

Supporting Information

for

Development of a flow photochemical process for a π-Lewis acidic metal-catalyzed cyclization/radical addition sequence: in situ-generated 2-benzopyrylium as photoredox catalyst and reactive intermediate

Masahiro Terada, Zen Iwasaki, Ryohei Yazaki, Shigenobu Umemiya and Jun Kikuchi

Beilstein J. Org. Chem. 2024, 20, 1973–1980. doi:10.3762/bjoc.20.173

The exploratory investigation, experimental procedures, and characterization data

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ <u>licenses/by/4.0</u>). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (https://www.beilstein-journals.org/bjoc/terms)

Table of contents

1. General information	S2
2. Preparation of <i>ortho</i> -carbonyl alkynylbenzene derivatives 1	\$3
3. Typical procedures for the flow photochemical reaction	S8
4. Screening of reaction conditions	S9
5. Analytical data of products 3	S13
6. Catalytic cycles of the sequential transformation and theoretical studies	S20
7. References	S26

1. General information

Unless otherwise noted, all reactions were carried out under nitrogen or argon atmosphere in flame-dried glassware. Anhydrous 1,2-dichloroethane (C2H4Cl2) was purchased from Aldrich. Other solvents and reagents were purchased from commercial suppliers and used without further purification. The flow photo reactions were carried out in photo-microreactor system KeyChem-Basic series provided by YMC Co., Ltd. The syringe pump was a YSP-201 and the thermal control unit was a stand-alone Thermos Stage TS-C-R. The blue light source was HCK1012-01-002 (450 PF: $\lambda_{max} = 450$ nm) provided by HepatoChem, Inc. These were connected each other with tubing (YMC-P-0025, inner diameter 0.5 mm). The batch reactions performed for comparison were conducted using Techno Sigma-PER-AMPs ($\lambda_{max} = 448$ nm light source). Purification of products was carried out by flash column chromatography using silica gel 60 N (spherical, neutral, 40-50 µm; Kanto Chemical Co., Inc.). Analytical thin layer chromatography (TLC) was performed on Merck pre-coated TLC plates (silica gel 60 GF 254, 0.25 mm). ¹H NMR spectra were recorded on a JEOL ECA-600 (600 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane or solvent resonance as the internal standard (CHCl₃: 7.26 ppm, TMS: 0.00 ppm). ¹³C{¹H} NMR spectra were recorded on a JEOL ECA-600 (151 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard (CDCl₃: 77.0 ppm). NMR yields were determined using C₂H₂Br₄ as the internal standard. Infrared spectra were recorded on a Jasco FT/IR-4100 spectrometer. Mass spectral analysis using the APCI ionization method was performed on a Bruker Daltonics SolariX 12T spectrometer and the FD method was performed using a JEOL JMS-T100GC spectrometer at the Macromolecule Research Center, Graduate School of Science, Tohoku University.

2. Preparation of *ortho*-carbonyl alkynylbenzene derivatives **1** Preparation of **S3**

To an oven-dried three-neck flask with a magnetic stirrer bar were added $PdCl_2(PPh_3)_2$ (276.4 mg, 4 mol %) and CuI (75.7 mg, 4 mol %). The atmosphere was replaced with nitrogen, then 2-bromoacetophenone (**S1**, 1.85 g, 1.16 mL, 10 mmol), trimethylsilylacetylene (**S2**, 1.5 g, 2.1 mL, 15 mmol), and triethylamine (40 mL) were added to the mixture, and the reaction mixture was stirred for 18 hours at 80 °C (oil bath). The reaction was quenched with aq. NH4Cl. The resulting mixture was extracted with EtOAc, and the combined extracts were washed with H₂O and brine, dried over Na₂SO₄, and concentrated under reduced pressure after filtration. The crude product was used in the next reaction without further purification.

To the crude product was added KF (4.1g, 70 mmol) and MeOH (100 mL), and the reaction mixture was stirred for 2 h at room temperature. The reaction was quenched with water. The resulting mixture was extracted with EtOAc, and the combined extracts were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure after filtration. The residual crude product was purified by column chromatography on silica gel (hexane/EtOAc 30:1 to 20:1) to give the product **S3** as a red oil (959.1 mg, 74% yield).

Preparation of ortho-alkynylmethylketone 1

General procedure: To an oven-dried two-neck flask with a magnetic stirrer bar were added $PdCl_2(PPh_3)_2$ (4 mol %) and CuI (4 mol %). The atmosphere was replaced with nitrogen, then 2-ethynylacetophenone (**S3**, 1.5 mmol), iodobenzene derivative **S4** (1.25 mmol) and triethylamine (5 mL) were added to the mixture, and the reaction mixture was stirred overnight at room temperature. The reaction was quenched with aq. NH₄Cl. The resulting mixture was extracted with EtOAc, and the combined extracts were washed with aq. NH₄Cl, H₂O, and brine, dried over Na₂SO₄, and concentrated under reduced pressure after filtration. The residual crude product was purified by column chromatography on silica gel (hexane/EtOAc) to give product **1**.

