

Supporting Information

for

Transition-metal-catalyst-free electroreductive alkene hydroarylation with aryl halides under visible-light irradiation

Kosuke Yamamoto, Kazuhisa Arita, Masami Kuriyama and Osamu Onomura

Beilstein J. Org. Chem. 2024, 20, 1327–1333. doi:10.3762/bjoc.20.116

Experimental procedures, characterization data, and copies of NMR spectra of the products

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of Contents

1. General information				
2. Experimental procedures and characterization data				
2.1. Optimization of reaction conditions for aryl iodide 1k	S 1			
2.2. General procedure for the electroreductive hydroarylation of alkenes	S2-S12			
2.3. Gram-scale experiment	S13-S14			
2.4. Radical-clock experiment	S14			
2.5. Deuterium-labeling experiment	S15			
3. References	S16			
4. ${}^{1}H$, ${}^{13}C{}^{1}H$, and ${}^{19}F$ NMR spectra	S17-S52			

1. General information

Unless otherwise noted, all reactions were performed under air atmosphere. Electrochemical reactions were carried out using a DC power supply (GP 050-2, *Takasago Ltd.*) with a Coulomb/Amperehour meter (HF-201A, *Hokuto Denko Corporation*). A *Kessil* A160WE Tuna Blue LED lamp (40W) was used for light irradiation. The products were isolated by flash column chromatography (CHROMATOREX 60B, *Fuji silysia*). Melting points (mp) were measured with a *YANAKO* MP-J3 Micro Melting Point Apparatus and reported without correction. Infrared (IR) spectra were recorded on a *SHIMADZU* IRAffinity-1 spectrometer and expressed as frequency of absorption (cm⁻¹). ¹H, ¹³C {¹H}, and ¹⁹F NMR spectra were recorded on a *JEOL* JNM-ECZ400R (400 MHz for ¹H NMR, 100 MHz for ¹³C {¹H} NMR, and 376 MHz for ¹⁹F NMR). Chemical shift values are expressed in parts per million (ppm) relative to internal TMS (δ 0.00 ppm for ¹H NMR) and CDCl₃ (δ 77.0 ppm for ¹³C {¹H} NMR). Abbreviations are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. High-resolution mass spectra (HRMS) were recorded on a *JEOL* JMS-T100TD spectrometer using the electrospray ionization (ESI) technique.

Commercially available chemicals were purchased from Sigma-Aldrich, Tokyo Chemical Industry Co., Ltd., Nacalai Tesque, Inc., and FUJIFILM Wako Pure Chemical Corporation and used as received unless otherwise noted. Anhydrous acetonitrile was purchased from FUJIFILM Wako Pure Chemical Corporation (*super dehydrated* grade) and used as received. *Super dehydrated* grade of acetonitrile was dried over 4Å molecular sieves prior to use for a deuterium-labeling experiment.

2. Experimental procedures and characterization data

2.1. Optimization of reaction conditions for aryl iodide 1k

1k (1.0 mmol)	+ 👋	∠CO₂Me 2a	Al(+) Al(+) 1,3-DCB H ₂ O (5 equiv) Et₄NCI (0.1 equiv), MeCN 7.5 mA/cm ² , 0 °C blue LEDs			CO ₂ Me 3ka	
	entry	1,3-DCB (mol %)	2a (equiv)	MeCN (mL)	charge (F/mol)	yield (%) ^a	
	1	5	3.5	6	3.5	25	
	2	50	3.5	6	3.5	61 (8) ^b	
	3	100	3.5	6	3.5	63	
	4	50	5	6	3.5	61 (16) ^b	
	5	50	5	6	4.5	75	
	6	50	5	3	4.5	75	
	7 ^c	50	5	3	4.5	42	

 Table S1. Optimization of the reaction conditions

^aIsolated yield. ^bNMR yield of unreacted **1k** in parentheses. ^cNo LEDs.

2.2. General procedure for the electroreductive hydroarylation of alkenes General procedure A (for aryl chlorides and bromides)

A cylinder-type undivided cell with a stir bar was charged with Et₄NCl (16.6 mg, 0.1 mmol), 1,3dicyanobenzene (1,3-DCB, 6.4 mg, 0.05 mmol), alkene **2** (3.5 mmol), and aryl halide **1** (1.0 mmol). Anhydrous MeCN (6.0 mL) and H₂O (90 μ L) were successively added. The reaction vessel was equipped with a Pt plate cathode (immersed surface area: 1 × 2 cm²) and an Al plate anode (immersed surface area: 1 × 2 cm²) under air, then 3.5 F/mol of electricity was passed through at a constant current condition (7.5 mA/cm²) under visible-light irradiation (approximate distance from the cathode: 2.5 cm) at 0 °C in an ice bath (Figure S1). Most of solvent was removed under reduced pressure, and the residue was diluted with AcOEt. The organic layer was washed with H₂O, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to afford the desired product **3**.

Figure S1. A reaction vessel and a silicone stopper equipped with Al and Pt electrodes (left) and a typical reaction setup for the electroreductive hydroarylation under visible-right irradiation (middle and right).

General procedure B (for aryl iodides)

A cylinder-type undivided cell with a stir bar was charged with Et₄NCl (16.6 mg, 0.1 mmol), 1,3dicyanobenzene (1,3-DCB, 64.1 mg, 0.5 mmol), alkene **2** (5.0 mmol), and aryl iodide **1** (1.0 mmol). Anhydrous MeCN (3.0 mL) and H₂O (90 μ L) were successively added. The reaction vessel was equipped with a Pt plate cathode (immersed surface area: 1 × 2 cm²) and an Al plate anode (immersed surface area: 1 × 2 cm²) under air, then 4.5 F/mol of electricity was passed through at a constant current condition (7.5 mA/cm²) under visible-light irradiation (approximate distance from the cathode: 2.5 cm) at 0 °C in an ice bath. Most of solvent was removed under reduced pressure, and the residue was diluted with AcOEt. The organic layer was washed with H₂O, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to afford the desired product **3**.

