

Supporting Information

for

One-pot activation–alkynylation–cyclization synthesis of 1,5-diacyl-5-hydroxypyrazolines in a consecutive three-component fashion

Christina Görgen, Katharina Boden, Guido J. Reiss, Walter Frank
and Thomas J. J. Müller

Beilstein J. Org. Chem. **2019**, *15*, 1360–1370. doi:10.3762/bjoc.15.136

**Experimental details, copies of NMR spectra and
crystallographic data**

1	General considerations	S3
2	Optimization studies	S4
2.1	Optimization of 1,4-diphenylbut-3-yn-1,2-dione (3a)	S4
2.2	Synthesis of <i>tert</i> -butyl 5-benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazole-1-carboxylate (5a)	S5
2.3	Optimization of <i>tert</i> -butyl 5-benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazole-1-carboxylate (5b)	S6
2.4	Optimization of consecutive three-component synthesis of <i>tert</i> -butyl 5-benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazole-1-carboxylate (5b)	S8
3	Three-component synthesis of 1,5-diacyl-5-hydroxypyrazolines 5	S9
3.1	General procedure (GP)	S9
3.2	(5-Hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1,5-diyl)bis(phenylmethanone) (5b).....	S10
3.3	(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)(4-tolyl)methanone (5c).....	S11
3.4	(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)(4-bromophenyl)methanone (5d)	S11
3.5	(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)(thien-2-yl)methanone (5e)	S12
3.6	(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)(furan-2-yl)methanone (5f).....	S12
3.7	1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)-2-phenylethan-1-one (5g)	S13
3.8	1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)-2-methylpropan-1-one (5h)	S13
3.9	(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)(cyclopropyl)-methanone (5i).....	S14
3.10	1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)-2,2-dimethylpropan-1-one (5j)	S14
3.11	1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)butan-1-one (5k)	S15
3.12	(5-Hydroxy-3-(4-methoxyphenyl)-4,5-dihydro-1 <i>H</i> -pyrazol-1,5-diyl)bis(phenylmethanone) (5l)	S15
3.13	(3-(<i>tert</i> -Butyl)phenyl)-5-hydroxy-4,5-dihydro-1 <i>H</i> -pyrazol-1,5-diyl)bis(phenylmethanone) (5m)	S16
3.14	(3-(4-Fluorophenyl)-5-hydroxy-4,5-dihydro-1 <i>H</i> -pyrazol-1,5-diyl)bis(phenylmethanone) (5n)	S16
3.15	4-(1,5-Dibenzoyl-5-hydroxy-4,5-dihydro-1 <i>H</i> -pyrazol-3-yl)benzonitrile (5o)	S17
3.16	(1-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-5-yl)(mesityl)methanone (5p).....	S17
3.17	(1-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-5-yl)(thien-2-yl)methanone (5q)	S18
3.18	(5-Hydroxy-3-(4-methoxyphenyl)-1-(thiophen-2-carbonyl)-4,5-dihydro-1 <i>H</i> -pyrazol-5-yl)(mesityl)methanone (5r)	S18
4	Attempted aromatization of 1,5-diacyl-5-hydroxypyrazoline 5b	S19
5	¹H and ¹³C NMR spectra	S20
5.1	<i>tert</i> -Butyl 5-benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazole-1-carboxylate (5a)	S20
5.2	(5-Hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1,5-diyl)bis(phenylmethanone) (5b).....	S22
5.3	(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)(4-tolyl)methanone (5c).....	S23
5.4	(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)(4-bromophenyl)methanone (5d)	S25
5.5	(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)(thien-2-yl)methanone (5e)	S27

5.6	(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)(furan-2-yl)methanone (5f).....	S28
5.7	1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)-2-phenylethan-1-one (5g)	S29
5.8	1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)-2-methylpropan-1-one (5h)	S30
5.9	(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)(cyclopropyl)methanone (5i).....	S31
5.10	1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)-2,2-dimethylpropan-1-one (5j)	S33
5.11	1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl)butan-1-one (5k)	S34
5.12	(5-Hydroxy-3-(4-methoxyphenyl)-4,5-dihydro-1 <i>H</i> -pyrazol-1,5-diyl)bis(phenylmethanone) (5l)	S36
5.13	(3-(4-(<i>tert</i> -Butyl)phenyl)-5-hydroxy-4,5-dihydro-1 <i>H</i> -pyrazol-1,5-diyl)bis(phenylmethanone) (5m)	S38
5.14	(3-(4-Fluorophenyl)-5-hydroxy-4,5-dihydro-1 <i>H</i> -pyrazol-1,5-diyl)bis(phenylmethanone) (5n)	S40
5.15	4-(1,5-Dibenzoyl-5-hydroxy-4,5-dihydro-1 <i>H</i> -pyrazol-3-yl)benzonitrile (5o)	S42
5.16	(1-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-5-yl)(mesityl)methanone (5p).....	S44
5.17	(1-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazol-5-yl)(thien-2-yl)methanone (5q)	S46
5.18	(5-Hydroxy-3-(4-methoxyphenyl)-1-(thiophen-2-carbonyl)-4,5-dihydro-1 <i>H</i> -pyrazol-5-yl)(mesityl)methanone (5r)	S47
6	Crystal structures compounds 5a, 5r, and 6a	S49
6.1	Crystal structure of <i>tert</i> -butyl 5-benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1 <i>H</i> -pyrazole-1-carboxylate (5a)	S50
6.2	Crystal structure of (5-hydroxy-3-(4-methoxyphenyl)-1-(thiophen-2-carbonyl)-4,5-dihydro-1 <i>H</i> -pyrazol-5-yl) (mesityl)methanone (5r).....	S51
6.3	Crystal structure of phenyl(3-phenyl-1 <i>H</i> -pyrazol-5-yl)methanone (6a)	S52

1 General considerations

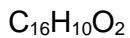
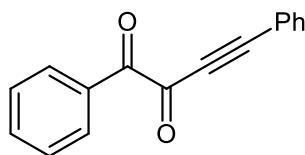
All reactions were performed in oven-dried Schlenk vessels via septum and syringe technique under argon. 1,4-Dioxane was dried with the solvent drying and purification system *MBraun MB-SPS-800*. Triethylamine was predried with KOH pellets and then dried with sodium/benzophenone, distilled and stored in a Schlenk flask with KOH pellets under argon.

Phenylglyoxylic acid (**1a**) (98%, Merck/Alfa Aesar), mesitylglyoxylic acid (**1b**) (99%, *ABCR*), 2-thienylglyoxylic acid (**1c**) (98%, *Alfa Aesar*), phenylacetylene (**2a**) (98+, *Alfa Aesar*), 4-methoxyphenylacetylene (**2b**) (99%, *Alfa Aesar*), 4-*tert*-butylphenylacetylene (**2c**) (96%, *Acros Organics*), *p*-fluorophenylacetylene (**2d**) (99%, *Alfa Aesar*), 4-ethynylbenzonitrile (**2e**) (94%, *Sigma Aldrich*), *tert*-butyl hydrazinecarboxylate (**4a**) (97%, *Sigma Aldrich*), 4-bromobenzohydrazide (**4d**) (98%, *Acros Organics*), butyrohydrazide (**4k**) (95%, *Alfa Aesar*), oxalylchloride (>98%, *Merck*), copper(I)iodide (*Sigma Aldrich*), and 2-methoxyethanol (*Merck*) were purchased and used without further purification. Benzohydrazide (**4b**), 4-methylbenzohydrazide (**4c**), thiophene-2-carbohydrazide (**4e**), furan-2-carbohydrazide (**4f**), 2-phenylacetohydrazide (**4g**), isobutyrohydrazide (**4h**), cyclopropane-carbohydrazide (**4i**), pivalohydrazide (**4j**), and butyrohydrazide (**4k**) were prepared according to the literature.¹

Flash chromatography was performed with silica gel 60 (0.040–0.063 mm) (*Fluka*) at 2 bar (compressed air). Prior to chromatography the crude products were adsorbed onto *Celite® 545* (0.02–0.10 mm) (*Merck* or *Karl Roth*). The reactions were monitored by thin layer chromatography with TLC silica gel 60 F_{254} aluminium foils (*Merck* or *Macherey-Nagel*) and detection was performed by a handheld UV lamp at $\lambda_{\text{exc}} = 254$ or 365 nm or developing the chromatogram with aqueous KMnO_4 solution.

¹ H , ¹³ C , and 135-DEPT NMR spectra were measured in CDCl_3 or CDCl_3 /tetramethylsilane on *Bruker Avance DRX-500*, *Bruker Avance III-300* or *Bruker Avance DRX-200* spectrometers. The resonances of $\text{CHCl}_3/\text{CDCl}_3$ (CHCl_3 : ^1H δ 7.26, CDCl_3 : ^{13}C δ 77.0) were set as internal standards (if no SiMe_4 was added). HSQC and HMBC spectra were recorded on a *Bruker Avance III-300*. Electron ionization (EI) mass spectra were recorded on a *Finnigan MAT 8200* spectrometer. GC–MS analysis was performed with the GC/MS systems *GC2010* and *GC/MS-QP2010S* (*Shimadzu*). IR Spectra were recorded on a *Bruker Vector 22 FT-IR* (KBr Pellets) or *Shimadzu IRAffinity* (ATR). The intensities were labelled as s (strong), m (middle), w (weak). Combustion analyses were determined on a *Perkin Elmer Series II Analyser 2400* (C,H,N-Analyse) in the microanalytic laboratory of the Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf. Melting points (uncorrected) were determined with melting point microscope (*Reichert Thermo var*), a *PeakTech 6000A* DC power adaptor, and digital thermometer *D2400* (*Norma*).

X-ray structure analyses were performed in the group of Prof. Dr. *W. Frank*, Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, on a *Stoe IPDS (opus)*, an *Xcalibur EOS* (no) and an *Oxford 4-Circle Diffractometer* with an *EOS plane detector* (exp).

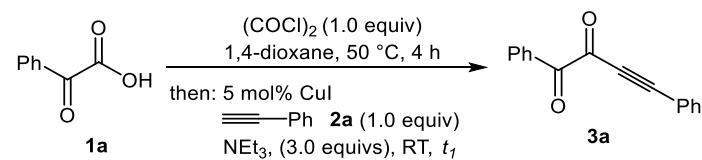



¹ Kaushik, D.; Khan, S. A.; Chawla, G.; Kumar, S. *Eur. J. Med. Chem.* **2010**, *45*, 3943-3949. DOI: 10.1016/j.ejmech.2010.05.049

2 Optimization studies

2.1 Optimization of 1,4-diphenylbut-3-yn-1,2-dione (3a)

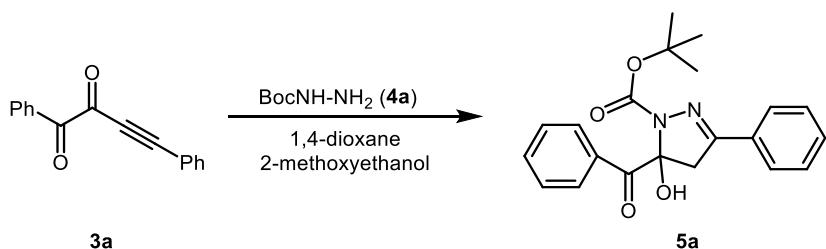
In an oven-dried Schlenk flask with magnetic stir bar and screw cap were placed phenylglyoxylic acid (**1a**, 150 mg, 1.00 mmol or 765 mg, 5.00 mmol) and dry 1,4-dioxane (2.5 mL or 25 mL) under argon (degassing by flushing with argon through a syringe needle for 5 min). Then, oxalyl chloride (0.09 mL, 1.00 mmol or 0.49 mL, 5.00 mmol) was added dropwise at room temperature (external water bath) by syringe through the septum to the reaction mixture and stirring was continued for 15 min. Then, the reaction mixture was stirred at 50 °C (preheated oil bath) for 4 h. After the mixture had cooled to room temperature CuI (10 mg, 0.05 mmol or 49 mg, 0.25 mmol), phenylacetylene (**2a**) (0.11 mL, 1.00 mmol or 0.58 mL, 5.00 mmol), and dry triethylamine (0.42 mL, 3.00 mmol or 2.1 mL, 15.0 mmol) were successively added. Stirring at room temperature (external water bath) was continued for 15 to 24 h (for details see Table S1). After complete conversion (monitored by TLC) and cooling to room temperature deionized water (5 mL) was added and the mixture was extracted with dichloromethane (4 × 10 mL). The combined organic phases were dried (anhydrous sodium sulfate) and the solvents were removed in vacuo. The crude product was adsorbed on celite® and purified by flash chromatography on silica gel (petroleum ether 40–60 °C/ethyl acetate 50:1) to give analytically pure 1,4-diphenylbut-3-yn-1,2-dione (**3a**) as yellow oil.



[234.25]

¹H NMR (CDCl₃, 500 MHz): δ 7.39–7.43 (m, 2 H), 7.48–7.56 (m, 3 H), 7.63–7.70 (m, 3 H), 8.07–8.10 (m, 2 H). ¹³C NMR (CDCl₃, 125 MHz): δ 87.0 (C_{quat}), 99.1 (C_{quat}), 119.1 (C_{quat}), 128.7 (CH), 128.9 (CH), 130.5 (CH), 131.5 (C_{quat}), 131.7 (CH), 133.6 (CH), 134.9 (CH), 178.5 (C_{quat}), 188.4 (C_{quat}). EI+MS (*m/z* (%)): 234 (M⁺, 0.4), 206 ((M-CO)⁺, 3), 178 ((M-C₂O₂)⁺, 31), 129 ((M-C₇H₅O)⁺, 71), 105 (C₇H₅O⁺, 100), 85 (11), 77 (C₆H₅⁺, 38), 75 (11), 71 (15), 57 (13). IR: $\tilde{\nu}$ [cm⁻¹]: 3065 (w), 2927 (w), 2191 (s), 1656 (s), 1595 (m), 1489 (w), 1449 (m), 1249 (m), 1182 (w), 1108 (s), 1025 (w), 1000 (w), 924 (m), 816 (w), 778 (m), 759 (m), 738 (m), 685 (s), 611 (w), 538 (w). Anal. calcd. for C₁₆H₁₀O₂ (234.3): C 82.04, H 4.30; Found: C 82.13, H 4.31.

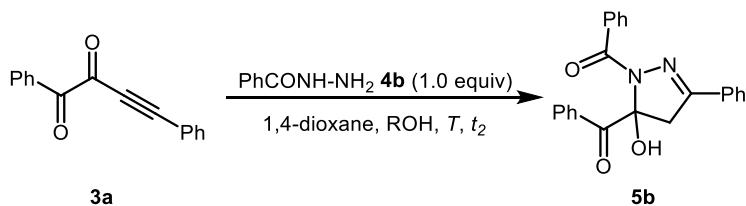
GC-MS (*m/z* (%)): *R_f* = 14.87 min. 234 (M⁺, 6), 178 ((M-C₂O₂)⁺, 21), 129 ((M-C₇H₅O)⁺, 57), 105 (C₇H₅O⁺, 100), 77 (C₆H₅⁺, 92), 75 (40), 74 (17), 51 (66), 50 (20).


Table S1: Optimization of the activation–alkynylation synthesis of 1,4-diphenylbut-3-yne-1,2-dione (**3a**).

Entry	scale	c_0 (1a)	t_1	1,4-diphenylbut-3-yne-1,2-dione (3a)
1 ¹	5.00 mmol	0.2 M	24 h	61%
2 ²	5.00 mmol	0.2 M	24 h	63%
3 ²	1.00 mmol	0.2 M	24 h	65%
4 ²	1.00 mmol	0.2 M	20 h	65%
5 ²	1.00 mmol	0.2 M	15 h	65%
6²	1.00 mmol	0.4 M	15 h	76%
7 ^{2,3}	1.00 mmol	0.4 M	15 h	70%

¹Triethylamine dried with sodium. ²Triethylamine (purest, Appli Chem GmbH, 99%), dried with KOH. ³Performed in a microwave vessel.

2.2 Synthesis of *tert*-butyl 5-benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazole-1-carboxylate (**5a**)



In a dry screw-cap Schlenk vessel with a magnetic stirring bar 1,4-diphenylbut-3-yne-1,2-dione (**3a**, 238 mg, 1.02 mmol) was dissolved in 1,4-dioxane (5.1 mL) under argon. Then, *tert*-butyl carbazate (**4a**, 136 mg, 1.02 mmol) and 2-methoxyethanol (1.02 mL) were added. The reaction mixture was heated at 100 °C (preheated oil bath) for 24 h. After cooling to room temperature the solvents were removed in vacuo and the crude product was adsorbed on celite® and purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 20:1) to give *tert*-butyl 5-benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazole-1-carboxylate (**5a**, 310 mg, 83%) as colorless solid, Mp 155 °C; R_f (petroleum ether/ethyl acetate 20:1): 0.05.

¹H NMR (CDCl₃, 300 MHz): δ 1.23 (s, 7 H), 1.46 (s, 2 H), 3.48 (d, J = 18.3 Hz, 1 H), 3.76 (d, J = 18.3 Hz, 1 H), 5.63 (br, 1 H), 7.37-7.49 (m, 5 H), 7.53-7.66 (m, 1 H), 7.72-7.87 (m, 2 H), 7.87-

7.95 (m, 2 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 27.7 (CH_3), 47.7 (CH_2), 83.2 (C_{quat}), 90.5 (C_{quat}), 126.9 (CH), 128.7 (CH), 129.1 (CH), 129.2 (CH), 130.4 (CH), 130.8 (C_{quat}), 131.1 (C_{quat}), 134.4 (CH), 149.7 (C_{quat}), 150.9 (C_{quat}), 194.2 (C_{quat}). MS (EI), m/z : 261 ((M – PhCO) $^+$, 5), 248 ((M – $t\text{BuOCO}_2\text{H}$) $^+$, 16), 205 (9), 162 (11), 161 ((M – PhCO – $\text{CH}_2=\text{CMe}_2-\text{CO}_2$) $^+$, 100), 105 (PhCO $^+$, 23), 77 (C_6H_5^+ , 16), 57 (C_4H_9^+ , 15). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 3030 (w), 1721 (s), 1649 (m), 1622 (w), 1533 (s), 1493 (w), 1410 (m), 1383 (w), 1364 (w), 1341 (s), 1294 (m), 1267 (m), 1246 (s), 1233 (s), 1188 (m), 1153 (s), 1134 (m), 1072 (w), 1042 (s), 993 (w), 982 (w), 932 (w), 872 (s), 816 (m), 756 (s), 691 (s), 610 (m). Anal. calcd. for $\text{C}_{21}\text{H}_{22}\text{N}_2\text{O}_4$ (366.4): C 68.84, H 6.05, N 7.65; Found: C 68.87, H 6.08, N 7.66.

2.3 Optimization of (5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazole-1,5-diyl)bis(phenylmethanone) (5b)

In a dry screw-cap microwave vessel with a magnetic stirring bar ynedione **3a** (47 mg, 0.2 mmol), benzohydrazide (**4b**), 1,4-dioxane (1.0 mL) and 2-methoxyethanol (0.2 mL) were added and the reaction mixture was placed in the microwave cavity or the preheated oil bath at the temperature and for the time indicated (for experimental details, see Table S2). The conversion was monitored by GC-MS. Only for full conversion and after cooling to room temperature and work up (vide supra) the residue was chromatographed on silica gel (petroleum ether/ethyl acetate 5:1) and isolated as colorless solid, Mp 152 °C; R_f (petroleum ether/ethyl acetate 5:1): 0.15 (vide infra for spectroscopic and analytical data).

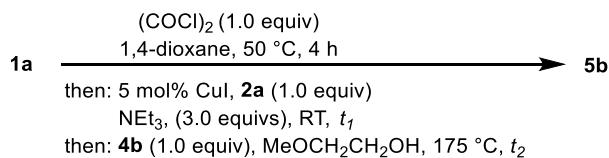

GC-MS (m/z (%)): R_t : 17.30 min. 248 ((M- $\text{C}_7\text{H}_5\text{O}-\text{H}_2\text{O}$) $^+$, 34), 115 (10), 112 (14), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 48), 89 (11), 77 (C_6H_5^+ , 100), 51 (50), 50 (13). R_t : 20.17 min. 248 ((M- $\text{C}_7\text{H}_5\text{O}-\text{H}_2\text{O}$) $^+$, 22), 247 (13), 145 (44), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 13), 104 (100), 103 (27), 102 (10), 90 (12), 89 (21), 78 (11), 77 (C_6H_5^+ , 63), 76 (32), 68 (19), 63 (19), 51 (36), 50 (17). R_t : 22.43 min. 352 ((M- H_2O) $^+$, 8), 248 ((M- $\text{C}_7\text{H}_5\text{O}-\text{H}_2\text{O}$) $^+$, 1), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 100), 77 (C_6H_5^+ , 71), 51 (18). R_t : 24.25 min. 105 ($\text{C}_7\text{H}_5\text{O}^+$, 100), 77 (C_6H_5^+ , 45), 51 (19). R_t : 25.55 min. 105 ($\text{C}_7\text{H}_5\text{O}^+$, 100), 77 (C_6H_5^+ , 52), 51 (14).

Table S2: Optimization of the cyclization step of 1,5-diacyl-5-hydroxypyrazoline **5b**.^[a]

Entr y	ROH [mL]	4b [mg] (mmol)	<i>T</i> [°C]	<i>t</i> ₂ [min]	1,5-diacyl-5-hydroxypyrazoline 5b	
					GC-Conversion	[mg] (%) ^[b]
1 ^[c]	2-methoxyethanol (0.2)	27.2 (0.20)	100	60	incomplete conversion ^[d]	(n.i.)
2 ^[c]	2-methoxyethanol (0.2)	27.2 (0.20)	150	60	incomplete conversion ^[d]	(n.i.)
3 ^[c]	2-methoxyethanol (0.2)	41.0 (0.30)	150	60	complete conversion ^[e]	(n.i.)
4 ^[c]	2-methoxyethanol (0.2)	34.0 (0.25)	150	60	complete conversion ^[d]	(n.i.)
5 ^[c]	2-methoxyethanol (0.2)	33.0 (0.24)	150	60	complete conversion ^[d]	(n.i.)
6 ^[c]	2-methoxyethanol (0.2)	30.0 (0.22)	150	60	incomplete conversion ^[d]	(n.i.)
7 ^[c]	2-methoxyethanol (0.2)	33.0 (0.24)	150	30	complete conversion ^[d]	(n.i.)
8 ^[c]	2-methoxyethanol (0.2)	33.0 (0.24)	150	15	complete conversion ^[d]	(n.i.)
9 ^[c]	2-methoxyethanol (0.2)	33.0 (0.24)	150	5	incomplete conversion ^[d]	(n.i.)
10 ^[c]	2-methoxyethanol (0.2)	33.0 (0.24)	100	10	incomplete conversion ^[d]	(n.i.)
11 ^[c]	2-methoxyethanol (0.2)	33.0 (0.24)	125	10	incomplete conversion ^[d]	(n.i.)
12 ^[c,e] 1	2-methoxyethanol (0.2)	136.4 (1.20)	175	5	full conversion^[d]	348 (94)
13 ^[c,e] 1	ethylene glycol (0.2)	136.4 (1.20)	175	5	full conversion ^[d]	356 (96)
14 ^[c,e] 1	ethanol (0.2)	136.4 (1.20)	175	5	full conversion ^[d]	322 (87)
15 ^[f]	2-methoxyethanol (0.2)	136.4 (1.20)	175	5	full conversion^[d]	333 (90)
16 ^[e,g] 1	2-methoxyethanol (0.2)	136.4 (1.20)	175	5	full conversion ^[d]	345 (93)

[a] $c_0(\mathbf{3a}) = 0.17$ M; 1,4-dioxane (1.0 mL). [b] Isolated yield (n.i. = not isolated). [c] Dielectric heating in a microwave cavity (*T* is the set temperature and *t*₂ is the hold time). [d] As monitored by GC-MS. [e] On a 1.00 mmol scale (**3a**). [f] On a 1.00 mmol scale (**3a**), $c_0(\mathbf{3a}) = 0.34$ M; $c_0(\mathbf{4b}) = 0.40$ M. 1,4-dioxane (1.0 mL). [g] Conductive heating in an oil bath at preheated temperature *T*.

2.4 Optimization of consecutive three-component synthesis of (5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazole-1,5-diyI)bis(phenyl-methanone) (**5b**)

In an oven-dried Schlenk flask with magnetic stirring bar and screw cap were placed phenylglyoxylic acid (**1a**, 150 mg, 1.00 mmol) and dry 1,4-dioxane (2.5 mL) under argon. Then, oxalyl chloride (0.09 mL, 1.00 mmol) was added dropwise at room temperature (external water bath) to the solution. Then, the reaction mixture was stirred at 50 °C (preheated oil bath) for 4 h. After the mixture had cooled to room temperature Cul (10 mg, 0.05 mmol), phenylacetylene (**2a**, 0.11 mL, 1.00 mmol), and dry triethylamine (0.42 mL, 3.00 mmol) were successively added and stirring at room temperature (external water bath) was continued for 15 h. Then, hydrazide **4b** (136.4 mg, 1.20 mmol) and 2-methoxyethanol (1.0 mL) were added and the reaction mixture was placed in the microwave cavity or the preheated oil bath at the temperature and for the time indicated (for experimental details, see Table S3). Only for full conversion and after cooling to room temperature and work up (vide supra) the residue was chromatographed on silica gel (petroleum ether/ethyl acetate 5:1) and isolated as colorless solid, Mp 152 °C; *R*_f (petroleum ether/ethyl acetate 5:1): 0.15 (vide infra for spectroscopic and analytical data).

Table S3: Optimization of the consecutive three-component synthesis of 1,5-diacyl-5-hydroxypyrazoline **5b**.

Entry	<i>c</i> ₀ (1a)	<i>t</i> ₂ [min]	1,5-diacyl-5-hydroxypyrazoline
			5b , yield [mg] (%) ^[a]
1 ^[b]	0.4 M	5	137 (37)
2 ^[b]	0.25 M	5	119 (32)
3 ^[b]	0.25 M	10	130 (35)
4 ^[c]	0.4 M	10	no product formation ^[d]
5 ^[e,f]	0.4 M	5	no product formation ^[d]
6 ^[e]	0.4 M	10	237 (64)
7 ^[e]	0.4 M	20	255 (69)
8^[e]	0.4 M	30	289 (78)
9 ^[e]	0.4 M	45	292 (79)

[a] Isolated yield. [b] Dielectric heating in a microwave cavity (*T* is set to 175 °C and *t*₂ is the hold time). [c] Dielectric heating in a microwave cavity (*T* is set to 150 °C and *t*₂ is the hold time). [d] As monitored by GC-MS. [e] Conductive heating in an oil bath at preheated temperature *T* = 175 °C. [f] 2.00 equivs of NEt₃ were added.

