

Supporting Information

for

Discovery of antimicrobial peptides clostrisin and cellulosin from Clostridium: insights into their structures, co-localized biosynthetic gene clusters, and antibiotic activity

Moisés Alejandro Alejo Hernandez, Katia Pamela Villavicencio Sánchez, Rosendo Sánchez Morales, Karla Georgina Hernández-Magro Gil, David Silverio Moreno-Gutiérrez, Eddie Guillermo Sanchez-Rueda, Yanet Teresa-Cruz, Brian Choi, Armando Hernández Garcia, Alba Romero-Rodríguez, Oscar Juárez, Siseth Martínez-Caballero, Mario Figueroa and Corina-Diana Ceapă

Beilstein J. Org. Chem. 2024, 20, 1800–1816. doi:10.3762/bjoc.20.159

Additional Figures and Tables

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (<u>https://creativecommons.org/</u> <u>licenses/by/4.0</u>). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Figure S1. MS² experiment on the CloM2-modified tryptic fragment from N24 to C-terminal of the CloA2 precursor peptide harboring 6 net dehydrations.

- Parent ion target m/z: 1333.6 ± 1.3 (z=5)
- Collision energy: 43.2 V
- Retention time range: 15.45 15.72 min

Supplementary note: High-level confidence conclusions:

- 1. N1-V29 is linear.
 - a. Supporting observation: many b and y ions observed between N1 and V29
- 2. T27 is Dhb.
 - a. Supporting observation: *y*₅₁, *y*₄₉, *y*₄₈, *y*₄₆, *y*₄₅, *y*₄₄, *y*₄₀, *y*₃₉, and *y*₃₈ ions harbor 6 dehydrations, while *y*₃₇, *y*₃₆, *y*₃₅ ions harbor 5 dehydrations.
- 3. C30-C39 is macrocyclic.
 - a. Supporting observation: No fragmentation observed between C30 and C39
- 4. T31 is Dhb, and S35 is Dha.
 - a. Supporting observation: y_{37} , y_{36} , and y_{35} ions harbor 5 dehydrations, while y_{24} ion harbor 3 dehydrations. This means there are two CloM2-related modifications

between I28 and G41. T31 and S35 are the only possible residues that can be dehydrated by CloM2.

- 5. S42 is macrocyclized (i.e. forms a lanthionine bridge).
 - a. Supporting observation: No fragmentation was observed past S42. If S42 were not macrocyclized, the most N-terminal residue able to form a macrocycle is C52. Then, S42-G51 would be linear, in which extensive MS2 fragmentation would be expected.
- 6. (medium-level confidence) C64 is macrocyclized.

Supporting observation: y_1 not observed. If C64 were not macrocyclized, y_1 and y_2 could be observed. C62 might be macrocyclized, likely suppressing y_2 fragmentation. However, a high level of y_1 fragmentation would be expected. Normally, with lanthipeptides, if the last residue is linear, there is a tendency for a high intensity of y_1 ion.

• Parent ion target m/z: 1345.0 ± 1.3 (z=5)

- Collision energy: 43.6 V
- Retention time range: 17.11 17.25 min

High-level confidence conclusions:

- 1. C30 and C39 are macrocyclized.
 - a. Supporting observation: y_{35} and y_{24} are alkylated (+57 Da), meaning there is no free cysteine in between.
- 2. There are three macrocycles between G41 and the C-terminus.
 - a. Supporting observation: y_{24} is alkylated. There are four cysteines and 1 alkylation, so one of the cysteines must be free. Three cysteines form (methyl)lanthionine bridges.

Figure S3. MS² experiment on the CloM2-modified the tryptic fragment from N24 to C-terminal of the CloA2 precursor peptide harboring 5 net dehydrations.

- Parent ion target m/z: 1337.2 ± 1.3 (z=5)
- Collision energy: 43.3 V
- Retention time range: 14.67 15.11 min

Supplementary note 2: Results explanations:

- 1. The high-level confidence conclusions are the same as from the MS² experiment on the 6-fold dehydrated **CloA2 precursor peptide** tryptic fragment.
- 2. One internal tryptic cleavage between G41 and the C-terminus is suggested. K48 and R63 are possible trypsin cleavage sites. If C64 is macrocyclized, then K48 is the most likely cleaved by trypsin.

Detected MS² ions are presented in Tables S6 to S9.

Figure S4. MS2 experiment of CloA1 precursor peptide, linear peptide, with no post translational modifications.

- Parent ion target m/z: 1069.0 ± 1.3 (z=8)
- Collision energy: 33.68 V

Retention time range: 14.67 - 15.11 min

Supplementary note 3: Results explanation:

The high-level confidence conclusions are that CloA1 precursor peptide is a linear peptide without posttranslational modifications.

Detected MS² ions are presented in Tables S10 to S13.

Figure S5. A. Phylogenetic tree with the amino acid sequences closest to the C39 peptidase domains of CloPt1 and CloPt2, models **B** and **D** generated with AlphaFold 2.0, minimized with Chimera, figures **C** and **E**, Ramachandran plots of the models for CloPt1 with favored Ramachandran of 96.85% and for CloPt2 with favored Ramachandran of 96.66%.

Figure S6. A. Phylogenetic tree with the amino acid sequences closest to the total proteins CloM1 and CloM2, models **B** and **D** generated with AlphaFold 2.0, minimized with Chimera, figures **C** and **E**, Ramachandran plots of the models for CloM1 with favored Ramachandran of 96.93% and for CloM2 with favored Ramachandran of 97.21%.

Figure S7. Main product purification SDS-PAGE electrophoresis gels. "F" denotes fractions, and (-) denotes the lysis sample. The non-native and native purification process is described in the methodology section. **A.** 12% SDS-PAGE gel of the nickel affinity non-native purification for CloA1 precursor peptide (8.3 kDa) and CloA2 precursor peptide (9.2 kDa). **B.** 12% SDS-PAGE gel of the nickel affinity native purification for CloPt1 peptidase domain. Fractions from 6 to 9 display lanes demonstrating the presence of the C39 peptidase domain (17.5 kDa). **C.** Proteolytic activity of CloA1 was monitored after 48 hours at 4 °C in the reaction mixtures, as described in the methodology section.

Table S1: Nucleotide sequences for the genes *cloA1*, *cloM1*, *cloPt1*, *cloA2*, *cloM2*, and *cloPt2* and amino acid sequences for the corresponding proteins.