Methyl 4-(3-methoxy-3-oxopropyl)benzoate (3aa)

MeO₂CO₂Me

The title compound was obtained from methyl 4-chlorobenzoate (171 mg, 1.0 mmol) and methyl acrylate (301 mg, 3.5 mmol). Silica gel column chromatography (hexane/AcOEt = 8:1) gave **3aa** (183.3 mg, 0.825 mmol, 82%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.98-7.95 (m, 2H), 7.28-7.26 (m, 2H), 3.90 (s, 3H), 3.67 (s, 3H), 3.01 (t, *J* = 7.7 Hz, 2H), 2.66 (t, *J* = 7.8 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.8, 166.8, 145.8, 129.7, 128.2, 128.1, 51.8, 51.5, 35.0, 30.7. The ¹H and ¹³C{¹H} NMR spectra are in accordance with those reported in the literature.¹

Methyl 3-(4-pivaloylphenyl)propanoate (3ba)

The title compound was obtained from 1-(4-chlorophenyl)-2,2-dimethyl-1-propanone (197 mg, 1.0 mmol) and methyl acrylate (301 mg, 3.5 mmol) with 4.5 F/mol of electricity. Silica gel column chromatography (hexane/AcOEt = 20:1) gave **3ba** (202.7 mg, 0.816 mmol, 82%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.69-7.66 (m, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 3.68 (s, 3H), 2.99 (t, *J* = 7.8 Hz, 2H), 2.65 (t, *J* = 7.8 Hz, 2H), 1.35 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 208.1, 172.8, 143.7, 136.1, 128.3, 127.8, 51.5, 43.9, 35.0, 30.5, 27.9; IR (ATR): 2953, 1736, 1670, 1607, 1275, 1171, 959 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₅H₂₀NaO₃ 271.1310, found 271.1316.

Methyl 3-(4-cyanophenyl)propanoate (3ca)

CO₂Me

The title compound was obtained from 4-chlorobenzonitrile (138 mg, 1.0 mmol) and methyl acrylate (301 mg, 3.5 mmol) with 4.5 F/mol of electricity. Silica gel column chromatography (hexane/AcOEt = 4:1) gave **3ca** (114.6 mg, 0.606 mmol, 61%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.58 (m, 2H), 7.33-7.31 (m, 2H), 3.67 (s, 3H), 3.01 (t, *J* = 7.6 Hz, 2H), 2.66 (t, *J* = 7.6 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.6, 146.0, 132.3, 129.1, 118.8, 110.2, 51.7, 34.7, 30.8. The ¹H and ¹³C{¹H} NMR spectra are in accordance with those reported in the literature.²

Methyl 3-(4-(methylsulfonyl)phenyl)propanoate (3da)

MeO₂S

The title compound was obtained from 4-bromophenyl methyl sulfone (235 mg, 1.0 mmol) and methyl acrylate (301 mg, 3.5 mmol). Silica gel column chromatography (hexane/AcOEt = 2:1) gave **3da** (170.8 mg, 0.705 mmol, 71%) as a white solid. mp 67–68 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.89-7.85 (m, 2H), 7.42-7.40 (m, 2H), 3.68 (s, 3H), 3.051 (t, *J* = 7.7 Hz, 2H), 3.046 (s, 3H), 2.68 (t, *J* = 7.7 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.4, 146.8, 138.3, 129.1, 127.3, 51.5, 44.2, 34.6, 30.3; IR (ATR): 2911, 1730, 1597, 1290, 1141, 1087 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₁H₁₄NaO₄S 265.0511, found 265.0513.

The ¹H and ¹³C{¹H} NMR spectra are in accordance with those reported in the literature.³

Methyl 3-(3-methoxy-3-oxopropyl)benzoate (3ea)

The title compound was obtained from methyl 3-bromobenzoate (215 mg, 1.0 mmol) and methyl acrylate (301 mg, 3.5 mmol). Silica gel column chromatography (hexane/AcOEt = 20:1) gave **3ea** (182.3 mg, 0.820 mmol, 82%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.90-7.87 (m, 2H), 7.42-7.34 (m, 2H), 3.91 (s, 3H), 3.67 (s, 3H), 3.00 (t, *J* = 7.8 Hz, 2H), 2.66 (t, *J* = 7.8 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.9, 166.9, 140.7, 132.9, 130.2, 129.2, 128.4, 127.5, 52.0, 51.5, 35.3, 30.5; IR (ATR): 2953, 1719, 1435, 1281, 1198 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₂H₁₄NaO₄ 245.0790, found 245.0778.