3 Three-component synthesis of 1,5-diacyl-5-hydroxypyrazolines 5

3.1 General procedure (GP)

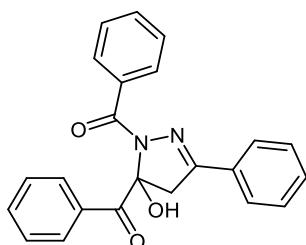
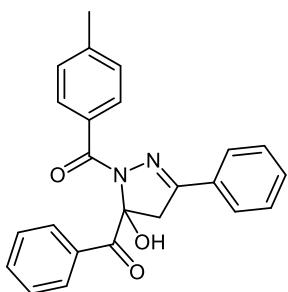

In an oven-dried Schlenk flask with magnetic stirring bar and screw cap were placed glyoxylic acid **1** (1.00 mmol) and dry 1,4-dioxane (2.5 mL) under argon (for experimental details see Table S4). Then, oxalyl chloride (0.09 mL, 1.00 mmol) was added dropwise at room temperature (external water bath) and the reaction mixture was stirred at 50 °C (preheated oil bath) for 4 h. After the mixture had cooled to room temperature CuI (10 mg, 0.05 mmol), alkyne **2** (1.00 mmol), and dry triethylamine (0.42 mL, 3.00 mmol) were successively added. Stirring at room temperature (external water bath) was continued for 15 h. Then, hydrazide **3** (1.20 mmol) and 2-methoxyethanol (1.0 mL) were added and the reaction mixture was stirred at 175 °C (preheated oil bath) for 30 min. After complete conversion (monitored by TLC) and cooling to room temperature deionized water (5 mL) was added and the mixture was extracted with dichloromethane (4 × 5 mL). The combined organic phases were dried with anhydrous sodium sulfate and the solvents were removed in vacuo. The crude product was adsorbed on celite® and purified by flash chromatography on silica gel (petroleum 40–60 °C/ethyl acetate) to give analytically pure 1,5-diacyl-5-hydroxypyrazolines **5**.

Table S4: Experimental details of the three-component synthesis of 1,5-diacyl-5-hydroxypyrazolines **5b–r**.

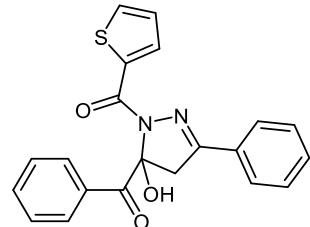
Entry	Glyoxylic acid 1	Alkyne 2	Hydrazide 4	1,5-Diacyl-5-hydroxypyrazolines 5b–r
1	150 mg (1.00 mmol) of 1a	0.11 mL (1.00 mmol) of 2a	163 mg (1.20 mmol) of 4b	291 mg (78%) of 5b
2	150 mg (1.00 mmol) of 1a	0.11 mL (1.00 mmol) of 2a	180 mg (1.20 mmol) of 4c	209 mg (55%) of 5c
3	150 mg (1.00 mmol) of 1a	0.11 mL (1.00 mmol) of 2a	232 mg (1.20 mmol) of 4d	185 mg (41%) of 5d
4	150 mg (1.00 mmol) of 1a	0.11 mL (1.00 mmol) of 2a	170 mg (1.20 mmol) of 4e	268 mg (71%) of 5e
5	150 mg (1.00 mmol) of 1a	0.11 mL (1.00 mmol) of 2a	151 mg (1.20 mmol) of 4f	241 mg (67%) of 5f
6	150 mg (1.00 mmol) of 1a	0.11 mL (1.00 mmol) of 2a	180 mg (1.20 mmol) of 4g	228 mg (59%) of 5g
7	150 mg (1.00 mmol) of 1a	0.11 mL (1.00 mmol) of 2a	123 mg (1.20 mmol) of 4h	222 mg (66%) of 5h


Entry	Glyoxylic acid 1	Alkyne 2	Hydrazide 4	1,5-Diacyl-5-hydroxypyrazolines 5b-r
8	150 mg (1.00 mmol) of 1a	0.11 mL (1.00 mmol) of 2a	120 mg (1.20 mmol) of 4i	232 mg (69%) of 5i
9	150 mg (1.00 mmol) of 1a	0.11 mL (1.00 mmol) of 2a	139 mg (1.20 mmol) of 4j	203 mg (58%) of 5j
10	150 mg (1.00 mmol) of 1a	0.11 mL (1.00 mmol) of 2a	129 mg (1.20 mmol) of 4k	111 mg (33%) of 5k
11	150 mg (1.00 mmol) of 1a	0.13 mL (1.00 mmol) of 2b	163 mg (1.20 mmol) of 4b	220 mg (55%) of 5l
12	150 mg (1.00 mmol) of 1a	0.19 mL (1.00 mmol) of 2c	163 mg (1.20 mmol) of 4b	293 mg (69%) of 5m
13	150 mg (1.00 mmol) of 1a	121 mg (1.00 mmol) of 2d	163 mg (1.20 mmol) of 4b	256 mg (66%) of 5n
14	150 mg (1.00 mmol) of 1a	131 mg (1.00 mmol) of 2e	163 mg (1.20 mmol) of 4b	113 mg (29%) of 5o
15	194 mg (1.00 mmol) of 1b	0.11 mL (1.00 mmol) of 2a	163 mg (1.20 mmol) of 4b	194 mg (47%) of 5p
16	159 mg (1.00 mmol) of 1c	0.11 mL (1.00 mmol) of 2a	163 mg (1.20 mmol) of 4b	275 mg (73%) of 5q
17	194 mg (1.00 mmol) of 1b	0.13 mL (1.00 mmol) of 2b	170 mg (1.20 mmol) of 4e	172 mg (38%) of 5r

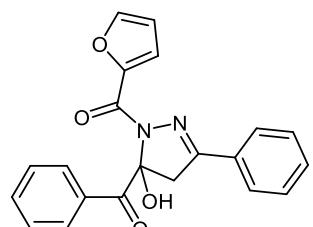
3.2 (5-Hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1,5-diyl)bis(phenylmethanone) (**5b**)

According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 5:1) compound **5b** (291 mg, 78%) was obtained as colorless solid, Mp 152 °C; R_f (petroleum ether/ethyl acetate 5:1): 0.15. ^1H NMR (CDCl_3 , 300 MHz): δ 3.54 (d, J = 18.5 Hz, 1 H), 3.76 (d, J = 18.5 Hz, 1 H), 5.60-6.08 (br, 1 H), 7.36-7.62 (m, 9 H), 7.72-7.83 (m, 2 H), 7.90-8.05 (m, 4 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 45.6 (CH_2), 92.2 (C_{quat}), 126.9 (CH), 127.8 (CH), 128.9 (CH)*, 129.0 (CH), 130.2 (CH), 130.7 (C_{quat}), 130.9 (CH), 131.7 (CH), 131.8 (C_{quat}), 132.9 (C_{quat}), 133.9 (CH), 153.1 (C_{quat}), 166.7 (C_{quat}), 193.4 (C_{quat}); *broadened signal. MS (EI), m/z : 352 (($\text{M} - \text{H}_2\text{O}$) $^+$, 2), 266 (11), 265 (($\text{M} - \text{C}_7\text{H}_5\text{O}$) $^+$, 59), 248 (($\text{M} - \text{C}_7\text{H}_5\text{O} - \text{H}_2\text{O}$) $^+$, 20), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 100), 77 (C_6H_5^+ , 34). IR (ATR), $\tilde{\nu}$ [cm^{-1}]: 3333 (w), 1697 (m), 1626 (m), 1612 (m), 1566 (w), 1450 (m), 1427 (m), 1339 (m), 1315 (w), 1254 (w), 1202 (m), 1180 (m), 1113 (m), 1057 (w), 1028 (w), 922 (w), 895 (w), 866 (m), 845 (w), 791 (w), 762 (m), 708 (s), 689 (s), 669 (m), 627 (w). Anal. calcd. for $\text{C}_{23}\text{H}_{18}\text{N}_2\text{O}_3$ (370.4): C 74.58, H 4.90, N 7.56; Found: C 74.67, H 5.07, N 7.79.

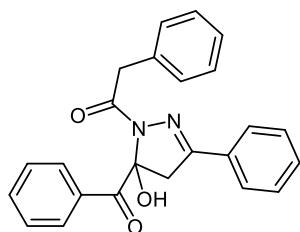
3.3 (5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)(4-tolyl)methanone (5c)


According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 5:1) compound **5c** (209 mg, 55%) was obtained as light yellow solid, Mp 147 °C; R_f (petroleum ether/ethyl acetate 5:1): 0.17. ^1H NMR (CDCl_3 , 300 MHz): δ 2.41 (s, 3 H), 3.52 (d, J = 18.5 Hz, 1 H), 3.74 (d, J = 18.5 Hz, 1 H), 5.82 (br, 1 H), 7.25 (d, J = 8.4 Hz, 2 H), 7.36-7.50 (m, 5 H), 7.51-7.61 (m, 1 H), 7.70-7.84 (m, 2 H), 7.88-8.00 (m, 4 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 21.7 (CH_3), 45.6 (CH_2), 92.4 (C_{quat}), 127.0 (CH), 128.6 (CH), 129.0 (CH)*, 129.2 (CH), 130.1 (C_{quat}), 130.5 (CH), 130.9 (CH), 131.0 (C_{quat}), 132.1 (C_{quat}), 134.0 (CH), 142.4 (C_{quat}), 153.0 (C_{quat}), 166.7 (C_{quat}), 193.7 (C_{quat}); *broadened signal. MS (EI), m/z : 366 ((M – H_2O) $^+$, 7), 279 ((M – $\text{C}_7\text{H}_5\text{O}$) $^+$, 44), 248 ((M – $\text{C}_7\text{H}_7\text{O} – \text{H}_2\text{O}$) $^+$, 7), 119 ($\text{C}_8\text{H}_7\text{O}^+$, 100), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 9), 91 (21), 77 (C_6H_5^+ , 7). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 3387 (w), 3362 (w), 1701 (s), 1632 (m), 1607 (m), 1597 (m), 1558 (w), 1512 (w), 1449 (m), 1422 (s), 1404 (m), 1358 (m), 1337 (s), 1273 (w), 1256 (w), 1204 (s), 1182 (s), 1111 (s), 1061 (m), 1026 (w), 1001 (w), 920 (m), 899 (w), 847 (w), 827 (w), 785 (m), 760 (m), 743 (s), 706 (s), 689 (s), 675 (m), 646 (w). Anal. calcd. for $\text{C}_{24}\text{H}_{20}\text{N}_2\text{O}_3$ (384.4): C 74.98, H 5.24, N 7.29; Found: C 75.19, H 5.42, N 7.26.

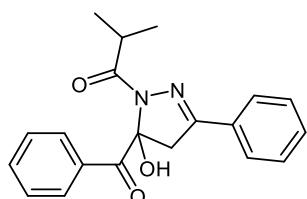
3.4 (5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)(4-bromophenyl)methanone (5d)


According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 5:1) compound **5d** (185 mg, 41%) was obtained as beige solid, Mp 164 °C; R_f (petroleum ether/ethyl acetate 5:1): 0.19. ^1H NMR (CDCl_3 , 300 MHz): δ 3.54 (d, J = 18.5 Hz, 1 H), 3.75 (d, J = 18.5 Hz, 1 H), 4.7-6.4 (br, 1 H), 7.38-7.51 (m, 5 H), 7.53-7.61 (m, 3 H), 7.71-7.79 (m, 2 H), 7.84-7.97 (m, 4 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 46.0 (CH_2), 92.6 (C_{quat}), 127.0 (C_{quat}), 127.3 (CH), 129.30 (CH), 129.32 (CH), 129.4 (CH), 130.9 (C_{quat}), 131.4 (CH), 131.5 (CH), 132.06 (C_{quat}), 132.10 (C_{quat}), 132.2 (CH), 134.5 (CH), 153.9 (C_{quat}), 166.0 (C_{quat}), 193.7 (C_{quat}). MS (EI), m/z : 432 ($^{81}\text{Br}\text{-M} – \text{H}_2\text{O}$) $^+$, 0.5), 430 ($^{79}\text{Br}\text{-M} – \text{H}_2\text{O}$) $^+$, 0.6), 345 ($^{81}\text{Br}\text{-M} – \text{C}_7\text{H}_5\text{O}$) $^+$, 25), 343 ($^{79}\text{Br}\text{-M} – \text{C}_7\text{H}_5\text{O}$) $^+$, 25), 303 (15), 301 (15), 249 (18), 248 ((M – $\text{C}_7\text{H}_4\text{BrO} – \text{H}_2\text{O} + \text{H}$) $^+$, 100), 247 (10), 185 (51), 183 (53), 171 (53), 157 ($\text{C}_6\text{H}_4^{81}\text{Br}^+$, 10), 155 ($\text{C}_6\text{H}_4^{79}\text{Br}^+$, 11), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 42), 77 (C_6H_5^+ , 32). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 3302 (w), 1705 (m), 1612 (m), 1585 (w), 1557 (w), 1439 (m), 1342 (m), 1256 (m), 1200 (w), 1182 (w), 1134 (w), 1109 (m), 1070 (w), 1036 (w), 1007 (m), 980 (w), 934 (w), 891 (w), 849 (w), 829 (m), 781 (w), 752 (m), 714 (m), 687 (s), 665 (s), 640 (m), 621 (m). Anal. calcd. for $\text{C}_{23}\text{H}_{17}\text{BrN}_2\text{O}_3$ (449.3): C 61.48, H 3.81, N 6.23; Found: C 61.25, H 4.00, N 6.08.

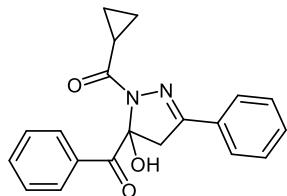
3.5 (5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)(thien-2-yl)methanone (5e)


According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 5:1) compound **5e** (268 mg, 71%) was obtained as light yellow solid, Mp 162 °C; R_f (petroleum ether/ethyl acetate 5:1): 0.16. ^1H NMR (CDCl_3 , 300 MHz): δ 3.54 (d, J = 18.4 Hz, 1 H), 3.77 (d, J = 18.5 Hz, 1 H), 5.60-6.15 (br, 1 H), 7.13 (dd, J = 5.0 Hz, J = 3.8 Hz, 1 H), 7.40 (t, J = 7.7 Hz, 2 H), 7.48-7.62 (m, 4 H), 7.67 (dd, J = 4.9 Hz, J = 1.3 Hz, 1 H), 7.83-8.00 (m, 4 H), 8.15 (dd, J = 3.9 Hz, J = 1.4 Hz, 1 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 46.0 (CH_2), 91.9 (C_{quat}), 127.1 (CH), 127.2 (CH), 129.12 (CH), 129.14 (CH), 129.2 (CH), 130.8 (C_{quat}), 131.2 (CH), 131.7 (C_{quat}), 133.8 (C_{quat}), 134.2 (CH), 134.5 (CH), 135.8 (CH), 153.2 (C_{quat}), 159.7 (C_{quat}), 193.3 (C_{quat}). MS (EI), m/z : 358 (($\text{M} - \text{H}_2\text{O}$) $^+$, 1), 272 (12), 271 (($\text{M} - \text{C}_7\text{H}_5\text{O}$) $^+$, 71), 111 ($\text{C}_5\text{H}_3\text{OS}^+$, 100), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 6), 77 (C_6H_5^+ , 8). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 3316 (w), 2922 (m), 1695 (m), 1609 (m), 1595 (m), 1512 (m), 1437 (s), 1410 (m), 1327 (m), 1304 (w), 1275 (w), 1252 (w), 1206 (s), 1186 (m), 1115 (s), 1059 (w), 1043 (m), 937 (w), 920 (m), 901 (w), 858 (m), 826 (m), 762 (m), 729 (s), 704 (s), 689 (s), 677 (m), 623 (w). Anal. calcd. for $\text{C}_{21}\text{H}_{16}\text{N}_2\text{O}_3\text{S}$ (376.4): C 67.00, H 4.28, N 7.44; Found: C 67.21, H 4.45, N 7.19.

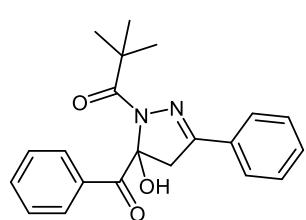
3.6 (5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)(furan-2-yl)methanone (5f)


According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 4:1) compound **5f** (241 mg, 67%) was obtained as beige solid, Mp 183 °C; R_f (petroleum ether/ethyl acetate 4:1): 0.22. ^1H NMR (CDCl_3 , 300 MHz): δ 3.51 (d, J = 18.5 Hz, 1 H), 3.74 (d, J = 18.5 Hz, 1 H), 5.78 (br, 1 H), 6.58 (dd, J = 3.5 Hz, J = 1.7 Hz, 1 H), 7.34-7.44 (m, 2 H), 7.45-7.59 (m, 4 H), 7.59-7.65 (m, 1 H), 7.74-7.79 (m, 1 H), 7.80-7.86 (m, 2 H), 7.86-7.94 (m, 2 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 45.9 (CH_2), 92.4 (C_{quat}), 112.2 (CH), 120.9 (CH), 127.3 (CH), 129.3 (CH), 129.4 (CH), 129.5 (CH), 131.1 (C_{quat}), 131.4 (CH), 132.1 (C_{quat}), 134.4 (CH), 145.6 (C_{quat}), 146.7 (CH), 154.0 (C_{quat}), 156.5 (C_{quat}), 193.5 (C_{quat}). MS (EI), m/z : 342 (($\text{M} - \text{H}_2\text{O}$) $^+$, 2), 256 (($\text{M} - \text{C}_5\text{H}_3\text{O}_2$) $^+$, 16), 255 (($\text{M} - \text{C}_7\text{H}_5\text{O}$) $^+$, 100), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 8), 95 (85), 77 (C_6H_5^+ , 11). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 1678 (m), 1603 (s), 1551 (m), 1466 (s), 1441 (s), 1339 (m), 1240 (m), 1223 (m), 1209 (m), 1018 (w), 928 (m), 851 (m), 816 (m), 795 (m), 768 (s), 748 (m), 710 (s), 692 (s), 667 (m), 633 (m). Anal. calcd. for $\text{C}_{21}\text{H}_{16}\text{N}_2\text{O}_4$ (360.4): C 69.99, H 4.48, N 7.77; Found: C 70.12, H 4.18, N 7.75.

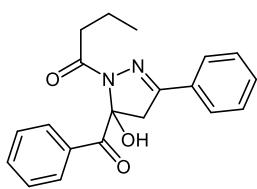
3.7 1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)-2-phenylethan-1-one (5g)


According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 5:1) compound **5g** (228 mg, 59%) was obtained as beige solid, Mp 110 °C; R_f (petroleum ether/ethyl acetate 5:1): 0.15. ^1H NMR (CDCl_3 , 300 MHz): δ 3.37 (d, J = 18.5 Hz, 1 H), 3.58 (d, J = 18.5 Hz, 1 H), 3.87 (d, J = 14.0 Hz, 1 H), 4.09 (d, J = 14.0 Hz, 1 H), 5.61 (br, 1 H), 7.09-7.21 (m, 7 H), 7.35-7.45 (m, 4 H), 7.54-7.62 (m, 2 H), 7.67-7.76 (m, 2 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 41.5 (CH_2), 46.9 (CH_2), 91.0 (C_{quat}), 127.15 (CH), 127.17 (CH), 128.8 (CH), 129.1 (CH), 129.26 (CH), 129.30 (CH), 129.8 (CH), 131.16 (C_{quat}), 131.22 (CH), 131.7 (C_{quat}), 134.2 (CH), 134.3 (C_{quat}), 152.8 (C_{quat}), 169.9 (C_{quat}), 193.7 (C_{quat}). MS (EI), m/z : 366 (($\text{M} - \text{H}_2\text{O}$) $^+$, 1.2), 279 (($\text{M} - \text{C}_7\text{H}_5\text{O}$) $^+$, 41), 162 (11), 161 (($\text{M} - \text{C}_7\text{H}_5\text{O} - \text{C}_8\text{H}_7\text{O} + \text{H}$) $^+$, 100), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 8), 91 (C_7H_7^+ , 18), 77 (C_6H_5^+ , 10). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 3406 (w), 2924 (w), 1692 (m), 1657 (s), 1593 (w), 1493 (w), 1427 (s), 1339 (m), 1323 (w), 1267 (w), 1238 (w), 1198 (m), 1179 (m), 1163 (m), 1111 (m), 1076 (w), 1049 (m), 1020 (w), 999 (w), 968 (w), 926 (w), 916 (w), 889 (w), 866 (w), 766 (s), 716 (s), 691 (s), 675 (m), 631 (w), 606 (w). Anal. calcd. for $\text{C}_{24}\text{H}_{20}\text{N}_2\text{O}_3$ (384.4): C 74.98, H 5.24, N 7.29; Found: C 74.87, H 5.48, N 7.11.

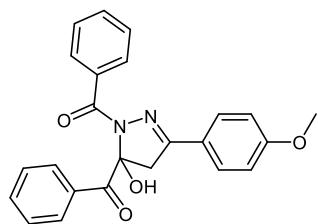
3.8 1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)-2-methylpropan-1-one (5h)


According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 6:1) compound **5h** (222 mg, 66%) was obtained as beige solid, Mp 87-89 °C; R_f (petroleum ether/ethyl acetate 6:1): 0.19. ^1H NMR (CDCl_3 , 300 MHz): δ 1.05 (d, J = 7.0 Hz, 3 H), 1.17 (d, J = 6.9 Hz, 3 H), 3.42 (sept, J = 7.0 Hz, 1 H), 3.46 (d, J = 18.5 Hz, 1 H), 3.71 (d, J = 18.5 Hz, 1 H), 5.68 (br, 1 H), 7.35-7.50 (m, 5 H), 7.53-7.60 (tt, J = 7.4 Hz, J = 1.5 Hz, 1 H), 7.75-7.89 (m, 4 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 18.1 (CH_3), 18.5 (CH_3), 32.0 (CH), 46.4 (CH_2), 90.9 (C_{quat}), 126.9 (CH), 128.9 (CH), 129.0 (CH), 129.2 (CH), 130.9 (CH), 131.1 (C_{quat}), 131.7 (C_{quat}), 134.1 (CH), 152.2 (C_{quat}), 176.0 (C_{quat}), 193.7 (C_{quat}). MS (EI), m/z : 318 (($\text{M} - \text{H}_2\text{O}$) $^+$, 0.3), 248 (($\text{M} - \text{C}_4\text{H}_7\text{O} - \text{H}_2\text{O} + \text{H}$) $^+$, 4), 231 (($\text{M} - \text{C}_7\text{H}_5\text{O}$) $^+$, 39), 162 (11), 161 (($\text{M} - \text{C}_4\text{H}_7\text{O} - \text{C}_7\text{H}_5\text{O} + \text{H}$) $^+$, 100), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 11), 77 (C_6H_5^+ , 11), 71 ($\text{C}_4\text{H}_7\text{O}^+$, 4). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 3402 (w), 2972 (w), 2924 (w), 2855 (w), 1738 (w), 1695 (s), 1657 (s), 1595 (w), 1468 (m), 1447 (m), 1423 (s), 1342 (m), 1281 (m), 1267 (m), 1223 (m), 1194 (s), 1180 (s), 1092 (m), 1043 (m), 1018 (m), 947 (m), 910 (m), 866 (m), 843 (m), 770 (s), 708 (s), 691 (s), 677 (s). Anal. calcd. for $\text{C}_{20}\text{H}_{20}\text{N}_2\text{O}_3$ (336.4): C 71.41, H 5.99, N 8.33; Found: C 71.61, H 6.17, N 8.09.

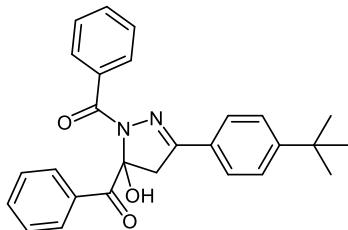
3.9 (5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)(cyclopropyl)-methanone (5i)


According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 6:1) compound **5i** (232 mg, 69%) was obtained as colorless solid, Mp 84 °C; R_f (petroleum ether/ethyl acetate 6:1): 0.15. ^1H NMR (CDCl_3 , 300 MHz): δ 0.65-1.10 (m, 4 H), 2.55-2.70 (m, 1 H), 3.39 (d, J = 18.5 Hz, 1 H), 3.64 (d, J = 18.5 Hz, 1 H), 5.50 (br, 1 H), 7.28-7.44 (m, 5 H), 7.44-7.54 (m, 1 H), 7.67-7.76 (m, 2 H), 7.76-7.84 (m, 2 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 8.7 (CH_2), 8.9 (CH_2), 11.9 (CH), 46.3 (CH_2), 90.7 (C_{quat}), 126.7 (CH), 128.79 (CH), 128.83 (CH), 129.0 (CH), 130.7 (CH), 130.9 (C_{quat}), 131.7 (C_{quat}), 133.9 (CH), 152.3 (C_{quat}), 172.8 (C_{quat}), 193.5 (C_{quat}). MS (EI), m/z : 316 (($\text{M} - \text{H}_2\text{O}$) $^+$, 0.8), 248 (($\text{M} - \text{C}_4\text{H}_5\text{O} - \text{H}_2\text{O} + \text{H}$) $^+$, 8), 229 (($\text{M} - \text{C}_7\text{H}_5\text{O}$) $^+$, 65), 162 (11), 161 (($\text{M} - \text{C}_4\text{H}_5\text{O} - \text{C}_7\text{H}_5\text{O} + \text{H}$) $^+$, 100), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 11), 77 (C_6H_5^+ , 13), 69 ($\text{C}_4\text{H}_5\text{O}^+$, 19). IR (ATR), $\tilde{\nu}$ [cm^{-1}]: 3393 (w), 1695 (m), 1645 (m), 1597 (w), 1429 (s), 1360 (m), 1285 (m), 1240 (m), 1200 (m), 1182 (m), 1103 (m), 1049 (m), 1018 (w), 953 (m), 916 (m), 887 (w), 866 (m), 787 (w), 760 (m), 733 (w), 706 (s), 691 (s), 675 (m), 604 (w). Anal. calcd. for $\text{C}_{20}\text{H}_{18}\text{N}_2\text{O}_3$ (334.4): C 71.84, H 5.43, N 8.38; Found: C 72.07, H 5.62, N 8.16.