Sequence information	in	fasta	format
----------------------	----	-------	--------

> cloPt1

AAAGGTCGATATAGTAAAGCAAATATCTCAAACAGAATGTGGGGGTATGTTGTTGTGTAATGATTCAAAATT ATTATAATGTTAATACTTCATTAGGGCAGGTTAGAAAAGAATTAGATGTTGGCCGAGATGGAATGTCAATG ATTCAGATTTATGAGTACTTAACAAGTAAAGGCTTTTCATGCAAACCCTTCAAGACAAATAATGTTCTTAAG CTATCTGAGATTACGTTGCCATGCATTGCTTTTTTTGGTGAAAATCATTTTGTTGTTGTTGAATCAATAAAA AATCAAAAGGTTATTGTCTGCAATCCAAGTATTGGAAGAAAAGTTATGTCAATTCAGGAGTTTGATAAAGA GGCATGTAGTTATTAAGTTGTTAAAAGAAAACAAGCGTTTACTCCTTGTAGCAGTATTATATATGATCCTAG TTGATACAGTCTATATTTTCTCATTAATTTTAGGTTGTTTACTTATTGGCTATGCAATTATTAGCCTTTTGA GAGGATTTAAGTTATTAACTTTAAATATTAATATAGCTAATAAGATGGAGATTGGAACGTATAATAAAATTA TTACGACTTCCATATAAGTATTTTGAAGTTAGAAATACTGGGGAATTATTGTATAGTTTAATCTGTGTTTCT TCTGTAAGAGAACTATTAGCTACATATATTGTTAATGGAGTAATAGATGTTGGTGCAGTGATAATAGTAAG TATATATATGTTTCAGAAGTCATGGTTATTAGGAATTTTTGCTTTAGTTTTATGGATACTAAACGTAGTTTT TTTATTTTTAATGCAGCCTAAGTTAAGTGGAGTTGTTGATGAAGAATTAGTGCAAAGAGCTACTGCACAATC GTTACAAACAGAAGCTTTAGGATCAATAATGTCTATAAAAATGATGGGGGTTAGAAAAACAGGTATTAAATG ATTGGAAAATAGTATGAAAAAGTAATAAGAAAATTTTCAAGGAGAATTAATATTCAAAAATATAATTGGT GCATTCAATAGTAGTATTAATTTGTTTGGACCAGCATTCATAGTATGCAGTAGCATGGTTTTATATTTTTAT ATATGTACTGCATATTCTCAGTTTATTCTTGCTTCTTCATATTTAGAAAGAGTAGATGAAATTTGGTCTACT GAAGAAGAAAATTATAATGAAAATGGTATAGCAAAAGATATTAAAGGAGATATTGAAGTCAATGATATAAC TTTCAGATATTCTAAAACTTCTCCATATGTAATTGAGAAGATTAACTTAAAAATTAAAGCTGGTTCAAATG TAGCAGTTGTGGGACCTTCTGGTTCAGGAAAAAGCACACTAGGAAAAATTTTAAGTGGTCTATATGATATT GAAAGTGGAGATATTAATTATGATGGTATCAGCATCAGAGAATATAATAAAAATGAATTGTGTAAAATGAT AGGCATTGTACCTCAGGAAGTAATGCTTTTTAATAAATCAATTTATCACAATATTGTAATGAATAATGGAA ATGCAATATAATAATAATAATAATAATGGGAATGGGATTGAATTTATCTGGTGGACAAAGGCAAAGGATACTGTT TGAAGAAAAAATATCAAGGTATCTAGCTGATTTAGGATGCACTAGAATTACAATTGCACACCGCTTATCAAC AATTATAAATGCAGATTGCATCTATGTAATGAATAAGGGAAGAATTATCGAGTCGGGAACGCATAATGAAT TAATAGAGAATGGTAAGGTATATAATGAGTTGTACTATTCTGGAAACACAGATTAA

> CloPt1

MKLFGIDITEIFSLSFRKEKYVMKKVDIVKQISQTECGVCCCVMIQNYYNVNTSLGQVRKELDVGRDGMSMIQI YEYLTSKGFSCKPFKTNNVLKLSEITLPCIAFFGENHFVVVESIKNQKVIVCNPSIGRKVMSIQEFDKDFSGIILQ VLPTDKVEKVSKKENPWHVVIKLLKENKRLLLVAVLYMILAYAIYLGVPMFEQNLIDKVIVLSNLDTVYIFSLIL GCLLIGYAIISLLRGFKLLTLNINIANKMEIGTYNKLLRLPYKYFEVRNTGELLYSLICVSSVRELLATYIVNGVID VGAVIIVSIYMFQKSWLLGIFALVLWILNVVFLFLMQPKLSGVVDEELVQRATAQSLQTEALGSIMSIKMMGLE KQVLNDWKIVYEKVIRKFSRRINIQNIIGAFNSSINLFGPAFIVCSSMVLYFYGLLSIGEIVAFQTISSIFFGIANNIC TAYSQFILASSYLERVDEIWSTEEENYNENGIAKDIKGDIEVNDITFRYSKTSPYVIEKINLKIKAGSNVAVVGPS GSGKSTLGKILSGLYDIESGDINYDGISIREYNKNELCKMIGIVPQEVMLFNKSIYHNIVMNNGSIPLNEVREICK LVCIDEEIMSMPMQYNTIISEMGLNLSGGQRQRILLARILISKPKILILDEATSSIDTISEEKISRYLADLGCTRITI AHRLSTIINADCIYVMNKGRIIESGTHNELIENGKVYNELYYSGNTD

