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1. General information

All the chemicals used in synthesis are analytically pure and were used as received.
Solvents were dried and distilled prior to use. 'H and 13C NMR spectra were recorded
on Bruker Avance spectrometers (400/500/600 MHz). H and 3C chemical shifts are
reported in parts per million (ppm) relative to TMS, with the residual solvent peak used
as an internal reference. The mass spectra were measured by HRMS (MALDI-TOF,
recorded on a Bruker Ultraflextreme mass spectrometer) and HRMS (ESI-TOF, recorded
on an Agilent G6224A mass spectrometer). UV-vis absorption spectra were measured
on a UV-2550 UV-vis spectrophotometer (Shimadzu Ltd., Japan). Fluorescence spectra
were recorded with an FS5 spectrofluorometer (Edinburgh instruments, UK).
Luminescence lifetimes of compounds were recorded with an OB920 luminescence
lifetime spectrometer (Edinburgh Instruments, U.K). All these calculations were
performed with Gaussian 09W [1]. Natural transition orbital analysis were performed

by the Multiwfn program [2].

2. Synthesis of the compounds

2.1. Synthesis of 2. Compound 2 was synthesized in a manner similar to [3]. A mixture
of NI-3Br (3.0 g, 7.750 mmol), bis(pinacolato)diboron (2.0 g, 7.750 mmol), KOAc (1.5 g,
15.5 mmol) and Pd(dppf)Cl> (257.4 mg, 0.320 mmol) in toluene (77mL) was degassed
by gently bubbling N> for 30 min. The mixture was then stirred at 110 °C for 16 h. After
cooling, the mixture was extracted with CH>Cl> (100 mL x 3). The combined organic
layer was washed with water (100 mL), brine solution (100 mL), dried over anhydrous
NaxSOy, filtered, and evaporated to dryness. The crude product was purified by column
chromatography (silica gel, DCM/PE 1:6, v/v) to give product 2 as white solid (400 mg,
11.9%).'H NMR (400 MHz CDCl3) &: 0.86-0.94 (m, 6H), 1.30-1.37 (m, 8H), 1.40 (s, 12H),
1.92-1.96 (m, 1H), 4.08-4.19 (m, 2H), 7.75 (m, / = 15.51 Hz, 1H), 8.23 (d, / = 8.13 Hz,
1H), 8.62 (d, / = 25.01 Hz, 1H), 8.67 (s, 1H), 8.99 (s, 1H). 13C NMR (125 MHz, CDCls) &
164.63, 164.46, 138.00, 136.49, 134.07, 132.22, 131.73, 130.20, 127.84, 126.86, 123.82,
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122.79, 84.56,44.18, 37.96, 30.80, 28.77, 24.95, 24.13, 23.09, 10.58. HRMS (MALDI, m/z)
calcd for C3gH3aN202S [M+H]*, 435.2581, found 436.2665.

2.2. Synthesis of NI-Ph-Br. Under a N atmosphere, compound 2 (61.1 mg,
0.141 mmol) and 1-bromo-4-iodobenzene (75.0 mg, 0.265 mmol) were dissolved in
mixed solvent of toluene (3 mL), ethanol (0.8 mL) and water (0.5 mL), followed by the
addition of K2COs3 (70.0 mg, 0.506 mmol). After bubbling with N2 for 20 min, Pd(PPh3)4
(30 mg, 0.026 mmol) was added, and the mixture was refluxed for 8 h. Then, the
reaction mixture was cooled to room temperature and extracted with dichloromethane.
The organic layer was dried over anhydrous Na>SOs and concentrated under reduced
pressure to attain the crude product. The residue was purified by column
chromatography (silica gel, DCM/PE 1:2, viv) to afford compound NI-Ph-Br as pale
white solid (64 mg, 92.9%).'H NMR (400 MHz, CDCl3) & 0.88-0.96 (m, 6H), 1.31-1.41
(m, 8H), 1.94-1.97 (m, 1H), 4.10-4.20 (m, 2H), 7.66 (s, 4H), 7.79 (m, / = 15.25 Hz, 1H),
8.25(d, /= 8.00 Hz, 1H), 8.35 (s, 1H), 8.60 (d, /= 7.25 Hz, 1H), 8.83 (s, 1H). 13C NMR (125
MHz, CDCl3,) & 164.46, 138.85, 138.20, 133.88, 132.36, 132.12, 131.19, 130.93, 130.28,
128.98, 127.53, 123.46, 122.80, 44.25, 38.00, 30.80, 29.71, 28.75, 10.68, 8.83. HRMS
(MALDI, m/2) calcd for Co6H26BrNO2 [M+H]*, 463.1147, found 464.1220.