Methyl 2-(3-methoxy-3-oxopropyl)benzoate (3fa)

CO₂Me CO₂Me

The title compound was obtained from methyl 2-chlorobenzoate (171 mg, 1.0 mmol) and methyl

acrylate (431 mg, 5.0 mmol) with 4.5 F/mol of electricity using MeCN (3.0 mL). Silica gel column chromatography (hexane/AcOEt/CH₂Cl₂ = 12:2:1) gave **3fa** (156.9 mg, 0.706 mmol, 71%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.93-7.91 (m, 1H), 7.46-7.42 (m, 1H), 7.30-7.26 (m, 2H), 3.90 (s, 3H), 3.67 (s, 3H), 3.28 (t, *J* = 7.8 Hz, 2H), 2.68 (t, *J* = 7.8 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.2, 167.4, 142.3, 132.1, 131.0, 130.7, 129.1, 126.3, 51.8, 51.3, 35.4, 29.7. The ¹H and ¹³C{¹H} NMR spectra are in accordance with those reported in the literature.⁴

Methyl 3-(4,6-dimethoxy-1,3,5-triazin-2-yl)propanoate (3ga)

MeO N CO₂Me

The title compound was obtained from 2-chloro-4,6-dimethoxy-1,3,5-triazine (176 mg, 1.0 mmol) and methyl acrylate (301 mg, 3.5 mmol) with 5 F/mol of electricity. Silica gel column chromatography (hexane/AcOEt = 3:1) gave **3ga** (135.6mg, 0.597 mmol, 60%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.02 (s, 6H), 3.69 (s, 3H), 3.10 (t, *J* = 7.1 Hz, 2H), 2.85 (t, *J* = 7.0 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 181.2, 172.9, 172.1, 54.9, 51.5, 32.8, 30.0; IR (ATR): 2959, 1728, 1543, 1340, 1277, 1171, 1105 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₉H₁₃N₃NaO₄ 250.0804, found 250.0797.

Methyl 3-(pyrimidin-2-yl)propanoate (3ha)

The title compound was obtained from 2-chloropyrimidine (115 mg, 1.0 mmol) and methyl acrylate (301 mg, 3.5 mmol). Silica gel column chromatography (hexane/AcOEt = 4:1) gave **3ha** (94.6 mg, 0.569 mmol, 57%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 8.66 (d, *J* = 5.0 Hz, 2H), 7.14 (t, *J* = 4.9 Hz, 1H), 3.69 (s, 3H), 3.32 (t, *J* = 7.2 Hz, 2H), 2.90 (t, *J* = 7.2 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.3, 169.2, 156.8, 118.6, 51.5, 33.6, 31.3; IR (ATR): 2953, 1730, 1562, 1427, 1368, 1167 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₈H₁₀N₂NaO₂ 189.0640, found 189.0643.

Methyl 3-(2-(methylthio)pyrimidin-5-yl)propanoate (3ia)

CO₂Me

The title compound was obtained from 5-chloro-2-(methylthio)pyrimidine (161 mg, 1.0 mmol) and methyl acrylate (301 mg, 3.5 mmol) with 4.5 F/mol of electricity. Silica gel column chromatography (hexane/AcOEt = 4:1) gave **3ia** (140.0 mg, 0.660 mmol, 66%) as a yellow solid. mp 37–38 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.41 (s, 2H), 3.68 (s, 3H), 2.87 (t, *J* = 7.3 Hz, 2H), 2.63 (t, *J* = 7.3 Hz, 2H), 2.56 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.1, 170.3, 156.9, 128.0, 51.6, 34.5, 24.7, 13.8; IR (ATR): 2918, 1728, 1581, 1537, 1389, 1206, 1167 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₉H₁₂N₂NaO₂S 235,0517, found 235.0515.

Methyl 3-(6-methylpyridazin-3-yl)propanoate (3ja)

Me N N

The title compound was obtained from 3-chloro-6-methylpyridazine (129 mg, 1.0 mmol) and methyl acrylate (301 mg, 3.5 mmol). Silica gel column chromatography (AcOEt 100%) gave **3ja** (110.6 mg, 0.614 mmol, 61%) as a colorless viscous oil which solidified in a freezer. ¹H NMR (400 MHz, CDCl₃): δ 7.28 (d, *J* = 8.7 Hz, 1H), 7.23 (d, *J* = 8.5 Hz, 1H), 3.67 (s, 3H), 3.23 (t, *J* = 7.2 Hz, 2H), 2.93 (t, *J* = 7.2 Hz, 2H), 2.68 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.1, 159.1, 158.0, 126.8, 126.6, 51.5, 32.4, 30.4, 21.8; IR (ATR): 1953, 1728, 1443, 1361, 1206, 1161 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₉H₁₂N₂NaO₂ 203.0797, found 203.0791.

Methyl 3-phenylpropanoate (3ka)

CO₂Me

The title compound was obtained from iodobenzene (204 mg, 1.0 mmol) and methyl acrylate (431 mg, 5.0 mmol). Silica gel column chromatography (hexane/AcOEt = 20:1) gave **3ka** (123.4mg, 0.752 mmol, 75%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.27 (m, 2H), 7.22-7.19 (m, 3H), 3.67 (s, 3H), 2.96 (t, *J* = 7.9 Hz, 2H), 2.66-2.62 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.2, 140.4, 128.4, 128.2, 126.2, 51.5, 35.6, 30.8.

The ¹H and ¹³C $\{^{1}H\}$ NMR spectra are in accordance with those reported in the literature.²

Methyl 3-(4-methoxyphenyl)propanoate (3la)

The title compound was obtained from 4-iodoanisole (234 mg, 1.0 mmol) and methyl acrylate (431 mg, 5.0 mmol). Silica gel column chromatography (hexane/AcOEt = 20:1) gave **3la** (126.8 mg, 0.653 mmol, 65%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.14-7.10 (m, 2H), 6.85-6.82 (m, 2H), 3.79 (s, 3H), 3.67 (s, 3H), 2.89 (t, *J* = 7.9 Hz, 2H), 2.60 (t, *J* = 7.8 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.3, 157.9, 132.4, 129.1, 113.7, 55.0, 51.4, 35.9, 29.9.

