				· · · · · · · · · · · · · · · · · · ·				
1		27 28 30 32 34 38 39 40 44		30	22	24	20	28 (**)

Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%	Entry	Time	Peak area	Peak height	Peak width	Symmetric factor	Peak area%
1	30.111	119187.9	2309	0.7802	0.52	50.760	1	31.089	2662.8	38.1	0.9612	0.463	5.026
2	33.594	115617.1	2001.5	0.8709	0.511	49.240	2	34.633	50316.5	865	0.8716	0.53	94.974