

Supporting Information

for

A photochemical determination of luminescence efficiency of upconverting nanoparticles

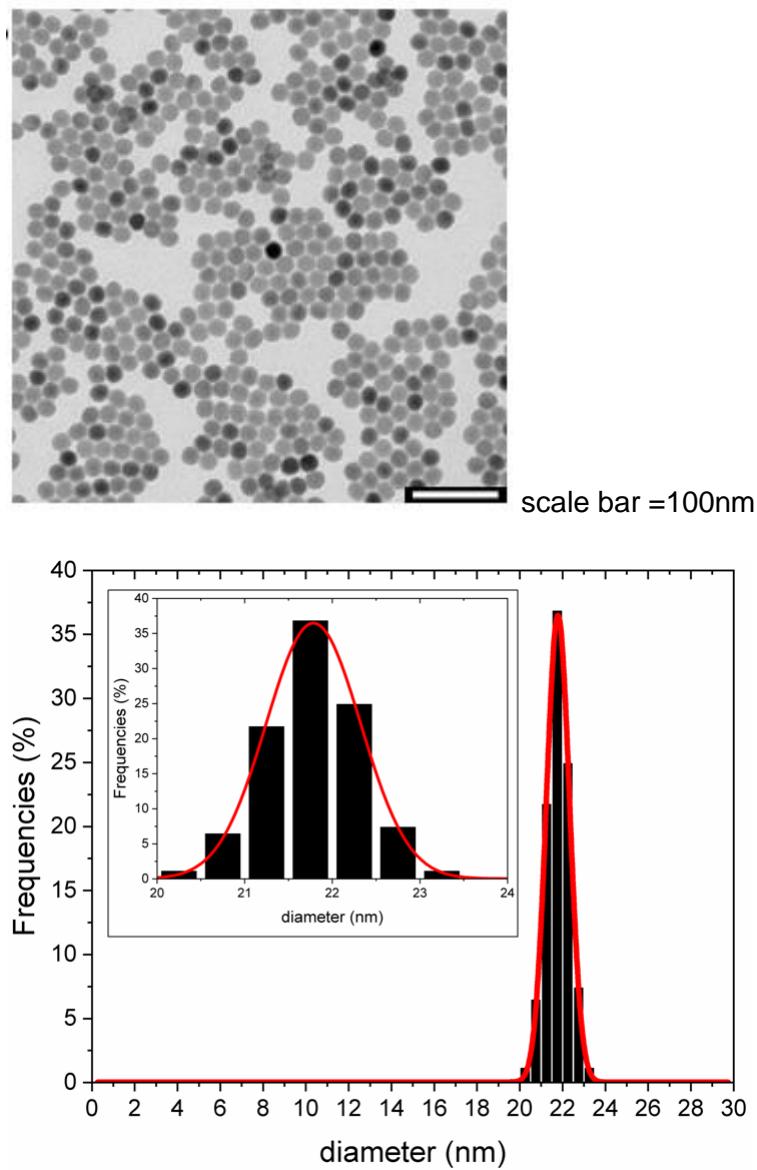
Baptiste Amouroux, Clément Roux, Jean-Claude Micheau, Fabienne Gauffre
and Christophe Coudret

Beilstein J. Org. Chem. **2019**, *15*, 2671–2677. doi:10.3762/bjoc.15.260

Experimental details about the UCNPs syntheses, characterizations, photolysis experiments and detailed calculations

Table of contents

1- General Procedure for the preparation of 21.8 nm- UCNP batch	S2
2- UCNP's stoichiometry datas.	S2
3- TEM analysis of UCNP batch.	S3
4- XRD analysis of UCNP batch.	S4
5- Photochromic actinometer	S4
6- Discoloration of DAE induced by 21.8 nm-UCNP	S5
7- General procedure for the preparation of 35 nm- UCNPs	S6
8- Discoloration of DAE induced by 35 nm-UCNP.	S6
9- Control experiments.	S9
10- Summary table	S9
11- References	S10


1- General Procedure for the preparation of 21.8nm-UCNP batch

UCNP were prepared adapting the protocols of Li and Zhang² and Zhai et al.³ Rare earth (RE) chloride hydrates were mixed in a oleic acid (OA): octadecene (ODE) (7:38) mixture and heated to 160 °C under Ar flush until a clear solution was obtained. To the cooled reaction mixture were slowly added freshly prepared solutions of NaOH (0.326 mM) and NH₄F (0.5 mM) in MeOH via syringe pump at 0.4 mL min⁻¹. Volatile compounds were then removed under Ar flush then the reaction mixture was brought to 300–310 °C for 90 minutes. Timer was started when temperature reached 300 °C. It should be noted that temperature never reached 310 °C but stayed at around 305 °C.