The ¹H and ¹³C{¹H} NMR spectra are in accordance with those reported in the literature.²

Methyl 3-(p-tolyl)propanoate (3ma)

The title compound was obtained from 4-iodotoluene (218 mg, 1.0 mmol) and methyl acrylate (431 mg, 5.0 mmol). Silica gel column chromatography (hexane/AcOEt = 20:1) gave **3ma** (134.0 mg, 0.752 mmol, 75%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.12-7.07 (m, 4H), 3.67 (s, 3H), 2.91 (t, J = 7.8 Hz, 2H), 2.61 (t, J = 7.8 Hz, 2H), 2.32 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.4,

137.4, 135.7, 129.1, 128.1, 51.6, 35.8, 30.5, 21.0.

CO₂Me

The ¹H and ¹³C {¹H} NMR spectra are in accordance with those reported in the literature.²

Methyl 3-(4-(tert-butoxycarbonylamino)phenyl)propanoate (3na)

BocHN

The title compound was obtained from *N*-Boc-4-iodoaniline (319 mg, 1.0 mmol) and methyl acrylate (431 mg, 5.0 mmol). Silica gel column chromatography (hexane/AcOEt = 8:1) gave **3na** (170.4 mg, 0.610 mmol, 61%) as a white solid. mp 65–66 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.26 (m, 2H), 7.12 (d, *J* = 8.5 Hz, 2H), 6.41 (br s, 1H), 3.66 (s, 3H), 2.90 (t, *J* = 7.8 Hz, 2H), 2.59 (t, *J* = 7.8 Hz, 2H), 1.51 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.3, 152.8, 136.5, 135.1, 128.7, 118.7, 80.4, 51.6, 35.8, 30.2, 28.3; IR (ATR): 3343, 2980, 1715, 1699, 1525, 1234, 1158 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₅H₂₁NNaO₄ 302.1368, found 302.1362.

The ¹H NMR spectrum is in accordance with those reported in the literature.⁵

Methyl 3-(4-(trifluoromethoxy)phenyl)propanoate (3oa)

F₃CO^{CO₂Me}

The title compound was obtained from 1-iodo-4-(trifluoromethoxy)benzene (288 mg, 1.0 mmol) and methyl acrylate (431 mg, 5.0 mmol). Silica gel column chromatography (hexane/AcOEt = 20:1) gave **30a** (161.1 mg, 0.649 mmol, 65%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.24-7.20 (m, 2H), 7.15-7.12 (m, 2H), 3.67 (s, 3H), 2.96 (t, *J* = 7.8 Hz, 2H), 2.63 (t, *J* = 7.7 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.0, 147.7 (q, *J* = 1.9 Hz), 139.2, 129.6, 121.0, 120.4 (q, *J* = 256.6 Hz), 51.6, 35.4, 30.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -57.8.

The ¹H and ¹³C{¹H} NMR spectra are in accordance with those reported in the literature.⁶

Methyl 3-(4-fluorophenyl)propanoate (3pa)

The title compound was obtained from 4-fluoroiodobenzene (222 mg, 1.0 mmol) and methyl acrylate (431 mg, 5.0 mmol). Silica gel column chromatography (hexane/AcOEt = 20:1) gave **3pa** (93.1 mg, 0.511 mmol, 51%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.18-7.13 (m, 2H), 7.00-6.94 (m, 2H), 3.67 (s, 3H), 2.92 (t, *J* = 7.7 Hz, 2H), 2.61 (t, *J* = 7.7 Hz, 2H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 173.1, 161.4 (d, *J* = 243.7 Hz), 136.0 (d, *J* = 3.9 Hz), 129.6 (d, *J* = 7.7 Hz), 115.1 (d, *J* = 21.2 Hz), 51.5, 35.7, 30.0; ¹⁹F NMR (376 MHz, CDCl₃): δ -116.9.

The ¹H and ¹³C $\{^{1}H\}$ NMR spectra are in accordance with those reported in the literature.²

Methyl 3-(3-chlorophenyl)propanoate (3qa)

The title compound was obtained from 3-chloroiodobenzene (239 mg, 1.0 mmol) and methyl acrylate (431 mg, 5.0 mmol). Silica gel column chromatography (hexane/AcOEt = 20:1) gave **3qa** (100.0 mg, 0.503 mmol, 50%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.24-7.17 (m, 3H), 7.10-7.07 (m, 1H), 3.68 (s, 3H), 2.93 (t, *J* = 7.8 Hz, 2H), 2.63 (t, *J* = 7.8 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.0, 142.5, 134.2, 129.7, 128.4, 126.5, 51.7, 35.3, 30.5.

The ¹H and ¹³C $\{^{1}H\}$ NMR spectra are in accordance with those reported in the literature.⁷

tert-Butyl 5-(3-methoxy-3-oxopropyl)-1H-indole-1-carboxylate (3ra)

The title compound was obtained from *N*-Boc-5-iodoindole (343 mg, 1.0 mmol) and methyl acrylate (431 mg, 5.0 mmol). Silica gel column chromatography (hexane/AcOEt = 20:1) gave **3ra** (134.0 mg, 0.442 mmol, 44%) as a colorless viscous oil which solidified in a freezer. ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, *J* = 8.2 Hz, 1H), 7.57 (d, *J* = 3.4 Hz, 1H), 7.38 (d, *J* = 1.1 Hz, 1H), 7.15 (dd, *J* = 8.6, 1.7 Hz, 1H), 6.51 (d, *J* = 3.7 Hz, 1H), 3.66 (s, 3H), 3.04 (t, *J* = 7.8 Hz, 2H), 2.67 (t, *J* = 7.9 Hz, 2H), 1.66 (s, 9H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 173.4, 149.7, 134.8, 133.8, 130.8, 126.1, 124.6, 120.2, 115.0, 107.0, 83.5, 51.5, 36.2, 30.8, 28.1; IR (ATR): 2974, 1728, 1468, 1350, 1157, 1128 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₇H₂₁NNaO₄ 326.1368, found 326.1367.