2.3. Synthesis of 3. Compound 2 (300.0 mg, 0.690 mmol) and 5-bromo-2-iodo-1,3-
dimethylbenzene (300 mg, 0.965 mmol) were dissolved in a deaerated mixed solvent
containing toluene (7 mL), ethanol (2 mL), and water (1 mL). After the addition of the
catalysts Pd(PPhs)s (79.6 mg, 0.069 mmol) and potassium carbonate (285.7 mg,
2.067 mmol), the mixture was stirred for 15 min at room temperature. Then, the
reaction suspension was heated to 78 °C and this reaction temperature was kept for
1 h. Following that the reaction temperature was further increased to 110 °C and
stirring continued for additional 9 h. Then, the reaction mixture was allowed to cool to
room temperature, extracted with chloroform, washed with water and brine. The
combined organic layer was dried by anhydrous Na>SO4 and concentrated under
reduced pressure. The residue was purified by column chromatography (silica gel,

DCM/PE 1:4, v.v). Compound 3 was obtained as pale white solid 3 (150 mg, 60.6%). 1H

NMR (400 MHz, CDCl3,) & 0.86-0.96 (m, 6H), 1.29-1.42 (m, 8H), 1.93-1.98 (m, 1H), 2.02
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(s, 6H), 4.08-4.19 (m, 2H), 7.33 (s, 2H), 7.80 (m, /= 15.51 Hz, 1H), 7.96 (d, / = 1.50 Hz,
1H), 8.20 (d, /= 8.13 Hz, 1H), 8.38 (d, /= 1.50 Hz, 1H), 8.63 (d, /= 7.26 Hz, 1H). 13C NMR
(125 MHz, CDClz,) & 164.51, 138.88, 138.23, 133.89, 132.37, 131.20, 130.31, 128.99,
127.54, 127.44, 123.48, 122.85, 44.25, 38.01, 30.81, 28.75, 24.11, 23.09, 14.11, 10.68.
HRMS (MALDI, m/2) calcd for CogH30BrNO> [M+H]*, 491.1460, found 492.1533.
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3. Molecular structure characterization data
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Figure S1. 'H NMR spectrum of NI-PTZ in CDCl3 (400 MHz), 25 °C.
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Figure S2. MALDI-HRMS spectrum of NI-PTZ, 25 °C.
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Figure S3. 13C NMR spectrum of NI-PTZ in CDCl3 (125 MHz), 25 °C.
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Figure S4. 'H NMR spectrum of NI-PTZ-O in CDCl; (400 MHz), 25 °C.
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Figure S5. MALDI-HRMS spectrum of NI-PTZ-0O, 25 °C.
< © ANOASOONS ONNNS
n <t A OO <TOANTMANN O N~ AN AN~ N~ O OANMNO A AN ©
o o P X DI I P G NNO N N O RKOH® HO©
O © MO MMOMOOMHOOMHMANNNAN M~~~ O <t N OWOMS MO O
— - A A A A A A A A A A A | e D A < MO MONANANAN — -
- i %WBH T SSST Y T
ON_O
&0
\ S\\O |
\uu‘ | HH‘ I
| [ | I |
! o ' I L || \
\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\
160 140 120 100 80 60 40 20 0

Chemical Shift (ppm)

Figure S6. 13C NMR spectrum of NI-PTZ-0 in CDCl3 (125 MHz), 25 °C.
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Figure S7. 'H NMR spectrum of NI-PTZ; in CDCl3 (400 MHz), 25 °C.
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Figure $S8. MALDI-HRMS spectrum of NI-PTZ;, 25 °C.
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Figure S9. 13C NMR spectrum of NI-PTZ; in CDClz (125 MHz), 25 °C.
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Figure S10. 'H NMR spectrum of 2 in CDCl3 (400 MHz), 25 °C.
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Figure S13. 'H NMR spectrum of NI-Ph-Br in CDCl3 (400 MHz), 25 °C.
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Figure S14. MALDI-HRMS spectrum of NI-Ph-Br, 25 °C.
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Figure S15. 13C NMR spectrum of NI-Ph-Br in CDCl3 (125 MHz), 25 °C.
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Figure S16. 'H NMR spectrum of NI-Ph-PTZ in CDClz (400 MHz), 25 °C.
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Figure S18. 13C NMR spectrum of NI-Ph-PTZ in CDCl3 (125 MHz), 25 °C.
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Figure S19. 'H NMR spectrum of 3 in CDCl3 (400 MHz), 25 °C.
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Figure S21. 3C NMR spectrum of 3 in CDClz (125 MHz), 25 °C.