2- UCNPs stoichiometry datas

UCNPs	
Matrix	Na YF ₄
n(RE)	11.6 mmol
n(Y)	7.9 mmol (68% RE)
n(Yb)	3.5 mmol (30% RE)
n(Yb)	0.23 mmol (2% RE)
n(Na)/n(RE)	4
n(F)/n(RE)	5.5
V(OA) mL	35
V(ODE) mL	190
{Na+F} addition	Separated addition via double syringe pump
Diameter	21.8 nm
Area	1.49 * 10 ³ nm ²
Volume	5.42 * 10 ³ nm ³
Unit	cell volume
U(NaYF ₄ :Yb,Er)	107.6 Å ³
Z	1.5
N(Yb/NP)	22670
N(Er/NP)	1510

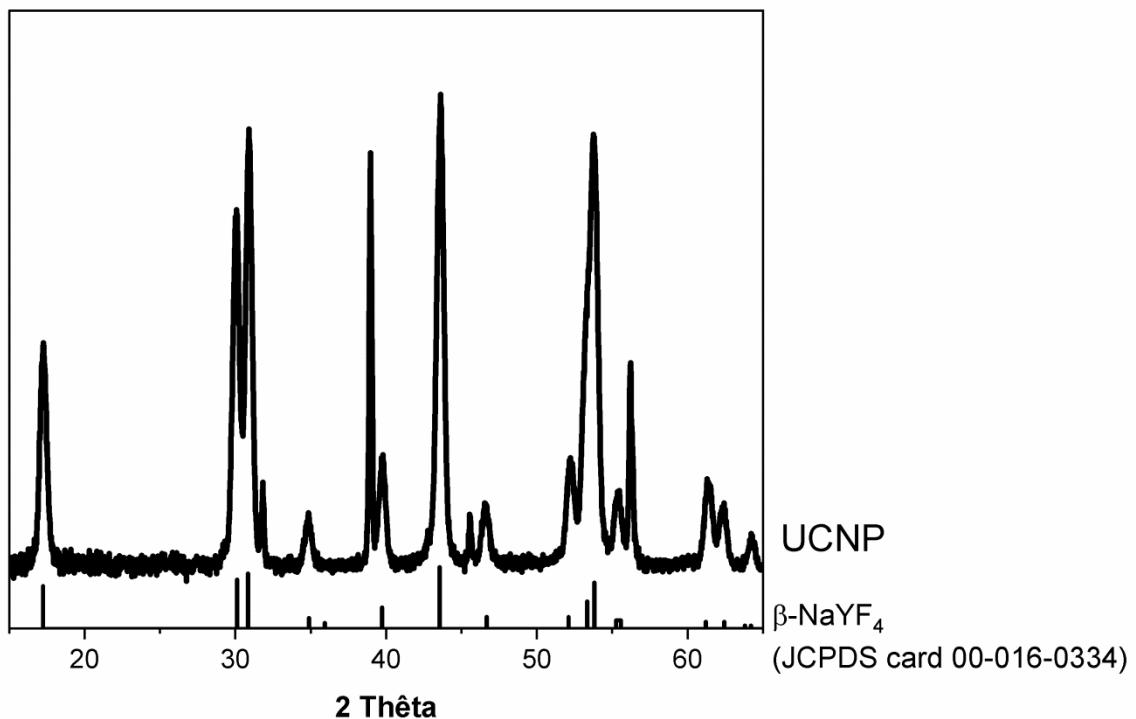
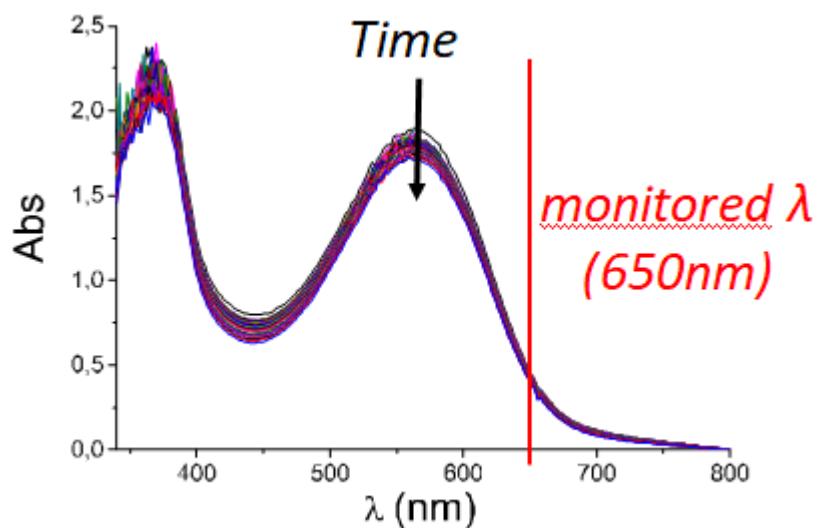