Methyl 3-(pyridine-2-yl)propanoate (3sa)

The title compound was obtained from 2-iodopyridine (205 mg, 1.0 mmol) and methyl acrylate (431 mg, 5.0 mmol). Silica gel column chromatography (hexane/AcOEt = 4:1) gave **3sa** (127.9 mg, 0.774 mmol, 77%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.53 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H), 7.60 (td, J = 7.7, 1.8 Hz, 1H), 7.19 (d, J = 7.8 Hz, 1H), 7.12 (ddd, J = 7.5, 4.9, 0.9 Hz, 1H), 3.67 (s, 3H), 3.12 (t, J = 7.5 Hz, 2H), 2.82 (t, J = 7.5 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.4, 159.8, 149.2, 136.3, 122.9, 121.3, 51.5, 33.1, 32.7.

The ¹H and ¹³C $\{^{1}H\}$ NMR spectra are in accordance with those reported in the literature.⁸

Methyl 3-(2-methyl-4-oxo-3-(o-tolyl)-3,4-dihydroquinazolin-6-yl)propanoate (3ta)

CO₂Me

The title compound was obtained from 6-iodo-2-methyl-3-(*o*-tolyl)quinazolin-4(3*H*)-one (376 mg, 1.0 mmol) and methyl acrylate (431 mg, 5.0 mmol). Silica gel column chromatography (hexane/AcOEt = 2:1, then benzene/AcOEt = 4/1) gave **3ta** (180.0 mg, 0.535 mmol, 54%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, *J* = 0.3 Hz, 1H), 7.66-7.61 (m, 2H), 7.44-7.35 (m, 3H), 7.15 (d, *J* = 7.3 Hz, 1H), 3.68 (s, 3H), 3.10 (t, *J* = 7.7 Hz, 2H), 2.71 (t, *J* = 7.7 Hz, 2H), 2.17 (s, 3H), 2.13 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.9, 161.5, 153.8, 146.2, 139.2, 136.8, 135.3, 135.2, 131.5, 129.5, 127.8, 127.6, 126.9, 125.9, 120.6, 51.7, 35.3, 30.5, 23.8, 17.3; IR (ATR): 2951, 1732, 1676, 1597, 1487, 1269, 1200, 1165 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₀H₂₀N₂NaO₃ 359.1372, found 359.1379.

Methyl 4-(3-(tert-butoxy)-3-oxopropyl)benzoate (3ab)

MeO₂CO₂t-Bu

The title compound was obtained from methyl 4-chlorobenzoate (171 mg, 1.0 mmol) and *tert*-butyl acrylate (449 mg, 3.5 mmol). Silica gel column chromatography (hexane/AcOEt = 8:1) gave **3ab** (206.7 mg, 0.782 mmol, 78%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.97-7.94 (m, 2H), 7.27 (d, *J* = 8.2 Hz, 5H), 3.90 (s, 3H), 2.96 (t, *J* = 7.7 Hz, 2H), 2.56 (t, *J* = 7.7 Hz, 2H), 1.41 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.8, 167.0, 146.2, 129.7, 128.3, 128.1, 80.5, 51.9, 36.4, 31.0, 28.0; IR (ATR): 2978, 1719, 1611, 1435, 1366, 1275, 1144, 1103 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₅H₂₀NaO₄ 287.1259, found 287.1252.

The ¹H NMR spectrum is in accordance with those reported in the literature.⁹

Methyl 4-(3-amino-2-methyl-3-oxopropyl)benzoate (3ac)

The title compound was obtained from methyl 4-chlorobenzoate (171 mg, 1.0 mmol) and methacrylamide (298 mg, 3.5 mmol) with 5 F/mol of electricity. Silica gel column chromatography (AcOEt 100%) gave **3ac** (175.0 mg, 0.791 mmol, 79%) as a white solid. mp 146–147 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.2 Hz, 2H), 5.25 (br s, 2H), 3.90 (s, 3H), 3.06 (dd, J = 13.5, 8.0 Hz, 1H), 2.74 (dd, J = 13.5, 6.6 Hz, 1H), 2.53 (dqd, J = 8.0, 6.9, 6.6 Hz, 1H), 1.21 (d, J = 6.9 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 177.7, 167.0, 145.1, 129.7, 129.0, 128.3, 52.0, 42.6, 40.0, 17.7; IR (ATR): 3410, 3194, 2974, 1682, 1661, 1287, 1179, 1115 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₂H₁₅NNaO₃ 244.0950, found 244.0945.