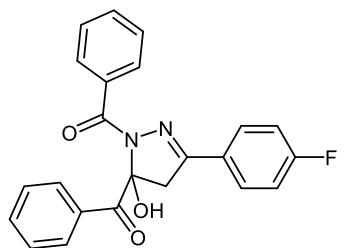
3.10 1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)-2,2-dimethylpropan-1-one (5j)


According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 4:1) compound **5j** (203 mg, 58%) was obtained as beige solid, Mp 133 °C; R_f (petroleum ether/ethyl acetate 4:1): 0.47. ^1H NMR (CDCl_3 , 300 MHz): δ 1.34 (s, 9 H), 3.37 (d, J = 18.5 Hz, 1 H), 3.60 (d, J = 18.5 Hz, 1 H), 5.65 (s, 1 H), 7.35-7.60 (m, 6 H), 7.74-7.88 (m, 4 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 26.8 (CH_3), 40.0 (CH_2), 45.1 (C_{quat}), 92.5 (C_{quat}), 127.1 (CH), 129.1 (CH), 129.3 (CH), 129.4 (CH), 131.0 (CH), 131.5 (C_{quat}), 132.1 (C_{quat}), 134.2 (CH), 151.7 (C_{quat}), 176.7 (C_{quat}), 194.0 (C_{quat}). MS (EI), m/z : 332 (($\text{M} - \text{H}_2\text{O}$) $^+$, 0.4), 245 (($\text{M} - \text{C}_7\text{H}_5\text{O}$) $^+$, 18), 238 (19), 161 (26), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 100), 77 (C_6H_5^+ , 21), 57 (C_4H_9^+ , 14). IR (ATR), $\tilde{\nu}$ [cm^{-1}]: 2922 (w), 1732 (w), 1686 (s), 1645 (s), 1597 (w), 1485 (w), 1447 (m), 1408 (s), 1366 (m), 1323 (m), 1306 (w), 1265 (m), 1248 (m), 1223 (m), 1198 (m), 1184 (s), 1159 (m), 1130 (w), 1101 (m), 1065 (w), 1047 (m), 1032 (m), 1022 (m), 1001 (w), 947 (m), 926 (w), 899 (m), 881 (m), 866 (w), 806 (w), 787 (m), 766 (s), 746 (w), 708 (s), 692 (s), 677 (m), 638 (m). Anal. calcd. for $\text{C}_{21}\text{H}_{22}\text{N}_2\text{O}_3$ (350.4): C 71.98, H 6.33, N 7.99; Found: C 71.75, H 6.06, N 7.76.

3.11 1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)butan-1-one (5k)


According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 7:1) compound **5k** (111 mg, 33%) was obtained as light orange solid, Mp 100 °C; R_f (petroleum ether/ethyl acetate 7:1): 0.15. ^1H NMR (CDCl_3 , 300 MHz): δ 0.89 (t, J = 7.4 Hz, 3 H), 1.56-1.72 (m, 2 H), 2.69-2.77 (m, 2 H), 3.46 (d, J = 18.5 Hz, 1 H), 3.71 (d, J = 18.5 Hz, 1 H), 5.30-6.00 (br, 1 H), 7.36-7.50 (m, 5 H), 7.52-7.61 (m, 1 H), 7.75-7.81 (m, 2 H), 7.82-7.88 (m, 2 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 14.1 (CH_3), 18.2 (CH_2), 36.3 (CH_2), 46.8 (CH_2), 91.1 (C_{quat}), 127.1 (CH), 129.18 (CH), 129.24 (CH), 129.4 (CH), 131.1 (CH), 131.3 (C_{quat}), 132.0 (C_{quat}), 134.3 (CH), 152.4 (C_{quat}), 172.6 (C_{quat}), 194.0 (C_{quat}). MS (EI), m/z : 318 ((M - H_2O) $^+$, 0.2), 248 ((M - $\text{C}_4\text{H}_7\text{O} - \text{H}_2\text{O} + \text{H}$) $^+$, 4), 231 ((M - $\text{C}_7\text{H}_5\text{O}$) $^+$, 36), 162 (11), 161 (100), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 6), 77 (C_6H_5^+ , 9). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 1686 (s), 1668 (s), 1595 (w), 1580 (w), 1447 (m), 1423 (s), 1402 (m), 1362 (w), 1329 (w), 1308 (w), 1271 (m), 1260 (m), 1236 (m), 1200 (m), 1184 (m), 1169 (w), 1099 (m), 1047 (m), 1018 (w), 1001 (w), 957 (w), 918 (w), 895 (w), 881 (s), 868 (w), 760 (s), 708 (s), 691 (s), 677 (w), 611 (w). Anal. calcd. for $\text{C}_{20}\text{H}_{20}\text{N}_2\text{O}_3$ (336.4): C 71.41, H 5.99, N 8.33; Found: C 71.42, H 5.82, N 8.28.

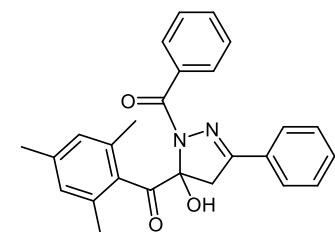
3.12 (5-Hydroxy-3-(4-methoxyphenyl)-4,5-dihydro-1*H*-pyrazol-1,5-diyi)bis(phenylmethanone) (5l)


According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 5:1) compound **5l** (220 mg, 55%) was obtained as beige solid, Mp 48-50 °C; R_f (petroleum ether/ethyl acetate 5:1): 0.13. ^1H NMR (CDCl_3 , 300 MHz): δ 3.50 (d, J = 18.4 Hz, 1 H), 3.72 (d, J = 18.4 Hz, 1 H), 3.86 (s, 3 H), 4.60-6.50 (br, 1 H), 6.91-7.02 (m, 2 H), 7.36-7.60 (m, 6 H), 7.66-7.76 (m, 2 H), 7.90-8.04 (m, 4 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 46.0 (CH_2), 55.8 (CH_3), 92.5 (C_{quat}), 114.7 (CH), 123.7 (C_{quat}), 128.1 (CH), 128.9 (CH), 129.2 (CH), 129.4 (CH), 130.6 (CH), 132.0 (CH), 132.3 (C_{quat}), 133.4 (C_{quat}), 134.3 (CH), 153.3 (C_{quat}), 162.1 (C_{quat}), 166.9 (C_{quat}), 194.0 (C_{quat}). MS (EI), m/z : 382 ((M - H_2O) $^+$, 2), 296 (12), 295 ((M - $\text{C}_7\text{H}_5\text{O}$) $^+$, 65), 279 (10), 278 (51), 223 (16), 149 (17), 106 (10), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 100), 77 (C_6H_5^+ , 29), 43 (18). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 2926 (w), 1690 (w), 1636 (m), 1605 (m), 1576 (w), 1518 (w), 1493 (w), 1449 (m), 1427 (m), 1410 (m), 1331 (m), 1308 (m), 1252 (s), 1200 (m), 1177 (s), 1103 (m), 1059 (w), 1018 (m), 930 (w), 893 (w), 868 (m), 831 (m), 795 (m), 700 (s), 671 (m), 662 (w). Anal. calcd. for $\text{C}_{24}\text{H}_{20}\text{N}_2\text{O}_4$ (400.4): C 71.99, H 5.03, N 7.00; Found: C 71.88, H 5.31, N 6.71.

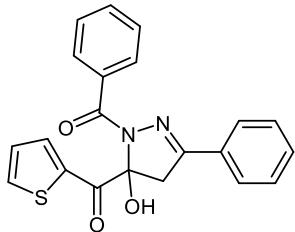
3.13 (3-(4-(*tert*-Butyl)phenyl)-5-hydroxy-4,5-dihydro-1*H*-pyrazol-1,5-diyi)bis(phenylmethanone) (5m)

According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 7:1) compound **5m** (293 mg, 69%) was obtained as beige solid, Mp 64-68 °C; R_f (petroleum ether/ethyl acetate 7:1): 0.18. ^1H NMR (CDCl_3 , 300 MHz): δ 1.35 (s, 9 H), 3.52 (d, J = 18.5 Hz, 1 H), 3.75 (d, J = 18.5 Hz, 1 H), 4.70-6.30 (br, 1 H), 7.36-7.59 (m, 8 H), 7.71 (dt, J = 8.7 Hz, J = 2.0 Hz, 2 H), 7.90-8.03 (m, 4 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 31.5 (CH_3), 35.4 (C_{quat}), 46.0 (CH_2), 92.5 (C_{quat}), 126.2 (CH), 127.1 (CH), 128.1 (CH), 128.3 (C_{quat}), 129.2 (CH), 129.4 (CH), 130.6 (CH), 132.0 (CH), 132.2 (C_{quat}), 133.3 (C_{quat}), 134.3 (CH), 153.5 (C_{quat}), 154.9 (C_{quat}), 166.9 (C_{quat}), 193.9 (C_{quat}). MS (EI), m/z : 408 (($\text{M} - \text{H}_2\text{O}$) $^+$, 2), 393 (($\text{M} - \text{H}_2\text{O} - \text{CH}_3$) $^+$, 2), 322 (15), 321 (($\text{M} - \text{C}_7\text{H}_5\text{O} + \text{H}$) $^+$, 63), 304 (($\text{M} - \text{C}_7\text{H}_5\text{O} - \text{H}_2\text{O} + \text{H}$) $^+$, 13), 289 (33), 106 (11), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 100), 77 (C_6H_5^+ , 22), 43 (15). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 2961 (w), 1690 (m), 1636 (m), 1599 (w), 1576 (w), 1449 (m), 1423 (s), 1406 (m), 1362 (w), 1329 (m), 1308 (w), 1269 (m), 1246 (w), 1202 (m), 1182 (m), 1101 (m), 1057 (w), 1028 (w), 937 (w), 895 (w), 870 (m), 835 (m), 789 (w), 708 (s), 693 (s), 671 (m), 652 (w). Anal. calcd. for $\text{C}_{27}\text{H}_{26}\text{N}_2\text{O}_3$ (426.5): C 76.03, H 6.14, N 6.57; Found: C 76.13, H 6.39, N 6.32.

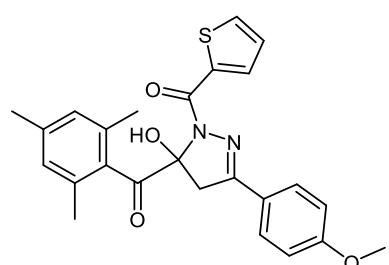
3.14 (3-(4-Fluorophenyl)-5-hydroxy-4,5-dihydro-1*H*-pyrazol-1,5-diyi)bis(phenylmethanone) (5n)


According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 5:1) compound **5n** (256 mg, 66%) was obtained as beige solid, Mp 162 °C; R_f (petroleum ether/ethyl acetate 5:1): 0.15. ^1H NMR (CDCl_3 , 300 MHz): δ 3.50 (d, J = 18.4 Hz, 1 H), 3.73 (d, J = 18.4 Hz, 1 H), 5.84 (br, 1 H), 7.08-7.19 (m, 2 H), 7.37-7.48 (m, 4 H), 7.48-7.62 (m, 2 H), 7.70-7.80 (m, 2 H), 7.90-8.01 (m, 4 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 46.0 (CH_2), 92.7 (C_{quat}), 116.5 (d, J = 22 Hz, CH), 127.4 (d, J = 3 Hz, C_{quat}), 128.2 (CH), 129.3 (CH), 129.37 (CH), 129.42 (CH), 130.5 (CH), 132.1 (CH), 132.2 (C_{quat}), 133.2 (C_{quat}), 134.4 (CH), 152.4 (C_{quat}), 164.6 (d, J = 252 Hz, C_{quat}), 167.1 (C_{quat}), 193.7 (C_{quat}). MS (EI), m/z : 370 (($\text{M} - \text{H}_2\text{O}$) $^+$, 2), 284 (13), 283 (($\text{M} - \text{C}_7\text{H}_5\text{O}$) $^+$, 73), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 100), 77 (C_6H_5^+ , 24). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 3341 (w), 1697 (m), 1626 (m), 1605 (m), 1578 (w), 1566 (w), 1516 (w), 1495 (w), 1450 (m), 1433 (m), 1410 (m), 1360 (w), 1335 (s), 1315 (w), 1302 (w), 1277 (w), 1258 (w), 1231 (w), 1204 (m), 1180 (m), 1157 (m), 1130 (w), 1115 (m), 1057 (w), 928 (w), 897 (w), 872 (m), 841 (s), 810 (w), 789 (w), 708 (s), 689 (m), 671 (m), 662 (m). Anal. calcd. for $\text{C}_{23}\text{H}_{17}\text{FN}_2\text{O}_3$ (388.4): C 71.13, H 4.41, N 7.21; Found: C 71.12, H 4.48, N 7.20.

3.15 4-(1,5-Dibenzoyl-5-hydroxy-4,5-dihydro-1*H*-pyrazol-3-yl)benzonitrile (5o)


According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 4:1) compound **5o** (113 mg, 29%) was obtained as colorless solid, Mp 158 °C; R_f (petroleum ether/ethyl acetate 4:1): 0.28. ^1H NMR (CDCl_3 , 300 MHz): δ 3.53 (d, J = 18.5 Hz, 1 H), 3.73 (d, J = 18.5 Hz, 1 H), 5.99 (br, 1 H), 7.38-7.49 (m, 4 H), 7.51-7.61 (m, 2 H), 7.68-7.75 (m, 2 H), 7.81-7.88 (m, 2 H), 7.89-7.99 (m, 4 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 45.2 (CH_2), 92.7 (C_{quat}), 114.0 (C_{quat}), 118.2 (C_{quat}), 127.3 (CH), 127.9 (CH), 129.0 (CH), 129.1 (CH), 130.1 (CH), 131.8 (C_{quat}), 132.0 (CH), 132.5 (C_{quat}), 132.6 (CH), 134.2 (CH), 134.9 (C_{quat}), 151.0 (C_{quat}), 167.0 (C_{quat}), 193.0 (C_{quat}). MS (EI), m/z : 377 ((M – H_2O) $^+$, 1), 290 ((M – $\text{C}_7\text{H}_5\text{O}$) $^+$, 32), 274 (13), 273 ((M – $\text{C}_7\text{H}_5\text{O} – \text{H}_2\text{O} + \text{H}$) $^+$, 67), 260 (11), 259 (56), 232 (10), 231 (53), 230 (18), 216 (14), 115 (11), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 100), 77 (C_6H_5^+ , 38). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 3383 (w), 3061 (w), 2226 (w), 1668 (m), 1608 (m), 1591 (w), 1566 (m), 1450 (m), 1431 (m), 1402 (m), 1331 (m), 1317 (m), 1287 (w), 1260 (m), 1227 (m), 1188 (m), 1177 (w), 1159 (w), 1107 (m), 1069 (w), 1016 (w), 932 (w), 893 (w), 849 (m), 835 (m), 791 (w), 721 (m), 704 (s), 673 (s), 652 (m). Anal. calcd. for $\text{C}_{24}\text{H}_{17}\text{N}_3\text{O}_3$ (395.4): C 72.90, H 4.33, N 10.63; Found: C 72.99, H 4.52, N 10.90.

3.16 (1-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-5-yl)(mesityl)methanone (5p)


According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 15:1) compound **5p** (194 mg, 47%) was obtained as colorless solid, Mp 161 °C; R_f (petroleum ether/ethyl acetate 15:1): 0.23. ^1H NMR (CDCl_3 , 300 MHz): δ 2.32 (s, 3 H), 2.35 (s, 6 H), 3.59 (d, J = 17.7 Hz, 1 H), 3.86 (d, J = 17.7 Hz, 1 H), 5.44 (br, 1 H), 6.91 (s, 2 H), 7.37-7.60 (m, 6 H), 7.68-7.78 (m, 2 H), 8.00-8.10 (m, 2 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 20.9 (CH_3), 21.5 (CH_3), 46.8 (CH_2), 96.2 (C_{quat}), 127.2 (CH), 128.2 (CH), 129.1 (CH), 129.3 (CH), 130.7 (CH), 131.0 (CH), 131.1 (C_{quat}), 132.2 (CH), 133.2 (C_{quat}), 134.4 (C_{quat}), 136.9 (C_{quat}), 140.3 (C_{quat}), 153.7 (C_{quat}), 168.3 (C_{quat}), 208.1 (C_{quat}). MS (EI), m/z : 394 ((M – H_2O) $^+$, 4), 266 (17), 265 ((M – $\text{C}_{10}\text{H}_{11}\text{O}$) $^+$, 91), 147 ($\text{C}_{10}\text{H}_{11}\text{O}^+$, 17), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 100), 77 (C_6H_5^+ , 18). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 3319 (w), 1688 (m), 1616 (m), 1572 (m), 1437 (s), 1341 (s), 1315 (w), 1292 (w), 1254 (m), 1217 (w), 1202 (w), 1161 (w), 1121 (m), 1055 (w), 1016 (w), 889 (m), 848 (m), 806 (m), 795 (m), 758 (m), 727 (m), 710 (s), 685 (s), 677 (m), 638 (m), 629 (m). Anal. calcd. for $\text{C}_{26}\text{H}_{24}\text{N}_2\text{O}_3$ (412.5): C 75.71, H 5.86, N 6.79; Found: C 75.69, H 5.88, N 6.79.

3.17 (1-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-5-yl)(thien-2-yl)methanone (5q)

According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 5:1) compound **5q** (275 mg, 73%) was obtained as beige solid, Mp 171 °C; R_f (petroleum ether/ethyl acetate 5:1): 0.18. ^1H NMR (CDCl_3 , 300 MHz): δ 3.55 (d, J = 18.5 Hz, 1 H), 3.73 (d, J = 18.5 Hz, 1 H), 5.66 (br, 1 H), 7.08 (dd, J = 4.9 Hz, J = 3.9 Hz, 1 H), 7.38-7.58 (m, 6 H), 7.67 (dd, J = 4.9 Hz, J = 1.1 Hz, 1 H), 7.71-7.79 (m, 3 H), 8.00-8.01 (m, 2 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 46.3 (CH_2), 92.8 (C_{quat}), 127.2 (CH), 128.2 (CH), 128.8 (CH), 129.2 (CH), 130.7 (CH), 131.0 (C_{quat}), 131.3 (CH), 132.2 (CH), 133.2 (C_{quat}), 134.0 (CH), 135.6 (CH), 137.6 (C_{quat}), 153.5 (C_{quat}), 167.3 (C_{quat}), 187.4 (C_{quat}). MS (EI), m/z : 358 (($\text{M} - \text{H}_2\text{O}$) $^+$, 1), 266 (11), 265 (($\text{M} - \text{C}_7\text{H}_5\text{O}$) $^+$, 61), 185 (10), 111 (10), 105 ($\text{C}_7\text{H}_5\text{O}^+$, 100), 77 (C_6H_5^+ , 24). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 1676 (m), 1626 (m), 1609 (m), 1566 (m), 1450 (m), 1429 (s), 1410 (s), 1339 (s), 1229 (m), 1206 (s), 1177 (m), 1111 (m), 1059 (m), 883 (m), 866 (m), 843 (w), 826 (m), 762 (m), 708 (s), 689 (s), 671 (m), 629 (m). Anal. calcd. for $\text{C}_{21}\text{H}_{16}\text{N}_2\text{O}_3\text{S}$ (376.4): C 67.00, H 4.28, N 7.44; Found: C 66.94, H 4.50, N 7.18.

3.18 (5-Hydroxy-3-(4-methoxyphenyl)-1-(thiophen-2-carbonyl)-4,5-dihydro-1*H*-pyrazol-5-yl)(mesityl)methanone (5r)

According to the GP and chromatography on silica gel (petroleum ether/ethyl acetate 10:1 to 5:1) compound **5r** (172 mg, 38%) was obtained as colorless solid, Mp 201-204 °C; R_f (petroleum ether/ethyl acetate 5:1): 0.24. ^1H NMR (CDCl_3 , 300 MHz): δ 2.30 (s, 3 H), 2.33 (s, 6 H), 3.56 (d, J = 17.6 Hz, 1 H), 3.75-3.95 (m, 4 H), 5.34 (s, 1 H), 6.90 (br, 2 H), 6.98 (d, J = 8.7 Hz, 2 H), 7.10-7.19 (m, 1 H), 7.67 (d, J = 4.4 Hz, 1 H), 7.72-7.84 (m, 2 H), 8.18 (d, J = 2.9 Hz, 1 H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 20.5 (CH_3), 21.1 (CH_3), 46.4 (CH_2), 55.4 (CH_3), 95.4 (C_{quat}), 114.3 (CH), 123.3 (C_{quat}), 126.9 (CH), 128.7 (CH), 128.9 (CH), 133.8 (C_{quat}), 134.0 (C_{quat}), 134.2 (CH), 135.3 (CH), 136.5 (C_{quat}), 139.8 (C_{quat}), 153.1 (C_{quat}), 160.1 (C_{quat}), 161.7 (C_{quat}), 207.5 (C_{quat}). MS (EI), m/z : 430 (($\text{M} - \text{H}_2\text{O}$) $^+$, 9), 319 (($\text{M} - \text{C}_5\text{H}_3\text{OS} - \text{H}_2\text{O}$) $^+$, 20), 302 (18), 301 (($\text{M} - \text{C}_{10}\text{H}_{11}\text{O}$) $^+$, 76), 291 (16), 147 ($\text{C}_{10}\text{H}_{11}\text{O}^+$, 17), 111 ($\text{C}_5\text{H}_3\text{OS}^+$, 100), 43 (16). IR (ATR), $\tilde{\nu}$ [cm $^{-1}$]: 3237 (w), 1686 (w), 1605 (s), 1591 (m), 1562 (w), 1516 (m), 1452 (s), 1420 (m), 1346 (m), 1329 (m), 1310 (m), 1252 (s), 1217 (m), 1207 (w), 1177 (m), 1161 (w), 1109 (s), 1063 (w), 1045 (m), 1038 (m), 1016 (m), 1005 (w), 941 (w), 908 (w), 881 (m), 841 (s), 816 (s), 791 (m), 733 (m), 712 (s), 681 (m), 633 (m). Anal. calcd. for $\text{C}_{25}\text{H}_{24}\text{N}_2\text{O}_4\text{S}$ (448.5): C 66.94, H 5.39, N 6.25, S 7.15; Found: C 67.19, H 5.60, N 6.02, S 7.11.