3- TEM analysis of UCNPs batch

Figure S3 : TEM analysis and size distribution of the studied UCNPs

UCNP synthesized are homogeneous in size and shape. We have assimilated them to a pseudo-sphere of a diameter of 21.8 ± 1.3 nm (average size \pm FWHM)

4- XRD analysis of UCNPs batch


Figure S4 : XRD analysis of the studied UCNP and comparison with the standard hexagonal phase β -NaYF₄ (JCPDS card 00-016-0334) .

5- Photochromic actinometer

1,2-Bis(2,4-dimethyl-5-phenyl-3-thienyl)3,3,4,4,5,5-hexafluoro-1-cyclopentene ($\geq 98\%$, CAS: 172612-67-8) was obtained from TCI chemicals and used as received. The concentration of **1-c** was determined using the published value of its molar extinction coefficient at 562 nm ($10900 \text{ L mol}^{-1}\text{cm}^{-1}$).¹

6- Discoloration of DAE induced by 21.8 nm-UCNP

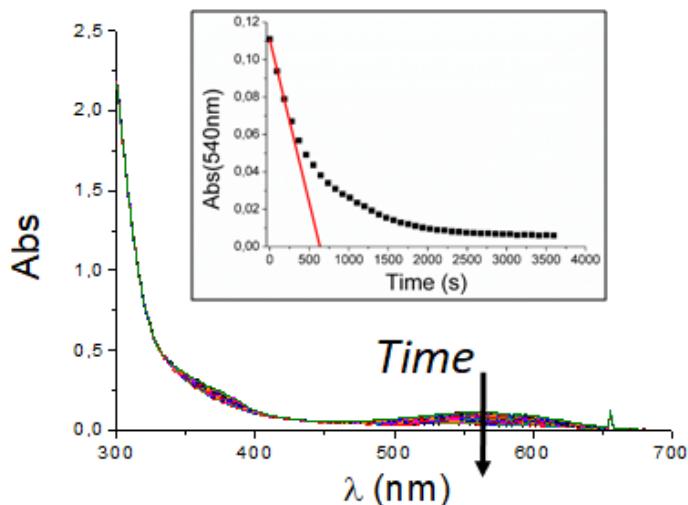
Quartz cell containing the mixture of DAE and UCNP (21.8nm) was placed in UV-visible spectrophotometer. Absorbance spectra were recorded in a kinetic mode, while the cell was irradiated from the side by a fibered collimated NIR laser.

Figure S6 : DAE discoloration induced by UCNP under 976m CW laser at 4.1 W (49 W cm⁻²).