Methyl 4-(2-cyanoethyl)benzoate (3ad)

CN/ MeO

The title compound was obtained from methyl 4-chlorobenzoate (171 mg, 1.0 mmol) and acrylonitrile

(186 mg, 3.5 mmol) with 4.5 F/mol of electricity. Silica gel column chromatography (hexane/AcOEt = 4:1) gave **3ad** (154.6 mg, 0.817 mmol, 82%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.03-8.01 (m, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 3.92 (s, 3H), 3.02 (t, *J* = 7.3 Hz, 2H), 2.66 (t, *J* = 7.3 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.5, 143.0, 129.9, 128.9, 128.2, 118.6, 51.9, 31.2, 18.7. The ¹H and ¹³C{¹H} NMR spectra are in accordance with those reported in the literature.¹⁰

Methyl 4-(2,2-diphenylethyl)benzoate (3ae)

The title compound was obtained from methyl 4-chlorobenzoate (171 mg, 1.0 mmol) and 1,1diphenylethylene (631 mg, 3.5 mmol). Silica gel column chromatography (hexane/AcOEt = 60:1) gave **3ae** (250.8 mg, 0.793 mmol, 79%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.85-7.82 (m, 2H), 7.27-7.23 (m, 4H), 7.20-7.14 (m, 6H), 7.06 (d, *J* = 8.5 Hz, 2H), 4.23 (t, *J* = 7.9 Hz, 1H), 3.87 (s, 3H), 3.41 (d, *J* = 7.8 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.9, 145.6, 143.8, 129.3, 129.0, 128.3, 127.8, 127.7, 126.2, 52.7, 51.8, 41.9.

The ¹H and ¹³C{¹H} NMR spectra are in accordance with those reported in the literature.¹¹

Methyl 4-(2-phenylpropyl)benzoate (3af)

The title compound was obtained from methyl 4-chlorobenzoate (171 mg, 1.0 mmol) and α -methylstyrene (414 mg, 3.5 mmol). Silica gel column chromatography (hexane/AcOEt = 80:1) gave **3af** (200.9 mg, 0.790 mmol, 79%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.0 Hz, 2H), 7.29-7.25 (m, 2H), 7.20-7.11 (m, 5H), 3.89 (s, 3H), 3.05-2.94 (m, 2H), 2.85 (dd, J = 12.8, 7.5 Hz, 1H), 1.26 (d, J = 6.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.9, 146.1, 146.0, 129.3, 129.0, 128.2, 127.7, 126.8, 126.0, 51.7, 44.8, 41.5, 21.1; IR (ATR): 3028, 2855, 1717, 1609, 1433, 1275, 1179, 1105 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₇H₁₈NaO₂ 277.1205, found 277.1207.

Methyl 4-(2-phenylethyl)benzoate (3ag)

The title compound was obtained from methyl 4-chlorobenzoate (171 mg, 1.0 mmol) and styrene (521 mg, 5.0 mmol) using MeCN (3.0 mL). Silica gel column chromatography (hexane/AcOEt = 80:1) gave **3ag** (183.6 mg, 0.764 mmol, 76%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.96-7.93 (m, 2H), 7.29-7.14 (m, 7H), 3.90 (s, 3H), 3.01-2.91 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 167.0, 147.0, 141.0, 129.6, 128.4, 128.3, 128.3, 127.8, 126.0, 51.8, 37.7, 37.3.

The ¹H and ¹³C{¹H} NMR spectra are in accordance with those reported in the literature.¹²

Methyl 4-(2-(4-methoxyphenyl)ethyl)benzoate (3ah)

The title compound was obtained from methyl 4-chlorobenzoate (171 mg, 1.0 mmol) and 4methoxystyrene (470 mg, 3.5 mmol) using MeCN (3.0 mL). Silica gel column chromatography (hexane/AcOEt = 20:1) gave **3ah** (165.2 mg, 0.611 mmol, 61%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.95-7.92 (m, 2H), 7.21 (d, *J* = 8.2 Hz, 2H), 7.07-7.04 (m, 2H), 6.83-6.79 (m, 2H), 3.90 (s, 3H), 3.79 (s, 3H), 2.96-2.85 (m, 4H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 167.1, 157.8, 147.2, 133.1, 129.6, 129.3, 128.5, 127.8, 113.7, 55.1, 51.9, 38.1, 36.5.

The ¹H and ¹³C{¹H} NMR spectra are in accordance with those reported in the literature.¹²

Methyl 4-(2-(4-chlorophenyl)ethyl)benzoate (3ai)

The title compound was obtained from methyl 4-chlorobenzoate (171 mg, 1.0 mmol) and 4-chlorostyrene (485 mg, 3.5 mmol) using MeCN (3.0 mL). Silica gel column chromatography (hexane/AcOEt = 80:1) gave **3ai** (234.7 mg, 0.854 mmol, 85%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.96-7.93 (m, 2H), 7.24-7.18 (m, 4H), 7.07-7.04 (m, 2H), 3.91 (s, 3H), 2.97-2.88 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 167.0, 146.6, 139.4, 131.7, 129.8, 129.6, 128.5, 128.4, 128.0, 52.0, 37.6, 36.7.

The ¹H and ¹³C{¹H} NMR spectra are in accordance with those reported in the literature.¹³

Methyl 4-(2,3-dihydro-1H-inden-2-yl)benzoate (3aj)

The title compound was obtained from methyl 4-chlorobenzoate (171 mg, 1.0 mmol) and 1*H*-indene (581 mg, 5.0 mmol) using MeCN (3.0 mL). Silica gel column chromatography (hexane/AcOEt = 80:1) gave **3aj** (140.2 mg, 0.556 mmol, 56%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.99-7.96 (m, 2H), 7.38-7.35 (m, 2H), 7.26-7.23 (m, 2H), 7.22-7.17 (m, 2H), 3.91 (s, 3H), 3.79-3.70 (m, 1H), 3.38 (dd, *J* = 15.3, 8.2 Hz, 2H), 3.09 (dd, *J* = 15.4, 8.6 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.9, 150.8, 142.4, 129.7, 128.0, 126.9, 126.5, 124.2, 51.8, 45.2, 40.5.