> cloM1

ATGGAAAAGTTGTTTGGAAACTACATTAAAAAAATCTTTTGAAAATTAAGGAAATAAAATAAAATTGTTCATAG GACTAAAGAATATTTTGGAGAGTTTTCTAGATATTATTTTTATATATTTTTTATTACGAATTTGACAATGCAA TAATCAGAAAATATGGTGATTTATTTGATCAATTTAATAGCATAATTCAACAACAATTAGATATATTTTTC AAGGATATATTTTATATAAGCATAAGAGTGTTAATTGTTGAAATGAATATTATGAAAGATGAAAATAAGCT AGTTGGTGCAAATAGCCAAGAAAGATACTTGTATTATTCGGAACTTTTAACAAAAGAAGAATACATTGATT ACCTAATAAGCAAGTATCCGGTTTTAAATAGAATTTTATTGGAAAAGTGTAAAAATCAAATTAGACTAATT AATGAATGTTTAAGTAATTATATACAAGATTTTGAACCGATGTGTGAAACTTTTGAAATTTCAGCTCAAAG TAAAATTAAGCAAATAATTGTTACATCGGGGGACTCACATAATGGAGGTAAGAAGGTTATCTTATTAGAAC TTTCAGAAAACAAAATATTATATAAGCCTCATGATTTTTCATCAGAAAAAATATTTAATGAAATACTAGAA TCCATAAATAAAGAACAGTGCATAAAGTATAAGTTAAAGACTATTAAGAATATTACTAGGGATAATTATGC ATGGCAGGATTATATCAAAGCAATTGGATGTACGAAGATTCAAGAGGTGGAGGAATATTACTACAAGATTG GAGCATATTTGGCGGTATTGTATTCTTTGGGATGCGAGGATATTCACAAGGAAAATATTATAGCTTCTGGTA ACAATCCATATCTAATTGATATGGAGACACTATCAAATTGTCAGGCACCTTTAATAAATGATAAAGCTACAA TGCTAGAGCACTTTTTTTTATGAGAATAGCCAATCAGTCTTCGGAACAATGCTTTTACCTACTAATTCAGCAG TGTCTATATTTGATTATGACATTGGAGGAATCTCTGGAGATGATAACATTGAAACATCAAAATGGGAAGCT TTTGATATAAAAAATCAAGGAACTGATAATTTACAATTTGTTAAGGAATCTAAGTTTATAACTGGTGGATG TGATAACATAGTAAAACTTAATGGTGAGGCTACTCGTGCTAGAGATTATTACAAGAATATTATAGAAGGAT ATAATACGACAGGTTTTAAGACCAACAGCAGTTTATAGTAAATTTTTAGAAGCTTCTACTTATCCAACTTAT AAAAGCACAAATTGAAATAGATAGTTTATATGAGTTTGATATACCATATTTTTATTCCGATTTAAATACAA CTAACATTTATTCAGTCAAAGGAAAAGTTGATAATTACATAAATTATTCTGTTATGGATGCTATAAGCGGA AAGGCTAGGAAGTTTTCGGAAAAGGATTTAAAGGTGCAAATATATTATATTAACCTTGCACTATCAACCCA ACCTAACACATCTGAGATGATTTATAAAATATAAATTTATTCAGTAAAATCACAAAATTTAAAGAATATTACAA TTAATCATATTGCTAAACAGATAGGAGATGTAATTGAAGAAAAACTAATTTGGGATTATAGAAAACAAAGT TGCTTTTTTATGATTGATACGGTAGTAAAAGAAAAGAGAAAATACTGTAGCATGGATTCTAGTTTGTATGG TTCGGGTGGAGTAATTCTGTACTATCTATCGCTATACAAAGCTACTTGTGATTTGAAGTATAAACATATAGT CGAAGGATTAATTAATGGACATATAGGGTTACATTCAAAAAAATCCTTAGAGGAGGGGGATAGGATTATTTT GATGTCTTAGAAGTTCTAAAGGAAATAGAAGAAAATTTACATATGTGGGATGAGCTAGATTTATCAACAGG **GTTATCAGGTGTTATCATATTTCTATCAGAACTTTATAAAACAGAAAATAATGAACAGTATCTATTAATTG** CAAATGGCTTAGCTGATAAATTATATATAAATTAGTGTTGAAAGCTAATTTTAATATGTTAACAGGATTAGCA CATGGATATGCAGGAGTTGCTTGGGCTTTATATAGTATAGGGCATATAGTTAATAATGAGGATTATATTAA GAAATGGTAGTTCAGAAAGCTTCTATTGGTGTTATGGTGCTTTTGGGATAGGTATCGCAAGATTAAAGATG TTTAATTAATAGTAAGTATAATCATTCTTTATGCCATGGGCTTACAGGAAACTTATCAGCAATAAAGATGTT ATGTTGTAAATGGCAAAGTTATATGGGGTGATAAGGAGCTCATAGAAGATTATTCATTTATGATTGGTTTA TCGGGTATTGGGTATGAGTTATTAAGGCACGAAGCTACAAACTCTGTAAATATTTTAGCATTAGAAGTGTA Α

> CloM1

MEKLFGNYIKKSFEIKEINKIVHRTKEYFGEFSRYYLYIFYYEFDNAIIRKYGDLFDQFNSIIQQQLDIFFKDIFYIS IRVLIVEMNIMKDENKLVGANSQERYLYYSELLTKEEYIDYLISKYPVLNRILLEKCKNQIRLINECLSNYIQDFE PMCETFEISAQSKIKQIIVTSGDSHNGGKKVILLELSENKILYKPHDFSSEKIFNEILESINKEQCIKYKLKTIKNIT RDNYAWQDYIKAIGCTKIQEVEEYYYKIGAYLAVLYSLGCEDIHKENIIASGNNPYLIDMETLSNCQAPLINDKA TMLEHFFYENSQSVFGTMLLPTNSAVSIFDYDIGGISGDDNIETSKWEAFDIKNQGTDNLQFVKESKFITGGCD NIVKLNGEATRARDYYKNIIEGFSDCYKIFIKTPNKVVDILKESEVIIRQVLRPTAVYSKFLEASTYPTYLTNEES FRGLFAKLDNLEEVKEKKKAQIEIDSLYEFDIPYFYSDLNTTNIYSVKGKVDNYINYSVMDAISGKARKFSEKDL KVQIYYINLALSTQPNTSEMIYKYNLFSKSQNLKNITINHIAKQIGDVIEEKLIWDYRKQSCFFMIDTVVKEKRK YCSMDSSLYGSGGVILYYLSLYKATCDLKYKHIVEGLINGHIGLHSKKSLEEGIGLFSGLTSLAYIYYQCYRVLGKK QYLEDVLEVLKEIEENLHMWDELDLSTGLSGVIIFLSELYKTENNEQYLLIANGLADKLYKLVLKANFNMLTGL AHGYAGVAWALYSIGHIVNNEDYINCAMKCIEEENMYYDSEKNNWKDKRNGSSESFYWCYGAFGIGIARLKM YEIAHNDILLKDIEKCRYIYINYNLINSKYNHSLCHGLTGNLSAIKMFSDFYKNDNKLKKKYKEMLDILLNDVV NGKVIWGDKELIEDYSFMIGLSGIGYELLRHEATNSVNILALEV >cloA1