4 Attempted aromatization of 1,5-diacyl-5-hydroxypyrazoline 5b

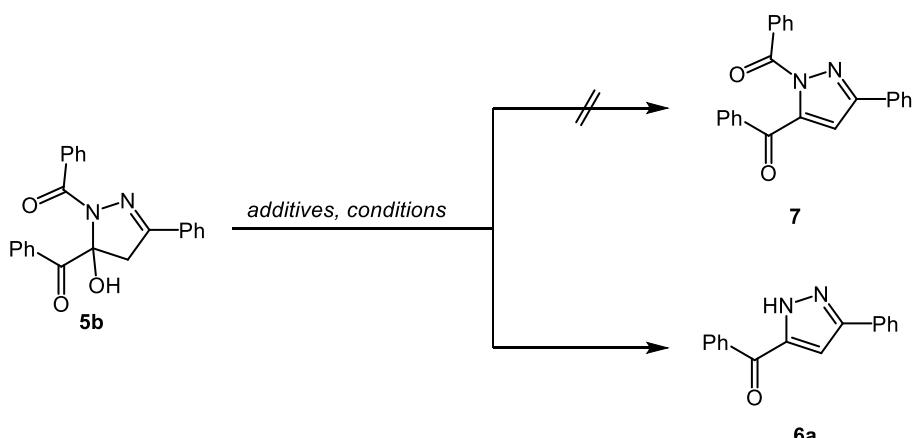
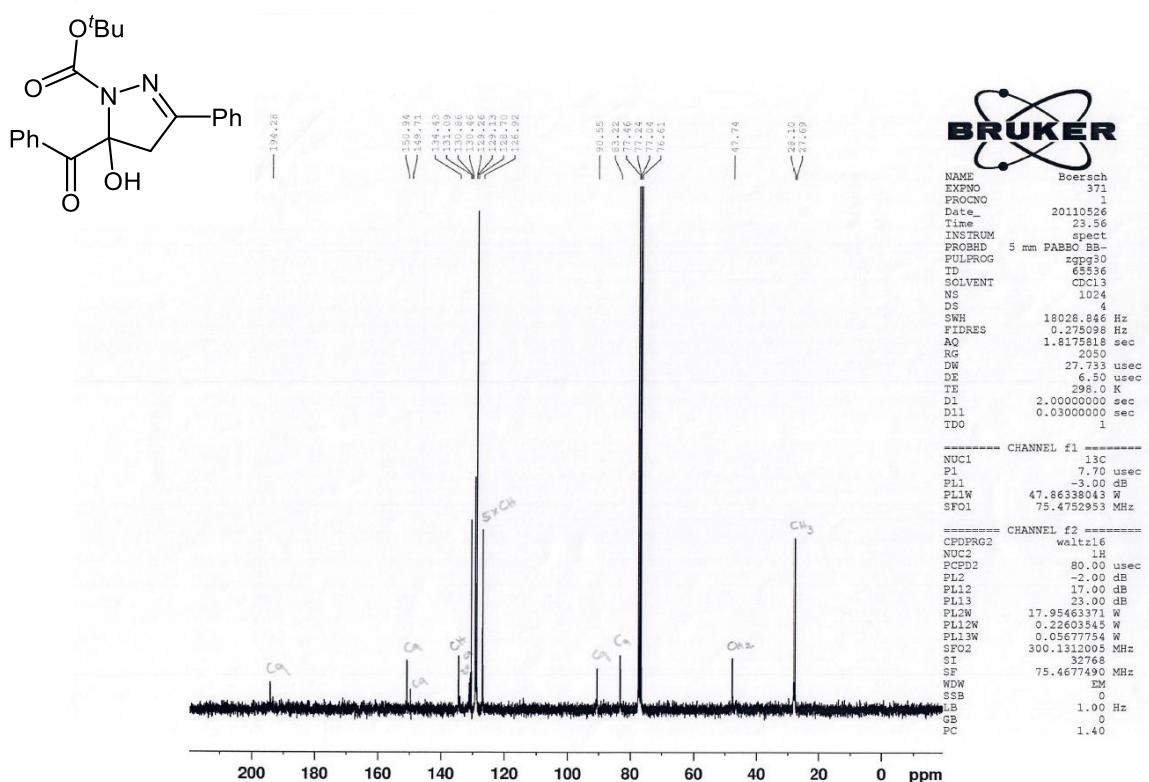
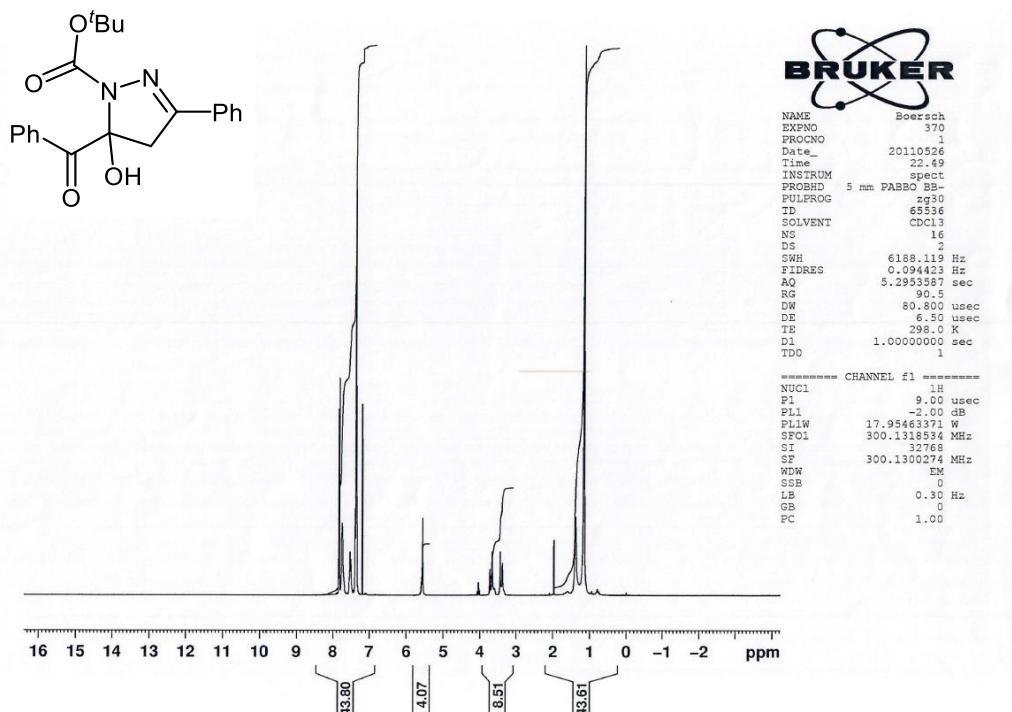
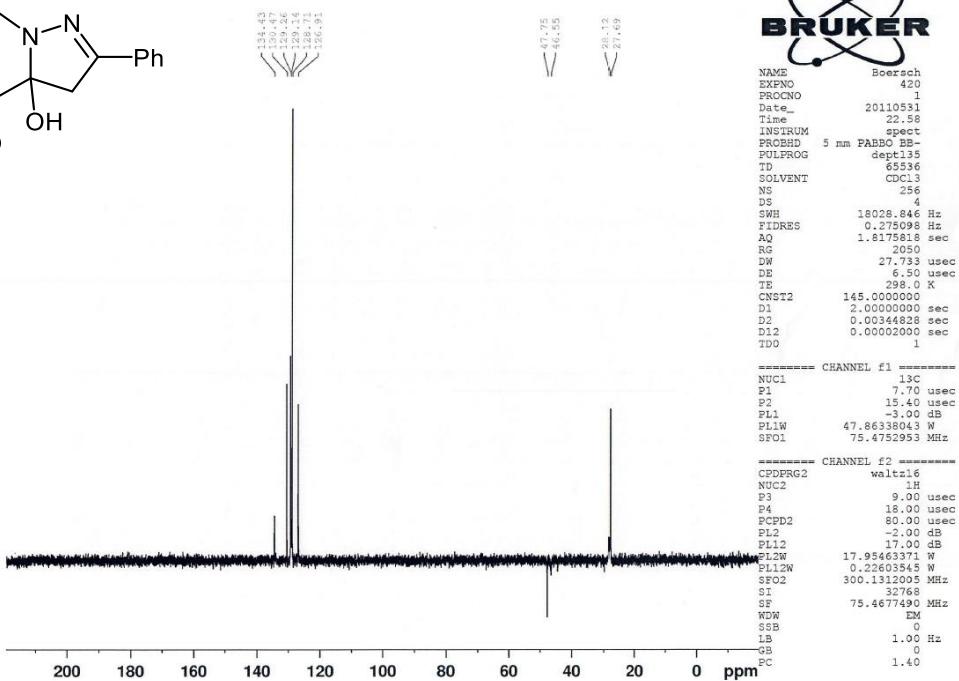
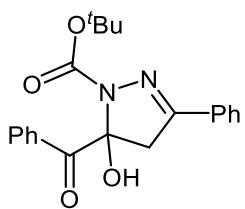
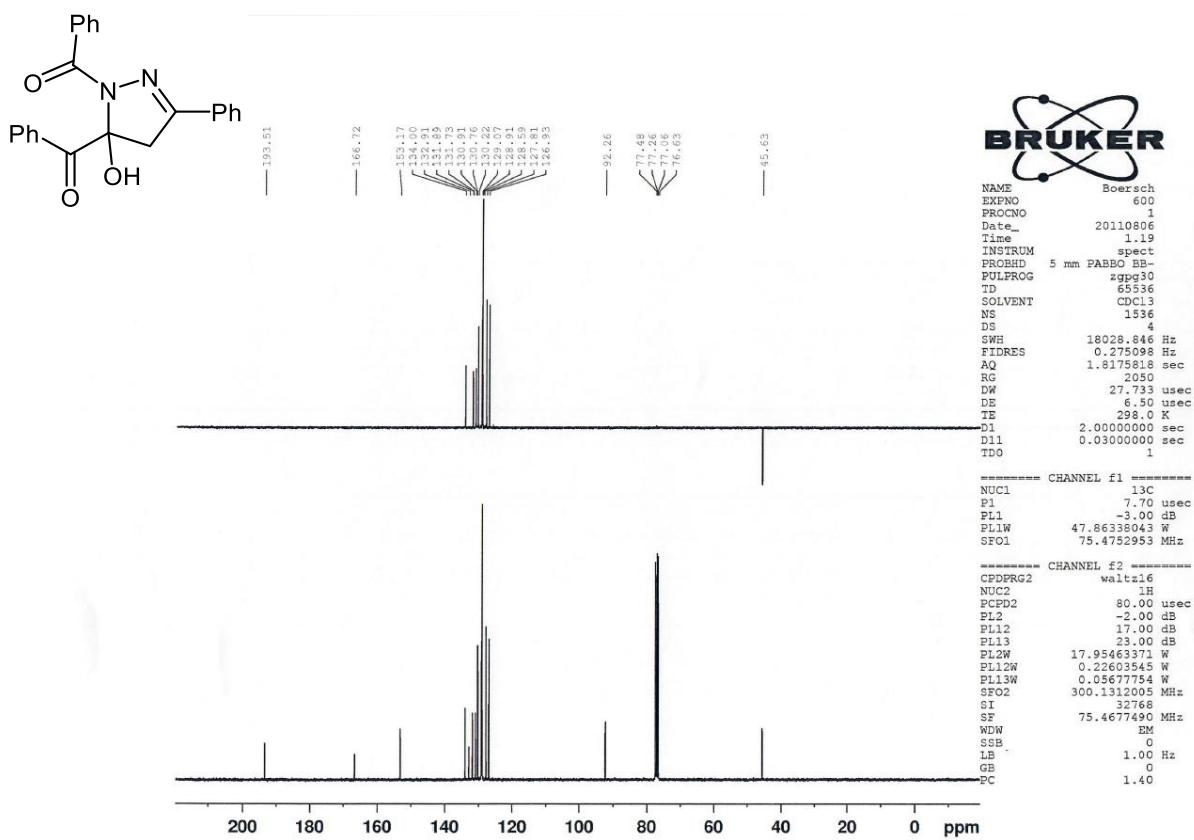
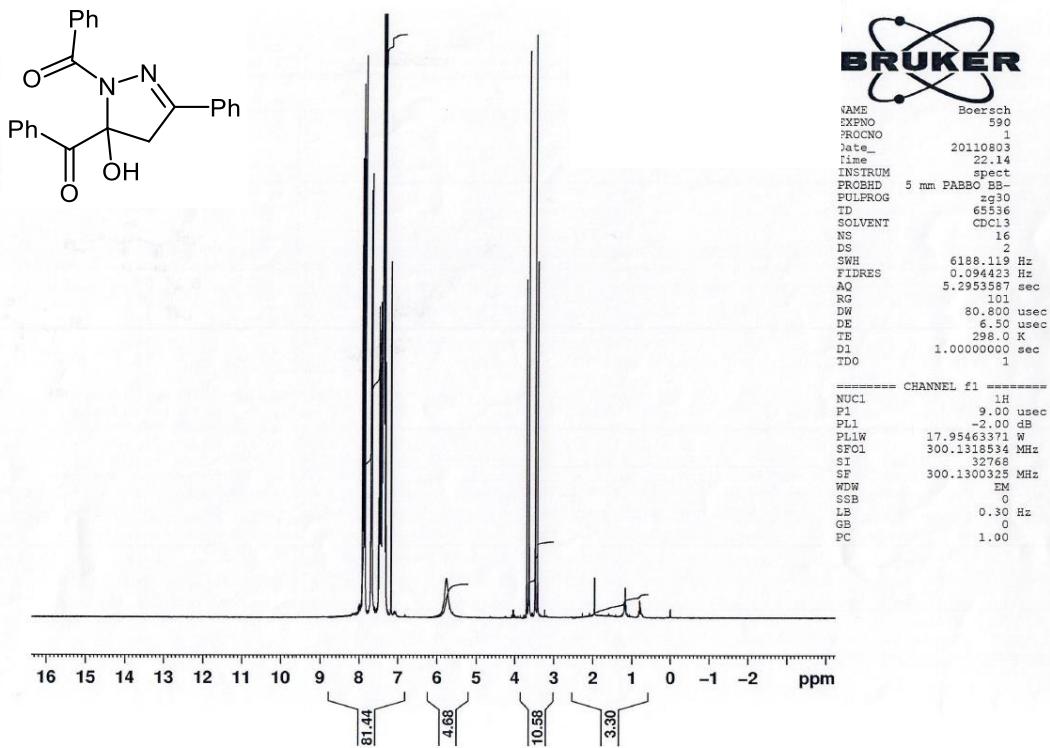

A series of experiments was conducted to achieve a dehydrative aromatization of compound **5b** to give 1,5-diacylpyrazole **7**. In a Schlenk flask with magnetic stirring bar and screw cap were placed 5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1,5-diyl)bis(phenylmethanone) (**5b**, 37 mg, 0.1 mmol) and 1,4-dioxane (0.5 mL) under argon. Then, various additives were added to the reaction mixture and conditions were applied (for experimental details see Table S5). For workup deionized water (5 mL) was added and the mixture extracted with dichloromethane (4 × 5 mL). The combined organic phases were dried (anhydrous sodium sulfate) and the solvents were removed in vacuo. The residue was adsorbed on celite® and chromatographed on silica gel (petroleum ether/ethyl acetate 5:1) to give either **5b** or pyrazole **6a**. The spectroscopic data were in full agreement with the reference compounds.

Table S5: Attempted dehydrative aromatization of 5-hydroxypyrazoline **5b**.

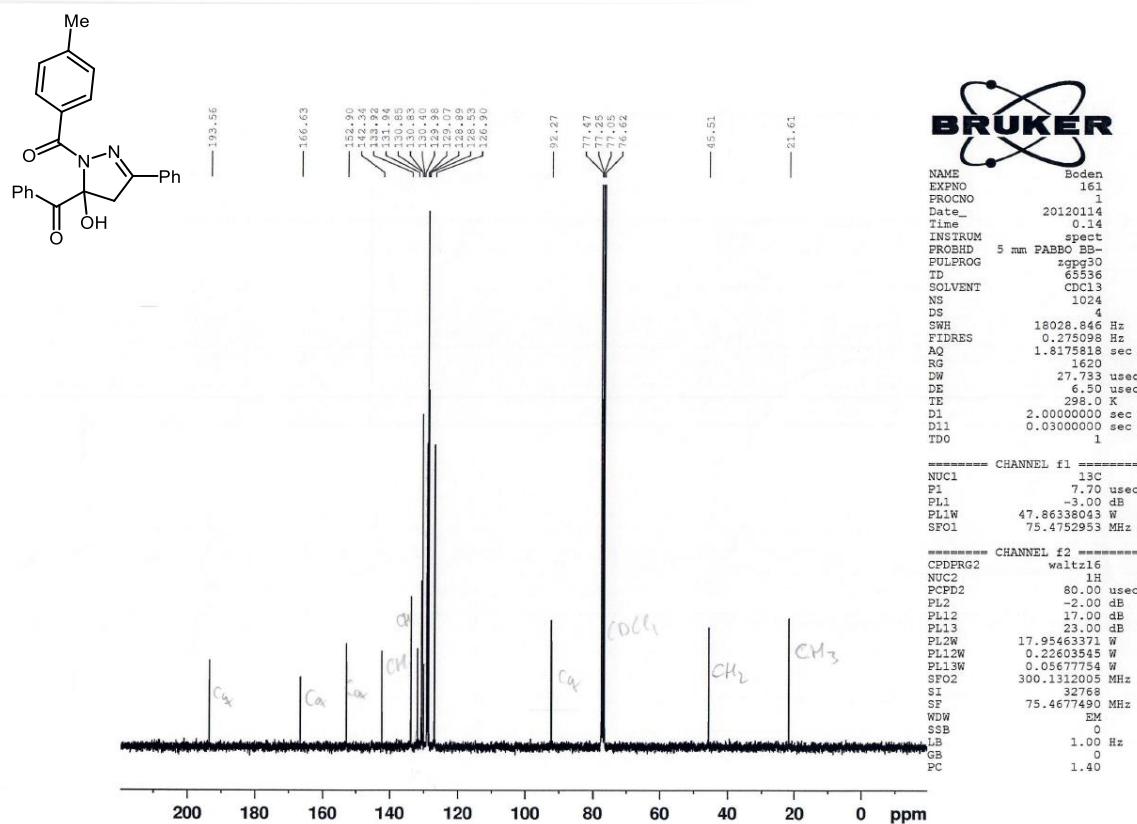
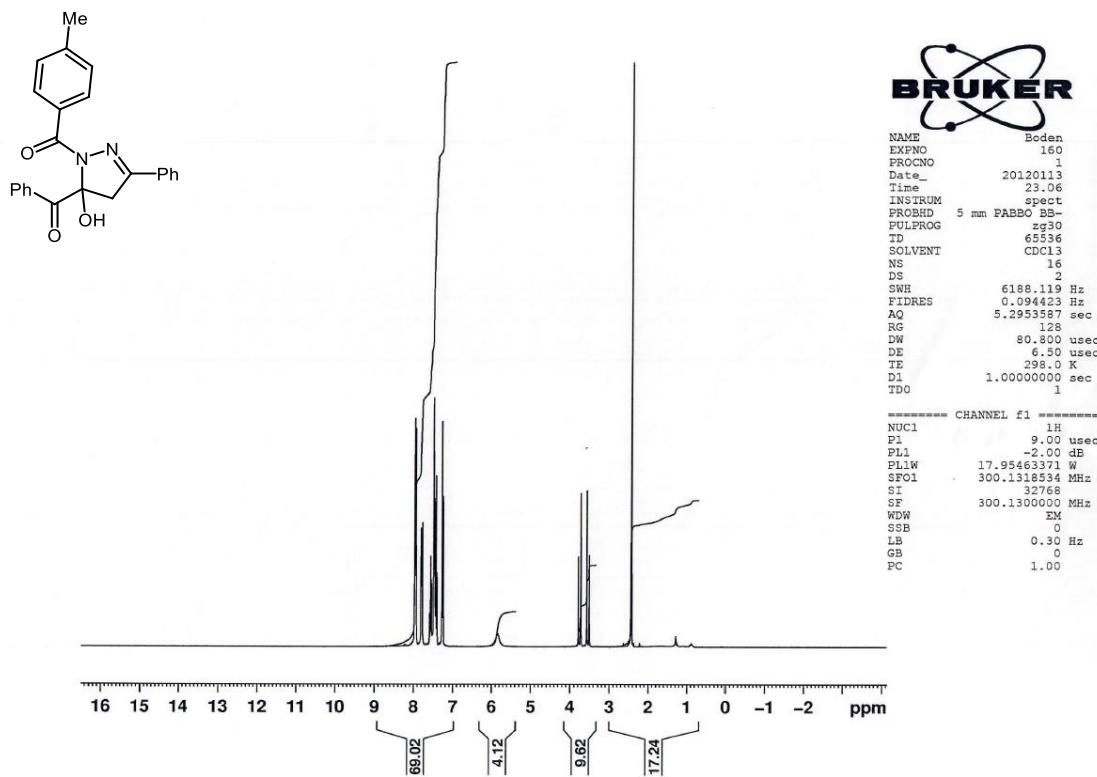
Entry	Additive	Conditions	Result
1	H ₂ O (3.6 mg, 0.2 mmol)	rt, then 150 °C (oil bath), 47.5 h	no conversion ^[a]
2	CH ₃ CO ₂ H (0.1 mL, 0.2 mmol)	rt, then 150 °C (oil bath), 47.5 h	6a (n.i.) ^[b]
3	PTSA · H ₂ O (39 mg, 0.2 mmol)	rt, then 150 °C (oil bath), 47.5 h	6a (n.i.) ^[a]
4 ^d	1 N HCl (0.25 mL, 0.25 mmol)	rt for 23 h, then 80 °C (oil bath), 7.5 h	6a (n.i.) ^[c]
5 ^e	silica gel	110 °C, 18 h	no conversion ^[a]
6	K ₂ CO ₃ (28 mg, 0.2 mmol)	1,4-dioxane, rt–150 °C, 47.5 h	mixture of products ^[a]
7 ^f	pyridine (16 mg, 0.2 mmol)	CH ₂ Cl ₂ , 30 °C, 14 h	no conversion ^[a]

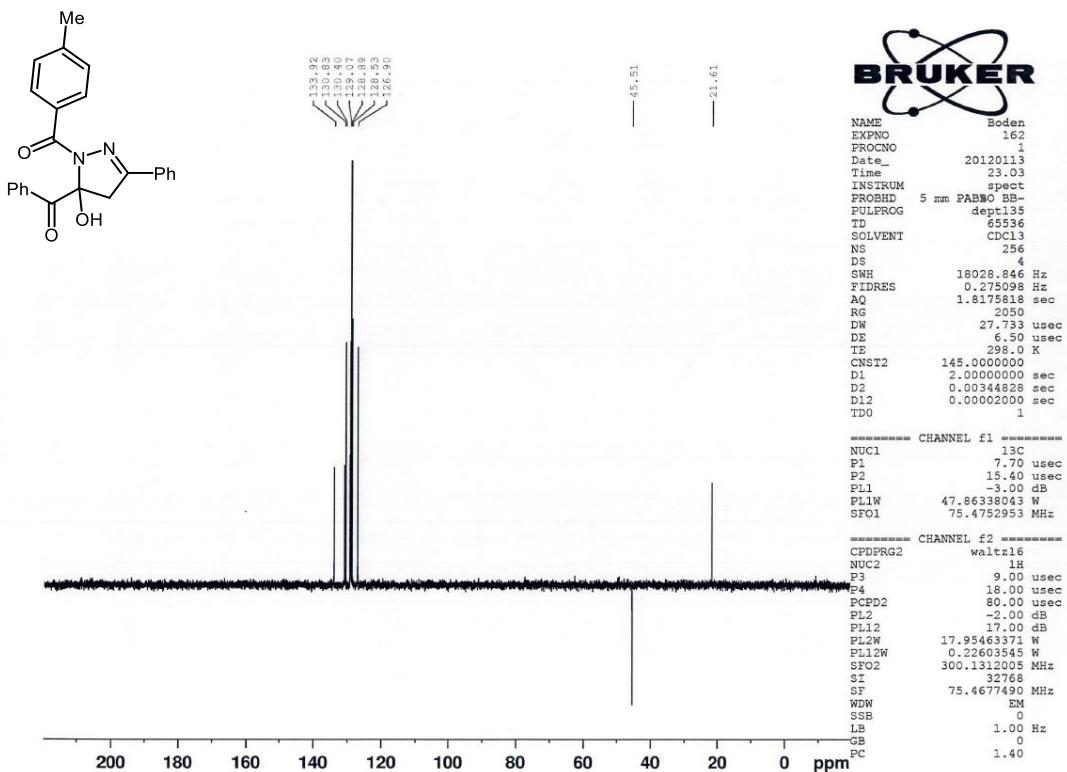


[a] TLC monitoring. [b] GC–MS monitoring. [c] Confirmed by MALDI-MS. [d] On a 0.25 mmol scale. [e] In toluene instead of 1,4-dioxane. [f] In dichloromethane instead of 1,4-dioxane.



Compound **5b** is either stable against the additives and conditions or dehydrative deacylation furnishes pyrazole **6a**.

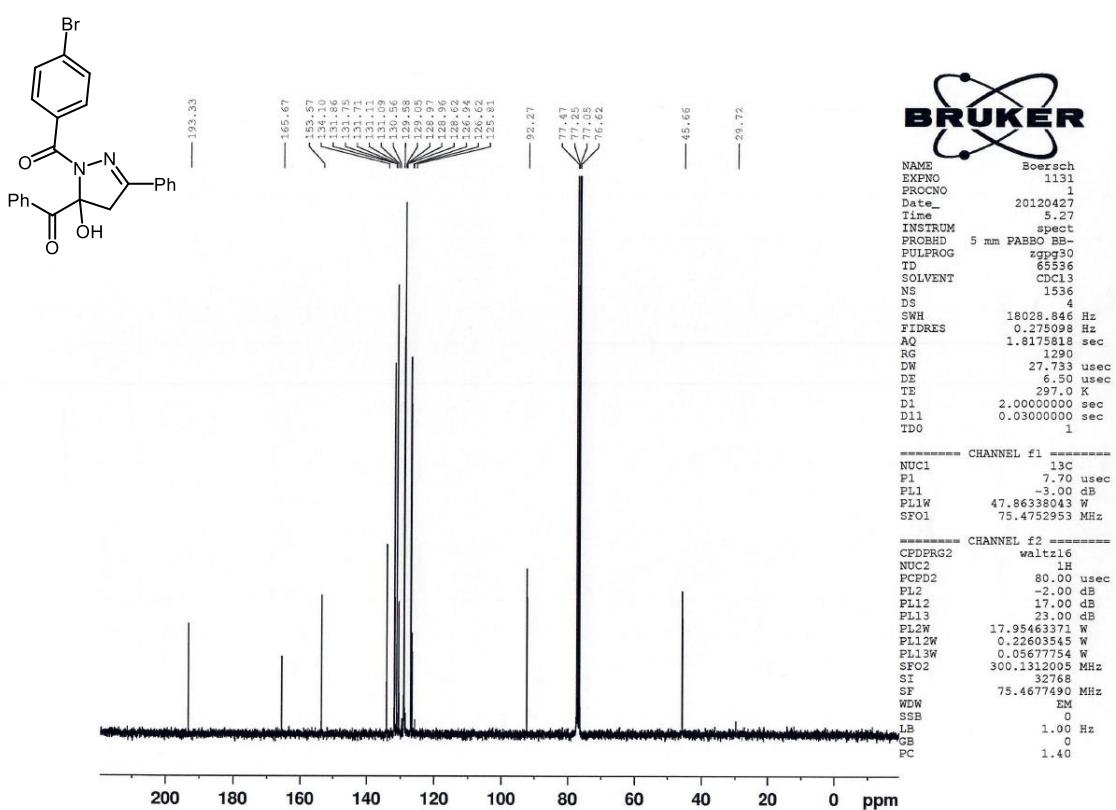
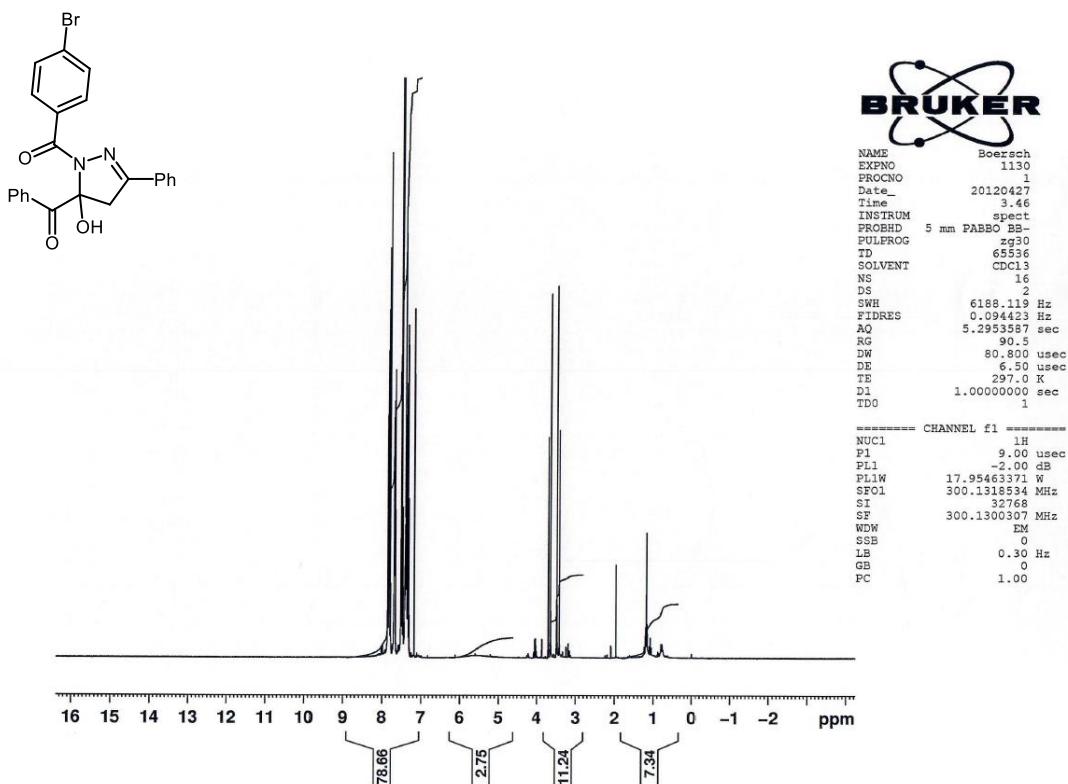