The ¹H and ¹³C{¹H} NMR spectra are in accordance with those reported in the literature.¹⁴

The title compound was obtained from methyl 4-chlorobenzoate (171 mg, 1.0 mmol) and 2vinylpyridine (526 mg, 5.0 mmol) using MeCN (3.0 mL). Silica gel column chromatography (hexane/AcOEt = 5:1) gave **3ak** (199.3 mg, 0.826 mmol, 83%) as a white solid. mp 70–71 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.56 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.95-7.92 (m, 2H), 7.56 (td, *J* = 7.7, 1.8 Hz, 1H), 7.26-7.24 (m, 2H), 7.12 (ddd, *J* = 7.6, 4.9, 1.1 Hz, 1H), 7.04 (dt, *J* = 7.8, 1.0 Hz, 1H), 3.90 (s, 3H), 3.16-3.07 (m, 4H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 167.0, 160.5, 149.3, 147.0, 136.3, 129.6, 128.4, 127.8, 122.9, 121.2, 51.9, 39.6, 35.8.; IR (ATR): 2943, 1707, 1589, 1439, 1281, 1107 cm⁻¹; HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₆NO₂ 242.1181, found 242.1178. The ¹H and ¹³C {¹H} NMR spectra are in accordance with those reported in the literature.¹⁵

3-Phenylpropanenitrile (3kd)

.CN

The title compound was obtained from iodobenzene (204 mg, 1.0 mmol) and acrylonitrile (265 mg, 5.0 mmol). Silica gel column chromatography (hexane/AcOEt = 8:1) gave **3kd** (111.8 mg, 0.852 mmol, 85%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.33 (m, 2H), 7.30-7.23 (m, 3H), 2.97 (t, *J* = 7.4 Hz, 2H), 2.63 (t, *J* = 7.4 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 137.9, 128.7, 128.1, 127.0, 119.0, 31.3, 19.1.

The ¹H and ¹³C{¹H} NMR spectra are in accordance with those reported in the literature.¹⁶

1-Chloro-4-(2-phenylethyl)benzene (3ki)

The title compound was obtained from iodobenzene (204 mg, 1.0 mmol) and 4-chlorostyrene (693 mg, 5.0 mmol). Silica gel column chromatography (hexane 100%) gave **3ki** (158.6 mg, 0.732 mmol, 73%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.14 (m, 7H), 7.10-7.06 (m, 2H), 2.89 (s, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 141.2, 140.1, 131.6, 129.8, 128.42, 128.35, 128.3, 126.0, 37.7, 37.2.

The ¹H and ¹³C{¹H} NMR spectra are in accordance with those reported in the literature.¹⁷

2.3. Gram-scale experiment

A cylinder-type undivided cell with a stir bar was charged with Et4NCl (116 mg, 0.7 mmol), 1,3dicyanobenzene (1,3-DCB, 44.8 mg, 0.35 mmol), **2a** (2.11 g, 24.5 mmol), and **1a** (1.19 g, 7.0 mmol). Anhydrous MeCN (42 mL) and H₂O (0.63 mL) were successively added. The reaction vessel was equipped with seven Pt plate cathodes (immersed surface area: $1 \times 2 \text{ cm}^2$ each) and seven Al plate anodes (immersed surface area: $1 \times 2 \text{ cm}^2$ each) under air (Figure S2), then 3.5 F/mol of electricity was passed through at a constant current condition (7.5 mA/cm²) under visible-light irradiation (approximate distance from the cathodes: 2.5 cm) at 0 °C in an ice bath (Figure S3). Most of solvent was removed under reduced pressure, and the residue was diluted with AcOEt. The organic layer was washed with H₂O, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/AcOEt = 8/1, then benzene 100%) to afford **3aa** (1.145 g, 5.15 mmol, 74 % yield).

Figure S2. Side view (left) and bottom view (right) of a silicone stopper equipped with Al and Pt electrodes used for the gram-scale reaction.

Figure S3. A reaction setup for the gram-scale reaction.

2.4. Radical-clock experiment

A cylinder-type undivided cell with a stir bar was charged with Et₄NCl (16.6 mg, 0.1 mmol), 1,3dicyanobenzene (1,3-DCB, 6.4 mg, 0.05 mmol), **2l** (771 mg, 3.5 mmol), and **1a** (170 mg, 1.0 mmol). Anhydrous MeCN (6.0 mL) and H₂O (90 μ L) were successively added. The reaction vessel was equipped with a Pt plate cathode (immersed surface area: 1 × 2 cm²) and an Al plate anode (immersed surface area: 1 × 2 cm²) under air, then 3.5 F/mol of electricity was passed through at a constant current condition (7.5 mA/cm²) under visible-light irradiation (approximate distance from the cathode: 2.5 cm) at 0 °C in an ice bath. Most of solvent was removed under reduced pressure, and the residue was diluted with AcOEt. The organic layer was washed with H₂O, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/AcOEt = 40:1) gave **3al'** (216.6 mg, 0.608 mmol, 61%).

Methyl 4-(2,5-diphenylpent-2-en-1-yl)benzoate (3al')

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.0 Hz, 2H), 7.31-7.12 (m, 12H), 6.02 (t, J = 7.3 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 2H), 2.78 (t, J = 7.5 Hz, 2H), 2.56 (td, J = 7.5, 7.3 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.9, 145.2, 142.3, 141.4, 137.3, 130.2, 129.6, 128.4, 128.3, 128.12, 128.06, 127.7, 126.7, 126.1, 125.9, 51.8, 35.69, 35.67, 30.9; IR (ATR): 3024, 2947, 1717, 1609, 1495, 1275, 1177, 1105 cm⁻¹; HRMS (ESI) *m*/*z*: [M+Na]⁺ calcd for C₂₅H₂₄NaO₂ 379.1674, found 379.1672.