> CloA1 precursor peptide

MQNYESKAGFISEMELDELVSNKTVGGATTVPCAIAIIGITLSAGICPTSACSKDCPWNN

> cloPt2

ATGATCAAGAGAAGCGGTATACGAATAATTAAACAATTAACAGAAACAGAATGTGGCTTATGTTGTTGTGC CATGATATTGAGATATTACGGAAGTAAGGAATCAATAAGAGAGTTACAAGATTATATGGATGTCGGCAGAG ATGGGATATCTATGTTTCAGATTAAGCATTTCTTAAATGAAAAGGTGTTTCTGCCAAAGTATATGAAGTC AATGAGATTGATAAGTTAGTTCATATAGATAAACCATTTATATGTTATTGGAATCAAAAGCATTTCGTTAT TGTAGAAAAAATAAAAAATAATATGTTTTATATAGCAGATCCAGCAGATGGGAAAGTAGTTCTTAATAGAG AAGAATTTTCTAAAAAATTTTCAAAAACCATTTTAGTAAGTGATGTTACGGAAGCATTTAAACCTACGAAA AATAGAAATTACAATCCGTGGATAACTATTTTACAGTATCTTAAAGAAAATAAAAATATTAATTCTTGAGAT TTTGATATTGCTTGGAATAACTTATGGAATAACGTTGGAAATTCCTAATATTGTACAAAAAATAATTGATA TTTTCGTGAGTTACTTATTTAAAGGAATAAAAATAATAGCCTTAAATGTGTTTTTAGGAAGAAAACTTGAA **GCAAATACGTATAGACATCTCTTACAACTTCCATATAAGTTTTTTGAAACTAGATCAACTGGTGACTTGTTA** TATCGTATTCAAGGTACCACCAGTATTAAACAGATGTTGTCTACTCAGATTGTTGGAGGCGTAATTGATATT GGATCTGTTATTGCAATAATTTTTTATATGCAACAGAAGTCAGTGTTGCTTACAATTTGTGCTTTTGCCTTG TTCATGATAAATATTATAGTGATTTTAGTTATTCAACCTAAACTTACACAAGCTATTAATGGAGAGAGTTGTT GAACAGTCCAAATCTCAAACAGCTCAAATAGAATCATTATATTCAATTATTTCAATAAAGATTTCAGCTATG GAAGATTTGATCTATAAGAATTGGAGCAACATTTATGAGAGTGTTGTTGAAAATGTTTCAAAAGAGGATGCT AATTTCAAATGCATATAGTGCTATTATGGCTGTACTTCAAAAACTTTTCACCGATTTTAATATTGTGTTTAGG AATTAATGAGTATTATAAGGGAAACATTACCATAGGCGAAGTAATTGCGTTTCAAGCTATTTCTTCAACATT TAGAGTTAGAGGATGTATGTTTTTCATATTCAAAAAACTCAAAAAATGTACTTGAAAAATATTTCAATGAAT ATTAAAAGAGGAACTAAAGTTGCAATTGTGGGGGGCTTCTGGATCAGGAAAAAGTTCACTAAGTAAAATTTT AGTTGGGTTGTACAAGCCTACAAAAGGGACAATAAGATTTGATGGAATTCCTATTGAAAAATATGATAGGA AAGCTATCTGTAGGCAAATGGGAATCGTACCTCAGGATGCTATGTTATTTAATAAAAGTATATGAAAAT TGAAATCAAAGCAATGCCCATGGGATACCATACAATAATATCTGAAATGGGTATGAATTTATCAGGAGGAC AGAGACAGAGAATTTTATTAGCAAGATCAATGCTCTCGAATCCAAAGATTTTGGTGTTAGATGAAGCAACT TATTGCGCATAGGTTGTCTACTATAGTTGATGCAGATGTTATATTCATAATGAAAAATGGACAAATTGCAG AATATGGTAAGCATGAAGAGTTGATAAGTAAGAATGGTGAATATAAAAAATTATATATATCGGTAGAGAT ATAGATAATTTGAATGTTGTATAA

> CloPt2

MIKRSGIRIIKQLTETECGLCCCAMILRYYGSKESIRELQDYMDVGRDGISMFQIKHFLNEKGVSAKVYEVNEID KLVHIDKPFICYWNQKHFVIVEKIKNNMFYIADPADGKVVLNREEFSKKFSKTILVSDVTEAFKPTKNRNYNP WITILQYLKENKILILEILILLGITYGITLEIPNIVQKIIDRTGTETNSSFLNIFLLMLGACIIAFFVSYLFKGIKIIALN VFLGRKLEANTYRHLLQLPYKFFETRSTGDLLYRIQGTTSIKQMLSTQIVGGVIDIGSVIAIIFYMQQKSVLLTIC AFALFMINIIVILVIQPKLTQAINGEIVEQSKSQTAQIESLYSIISIKISAMEDLIYKNWSNIYESVVEMFQKRMLIS NAYSAIMAVLQNFSPILILCLGINEYYKGNITIGEVIAFQAISSTFFNLGMSIVNVYPQFISASQYLDRIADIWNRE AELEDENAIVREINGDIELEDVCFSYSKNSKNVLENISMNIKRGTKVAIVGASGSGKSSLSKILVGLYKPTKGTIR FDGIPIEKYDRKAICRQMGIVPQDAMLFNKSIYENIVMGNFNITLEQVEEITKIACIHDEIKAMPMGYHTIISEM GMNLSGGQRQRILLARSMLSNPKILVLDEATSSLDNINERKISNYLSGIGCTRIIIAHRLSTIVDADVIFIMKNGQI AEYGKHEELISKNGEYKKLYYIGRDIDNLNVV