5 ^1H and ^{13}C NMR spectra

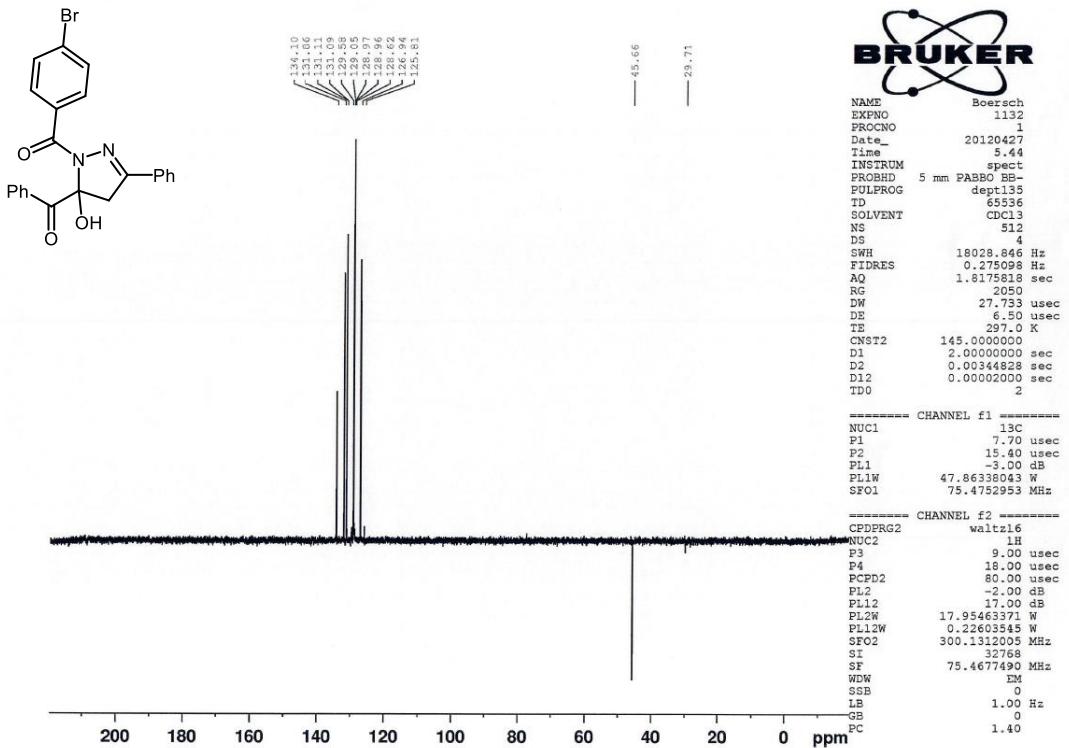
5.1 *tert*-Butyl 5-benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazole-1-carboxylate (5a)

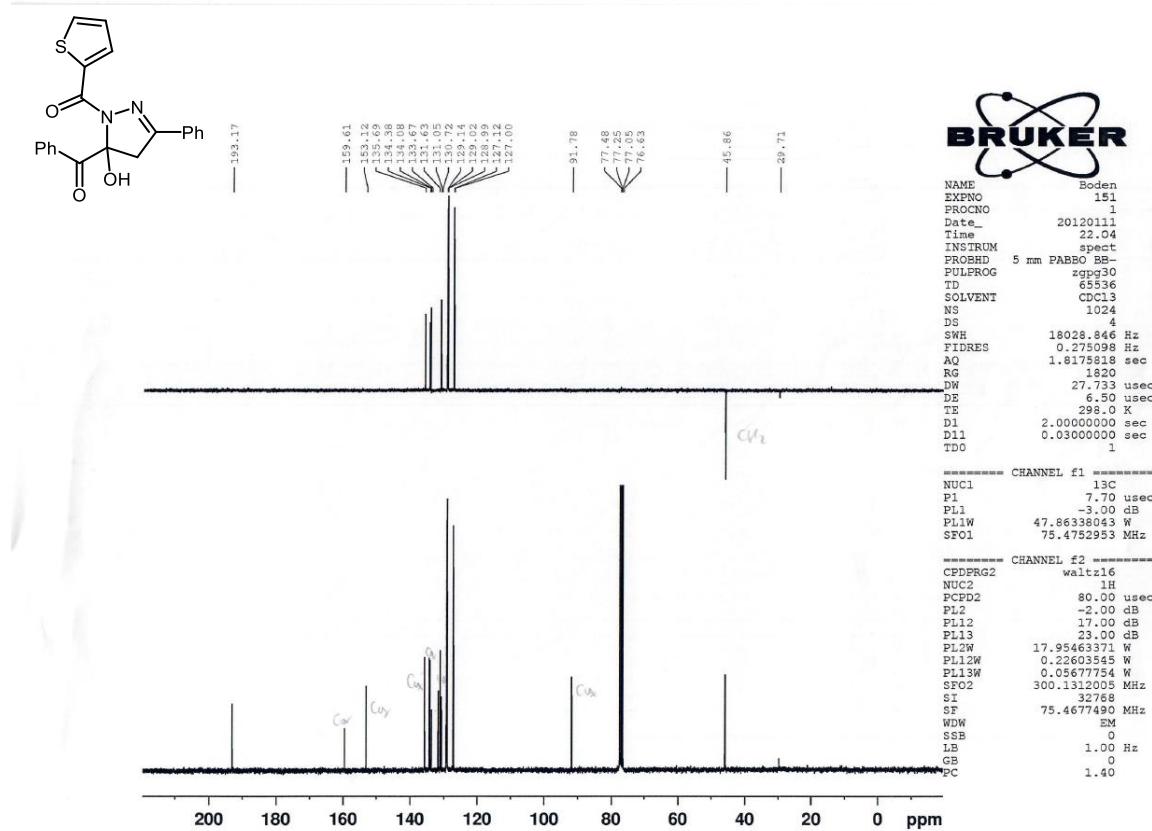
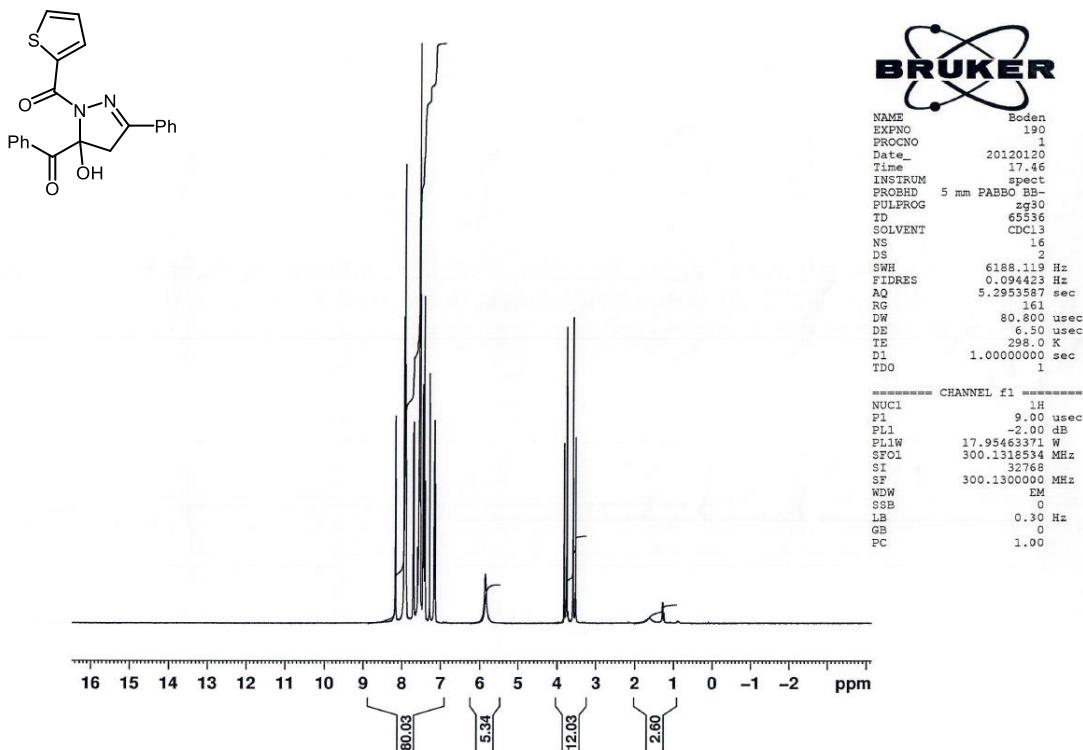





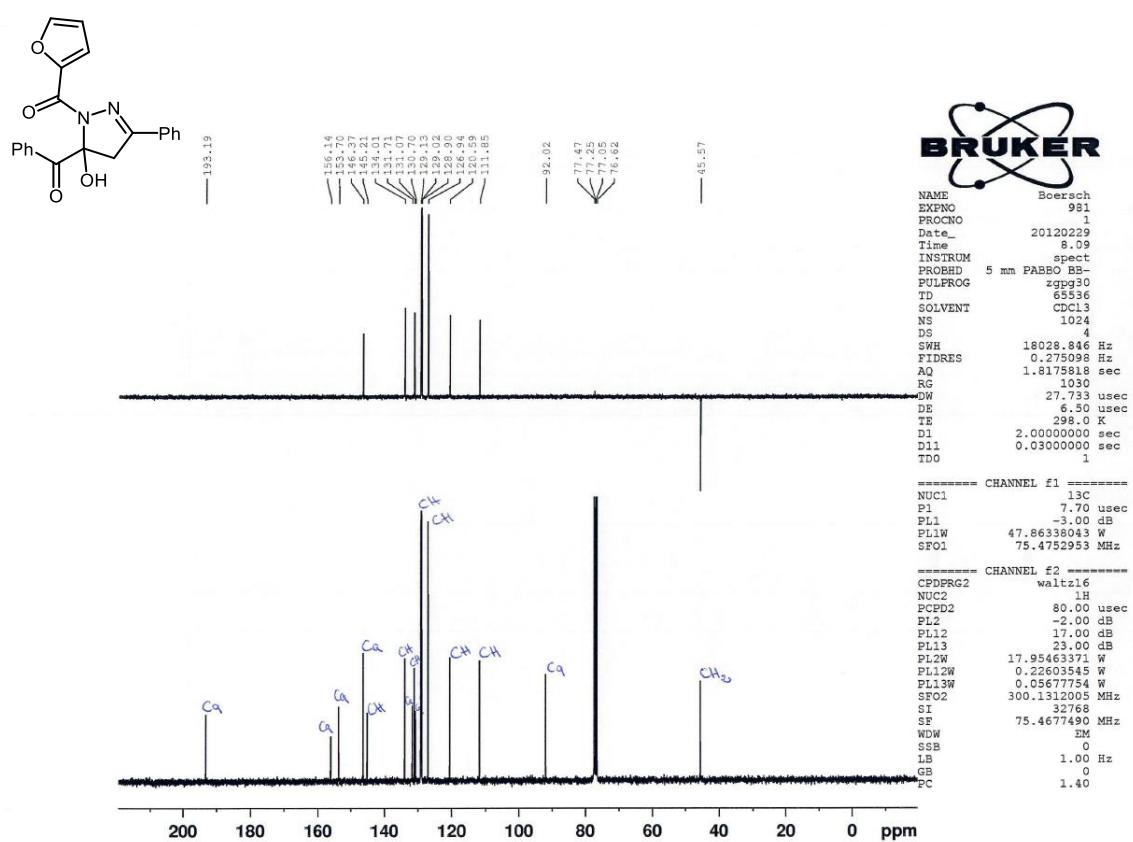
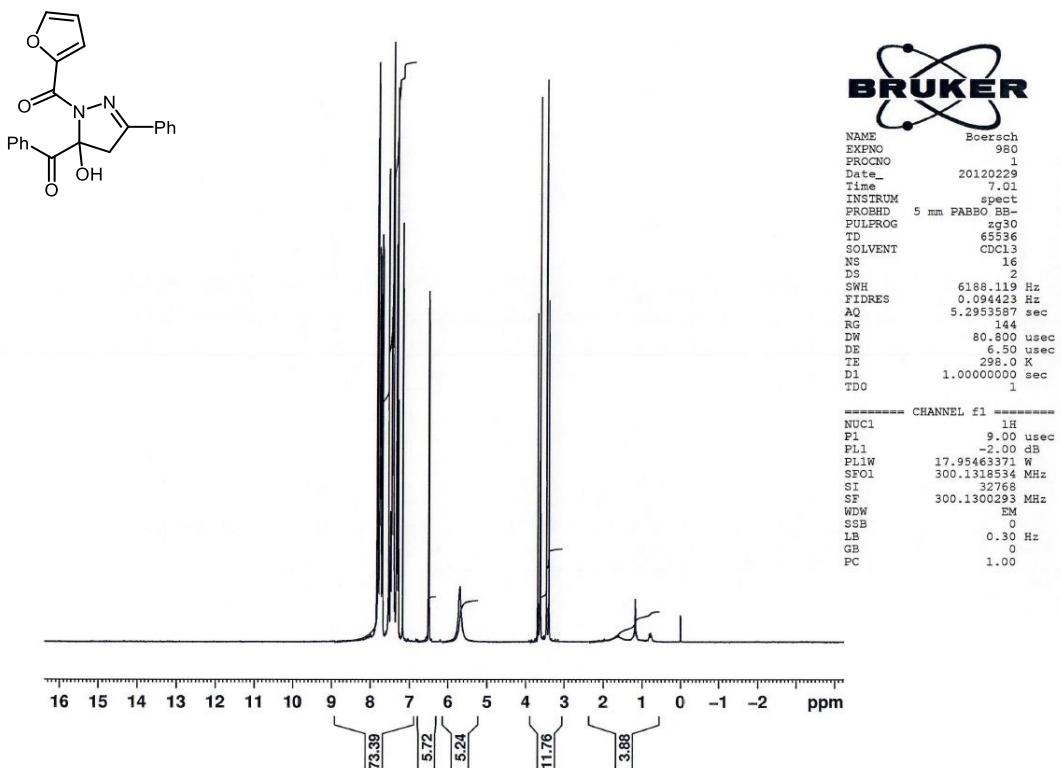
5.2 (5-Hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1,5-diyi)bis(phenylmethanone) (5b)

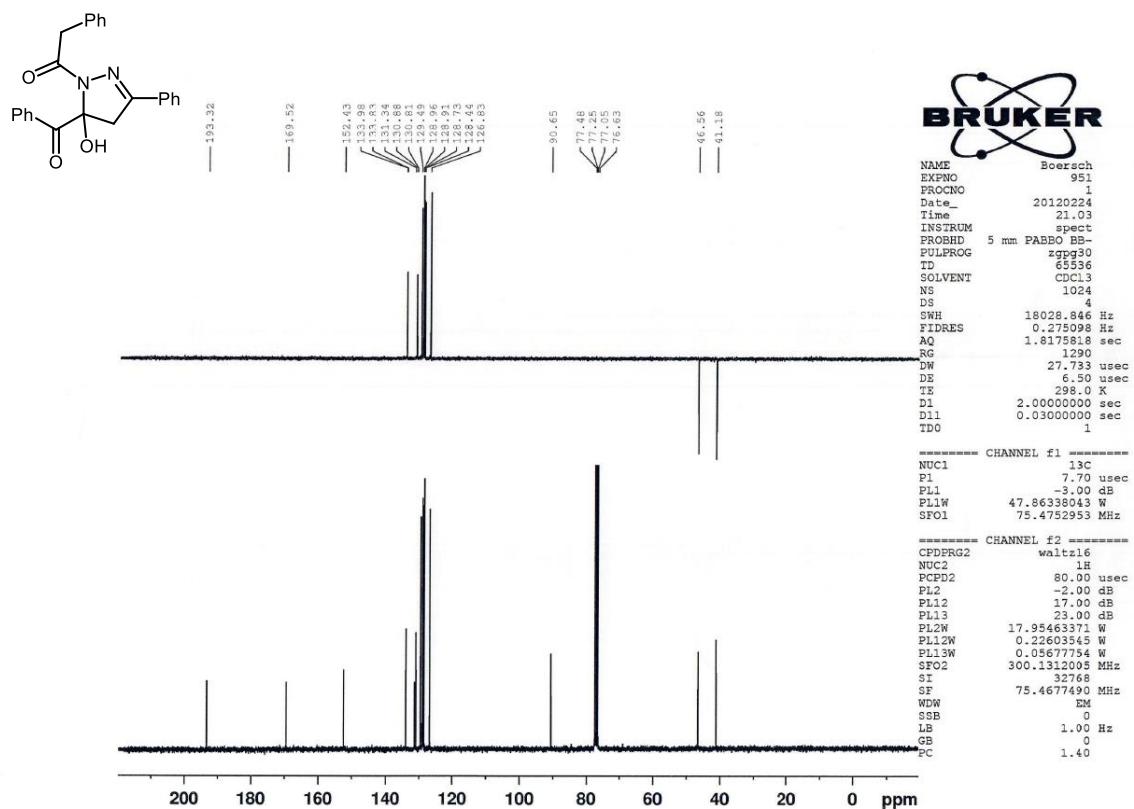
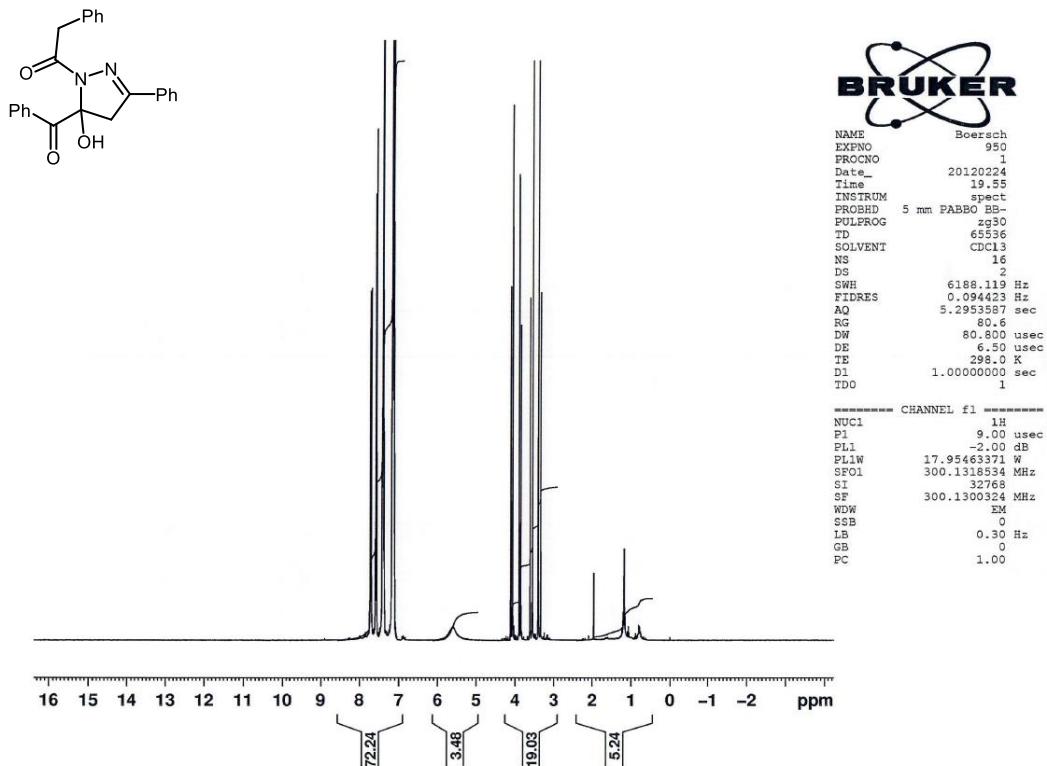



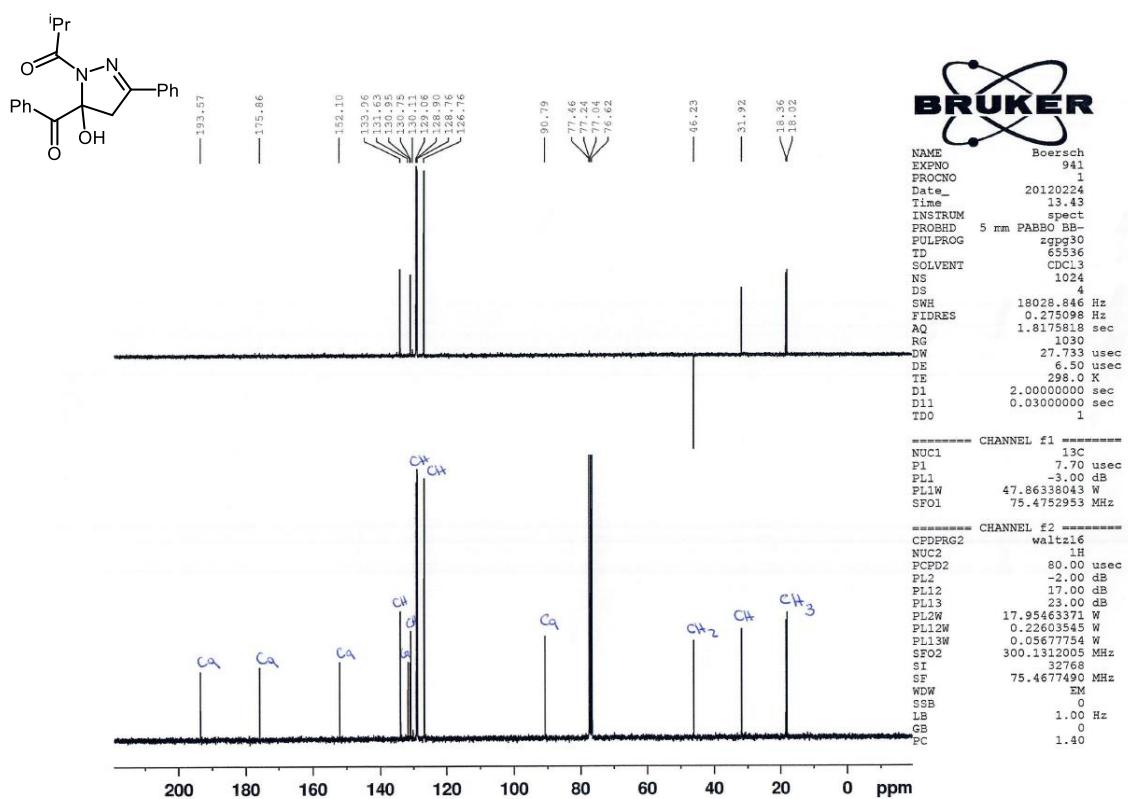
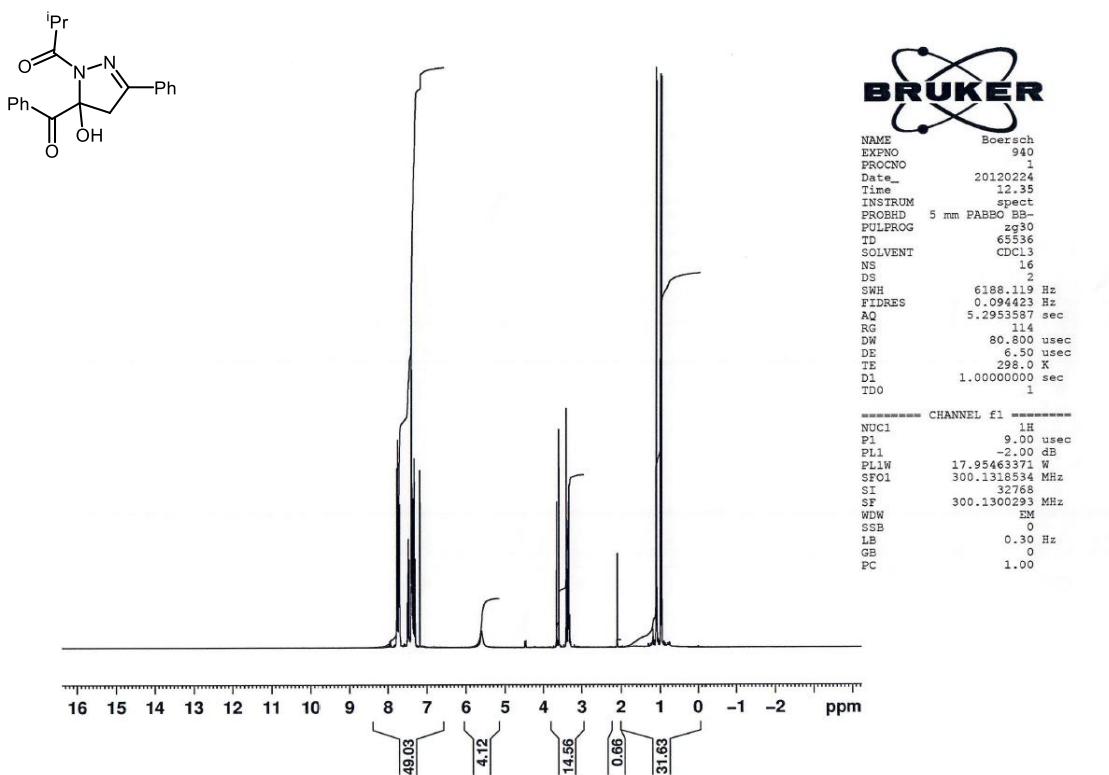

5.3 (5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)(4-tolyl)methanone (5c)