2.5. Deuterium-labeling experiment

A cylinder-type undivided cell with a stir bar was charged with Et₄NCl (8.3 mg, 0.05 mmol), 1,3dicyanobenzene (1,3-DCB, 3.2 mg, 0.025 mmol), **2e** (315 mg, 1.75 mmol), and **1a** (85 mg, 0.5 mmol). Anhydrous MeCN (3.0 mL) and D₂O (45 μ L) were successively added. The reaction vessel was equipped with a Pt plate cathode (immersed surface area: 1 × 2 cm²) and an Al plate anode (immersed surface area: 1 × 2 cm²) under air, then 3.5 F/mol of electricity was passed through at a constant current condition (7.5 mA/cm²) under visible-light irradiation (approximate distance from the cathode: 2.5 cm) at 0 °C in an ice bath. Most of solvent was removed under reduced pressure, and the residue was diluted with AcOEt. The organic layer was washed with H₂O, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to afford the desired product **3ae-d** (124.9 mg, 0.394 mmol, 79% yield, 51% D).

Compound 3ae-d (51% D)

¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 8.2 Hz, 2H), 7.26-7.23 (m, 5H), 7.19-7.14 (m, 6H), 7.06 (d, J = 8.0 Hz, 2H), 4.23 (t, J = 7.9 Hz, 0.49H), 3.87 (s, 3H), 3.41 (d, J = 6.6 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 167.0, 145.7, 143.9, 143.8, 129.4, 129.1, 128.4, 127.88, 127.87, 127.8, 126.3, 77.3, 77.0, 76.7, 52.8, 52.3 (t, J = 19.8 Hz), 51.9, 42.04, 41.96; IR (ATR): 3024, 2926, 1713, 1609, 1491, 1279, 1179, 1103 cm⁻¹; HRMS (ESI) *m*/*z*: [M+Na]⁺ calcd for C₂₂H₁₉²HNaO₂ 340.1424, found 340.1439.

3. References

- 1) Amatore, M.; Gosmini, C.; Périchon, J. J. Org. Chem. 2006, 71, 6130-6134.
- 2) Leow, D.; Chen, Y.-H.; Hung, T.-H.; Su, Y.; Lin, Y.-Z. Eur. J. Org. Chem. 2014, 2014, 7347–7352.
- 3) Shavnya, A.; Coffey, S. A.; Smith, A. C.; Mascitti, V. Org. Lett. 2013, 15, 6226–6229.
- 4) Shibuya, M.; Shibuta, T.; Fukuda, H.; Iwabuchi, Y. Org. Lett. 2012, 14, 5010–5013.
- Yao, L.; Mustafa, N.; Tan, E. C.; Poulsen, A.; Singh, P.; Duong-Thi, M.-D.; Lee, J. X. T.; Ramanujulu, P. M.; Chng, W. J.; Yen, J. J. Y.; Ohlson, S.; Dymock, B. W. J. Med. Chem. 2017, 60, 8336–8357.
- Liu, J.-B.; Chen, C.; Chu, L.; Chen, Z.-H.; Xu, X.-H.; Qing, F.-L. Angew. Chem., Int. Ed. 2015, 54, 11839–11842.
- 7) Vieira, T. O.; Green, M. J.; Alper, H. Org. Lett. 2006, 8, 6143–6145.
- Bon, D. J.-Y. D.; Kováč, O.; Ferugová, V.; Zálešák, F.; Pospíšil, J. J. Org. Chem. 2018, 83, 4990– 5001.
- 9) Yoon, S. H.; Joo, H. W.; Seo, B. K.; Lee, E. J.; Jung, J. Y.; Yoon, S. Y.; Kwak, Y. S.; Cho, W. Y.; Jo, M. M. PCT Int. Appl. WO 2021/133038 A1, 2021.
- 10) Weweler, J.; Younas, S. L.; Streuff, J. Angew. Chem., Int. Ed. 2019, 58, 17700-17703.
- Gao, L.; Wang, G.; Cao, J.; Yuan, D.; Xu, C.; Guo, X.; Li, S. Chem. Commun. 2018, 54, 11534– 11537.
- 12) del Río-Rodríguez, R.; Blanco, L.; Collado, A.; Fernández-Salas, J. A.; Alemán, J. *Chem. Eur. J.* 2022, 28, e202201644.
- 13) Basnet, P.; Thapa, S.; Dickie, D. A.; Giri, R. Chem. Commun. 2016, 52, 11072–11075.
- 14) Zhang, X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 13862–13865.
- 15) Cheng, L.; Sun, Y.; Wang, W.; Yao, C.; Li, T.-J. J. Org. Chem. 2019, 84, 3074–3082.
- 16) Black, P. J.; Edwards, M. G.; Williams, J. M. J. Eur. J. Org. Chem. 2006, 2006, 4367-4378.
- Kantam, M. L.; Chakravarti, R.; Chintareddy, V. R.; Sreedhar, B.; Bhargava, S. *Adv. Synth. Catal.* 2008, *350*, 2544–2550.

4. ¹H, ¹³C{¹H}, and ¹⁹F NMR spectra

0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 -90.0 -100.0 -110.0 -120.0 -130.0 -140.0 -150.0 -160.0 -170.0 -180.0 -190.0 X : parts per Million : Fluorine19