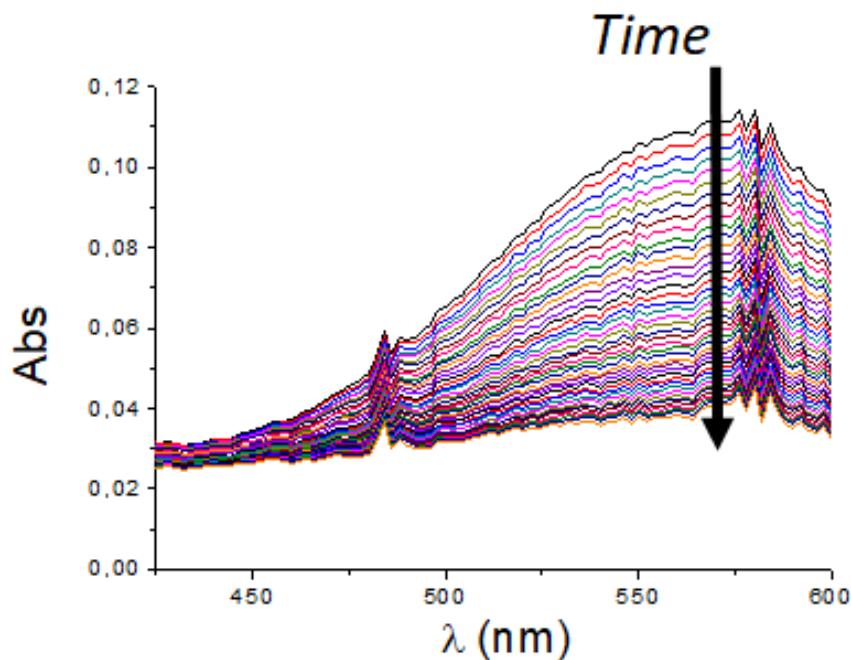
This high absorbance has been selected to ensure total light absorption at 540 nm. A convenient parameter is the characteristic “optical thickness”⁴ L defined from the rewritten Beer-Lambert law:

$$I = I_0 10^{-\frac{l}{L}}$$

as


$$L = \frac{1}{\epsilon_{540}[1c]}$$

L is therefore the inverse of the absorbance measured for an optical path of 1cm. Thus, an absorbance at 530nm of 2.1 (over 1cm) gives a characteristic length of 0.47 cm, comparable to the dimensions of the cuvette. On the other hand, a shift of the observation wavelength was necessary to optimize the monitoring conditions.


7- General procedure for the preparation of 35nm -UCNPs.

Larger $\text{NaYF}_4:\text{Yb,Er}$ UCNPs were prepared by applying the protocol described by Li and Zhang³, using a doping molar ratio of 80% Y, 18% Yb, 2% Er. TEM analyses give an average size of 35 nm

8- Discoloration of DAE induced by 35nm-UCNP

Figure S8-1: Photoisomerization of DAE induced by UCNP emission was monitored in diluted conditions: $\text{Abs}(500\text{--}600\text{nm}) \approx 0.15$. Complete kinetic is represented in the insert.

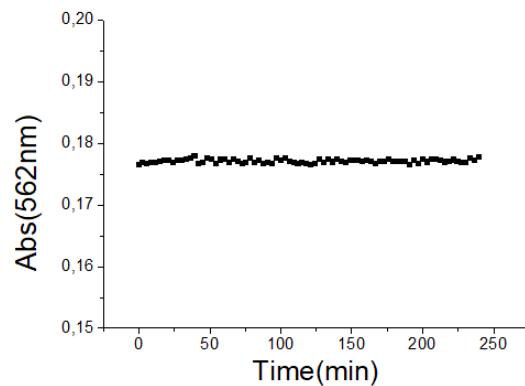
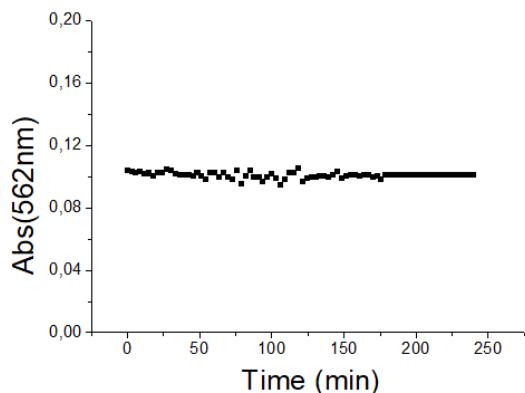


Figure S8-2: Photoisomerization of DAE induced by UCNP emission (zoom-in of the region of interest where only **1-c** absorbs).

In such conditions it is not possible to define simply the absorbed flux density ⁴. Thus, no quantum yield could be determined. Nevertheless, the activity of the nanolamp could be determined: in this geometry, one single 35 nm-UCNP induces 20 dyes switching per second (ratio of the measured disappearance slope by the number of UCNP within the 976nm-irradiated volume).