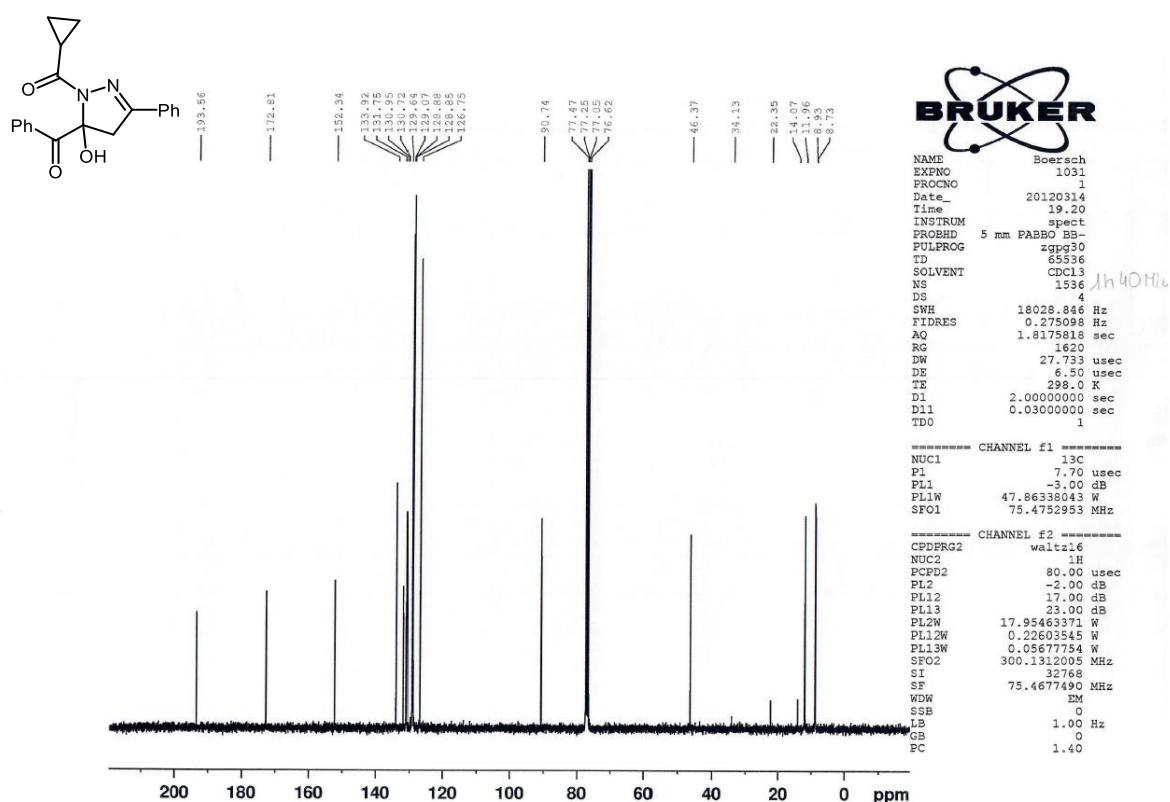
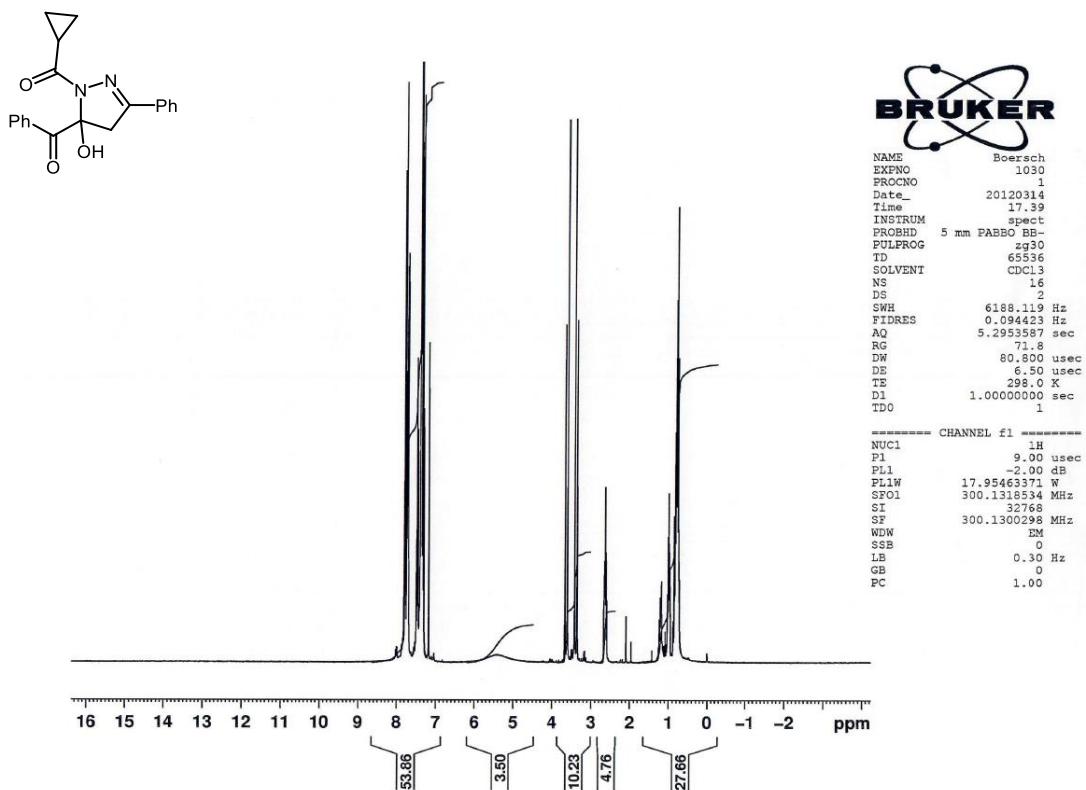



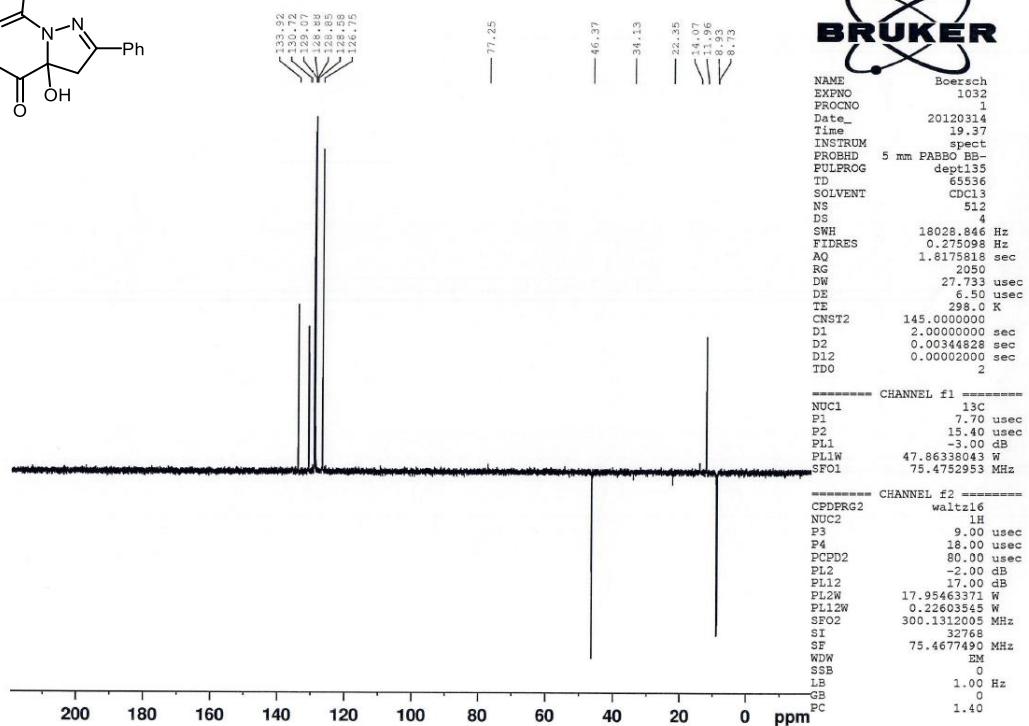
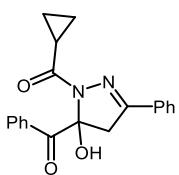
5.4 (5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)(4-bromophenyl)methanone (5d)

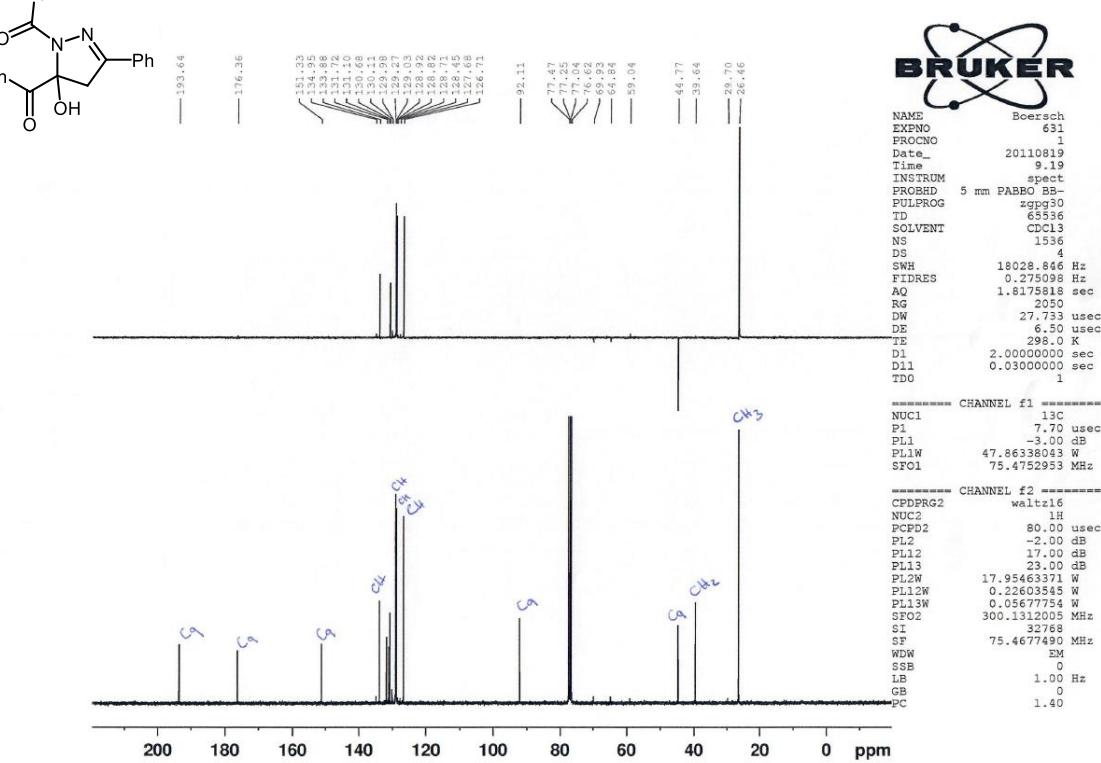
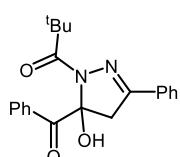
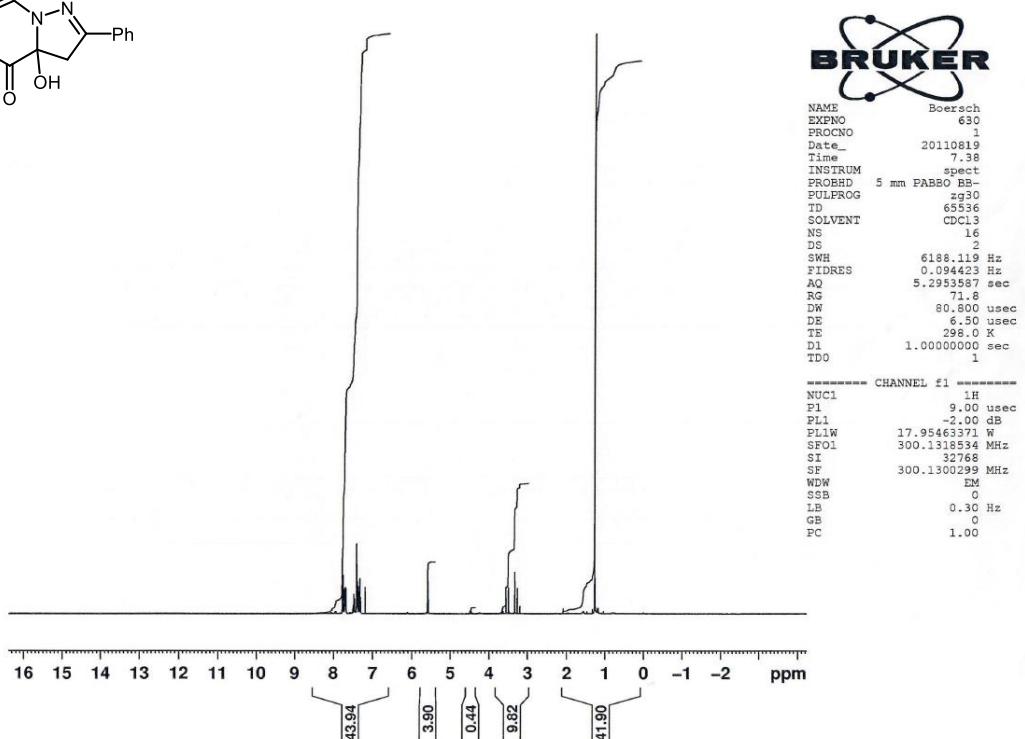
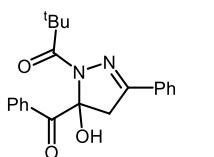


**5.5 (5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)(thien-2-yl)methanone
(5e)**



5.6 (5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)(furan-2-yl)methanone (5f)

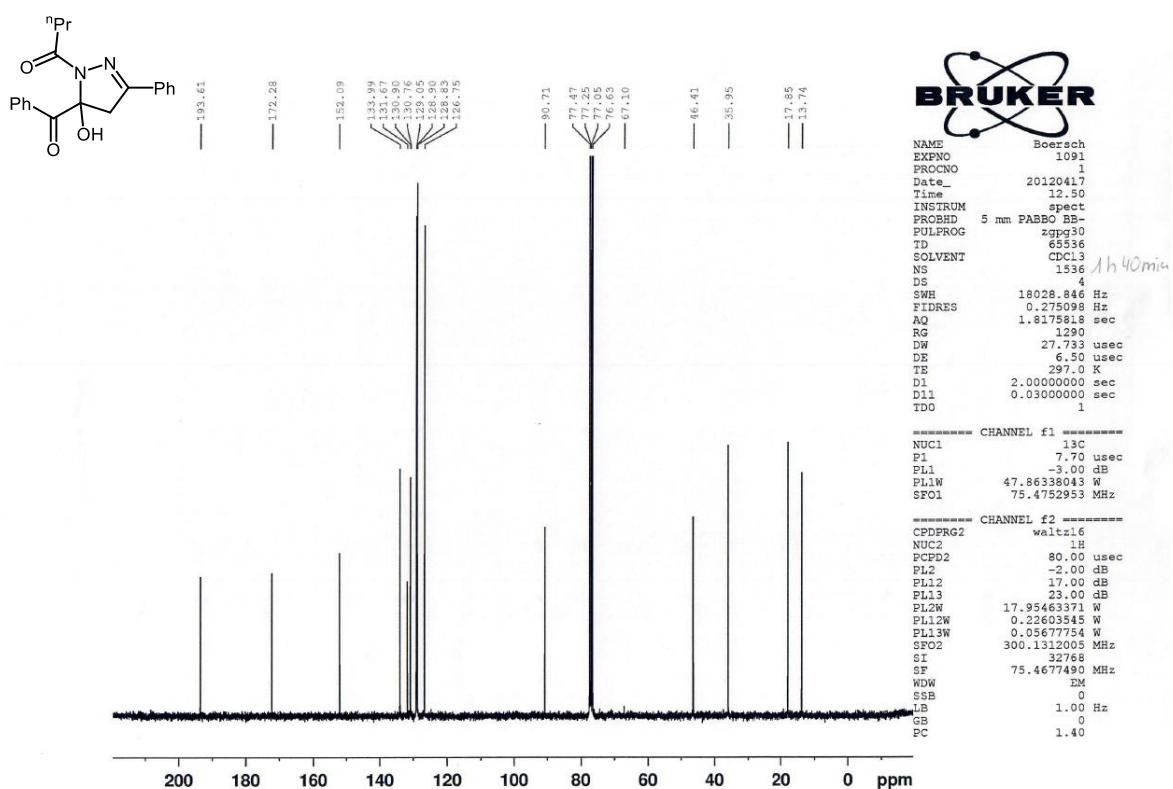
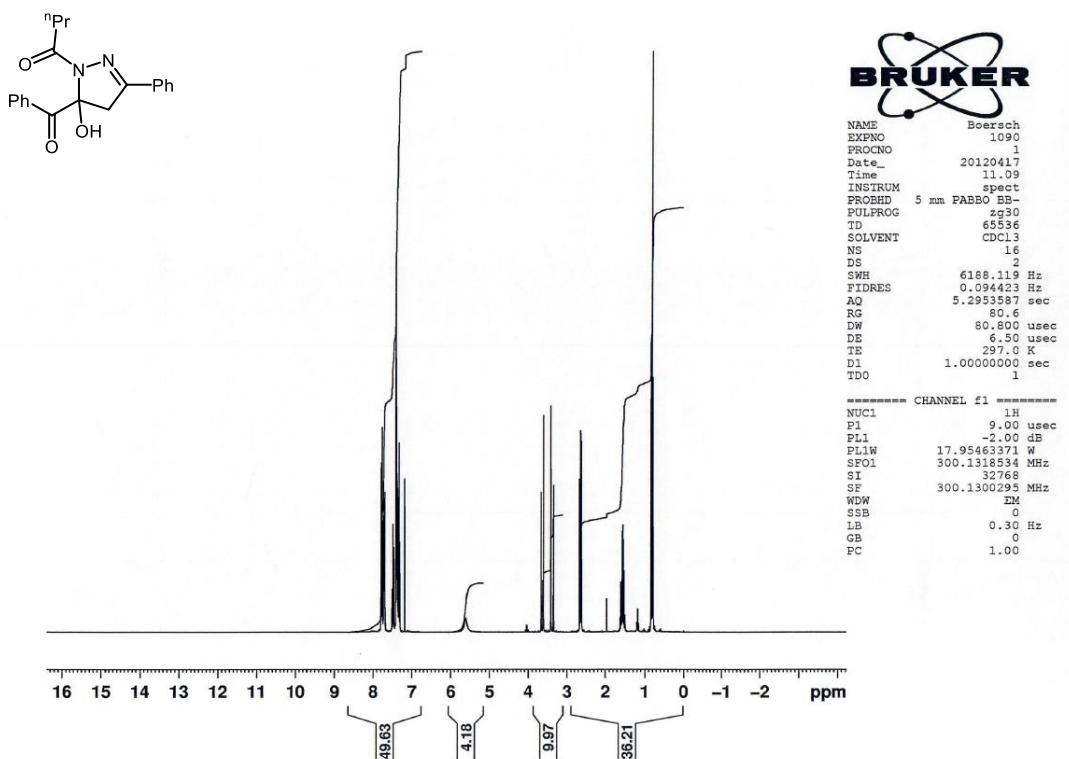


5.7 1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)-2-phenylethan-1-one (5g)

5.8 1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)-2-methylpropan-1-one (5h)

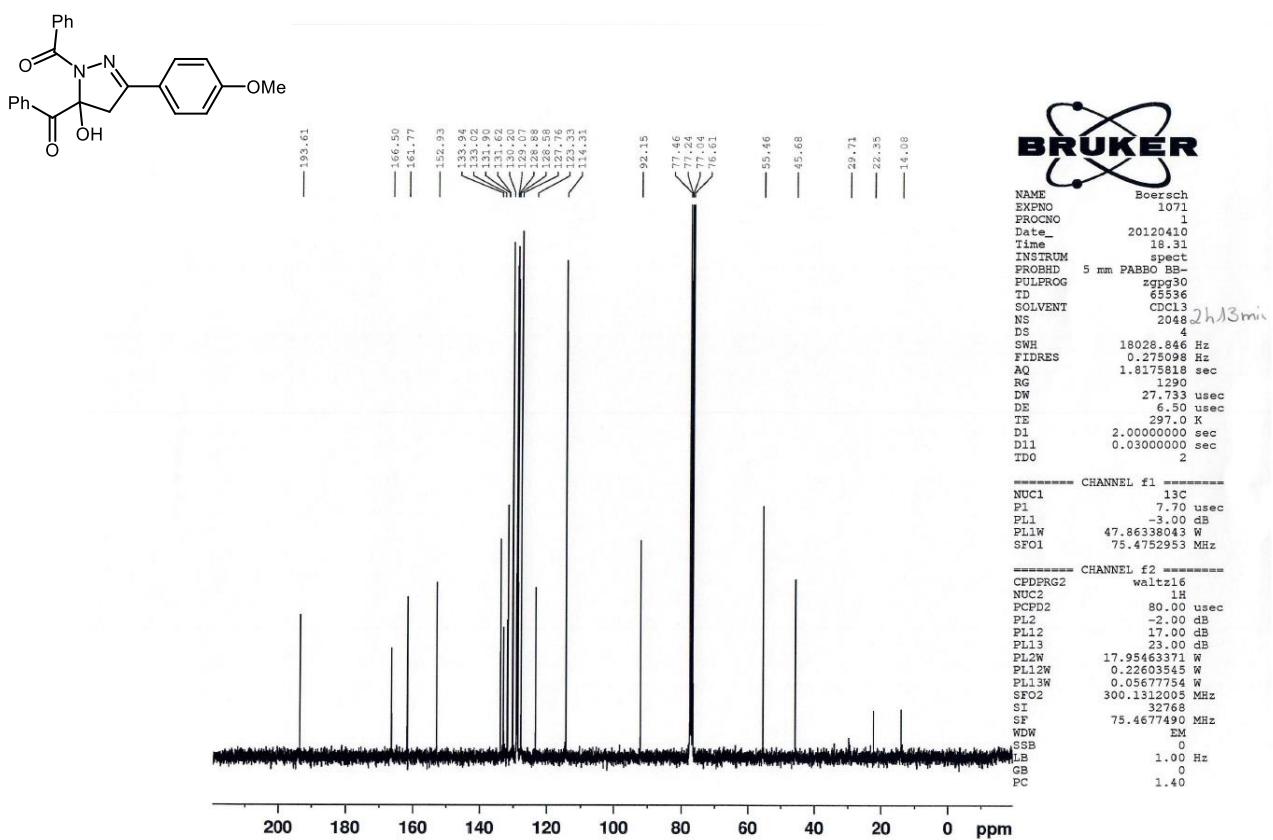
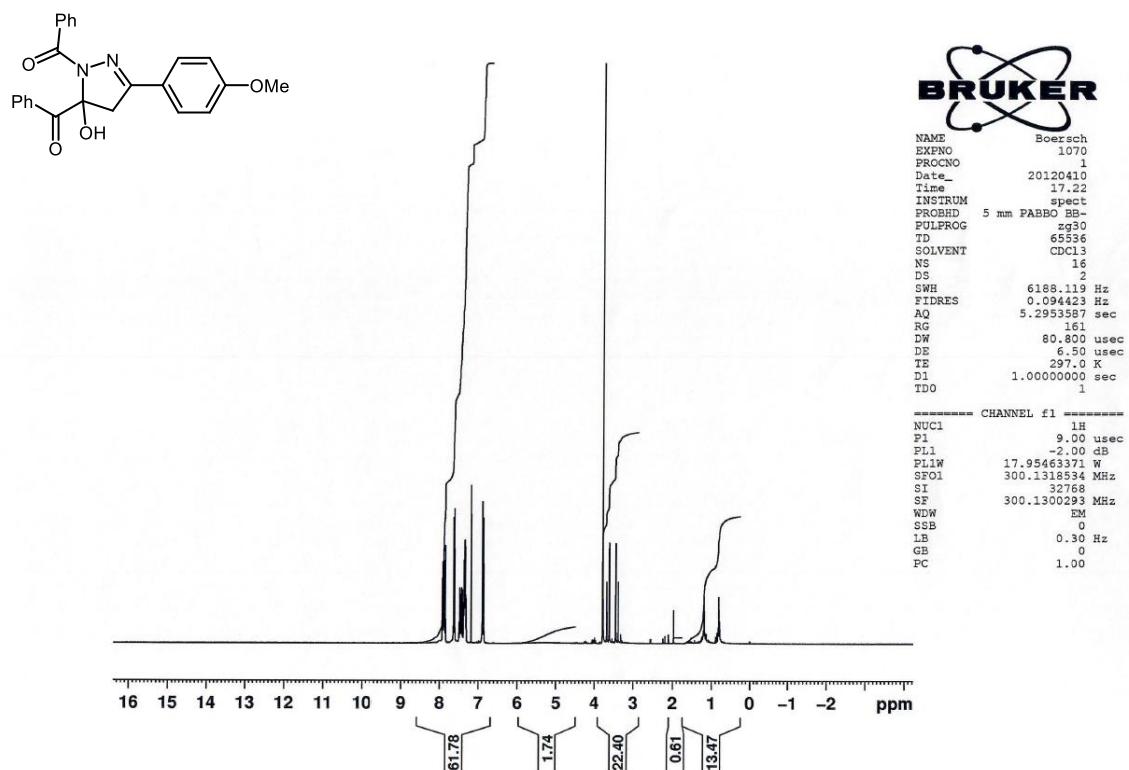