> *cloM2*

ATGGAAGATATGATAAGTTATTACGAAAAATGCTGGATGAAATTATATCCAGAAATGAAGAGTATAGAAGA GTTAAATACATATCTGAAAAAAGTATTTGGAAAGAGTCTTAAAGAAAAGTTGCAAAATGAAAGAGTAGAAA AAGTATCCGTAAAAGAGTACAACAGAAATTTAAAAATGTTTTTAGATGACAACATGCTAGAGAACATGAGA TTTAGTAGGTTTTATGGACCAATTATGGTCGAATATATAGAGAATTTACCTAAATATATTGAAAAAACGAT GATAGTGAAAAATATTAAACTGTTTATGGAAAGTATGATTCTTCAGCTATCTGACTTAATGTGTAGTATAG GAGAGATATAAATATTTTAATAATGAATTGTTGGATGACTATCAATACCGAAAAAGTTTATATAGTGAGTA TTGTTTTCTAGTTGAAACTTTAGATGAGTGTGCCAAAAATTTTGTGAAAATACATTGAAGAAAATACTTGTAA ACACAAGTAAAAATATGTGTAGAATTCAAAGTGACGTTAATTCAAATATTGAATTAGGTAAACTCATAAAT ATTGAATTTGCTTTGGGAGATACTCATTGTAGAGGAAAAAGTGTAGCAAAACTGATTTTTGAAAAATACAAT AATTTATTATAAGCCTAGAAATAGTATAATTGATAACAAATTCCAATCAGTGCTTAATTTAATAAACGAAA AATATTAAGTATGAAGAATGTAGAAGTATAGATAATGTTCATGATTATTATTAAAGATAGGCGGCTTAAT TGGCATTTTGTATTCTTTAATGCAACAGATTTTCATCATGAAAATATTATAGCTTGTGCTGAAAATCCTAT **GTTAATAGATTTAGAATCAATATTTAGTGTAGAGATGAAAAGTAAAGTTTTTGATGAAAATAGTGCTTATA** ATAATGCAATTGAATATTTAAAATCAAGTGTACAATCGATTGGAATATTACCTAATAAGTTACATATTGGT GATTTAGATGACAAGTATGAAACAGGAGGTATTGTTTATAAAGAAAAACAAGTTGCACCAATAAAATCTTT AAAAGTTGTTAATGATGCATCTGATGGTATCCGTACGGAACTAGTAAATTCTATTGAAGGAAATCTTA ATGCACCTAAATATAATGGCAATATTATAAACCCTAAAGAGTATGTTGAAGATATTAAGGAGGGATTTAGG TTAGTTTATAAATGGATTCTAGGCAACAAGAAAGAATTTATTGAATTTGTTGAAACGTCATTTAGTGAAAC TTATGAGTAGCGAAGATGAGAATGAACTTATAAATGCAAGAATAGGTATATACGCAGATAATATCGATATT ATTAAATCAGAAATAAGATCTTTAAAAAGATATGAGATACCTTATTTTTCAGCGTTATTTAACGAAGAAAA AAGTATGTAAAGCTACTGAAATAGATTTGAATAATCAAATAGATTTTATAAGTATTTCATTTTTAAGTAAA AATCCAGAAGAGCTTAGAACTGGAATTCATTATGTTGAAGATGCAGTTGAAAATCATCAATACTGACAGTTA TCTAAATGTTGCAAAAGAAATTGGTGATTATTATATATAGCATAGCAATTATCGGTGAAAATCAGCATGGCA AAAGTGATGCAACATGGATTGGAAGTGCTGTTTCAAAAATAGATGTTAATGATTGGACTTATAGTGTTTCA GATTTAGATTTATATAATGGAAATAGTGGTATAGCATTATTTCTATTAAATTTATGGAAAGTTACAAAGGA TAAAAAATATCTTGATTTAGCAATACAGGCAGCAGAACTTATTATAAGCATAATTAAAAAATAAGACATTTA ATCATTCTACTCTTATAGGAGGGTTTAATGGTATCGGCTCTTATATTTACATAATTAGTAAATTAGTGGTGA GCTTCAGAAATGGATTTAGTGGCTGGAGCAAGTGGAATGCTTGCAGTTTTATTGAATGTATATAGTGAAAT TGATGATAAATTAATTAAAGAAAAAGTAAAACCACTTCTATATATGTTATTTTACAAGATCCAAGAGAATG TCAAAAGCGGTGGGAAACTAATTAGATATTCTGGTTTTTGGACATGGAATTGCAGGGTGTATTCCATACTTGT ACAAGTTGTATTTAATAGATGAAAAATAGAGAAGTCTATCAGTTATTTAGTGAGTTATTGTCATATGAACGC GATCATTTCTATAGTAAGGAAGAAAAGGATTGGGTTATGTCTGATGAGGGTCAATTATTCAAAAGCATG GTGTCATGGTGCACCAGGAATATTACTCGAAAAGATTATTCTAAAGGAATTAGGTTACGAGGATGAGTATT TGGATCAAGAGATCAAAGTGGCTTTAAATAATATTAAGAAAAAATGTATTGGTAATAATATAGTGTATTGT CATGGAGATATAGGAAACTTAGATATTATACAATATGCAGCAAAGATCAGCAAAGATGAAAAAATGATTAA **GGAATGTAGTAACACATATGATAAGTTATTTCAACTACATATAAAAAATAACTGGAATAGTGAAGCGTCTG** CATATAGTAAGTGTAAAGGGATAATGGTTGGAGTATCTGGTATTGGGCTATCATTACTGAGGATGATAAAT AAGTATGATATAGATGATTTTCTTTGGCTAAGTTAA

> CloM2

MEDMISYYEKCWMKLYPEMKSIEELNTYLKKVFGKSLKEKLQNERVEKVSVKEYNRNLKMFLDDNMLENM RFSRFYGPIMVEYIENLPKYIEKTMIVKNIKLFMESMILQLSDLMCSIAFRTMVFEINNAKNKNLLKGESPEERY KYFNNELLDDYQYRKSLYSEYCFLVETLDECAKNFVKYIEEILVNTSKNMCRIQSDVNSNIELGKLINIEFALGD THCRGKSVAKLIFENTIIYYKPRNSIIDNKFQSVLNLINEKGILSGRKYRVMNIHGTSECGWFENIKYEECRSIDN VHDYYLKIGGLIGILYFFNATDFHHENIIACAENPMLIDLESIFSVEMKSKVFDENSAYNNAIEYLKSSVQSIGILP NKLHIGDLDDKYETGGIVYKEKQVAPIKSLKVVNDASDGIRTELVNSIIEGNLNAPKYNGNIINPKEYVEDIKEG FRLVYKWILGNKKEFIEFVETSFSETKIRIILKPTFMYAQINSIAKHPNFMSSEDENELINARIGIYADNIDIIKSEI RSLKRYEIPYFSALFNEEKLFDEDENVLESRLIISPQLLFRNKVCKATEIDLNNQIDFISISFLSKNPEELRTGIHY VEDAVEIINTDSYLNVAKEIGDYLYSIAIIGENQHGKSDATWIGSAVSKIDVNDWTYSVSDLDLYNGNSGIALFL LNLWKVTKDKKYLDLAIQAAELIISIIKNKTFNHSTLIGGFNGIGSYIYIISKLVVNTNDEYFYSTLIESIDLLEERI EAASEMDLVAGASGMLAVLLNVYSEIDDKLIKEKVKPLLYMLFYKIQENVKSGGKLIRYSGFGHGIAGCIPYLYK LYLIDENREVYQLFSELLSYERDHFYSKEEKDWVMSDDEVNYSKAWCHGAPGILLEKIILKELGYEDEYLDQEI KVALNNIKKKCIGNNIVYCHGDIGNLDIIQYAAKISKDEKMIKECSNTYDKLFQLHIKNNWNSEASAYSKCKGI MVGVSGIGLSLLRMINKYDIDDFLWLS

>cloA2

ATGAAGAATTATGAAGAATTATTTAATGAAGTTAATGAAAATGCTTCATTACAAGCAGAATTAAACGGTGG TAGTATTGCAACTACTATAGTTTGCACAATTGCACAATCTCTTTTAGGTTGTGTTGGTAGCTATGTTCTTGG AAACAAGGGATATGGTTGTACAGTTACAAATGAATGTATGAGTAACTGTAGATAA

> CloA2 precursor peptide

MKNYEELFNEVNENASLQAELNGGSIATTIVCTIAQSLLGCVGSYVLGNKGYGCTVTNECMSNCR

Table S2. Precursor peptides within the clostridial clade, selected based on the criteria: the BGCs contained all the essential genes (the precursor and the biosynthetic enzyme), the precursors contained residues that could be recognized by the peptidase (GG or GA), and formed heterocycles specific for lanthipeptides (the amino acid sequence contained serine, threonine, and cysteine), and they all belonged to the same transcriptional unit. The table includes molecular weight (Mw), isoelectric point (IP), and grand average of hydropathicity (Gravy) values. These values were computed using the ProtParam tool for the core peptide, excluding any post-translational modifications. Additionally, in pink the characteristic cleavage sites of the C39 peptidase, presence of serine (S), threonine (T), and cysteine (C), and the predicted cycles by RiPPMiner.