9- Control experiments

a- Impact of the spectrophotometer lamp

Figure S8-a : Time evolution of the absorbance of a mixture **1-c** and 35 nm-UCNP at 562 nm left in the spectrophotometer (no external light sources) ($[1\text{-c}] = 1.6 \ 10^{-5} \text{ mol L}^{-1}$, $[\text{UCNP}] = 11 \text{ g L}^{-1}$)

b-Impact of the laser

Figure S9-b: Time evolution of the absorbance of **1-c** at 562 nm under 980nm-laser irradiation ($[1\text{-c}] = 9 \ 10^{-6} \text{ mol L}^{-1}$; $P \text{ laser} = 29 \text{ W cm}^{-2}$)

Neither the spectrophotometer nor the 980-laser induce significant dye transformation.

10- Summary table

Step	parameter	symbol	unit	value
Photolysis of 1-c	DAE 1-c concentration	[1-c]	mol L ⁻¹	2.12 × 10 ⁻⁴
	1-c molar extinction coefficient at 650nm (monitoring)	ε_{650}	L mol ⁻¹ cm ⁻¹	2154
	1-c molar extinction coefficient at 540nm	ε_{540}	L mol ⁻¹ cm ⁻¹	9784
	Volume of the DAE solution	V	L	1.96 × 10 ⁻³
	DAE opening quantum yield at 540nm	Φ_{co}	-	0.02
	DAE Absorbance at 540 nm (irradiation)	Abs ₅₄₀	-	2.07
	Optical length at 540 nm	L	cm	0.48
	Initial slope DAE photobleaching	-dAbs ₆₅₀ /dt	Abs s ⁻¹	1.46 × 10 ⁻⁵
	DAE bleaching rate	-d[1-c]/dt	mol L ⁻¹ s ⁻¹	6.78 × 10 ⁻⁹
	DAE consumption		molecule s⁻¹	8.00 × 10 ¹²
Incoming NIR energy	Upconversion photon flux at 540nm	J_0	photon s ⁻¹	4.00 × 10 ¹⁴
	Laser power at 976 nm (NIR)	P	W	4.7
	Laser power density at 976 nm (NIR)		W cm ⁻²	49
	Incident NIR photon flux	J_0^{NIR}	photon s ⁻¹	2.31 × 10 ¹⁹
	Absorbance of UCNP solution at 976 nm	Abs ₉₇₆	-	0.0014
	Absorbed NIR photon flux	J_a^{NIR}	photon s ⁻¹	7.45 × 10 ¹⁶
	Up-conversion QY	Φ_{uc}	-	0.54%
Single NP power	Laser beam section		cm ²	9.6 × 10 ⁻²
	Laser beam volume inside the cell ("lamp")	V	L	9.6 × 10 ⁻⁵
	Yb molar extinction coefficient at 976 nm	ε_{yb}	L mol ⁻¹ cm ⁻¹	3.1
	number of Yb atoms inside the beam volume	n_{yb}	atom	2.58 × 10 ¹⁶
	Total number of RE per nanoparticle (from XRD)	N_{RE}	atom NP ⁻¹	75490
	percentage of Yb	p_{yb}	%	30
	percentage of Er	p_{er}	%	2
	number of ytterbium per nanoparticle	N_{yb}	atom NP ⁻¹	22670
	number of erbium per nanoparticle	N_{er}	atom NP ⁻¹	1510
	number of NPs inside the laser beam	n_{yb}	NP	1.14 × 10 ²
	emitted photons per erbium atom	J_0/N_{er}	photon s ⁻¹	0.24
	number of emitted photons per NP's	J_0/n_{NP}	photon s⁻¹	350
	Power per NP's	ϕ^{NP}	W	1.29 × 10¹⁶

11- References:

- (1) Sumi, T.; Takagi, Y.; Yagi, A.; Morimoto, M.; Irie, M. *Chemical Communications* **2014**, *50* (30), 3928–3930. <https://doi.org/10.1039/C4CC00396A>.
- (2) Li, Z.; Zhang, Y. *Nanotechnology* **2008**, *19* (34), 345606. <https://doi.org/doi:10.1088/0957-4484/19/34/345606>.
- (3) Zhai, X.; Wang, Y.; Liu, X.; Liu, S.; Lei, P.; Yao, S.; Song, S.; Zhou, L.; Feng, J.; Zhang, H. *ChemPhotoChem* **2017**, *1* (8), 369–375.
- (4) Aillet, T.; Loubiere, K.; Dechy-Cabaret, O.; Prat, L. *International Journal of Chemical Reactor Engineering* **2014**, *12* (1), 257–269. <https://doi.org/10.1515/ijcre-2013-0121>.