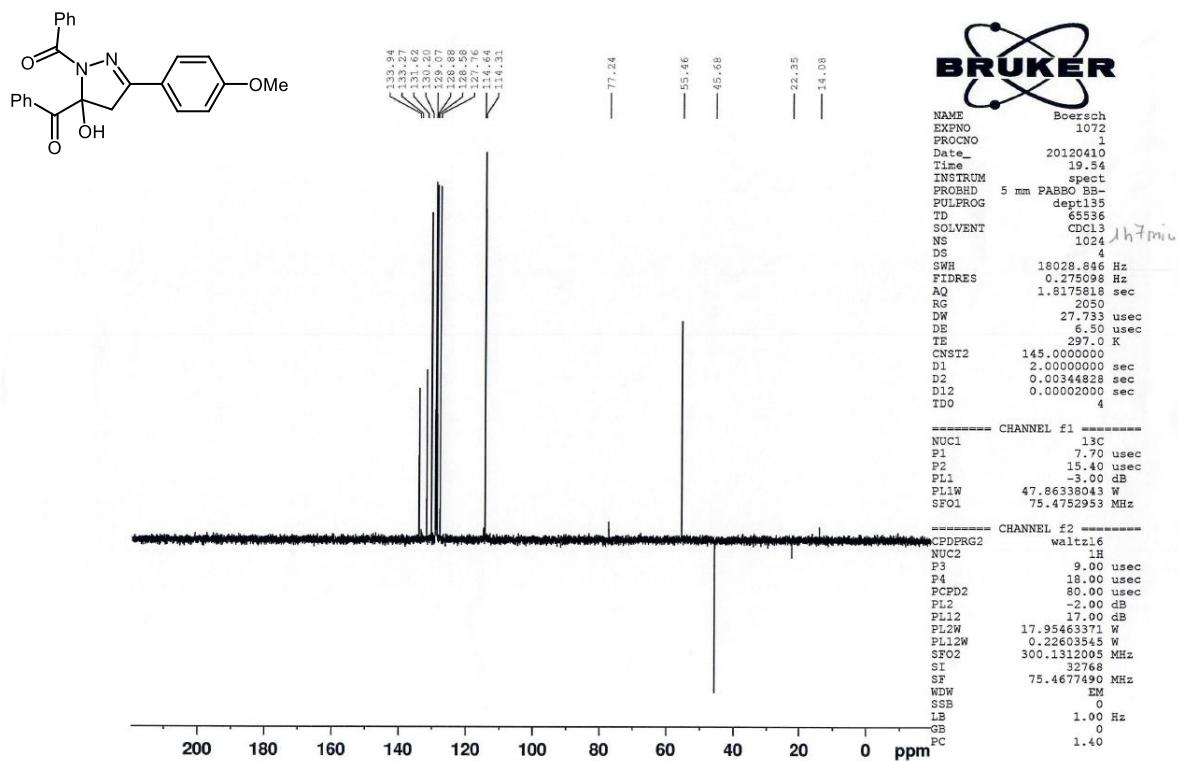
5.9 (5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)(cyclopropyl)-methanone (5i)

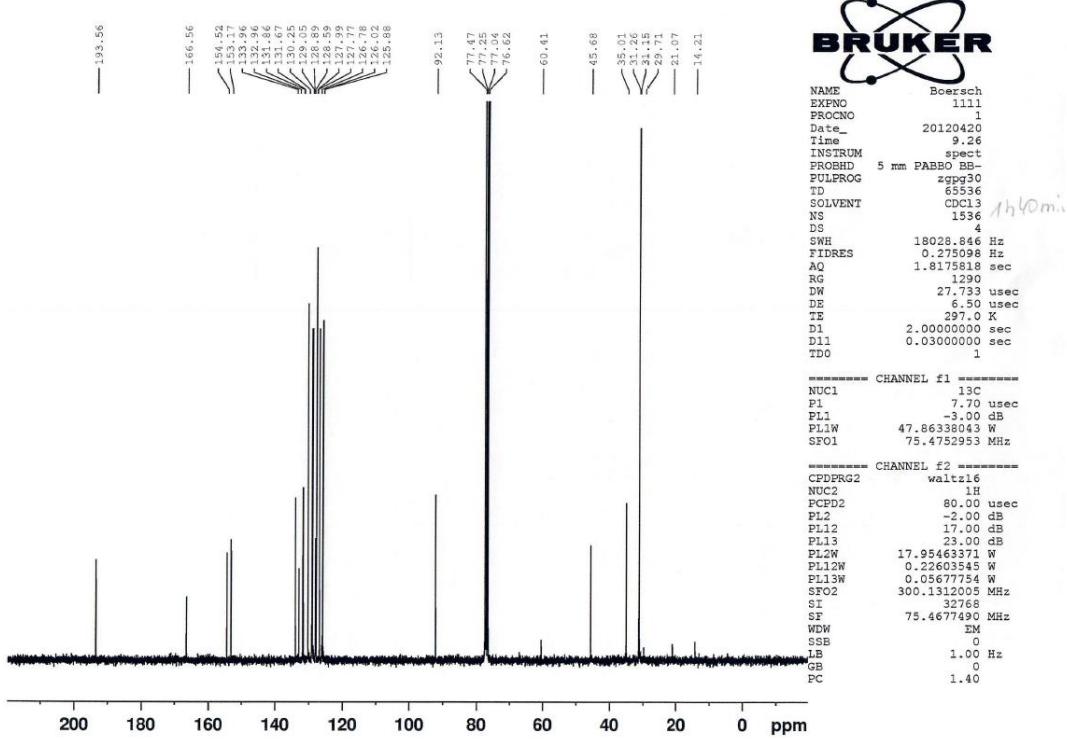
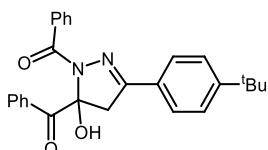
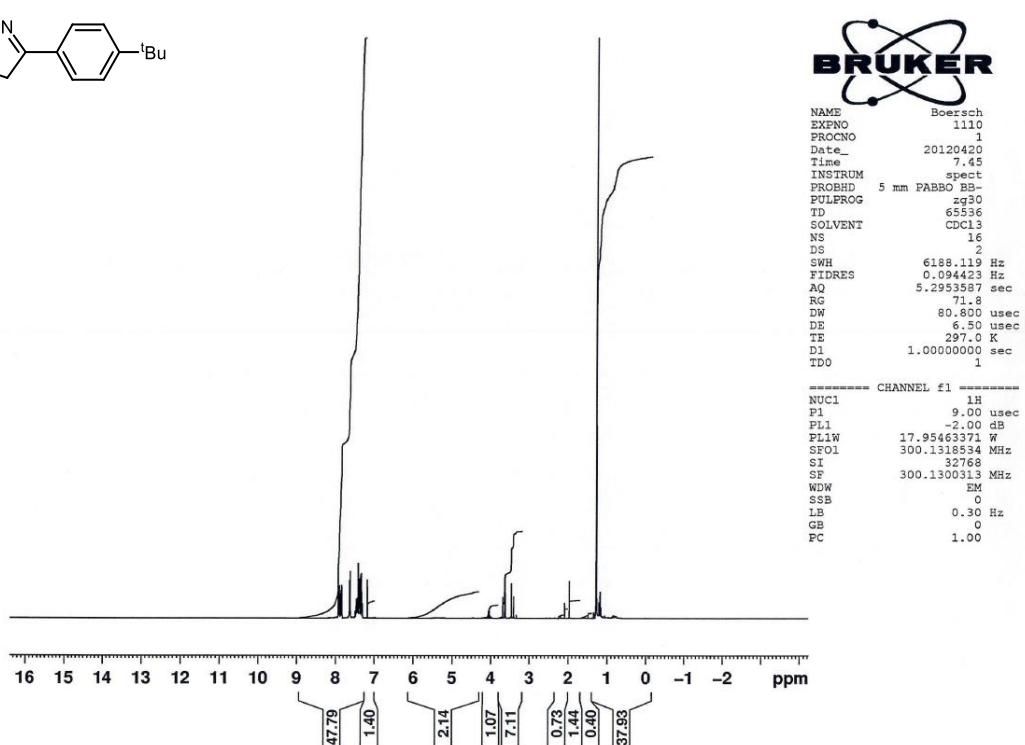
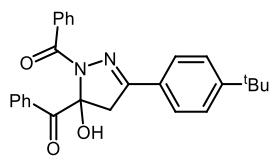



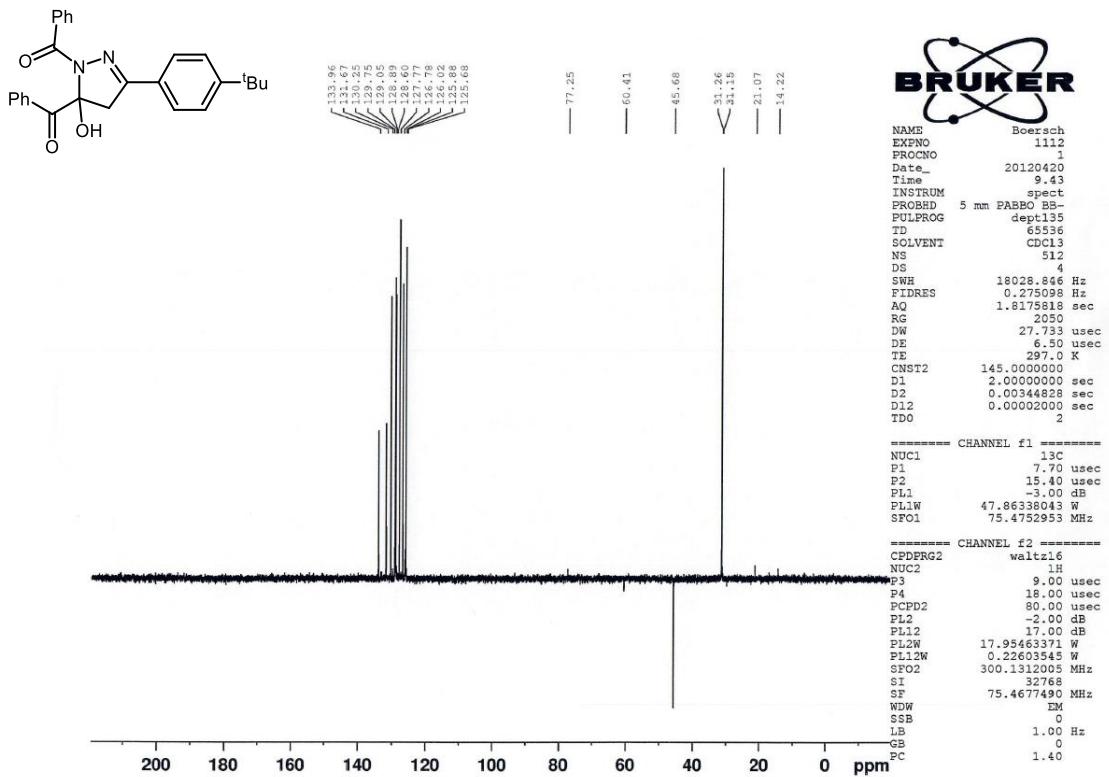


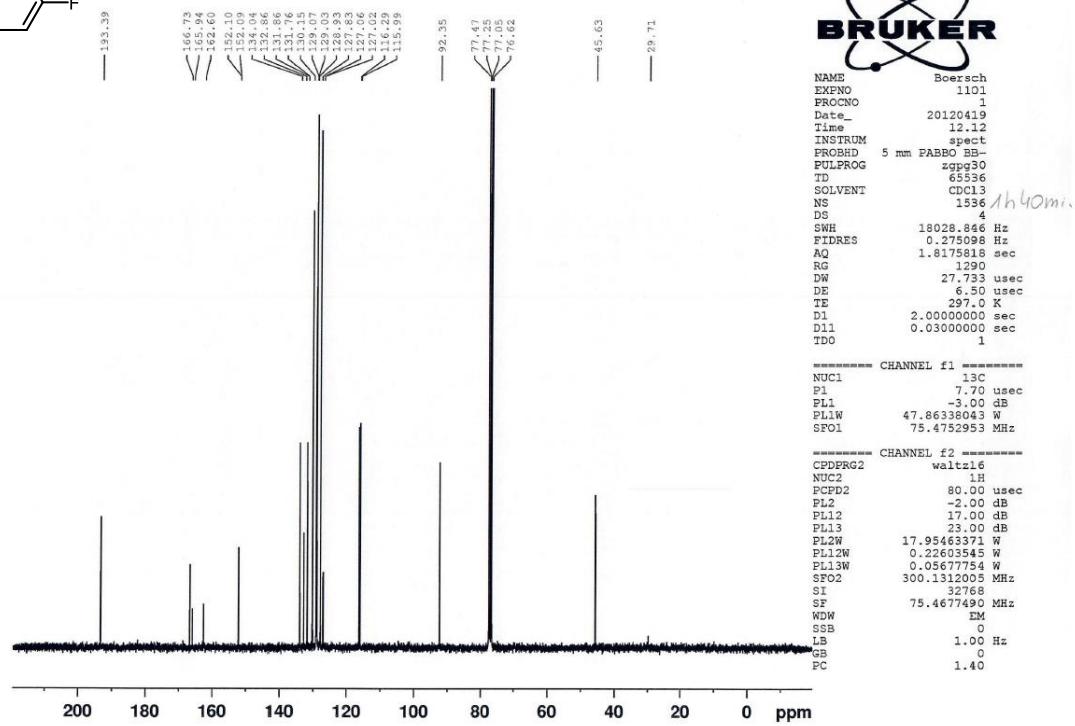
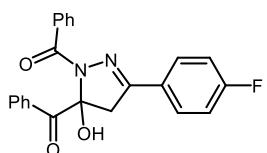
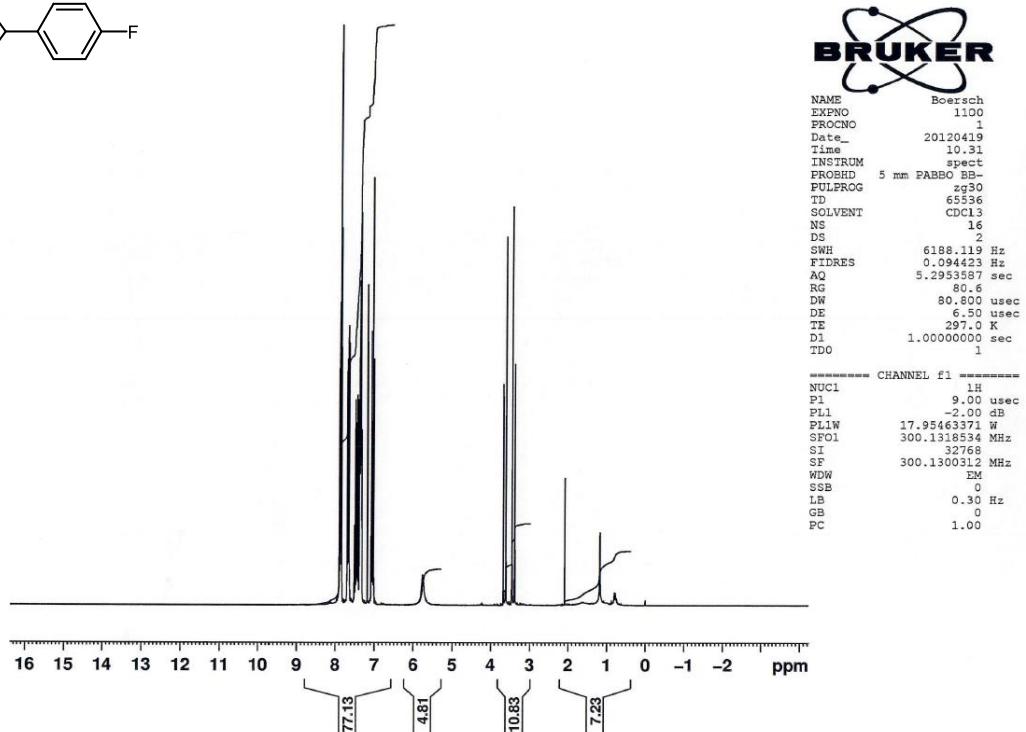
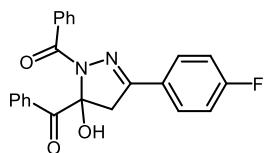
5.10 1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)-2,2-dimethylpropan-1-one (5j)

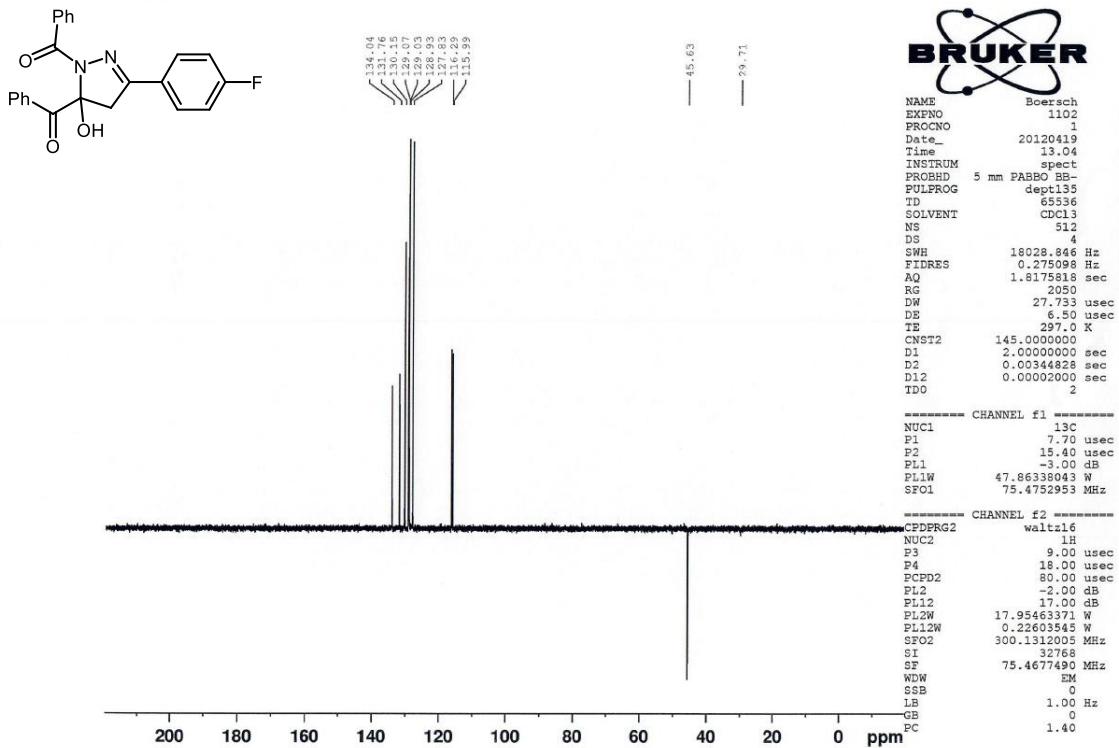



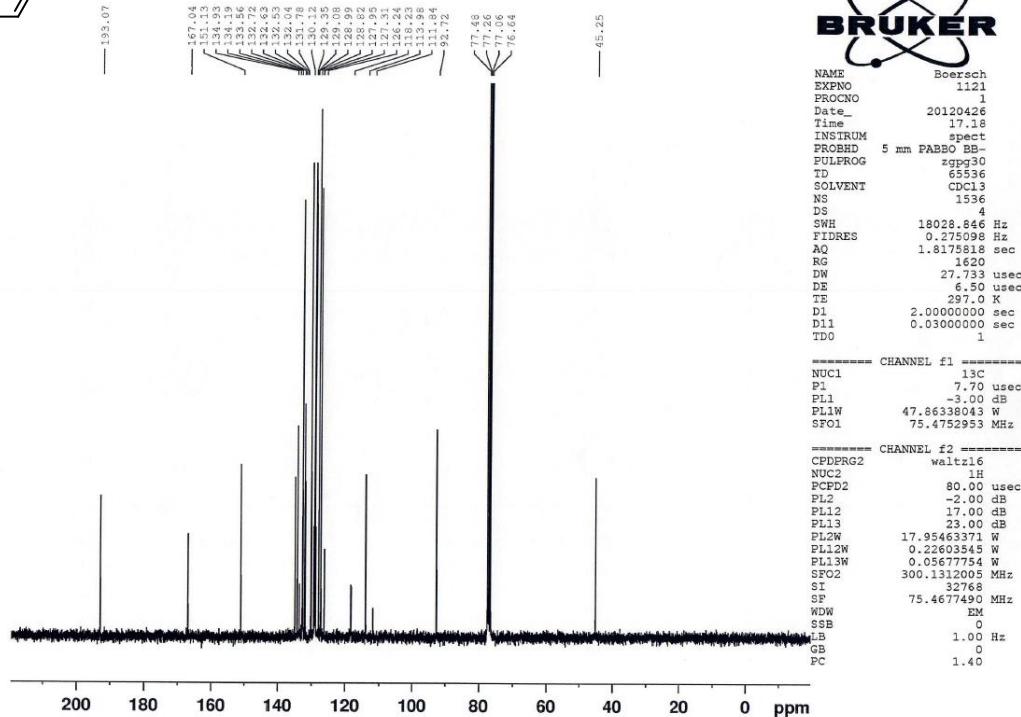
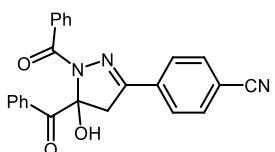
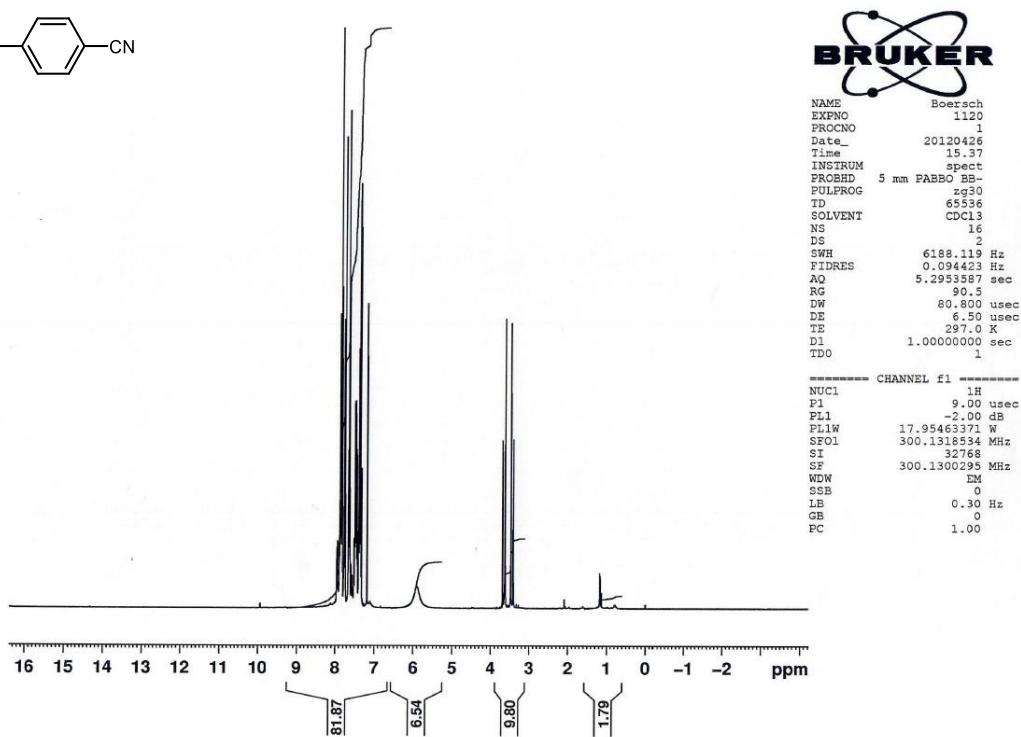
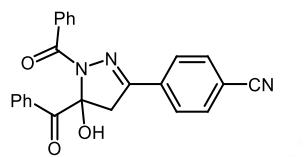

5.11 1-(5-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)butan-1-one (5k)

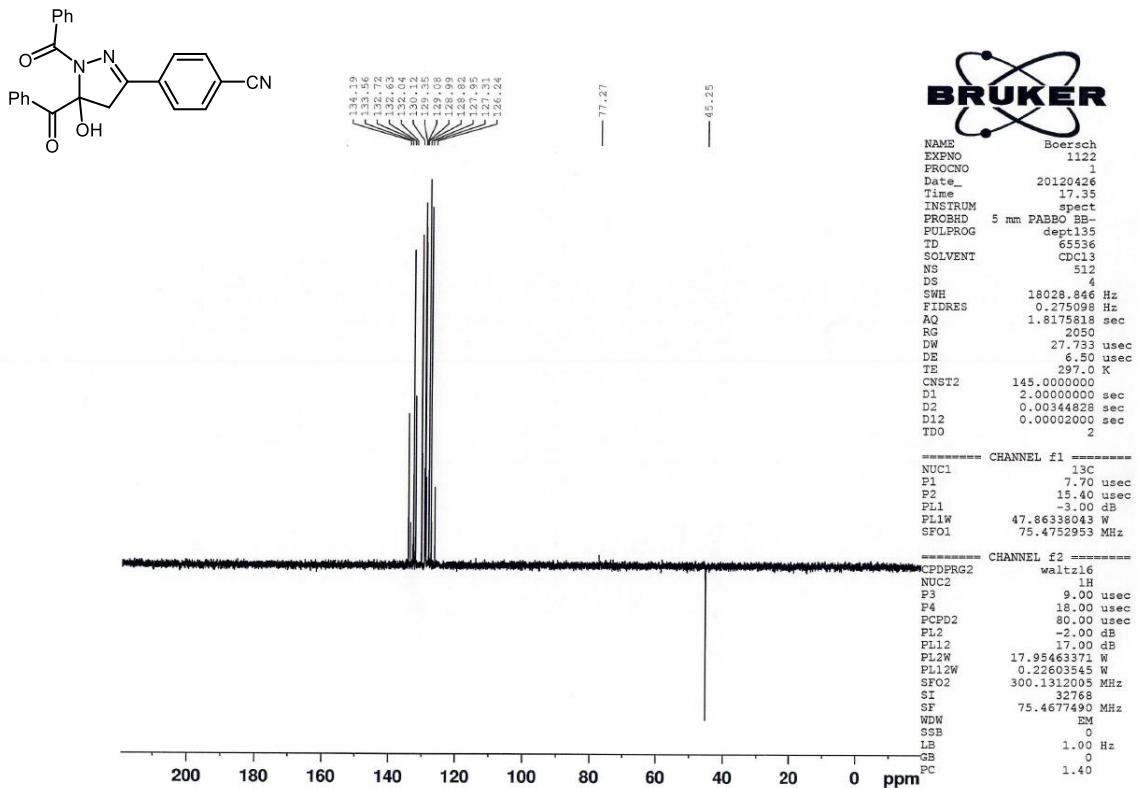





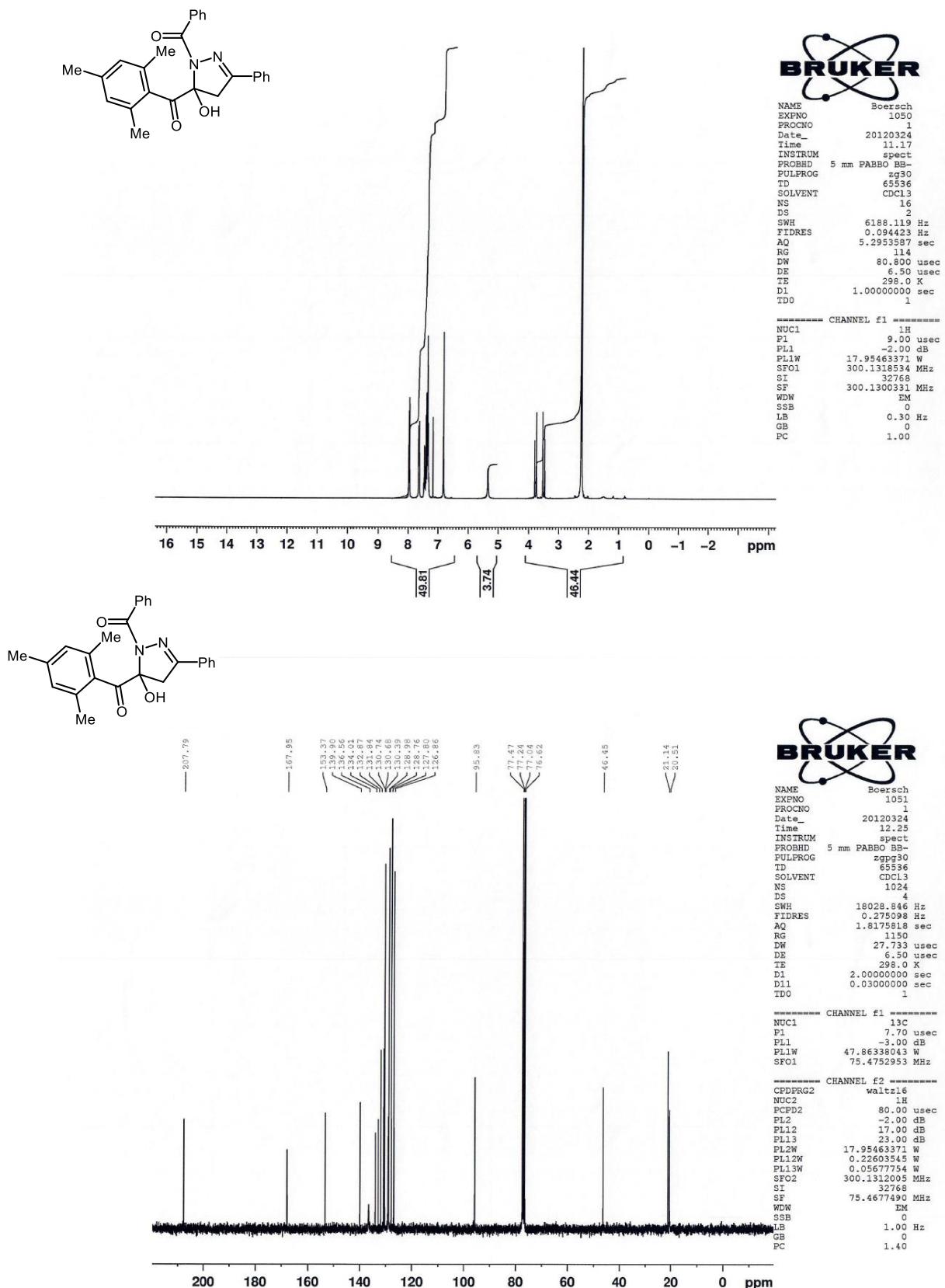

5.12 (5-Hydroxy-3-(4-methoxyphenyl)-4,5-dihydro-1*H*-pyrazol-1,5-diyi)bis(phenylmethanone) (5i)