Bacteria	BGC Internal Code	Lanthipeptides	MW (Da)	IP	GRAV Y	S+T	С	Cycles
<i>Blautia wexlerae</i> DSM 19850	AXVN010 00112	MKKNYRNPMTRPENFMN PAGNVMKEIKEADLNNFS A <mark>GAG</mark> EPRVSDGSQFCTST KECNWGTIMFVCC	3086.4 9	4.6 8	-0.132	6	4	3
Caldicellulosi ruptor bescii DSM 6725	NC_01203 4	MKESTIIKNPVLRNKVNAKI YNPAGDIVKEIQEQNLPEQ AGGGTPTVVVGVISAVTA VTNLAFSIDQAITKYYACSL VYTYSAECRSDGRSCRM R	5696.5 3	8.6 1	0.323	12	3	2
Caldicellulosi ruptor	NC_01472 1	MVETYKKNLYGITFEELEE GEMQELV <mark>GGG</mark> PEITTVIES IKAATAFSTLTCVGSAAAS LIIATVITYIVTK	4226.9 8	6.1 3	1.107	12	1	1
<i>kristjanssonii</i> 177R1B		MNSTIESRIGICFEQLNEE EMLEAM <mark>GG</mark> NPWLGTPTT AALSTTVACGVVTGLVSA AVSVTVVITKKL	3884.5 9	9.3 1	0.995	11	1	1
Caldicellulosi ruptor lactoaceticus 6A	NZ_AEKD 0100002	MNSTIESRIGICFEQLNEE EMLEAM <mark>GG</mark> NPWLGTPTT AALSTTFVCGVVSGLVSA AVSVTVVITKKL	3946.6 6	9.3 1	1.018	11	1	1
Caldicellulosi	LACO010 00001-R3	MVETYKKNLYGITFEELEE GEMQELV <mark>GGG</mark> PEITTVIES IKAATAFSTLTCVGSAAAS LIIATVITYIVTK	4226.9 8	6.1 3	1.107	12	1	1
Rt8.B8		MNSTIESRIGICFEQLNEE EMLEAM <mark>GG</mark> NPWLGTPTT AALSTTVACGVVTGLVSA AVSVTVVITKKL	3884.5 9	9.3 1	0.995	11	1	1

	LACO010 00001-R5	MKESTIIKNPVLRNKVNAKI YNPAGDIVKEIQEQNLPEQ AGGGTPTVVVGVISAVTA VTNLAFSIDQAITKYYACSL VYTYSAECRSDGRSCRM R	5696.5 3	8.6 1	0.323	12	3	2
Clostridium cellulovorans 743B	NC_01439 3 -R6	MANYKIGAIFEQKNYEEMA SSQMT <mark>GG</mark> DGFVTVTSPQ YTLSCCITWTIPSIKLTV	3131.6 5	5.8 2	0.614	9	2	2
Clostridium cellulovorans	NC_01439 3 -R18	MQNYESKAGFISEMELDE LVSNKTV <mark>GG</mark> ATTVPCAIAII GITLSAGICPTSACSKDCP WNN	3349.9 0	5.8 1	0.676	7	4	4
743B		MKNYEELFNEVNENASLQ AELN <mark>GG</mark> SIATTIVCTIAQSL LGCVGSYVLGNKGYGCTV TNECMSNCR	4288.9 7	7.8 2	0.526	9	5	5
Clostridium scindens ATCC 35704	NZ_DS49 9711 - R1	LDIPAMDLFMGMLIL <mark>GG</mark> CH SSATPFLSASSECLATFSN LEMQHSPIPVCNFR	3870.3 6	6.0 0	0.075	9	3	3
	AUPA010 00006 - R1	MADYQKVTGFVSVQELEE VTEVDN <mark>GA</mark> IAWVSVLATA AFTVKLASAVVCETGACT GYCN	3291.8 4	6.0 2	1.197	6	3	3
Clostridium		MKKYNDITGFVSVEELEEV SNEAQ <mark>GG</mark> IALSAITFVTGT VIWIATRAVCETGACTSYC K	3408.0 1	7.9 5	0.988	8	3	3
sp. BL8		MQNNYNLSTGFVSIEELEE ASNDIGVA <mark>GA</mark> FTTIACAAIG LSIAILTVAACPTESGACTG YCR	3320.9 0	6.0 1	1.171	7	4	4
		MKNIEMLKNPVLRTKYSV NEINPAGDLLTEVTEQDFT ISVS <mark>GG</mark> YDSAKLGNQGSD CSWSRECQRICNWISYGS GGWFGC	4079.4 4	6.0 9	-0.619	6	4	3
<i>Clostridium</i> sp. KNHs209	JPNB0100 0003 - R2	MRNDILNLTNPMEEKELE QIL <mark>GGG</mark> NGVIKTISHECAM NTWQFLFTCCS	2791.2 2	6.7 2	0.292	5	3	3
<i>Dorea</i> sp. 5- 2	ASTD010 00045 - R1	MQQNSNLDYAGDLSVELG EIEKLIPKEEQVE <mark>GA</mark> STSTL MCGTYFTLICC	1815.1 6	5.5 4	1.176	6	3	3
Eubacterium plexicaudatu m ASF492	AQFT010 00101 - R1	MRDENKKTNEVSGEAFED LTISEMAEVQ <mark>GAG</mark> DMEGE LTTPVCVVIATASASVGLA KTFKGKC	3255.8 1	6.2 1	0.539	6	2	2
Lachnospira ceae bacterium 2_1_58FAA	ACTO010 00067 - R1	MIDASILLYPIY <mark>GG</mark> VLMRSK RIPAEEQYRLIMECRQSGL TDHQWCVEHDIKPGTFYN WVKRLRQKGCVDLPAST G	7233.3 5	8.9 9	-0.640	6	3	2
Lachnospira ceae bacterium 3_1_57FAA_ CT1	ACTP010 00039 - R1	LSGTKNRA <mark>GA</mark> SKRRLTLCI RILYEMNGEKISGCSS	2929.4 6	9.3 9	-0.162	5	2	2

Roseburia	CYXV010 00003 - R1	MEIKSILIKDTTREERIRIVQ EGLNQC <mark>GGA</mark> CDFCNGCD NLGGGSVDAFYEPYINGE KELREINEEYRSNSGLVK	5034.4 5	4.2 5	-0.674	3	3	1
faecis		MKDLRNPLTRTENFEHPS GNIMKELTEAELNSVAAGA GVARNSGGIACTLTGECNI GTHIKFCCYD	3075.5 0	6.7 5	0.263	4	4	3

Table S3. RMSD values resulting from the structural alignments between PCAT1 and the CloA1 and CloA2 mature peptides proteins models predicted by AlphaFold.

PCAT1	CloA1 pLDDT=83.9	CloA2 pLDDT=84.8
Protein domains	RMSD (Å)	RMSD (Å)
Complete protein	3.211	2.924
C39 peptidase	0.982	0.86
ABC membrane	3.25	2.962
ABC transport	1.159	1.204

Table S4. RMSD values resulting from the structural alignments between CylM and the CloM1 and CloM2 protein models predicted by AlphaFold.