S17



O < o O < N < N O o LT O (o)
O O Te) N N — o0 00 00 N OO O (42)
i B o NG NENONONGI &
~ ~ \ S~ \ ~| /7 |
\ [ ‘ [ I
‘ N M L |
0.96 0.93 0.95 0.97 0.95 2.08 6.03 1.97
I R L (e [ L
T T T T T T ‘ T T T T ‘ T T T T ‘ T ‘ T ‘ T T T T ‘ T T T T ‘ T
8.5 8.0 7.5 7.0 6.5
Chemical Shift (ppm)
OTFTOOTANTANOOLT O HO NO O AN A NOOMTAOMMMNOT HO
COBINTDRBNSS S M NEERERE IEPIITINMD S ®
COOOOWOWWONMNMNMNMNMNMNNNMNO O A IS SIS SN N N A A A A A1 00O0O0OOO
S il Snnbipnndni & 5\ LIS RN R
O N_O %
3,0
o
[l
o al l iy | o
0.96 0.93 0.95 0.97 0.95 2.08 6.03 1.97 2.00 6.061.02 8.04 6.00
[ N R N TR L R W S A
\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\
8 7 6 5 4 3 2 1 0

Chemical Shift (ppm)

Figure $S22. 'H NMR spectrum of NI-PhMe,-PTZ in CDCls3 (400 MHz), 25 °C.
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Figure S23. MALDI-HRMS spectrum of NI-PhMe;-PTZ, 25 °C.
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Figure S24. 13C NMR spectrum of NI-PhMe,-PTZ in CDCl3 (125 MHz), 25 °C.
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4. Steady state UV-vis absorption and luminescence spectra
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Figure S25. UV-vis absorption spectra of NI-PTZ, NI-PTZ-O, NI-PTZ,, NI-Ph-PTZ, and
NI-PhMe,-PTZ in (a) cyclohexane (CHX); (b) toluene (TOL); (c) tetrahydrofuran (THF);
(d) dichloromethane (DCM); (e) acetonitrile (ACN). ¢= 1.0 x 107> M, 20 °C.
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Figure S$26. Fluorescence emission spectra of NI-PhMe,-PTZ in different solvents. A
= 0.146, Aex =330 nm, 20 °C.
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Figure S27. Fluorescence emission spectra of (a) NI-PTZ, (b) NI-PTZ-O, (c) NI-PTZ,,
(d) NI-Ph-PTZ, (e) NI-PhMe,-PTZ in CYC, and (f) NI-PhMe,-PTZ in n-HEX. Under
different atmospheres (N, air). A = 0.146, Aex =330 nm, 20 °C.
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5. Fluorescence lifetimes
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Figure S$28. Decay traces of the luminescence of NI-PhMe2-PTZ in different solvents

Excited with picoseconds pulsed laser for fluorescence band (Aex = 479 nm), ¢ = 1.0 x
10™ M, 20 °C.

6. Phosphorescence spectra
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Figure $29. Phosphorescence spectra of the compounds (a) NI-Ph-PTZ (1ex =554 nm),

(b) NI-PhMe2-PTZ (Aex = 545 nm), and (c) NI-3Br (lex = 547 nm) at 77 K, in 2-
methyltetrahydrofuran, ¢ = 1.0 x 107 M.

S22



7. Phosphorescence lifetimes
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Figure S30. Decay traces of the phosphorescence of the compounds (a) NI-Ph-PTZ
(Aex = 554 nm), (b) NI-PhMez-PTZ (Aex = 545 nm), and (c) NI-3Br (Aex = 547 nm) in 2-
methyltetrahydrofuran, ¢= 1.0 x 10 M, 77 K.
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8. Spectroelectrochemistry measurement

3 0.9 0.4 ]
l NI*-PTZ, a NI-PTZ,™ b " { NI*-Ph-PTZ c
)] 1)) O
827' 170s 80.6 184 s 2 300s
1] 1 @ ©
a2 | 160s o 176 200 2855
g | 2 2 30
s ;6: :
04 | 00L AN ————— 0.0{ 1 s e
400 600 800 1000 400 600 800 1000 400 600 800 1000
Wavelength / nm Wavelength / nm Wavelength / nm
0.44 ‘ ' ' 1 061 ‘ ‘ ] 04{ ]
i } NI-Ph-PTZ* d \ NI*-PhMe,-PTZ € | { NI-PhMe,-PTZ* f
003 o i 0034
2 200s 2044, 200's 2 ! 130’5
5 190 s s ! 190 s By ! 125
I o 3 2o 502, ?
s s i s
< 10s <02+ 10 < | 5s
0.1 0.11
0.0 1 Do, R e T
400 600 800 1000 400 600 800 1000 400 600 800 1000
Wavelength / nm Wavelength / nm Wavelength / nm