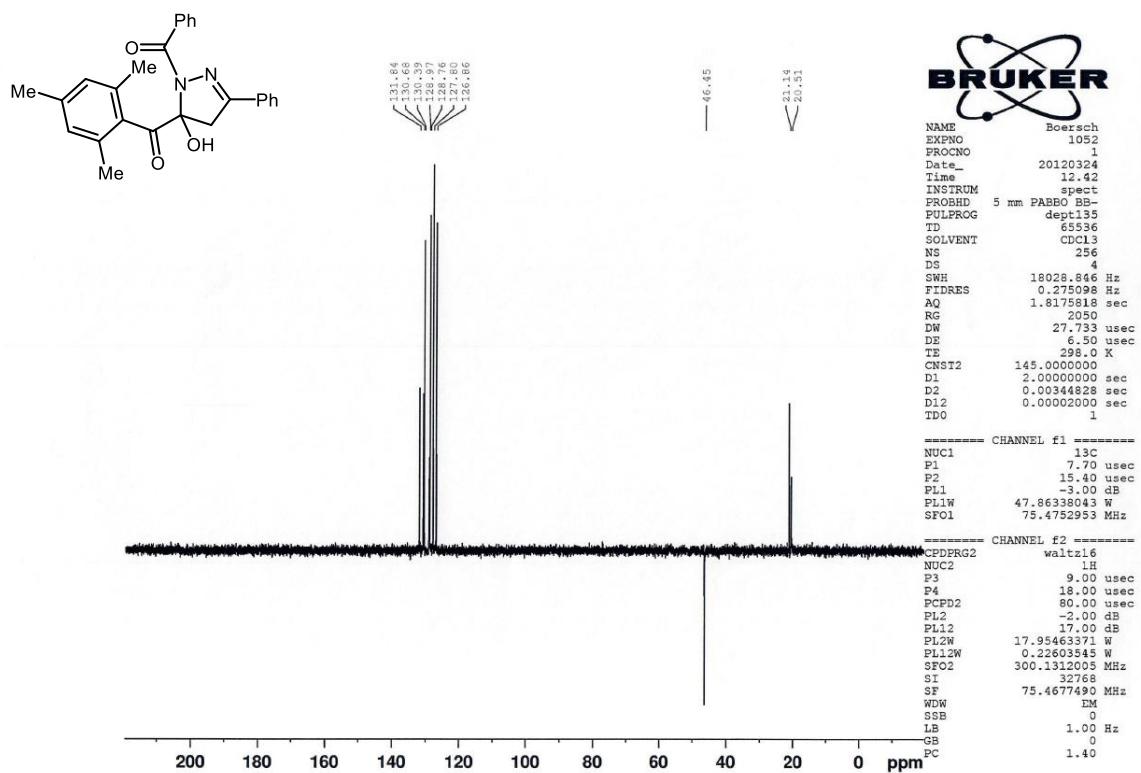





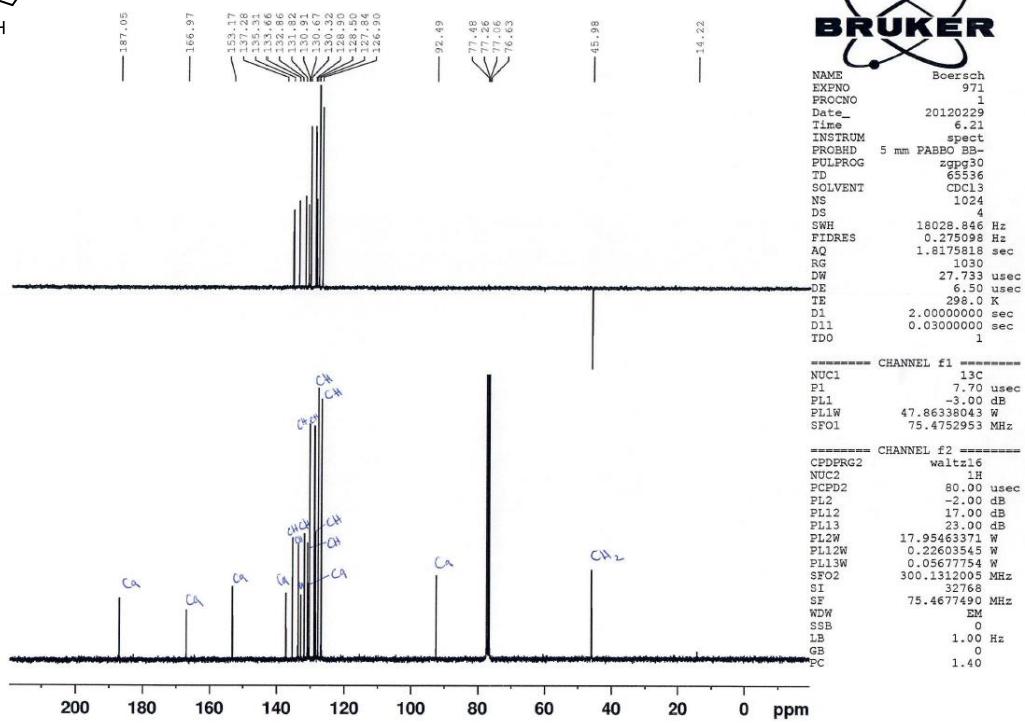
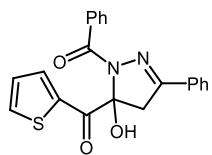
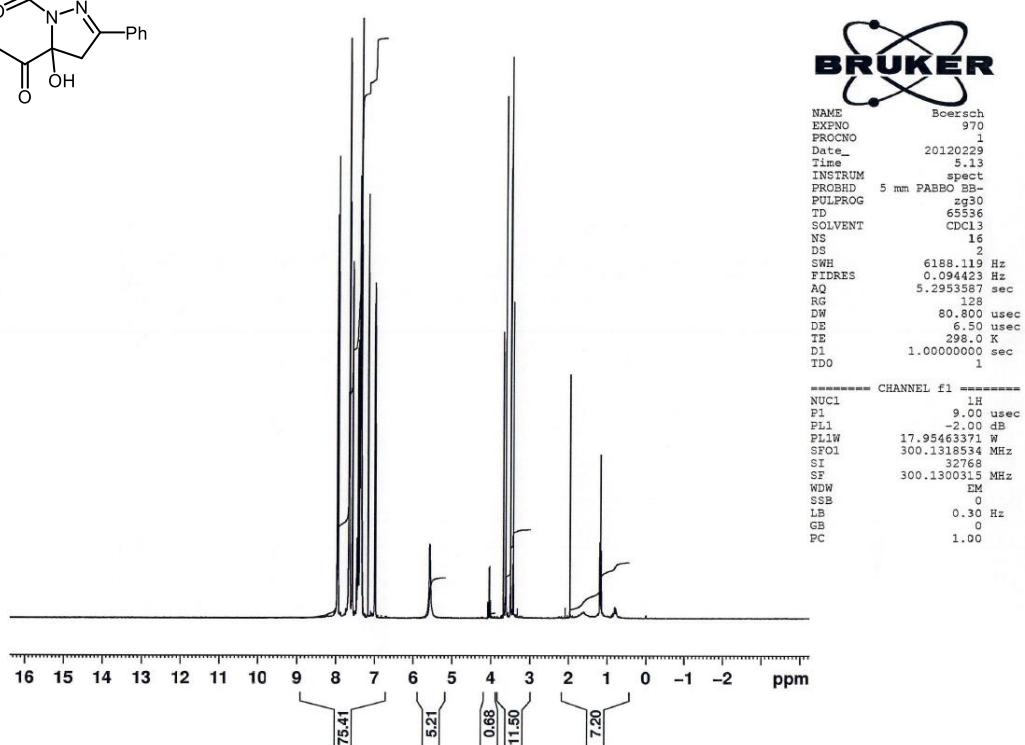
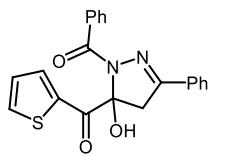

5.13 (3-(4-(*tert*-Butyl)phenyl)-5-hydroxy-4,5-dihydro-1*H*-pyrazol-1,5-diyi)bis(phenylmethanone) (5m)

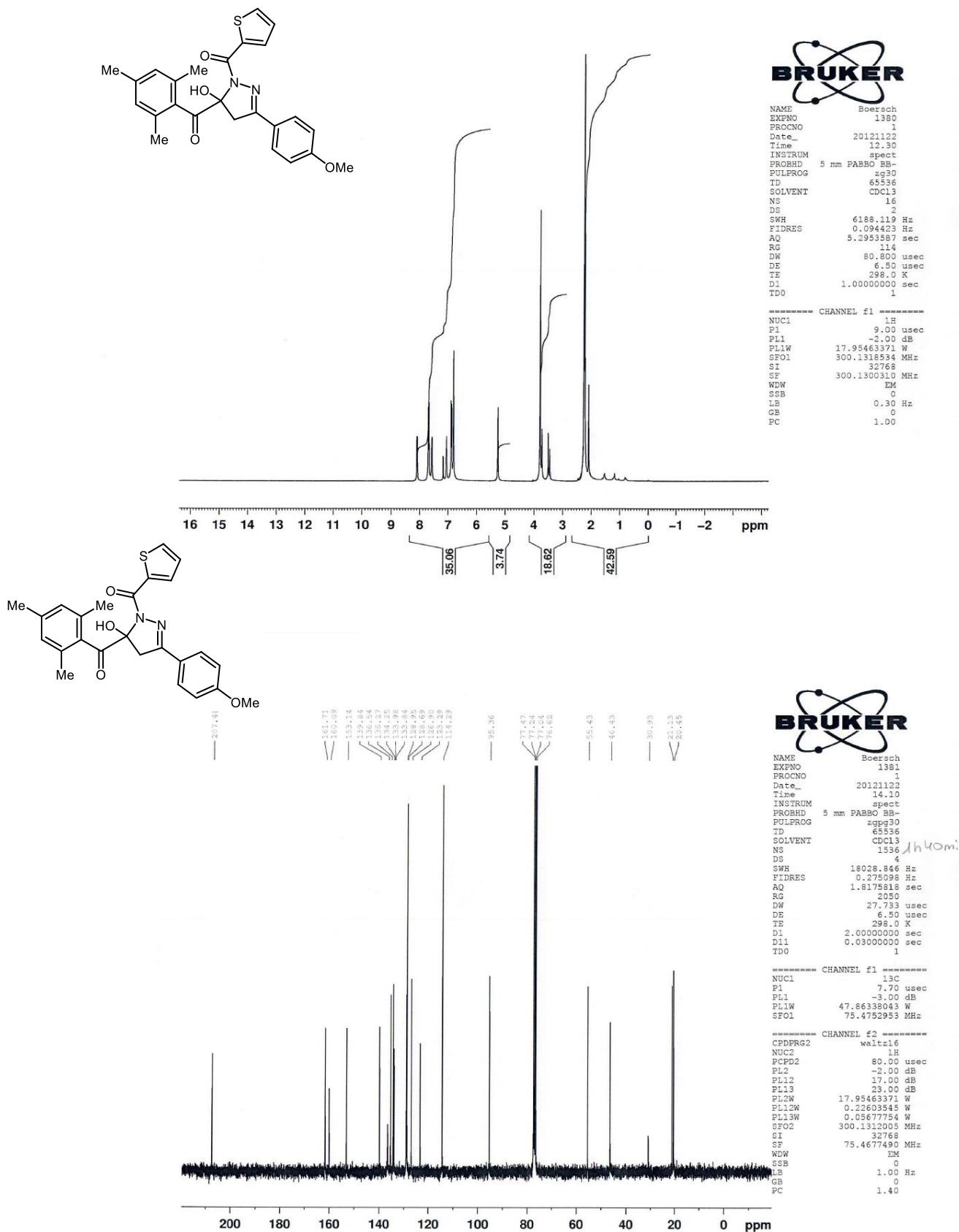

5.14 (3-(4-Fluorophenyl)-5-hydroxy-4,5-dihydro-1*H*-pyrazol-1,5-diyi)bis(phenylmethanone) (5n)

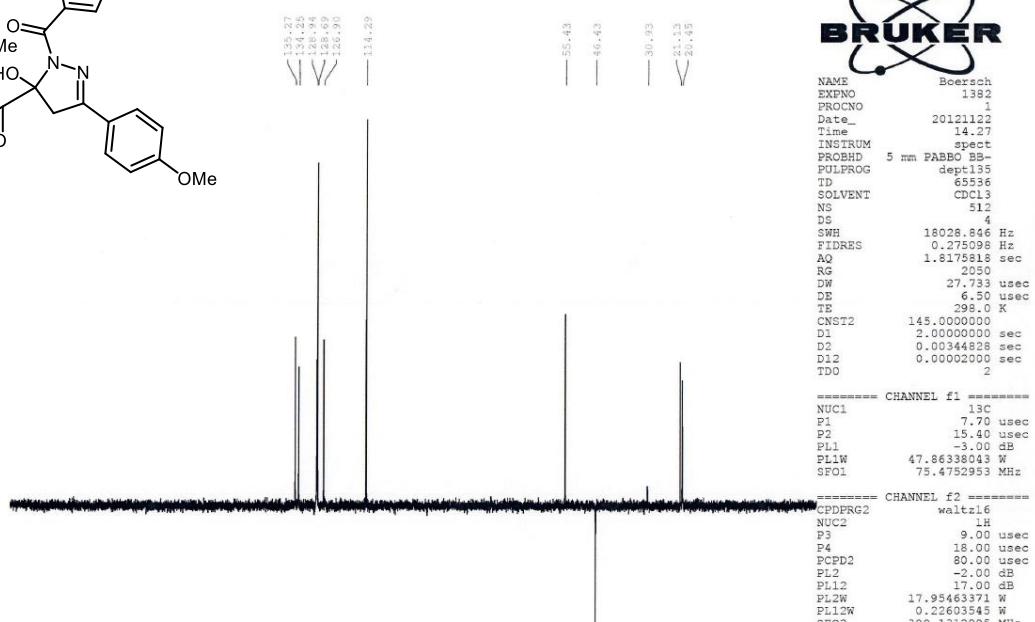
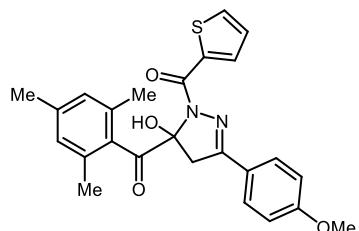



5.15 4-(1,5-Dibenzoyl-5-hydroxy-4,5-dihydro-1*H*-pyrazol-3-yl)benzonitrile (5o)

5.16 (1-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-5-yl)(mesityl)methanone
(5p)



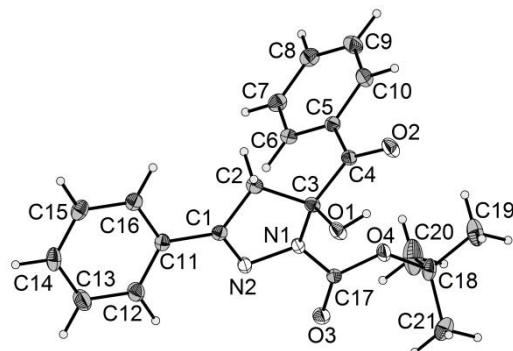
5.17 (1-Benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazol-5-yl)(thien-2-yl)methanone (5q)

5.18 (5-Hydroxy-3-(4-methoxyphenyl)-1-(thiophen-2-carbonyl)-4,5-dihydro-1*H*-pyrazol-5-yl) (mesityl)methanone (5r)

6 Crystal structures of compounds **5a**, **5r**, and **6a**

All studied crystals were selected directly from a representative sample of the compound. For the data collection the crystal was glued on a thin glass thread. Diffraction data collection for **5a** was performed using the Oxford Xcalibur four-circle diffractometer;² for **5r**, an STOE IPDS was used and for **6a** the STOE IPDS2 was used. Data collection followed in all cases the standard procedures. The same is true for the refinement using the SHELX program system.³ The DIAMOND⁴ software was used for the figures showing the crystal structures presented in this paper.

CCDC 1902138 (**5a**), CCDC 1906570 (**5r**), and CCDC 1906571 (**6a**) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

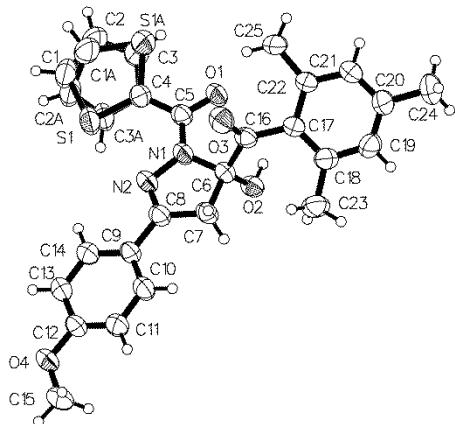

² Oxford diffraction. CryAlis^{PRO} Version 1.171.34.44, Oxford, UK, 2010.

³ Sheldrick, G. M. *Acta Crystallogr.* **2015**, C71, 3-8. doi: 10.1107/S2053229614024218

⁴ Brandenburg, K.: *DIAMOND*. Visual Crystal Structure Information System. Version 4.5.2. Crystal Impact, Bonn, Germany, 2018.

6.1 Crystal structure of *tert*-butyl 5-benzoyl-5-hydroxy-3-phenyl-4,5-dihydro-1*H*-pyrazole-1-carboxylate (5a)

Crystal data and the results of the structure refinement for 5a

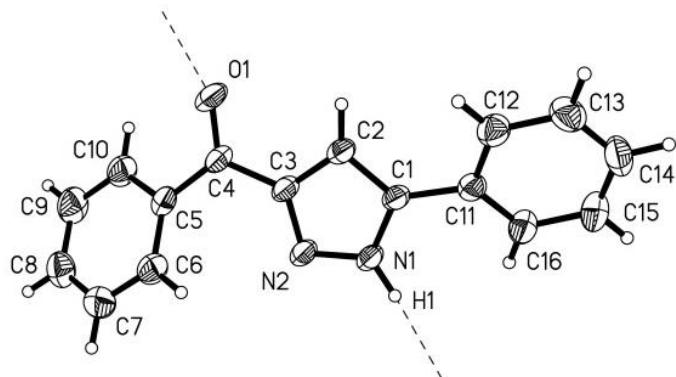


Identification code	CCDC 1902138
Empirical formula:	C ₂₁ H ₂₂ N ₂ O ₄
Formula weight:	366.40 g/mol
Temperature:	129 K
Wavelength:	0.71073 Å
Crystal system:	monoclinic
Space group	P2 ₁ /n
Unit cell dimensions:	$a = 9.9453(3)$ Å $b = 18.3337(4)$ Å $c = 11.4431(4)$ Å $\beta = 113.377(4)$ °
Volume:	1915.22(10) Å ³
Z:	4
Density (calculated):	1.271 mg/m ³
Absorption coefficient μ :	0.09 mm ⁻¹
Structural factor $F(000)$:	776
Crystal size:	0.5 x 0.4 x 0.3 mm ³
Theta range of data collection:	3.0 to 29.0° *
Index ranges:	-12 ≤ h ≤ 13, -22 ≤ k ≤ 23, -14 ≤ l ≤ 6
Reflections collected:	8382
Independent reflections:	4366 [$R_{\text{int}} = 0.021$]
Goodness-of-fit of F^2 :	1.05
Final R indices [$I > 2\sigma(I)$]	$R_1 = 0.0409$, $wR_2 = 0.0735$
Final R indices [all]:	$R_1 = 0.0565$, $wR_2 = 0.0798$
Largest diff. Peak and hole:	0.34 und -0.23 eÅ ⁻³

*Completeness >99% up to theta = 25°.

6.2 Crystal structure of (5-hydroxy-3-(4-methoxyphenyl)-1-(thiophen-2-carbonyl)-4,5-dihydro-1*H*-pyrazol-5-yl) (mesityl)methanone (5r)

Crystal data and the results of the structure refinement for 5r


Identification code:

CCDC 1906570

Empirical formula:	$C_{25}H_{24}N_2O_4S$		
Formula weight:	448.52 g/mol		
Temperature:	291(2) K		
Wavelength:	0.71073 Å		
Crystal system:	monoclinic		
Space group:	$P2_1/c$		
Unit cell dimensions:	$a = 11.0332(9)$ Å	$\alpha = 90^\circ$	
	$b = 9.9343(4)$ Å	$\beta = 93.042(9)^\circ$	
	$c = 20.1694(15)$ Å	$\gamma = 90^\circ$	
Volume:	2207.6(3) Å ³		
Z:	4		
Density (calculated):	1.349 mg/m ³		
Absorption coefficient μ :	0.182 mm ⁻¹		
Structural factor $F(000)$:	944		
Crystal size:	0.4 x 0.4 x 0.4 mm ³		
Theta range of data collection:	2.67 to 25.00°		
Index ranges:	-13 ≤ h ≤ 13, -11 ≤ k ≤ 11, -23 ≤ l ≤ 23		
Reflections collected:	27965		
Independent reflections:	3878 [$R_{int} = 0.0661$]		
Goodness-of-fit of F^2 :	1.017		
Final R indices [$l > 2\sigma(l)$]	$R1 = 0.0392$, $wR2 = 0.1099$		
Final R indices [all]:	$R1 = 0.0496$, $wR2 = 0.1144$		
Largest diff. Peak and hole:	0.215 und -0.164 e.Å ⁻³		

6.3 Crystal structure of phenyl(3-phenyl-1H-pyrazol-5-yl)methanone (6a)

Crystal data and the results of the structure refinement for 6a

Identification code

CCDC 1906571

Empirical formula

C₁₆H₁₂N₂O

Formula weight

248.28

Temperature

291(2) K

Wavelength

0.71073 Å

Crystal system

Monoclinic

Space group

Cc

Unit cell dimensions

$a = 26.1458(17)$ Å $\alpha = 90^\circ$
 $b = 6.9379(3)$ Å $\beta = 100.656(5)^\circ$
 $c = 7.1310(4)$ Å $\gamma = 90^\circ$

Volume

1271.24(12) Å³

Z

4

Density (calculated)

1.297 Mg/m

Absorption coefficient

0.083 mm⁻¹

F(000)

520

Crystal size

0.45 x 0.4 x 0.4 mm³

Theta range for data collection

3.04 to 24.99°

Index ranges

-30 ≤ h ≤ 30, -8 ≤ k ≤ 8, -8 ≤ l ≤ 7

Reflections collected

4609

Independent reflections

1119 [$R_{\text{int}} = 0.0635$]

Completeness to theta = 24.99°

99.6%

Absorption correction

None

Refinement method

Full-matrix least-squares on F^2

Data / restraints / parameters

1942 / 2 / 173

Goodness-of-fit on F^2

1.124

Final R indices [$I > 2\sigma(I)$]

$R1 = 0.0414$, $wR2 = 0.1051$

Final R indices [all]:

$R1 = 0.0447$, $wR2 = 0.1077$

Absolute structure parameter

-4.6(10)

Largest diff. peak and hole

0.149 and -0.162 e.Å⁻³