СуІМ	CloM1 pLDDT=87.9	CloM2 pLDDT=88.8
Domain	RMSD (Å)	RMSD (Å)
Complete protein	4.652	6.261
Dehydratase	1.607	1.507
N-Lobe	1.186	1.244
C-Lobe	1.733	2.145
KA	0.568	0.901
Ka11	0.96	0.602
Cyclase	4.888	3.532*

Table S5. Resistance profile of all the strains used in antimicrobial assays.

	S. aureus	<i>S</i> .		Р.	E. coli	А.
Antibiotic/	ATCC	epidermidis	P. aeruginosa	aeruginosa	K12	baumannii
Bacteria	43300	MIQ43	ATCC PA14	MIQPA25	IM08B	747
Cephalothin	R	-	R	-	-	-
Cefazolin	R	-	R	-	-	-
Cefotaxime	R	-	S	R	-	S
Aztreonam	R	-	S	R	-	-
Penicillin G	R	R	R	-	-	Ι
Oxacillin	R	R	R	-	-	-
Ampicillin	М	R	R	-	-	R
Ticarcillin	М	-	S	-	-	-

Mezlocillin	М	-	S	-	-	-
Imipenem	S	-	-	S	-	S
Clindamycin	-	R	-	-	-	-
Erythromycin	R	R	-	-	-	-
TMT-SFM	R	R	-	-	-	-
Rifampicin	-	S	-	-	-	-
Vancomycin	S	S	-	-	-	S
Linezolid	_	S	-	-	-	-
Minocycline	-	S	-	-	-	-
Carbenicillin	_	_	-	R	-	-
Piperacillin	_	-	_	R	-	Ι
Ceftriaxone	_	_	_	R	_	-
Ceftazidime	_	_	_	Μ	-	R
Levofloxacin	_	-	_	Μ	-	S
Ofloxacin	_	_	-	Μ	_	S
Meropenem	_	_	-	S	-	S
Amikacin	_	_	_	S	_	S
Gentamicin	_	_	-	S	-	-
Ciprofloxacin	_	_	_	S	_	S
Norfloxacin	_	_	_	S	_	-
Colistin	_	_	-	S	-	S
Polymyxin	-	-	-	S	-	-
Streptomycin	_	-	-	_	R	-

Table S6. Ions detected from the MS spectrum of cellulosin harboring 6 net dehydrations.

Amino acid Sequence GSSHHHHHHSQDPNSSS ARLQKNYEELFNEVNE NASLQAELNGGSIATTI VCTIAQSLLGCVGSYVL GNKGYGCTVTNECMSN CRC C ₃₈₃ H ₆₀₁ N ₁₁₉ O ₁₃₃ S ₇	Average mass	9225.0425	Isotopic Mass	9219.1968
Ions	Expected mass	Measured mass	Error (ppm)	Charge
M-6H2O	9116.9508	-	-	

[M-6H2O+8H] ⁹⁺	1140.6189	1140.62655	7.65	+8
[M-6H ₂ O+9H] ⁹⁺	1013.9945	1014.00425	9.75	+9
[M-6H ₂ O+10H] ¹⁰⁺	912.6951	912.70222	7.12	+10
[M-6H ₂ O+11H] ¹¹⁺	829.8137	829.8293	15.6	+11
[M-5H ₂ O+11H] ⁸⁺	1142.8689	1142.87899	10.09	+8

Table S7. Ions detected from the MS spectrum of the cellulosin tryptic fragment.

Amino acid Sequence NYEELFNEVNENASLQ AELNGGSIATTIVCTIAQ SLLGCVGSYVLGNKGY GCTVTNECMSNCRC C ₂₈₃ H ₄₅₂ N ₇₈ O ₁₀₀ S ₇	Average mass	6771.5345	Isotopic Mass	6767.0726
Ions	Expected mass	Measured mass	Error (ppm)	Charge
M-6H2O	6663.4429			
[M-6H ₂ O+3H] ³⁺	2222.1476	2222.1512	3.6	+3
[M-6H2O+4H] ⁴⁺	1666.8607	1666.85197	-8.73	+4
[M-6H2O+5H] ⁵⁺	1333.6886	1333.68256	-6.04	+5
[M-5H ₂ O+5H] ⁵⁺	1337.2886	1337.30433	15.73	+5

Table S8. Ions detected from the MS spectrum of cellulosin after an iodoacetamide alkylation trypticfragment.

Amino acid Sequence NYEELFNEVNENASLQ AELNGGSIATTIVCTIAQ SLLGCVGSYVLGNKGY GCTVTNECMSNCRC C ₂₈₃ H ₄₅₂ N ₇₈ O ₁₀₀ S ₇	Average mass	6771.5345	Isotopic Mass	6767.0726
Ions	Expected mass	Measured mass	Error (ppm)	Charge
[M-6H2O+IAA+5H] ⁵⁺	6720.4429			
[M-6H2O+IAA+3H] ³⁺	2241.1476	2241.15814	10.54	+3
[M-6H ₂ O+IAA+4H] ⁴⁺	1681.1107	1681.12413	13.43	+4
[M-6H2O+IAA+5H] ⁵⁺	1345.0886	1345.09924	10.64	+5

Table S9. Ions detected from the MS spectrum of cellulosin without any dehydration.

Amino acid Sequence GSSHHHHHHSQDPNSSS ARLQQNYESKAGFISEM ELDELVSNKTVGGATT VPCAIAIIGITLSAGICPT SACSKDCPWNNC C ₃₆₀ H ₅₆₄ N ₁₀₈ O ₁₂₂ S ₆	Average mass	8549.3705	Isotopic Mass	8543.9573
Ions	Expected mass	Measured mass	Error (ppm)	Charge
М	8543.9573			
[M +6 H] ⁶⁺	1425.8951	1425.8951	-5.431	+6

[M+7H] ⁷⁺	1222.3386	1222.3386	-4.816	+7
[M+8H] ⁹⁺	1069.6713	1069.6713	-4.063	+8
[M+9H] ⁹⁺	950.9301	950.9301	-3.792	+9
[M+10H] ¹⁰⁺	855.9371	855.9371	-3.02	+10

Table S10. Fragment ions detected from the MS/MS of the tryptic fragment from N24 to C-terminal of the clostrisin harboring 6 net dehydrations.