Figure S31. Spectroelectrochemistry traces of the UV-vis absorption spectra for (a) NI-
PTZ, observed from neutral (red) to monoanion (purple) at controlled potential of
-1,83 V (vs. Ag/AgNQO:3s), (b) NI-PTZ; observed from neutral (red) to monocationic
(purple) at controlled-potential of 0.53 V (vs. Ag/AgNO3), (c) NI-Ph-PTZ observed from
neutral (red) to monoanion (purple) at controlled potential of —=1.85 V (vs. Ag/AgNO:3),
(d) NI-Ph-PTZ observed from neutral (red) to monocationic (purple) at controlled-
potential of 0.55 V (vs. Ag/AgNO:3), (e) NI-PhMe;-PTZ observed from neutral (red) to
monoanion (purple) at controlled potential of =1,85 V (vs. Ag/AgNQ:3), (f) NI-PhMe;-
PTZ observed from neutral (red) to monocationic (purple) at controlled potential of
0.60 V (vs. Ag/AgNO:3). In deaerated dichloromethane containing 0.10 M Bu4[NPFs] as
supporting electrolyte and with Ag/AgNOs as reference electrode, 20 °C.
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9. Nanosecond transient absorption spectroscopy
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Figure S$32. Nanosecond transient absorption of (a) NI-Ph-PTZ (¢ = 5 x 10™ M) and
(c) NI-PhMe,-PTZ (¢ =5 x 107> M). Decay traces of (b) NI-Ph-PTZ (¢ = 2 x 107° M) at
380 nm and (d) NI-PhMe,-PTZ (c = 2 x 107®M). In deaerated HEX, Aex = 355 nm, 20 °C.
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Figure S33. Nanosecond transient absorption of NI-3Br (@) ¢ = 3.0 x 10™ M in
deaerated HEX and (c) c= 1.0 x 107 M in deaerated ACN. Decay traces of (b) ¢ = 2.0 x
107 M in deaerated HEX and (d) ¢ = 1.0 x 107® M in deaerated ACN at 470 nm. Aex =
355 nm, 20 °C.
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Figure S34. Nanosecond transient absorption of (a) NI-PTZ and (c) NI-N-PTZ. Decay
trace of (b) NI-PTZ and (d) NI-N-PTZ at 420 nm. In deaerated ACN, c =1 x 107 M, Aex
= 355 nm, 20 °C.
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Figure S35. Nanosecond transient absorption of (a) NI-PTZ; (c= 1.0 x 107 M) and (c)
NI-PTZ-O (¢ = 1.0 x 107> M). Decay traces of (b) NI-PTZ; (c= 1.0 x 107*M) at 420 nm
and (d) NI-PTZ-O (c= 1.0 x 107> M) at 540 nm. In deaerated ACN, Aex = 355 nm, 20 °C.
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Figure S36. Nanosecond transient absorption of NI-Ph-Br (a) in HEX and (c) in ACN,

¢=5.0 x 107 M. Decay traces of (b) in HEX and (d) in ACN, ¢ = 2.0 x 107 M, Aem =

490 nm. Adex = 355 nm, 20 °C.
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10. Theoretical computation

Table S1. Vertical absorption of NI-N-PTZ, NI-PTZ, NI-PTZ-O, NI-PTZ,, NI-Ph-PTZ,
and NI-PhMe;-PTZ (TDA-CAM-B3LYP/6-31G(d) in the gas phase, in eV) along with
their oscillator strengths (/) and major orbital contributions. The energy levels and

major orbital contributions for T: and T, at the Franck—-Condon region are also given.