Ions	Expected	Measured	Error	Charge
	mass	mass	(ppm)	
b12	462.1928	461.9928	0.2	3
b19	1042.4505	1046.2505	-3.8	2
b31	866.4009	866.8009	-0.4	4
b38	1432.6359	1432.4359	0.2	3
b40	902.415	891.215	11.2	5
b40	1127.7669	1132.5669	-4.8	4
b41	1149.5249	1143.4249	6.1	4
b42	1178.0356	1161.2356	16.8	4
b45	1260.0884	1276.9884	-16.9	4
b47	1031.0808	1035.6808	-4.6	5
b48	1045.2882	1051.4882	-6.2	5
b48	1306.3584	1293.6584	12.7	4
b49	1065.4977	1065.9977	-0.5	5
b55	985.4658	983.1658	2.3	6
y14	763.2971	769.8971	-6.6	2
y14	1525.5868	1525.0868	0.5	1
y15	814.8017	813.9017	0.9	2
y15	1628.596	1641.596	-13	1
y17	899.8544	902.8544	-3	2
y17	1798.7016	1796.6016	2.1	1
y18	935.373	936.573	-1.2	2
y19	978.889	972.689	6.2	2
y20	1035.431	1039.931	-4.5	2
y23	1171.0076	1174.8076	-3.8	2
y3	350.1129	357.5129	-7.4	1
y30	1511.7018	1525.5018	-13.8	2
y5	633.245	634.245	-1	1
y8	979.376	965.276	14.1	1

Ions	Expected	Measured	Error	Charge	Modificati
	mass	mass	(ppm)		on(s)
b ₂	278.1135	278.1212	7.7	+1	
b ₃	407.1561	407.1621	6.0	+1	
b ₄	536.1987	536.2047	6.0	+1	
b5	649.2828	649.2868	4.0	+1	
b ₆	796.3512	796.3528	1.6	+1	
b ₈	1039.4367	1039.4527	16.0	+1	
y ₃₈	1955.3676	1955.3575	-10.1	+2	6
					dehydration
					S
					1 alkylation
					(6DH 1AK)
y 37	1913.849	1913.8394	-9.6	+2	5DH 1AK
y 36	1857.307	1857.3115	4.5	+2	5DH 1AK
y 35	1807.7728	1807.7772	4.4	+2	5DH 1AK
y 24	1281.5155	1281.5392	23.7	+2	3DH 1AK

Table S11. Fragment ions detected from the MS/MS spectrum of the tryptic fragment from N24 to C-terminal of the clostrisin harboring 6 net dehydrations and 1 alkylation.

Table S12. Fragment ions detected from the MS/MS spectrum of the tryptic fragment from N24 to C-terminal of the clostrisin harboring 5 net dehydrations.

lons	Expected	Measured	Error	Charge	Modificati
	mass	mass	(ppm)		on(s)
b 2	278.1135	278.112	-1.5	+1	
b ₃	407.1561	407.1527	-3.4	+1	
b 4	536.1987	536.195	-3.7	+1	
b₅	649.2828	649.2798	-3.0	+1	
b 6	796.3512	796.3472	-4.0	+1	
b 7	910.3941	910.3971	3.0	+1	
b ₈	1039.4367	1039.4385	1.8	+1	
b ₉	1138.5051	1138.4998	-5.3	+1	
b 11	1381.5907	1381.5893	-1.4	+1	
b 13	783.839	783.8359	-3.1	+2	
y 51			-15.2	+3	5
		1704.7775			dehydratio
	1704.7927				ns (5DH)
y 49	1638.0874	1638.0852	-2.2	+3	5DH
y 48	1595.4012	1595.3851	-16.1	+3	5DH
y 47	1571.7221	1571.7076	-14.5	+3	5DH
y 46	1528.708	1528.6978	-10.2	+3	5DH
y 45	1491.0133	1491.0128	-0.5	+3	5DH
y 44	1452.999	1452.9898	-9.2	+3	5DH
y 40	2021.9153	2021.9089	-6.4	+2	5DH
y 39	1986.3967	1986.3801	-16.6	+2	5DH
y 38	1935.8729	1935.8639	-9.0	+2	5DH

y 37	1894.3543	1894.3549	0.6	+2	4DH	
У 36	1837.8123	1837.8093	-3.0	+2	4DH	
y 35	1788.2781	1788.2778	-0.3	+2	4DH	
y 24	1262.0207	1262.0083	-12.4	+2	2DH	

Table S13. Fragment ions detected from the MS/MS spectrum of clostrisin.

Ions	Expected	Measured	Error	Charge
	mass	mass	(ppm)	
b 5	509.0106	506.2106	-2.8	+1
b6	633.3695	643.2695	9.9	+1
b7	796.5284	780.3284	-16.2	+1
b8	901.7874	917.3874	15.6	+1
b9	534.4268	527.7268	-6.7	+2
b10	565.1428	571.2428	6.1	+2
b11	637.6721	635.2721	-2.4	+2
b12	461.9928	462.1928	0.2	+3
b12	700.1855	692.7855	-7.4	+2
b18	632.6691	643.2691	10.6	+3
b19	698.2028	695.3028	-2.9	+3
b19	1046.251	1042.451	-3.8	+2
b23	1297.473	1284.073	-13.4	+2
b27	1040.362	1025.462	-14.9	+3
b28	1056.841	1049.141	-7.7	+3
b30	854.7299	838.1299	-16.6	+4
b31	866.8009	866.4009	-0.4	+4
b31	1145.066	1154.866	9.8	+3
b33	919.3196	920.4196	1.1	+4
b38	1075.429	1074.729	-0.7	+4
b38	1432.436	1432.636	0.2	+3
b40	891.215	902.415	11.2	+5
b40	1132.567	1127.767	-4.8	+4
b40	1494.453	1503.353	8.9	+3
b41	1143.425	1149.525	6.1	+4
b42	1161.236	1178.036	16.8	+4
b45 -H2O	1019.17	1004.67	-14.5	+5
b45	1276.988	1260.088	-16.9	+4
b47	1035.681	1031.081	-4.6	+5
b48	1051.488	1045.288	-6.2	+5
b48	1293.658	1306.358	12.7	+4
b49	1065.998	1065.498	-0.5	+5
b50 -H2O	1082.705	1082.105	-0.6	+5
b51 -H2O	1087.319	1101.919	14.6	+5
b53	1159.033	1145.533	-13.5	+5
b55 -H2O	1163.455	1178.755	15.3	+5
b56	1181.165	1196.565	15.4	+5
y10	1177.117	1169.417	-7.7	+1

y17	902.8544	899.8544	-3	+2
y17	1796.602	1798.702	2.1	+1
y14	769.8971	763.2971	-6.6	+2
y14	1525.087	1525.587	0.5	+1
y5	634.245	633.245	-1	+1
y52	1319.441	1336.641	17.2	+4
y15	813.9017	814.8017	0.9	+2
y15	1641.596	1628.596	-13	+1
y23	1174.808	1171.008	-3.8	+2
y19	972.689	978.889	6.2	+2
y19	1959.971	1956.771	-3.2	+1
y2	253.67	236.07	-17.6	+1
y58	1187.573	1196.573	9	+5
y11	1237.754	1240.454	2.7	+1
y18	936.573	935.373	-1.2	+2
y8	965.276	979.376	14.1	+1
y40	983.079	988.479	5.4	+4
y20	1039.931	1035.431	-4.5	+2
y12	1310.186	1327.486	17.3	+1
y30	1008.437	1008.137	-0.3	+3
y30	1525.502	1511.702	-13.8	+2
y41	1344.147	1346.647	2.5	+3
y3	357.5129	350.1129	-7.4	+1