Compounds S1 (absorption) T1 T2
Eas( Aau) Co AEerr  C2 AEert C°
eV) /10# M(Cbc (eV)d  MCbe (eV)d MCbe
NI-N-PTZ 307 O CT H-L 2.69 LE H-2-L 304 CTH-L
(0.67) (0.65) (0.66)
NI-PTZ 317 1 CT H-L 2.73 LE H-2-L 312 CTH-L
(0.67) (0.67) (0.64)
NI-PTZ-O 359 21 CT H-L 2.74 LE H-2-L 355 CTH-L
(0.68) (0.67) (0.66)
NI-PTZ, 306 1 CT H-L 2.72 LE H-4-L 300 CTH-L
(0.67) (0.64) (0.65)
NI-Ph-PTZ 392 3 CT H-L 2.67 LE H-2-L 345 LEH-L+4
(0.61) (0.61) (0.36)
NI-PhMe,-PTZ 390 3 CT H-L 271 LE H-2-L 365 —H-4-L
(0.64) (0.66) (0.56)

a Character; ® Major contributions; H and L represent HOMO and LUMO, respectively.
Predominant HOMO—LUMO transitions for Si, T1, and T, between brackets the
corresponding coefficient; 9 A \ert corresponds to the energy difference between GS and
T1 and T at the FC region.
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Table S2. Emission energies (TDA-CAM-B3LYP/6-31G(d) in the gas phase, in eV) along

with their oscillator strengths (4 and major orbital contributions. The energy levels and

major orbital contributions for S, T1 and T, are given at their respective optimal energy

geometries.
Compounds S1 (emission) T1 (emission)e T2 (emission)e
Eems  C2 A Fems (2 Fems C@
/eV MCb:c /104 /eV M(CP< /eV  MCbe
NI-N-PTZ 222 CTH-L O 193  LE/CTH-1-L - -
(0.69) (c: 0.5)/H-L
(0.4)
NI-PTZ 221 CTH-L 2 184 CTH-L 201 LEH(-2)-L
(0.69) (0.64) (0.68)
NI-PTZ-O 286 CTH-L 1 202  LEH(-2)-L 283 CTH-L
(0.68) (0.68) (0.67)
NI-PTZ, 209 CTH-L 1 180 LE/CTH-1-L - -
(0.69) (0.63)
NI-Ph-PTZ 300 CTH-L O 201  LEH(-1)-L - -
(0.65) (0.66)
NI-PhMe;- 324 CTH-L 447 202  LEH(-1)-L - -
PTZ (0.68) (0.60)

aCharacter; PMajor contributions; °H and L represent HOMO and LUMO, respectively.
Predominant HOMO—LUMO transitions for Sy, T1, and T, between brackets the
corresponding coefficient; doscillator strengths, eV; ¢f= 0.
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Table S3. Calculated energy gaps at different regions of the photo deactivation decay

(in eV) for NI-PTZ and NI-PTZ-O.

Molecule AEs 1-6s (eV)? AEs_1 (eV) AEtcs (S1 eV)P  AEst (S1 eV)
ICT 3LE 3CT ICT-  I1CT-  3LE 3CT ICT-  ICT-
3LE 3CT 3LE 3CT
NI-PTZ 260 237 214 023 046 274 257 -0.14 0.03
NI-PTZ- 312 237 3.09 0.75 0.03 2.63 3.09 049 0.03
o

aA s, 1-6s corresponds to the energy difference between the singlet (S) or triplet (T)
minimum and the ground state (GS) minimum, i.e., adiabatic energy difference;

bRelative energies at the S; optimized geometry, i.e., vertical energy difference.

Vibronic models

For the rate calculations, the Franck-Condon factors, (v;|vs), are computed by
constructing the vibrational wavefunction as a sum of harmonic oscillators for both the
initial and final state. Both these states are considered in the same reference frame,
making it possible to connect them through translation and rotation of one of the
states. This is accomplished by using the Duschinsky rotation effect (DRE), mapping the
normal modes of one state onto the modes of the other state [4,5]. Here, a distinction
can be made depending on how to approximate the harmonic normal modes from
each state [6]. In vertical models, the same geometry is used for both initial and final
state modes, while in adiabatic models the respective minima of both states are used
for such a purpose. In addition, one could choose to calculate the gradient and/or
hessian at only one or at both states. Representing a final state hessian by an initial
state hessian will result in major errors, such that the adiabatic and vertical hessian (AH

and VH, see exemplarily for ground and first excited state in Scheme S1) models, which
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both use the Hessians from both the initial and the final states, are the only ones

suitable for accurate calculations [6,7].

Scheme S1. Visualization of the adiabatic (AH) and vertical hessian (VH) models.

Activation energies from the computed adiabatic energy difference gaps and

reorganization energies

According to [8], the activation energy for the RISC process (4G) can be obtained with

(AEip—2)*

AG = 42

where for a RISC A&¢ corresponds to -AF£s.7 (see values in Table S3) and A corresponds

to the reorganization energies between the initial and final states.
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