1-(2-(Phenylethynyl)phenyl)ethan-1-one (**1a**)

98% yield; orange oil; hexane/EtOAc = 50:1 to 20:1 All spectroscopic data for **1a** (1 H NMR, $^{13}C{^{1}H}$ NMR, IR, and HRMS) were identical to the known compound.¹

96% yield; orange oil; hexane/EtOAc = 30:1 to 5:1All spectroscopic data for **1b** (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) were identical to the known compound.¹

1-(2-(*p*-Tolylethynyl)phenyl)ethan-1-one (**1c**)

82% yield; orange solid; hexane/EtOAc = 30:1 to 5:1All spectroscopic data for **1c** (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) were identical to the known compound.¹

1-(2-((4-Bromophenyl)ethynyl)phenyl)ethan-1-one (1d)

Br

86% yield; yellow solid; hexane/EtOAc = 30:1 to 10:1

All spectroscopic data for 1d (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) were identical to the known compound.²

1-(2-((4-(Trifluoromethyl)phenyl)ethynyl)phenyl)ethan-1-one (1e)

89% yield; orange oil; hexane/EtOAc = 25:1 to 10:1 All spectroscopic data for 1e (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) were identical to the known compound.¹ 1-(2-((3-Methoxyphenyl)ethynyl)phenyl)ethan-1-one (1f)

90% yield; orange oil; hexane/EtOAc = 25:1 to 10:1 All spectroscopic data for **1f** (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) were identical to the known compound.³

1-(2-(m-Tolylethynyl)phenyl)ethan-1-one (1g)

95% yield; yellow oil; hexane/EtOAc = 30:1 to 5:1All spectroscopic data for **1g** (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) were identical to the known compound.²

1-(2-((3-Bromophenyl)ethynyl)phenyl)ethan-1-one (1h)

88% yield; orange oil; hexane/EtOAc = 25:1 to 10:1All spectroscopic data for **1h** (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) were identical to the known compound.²

1-(2-((3-(Trifluoromethyl)phenyl)ethynyl)phenyl)ethan-1-one (1i)

ÇF₃

92% yield; orange oil; hexane/EtOAc = 25:1 to 5:1; $R_f = 0.4$ (hexane/EtOAc = 5/1); ¹H NMR (600 MHz, CDCl₃) δ 7.81 (s, 1H), 7.78 (dd, J = 8.3, 1.4 Hz, 1H), 7.73 (dd, J = 7.6 Hz, 1H), 7.65 (dd, J = 8.3, 1.4 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.52-7.48 (m, 2H), 7.44 (td, J = 7.6, 1.4 Hz, 1H), 2.76 (s, 3H); ¹³C {¹H} NMR (151MHz, CDCl₃) δ 199.8, 140.6, 134.7, 134.1, 131.4, 131.0 (q, $J_{C-F} = 31.8$ Hz), 129.0, 128.9, 128.7, 128.2 (q, $J_{C-F} = 3.9$ Hz), 125.2 (q, $J_{C-F} = 4.3$ Hz), 123.9, 123.6 (q, $J_{C-F} = 271.7$ Hz), 121.0, 92.9, 89.9, 29.6; IR (neat): 3065, 2981, 2916, 1688,

1489, 1430, 1336, 1165, 1122, 1091, 1071, 892, 803, 759, 695 cm⁻¹; HRMS (FD) *m/z*: [M]⁺ Calcd for C₁₇H₁₁F₃O 288.0757; Found 288.0761.

1-(2-(*o*-Tolylethynyl)phenyl)ethan-1-one (**1j**)

89% yield; yellow oil; hexane/EtOAc = 25:1 to 5:1; $R_f = 0.27$ (hexane/EtOAc = 15/1); ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, *J* = 7.9 Hz, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.51 (d, *J* = 7.9 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.31-7.27 (m, 2H), 7.20-7.17 (m, 1H), 2.78 (s, 3H), 2.54 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 200.3, 140.4, 140.3, 134.0, 131.9, 131.2, 129.6, 128.8, 128.6, 128.1, 125.6, 122.6, 121.9, 94.0, 92.1, 29.9, 20.7; IR (neat): 3060, 3021, 2921,

2861, 2209, 1922, 1830, 1686, 1591, 1561, 1488, 1356, 1278, 1244, 955, 795 cm⁻¹; HRMS (APCI) *m*/*z*: [M + H]⁺ Calcd for C₁₇H₁₅O 235.1117; Found 235.1118.

1-(4-Fluoro-2-(phenylethynyl)phenyl)ethan-1-one (1k)

78% yield; yellow oil; hexane/EtOAc = 25:1 to 10:1 All spectroscopic data for 1k (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) were identical to the known compound.⁴

1-(5-Fluoro-2-(phenylethynyl)phenyl)ethan-1-one (11)

80% yield; yellow oil; hexane/EtOAc = 25:1 to 10:1 All spectroscopic data for **11** (1 H NMR, $^{13}C{^{1}H}$ NMR, IR, and HRMS) were identical to the known compound.⁵

Phenyl(2-(phenylethynyl)phenyl)methanone~(1m)

92% yield; yellow oil; hexane/EtOAc = 30:1 to 5:1

All spectroscopic data for 1m (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) were identical to the known compound.⁶

2-(Phenylethynyl)benzaldehyde (1n)

58% yield; yellow oil; hexane/EtOAc = 30:1 to 5:1All spectroscopic data for **1n** (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) were identical to the known compound.⁷

2-(*p*-Tolylethynyl)benzaldehyde (10)

70% yield; yellow solid; hexane/EtOAc = 25:1 to 10:1All spectroscopic data for **1o** (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) were identical to the known compound.⁸

2-((4-Bromophenyl)ethynyl)benzaldehyde (1p)

Br

82% yield; white solid; hexane/EtOAc = 25:1 to 10:1 All spectroscopic data for $1p(^{1}HNMR, ^{13}C\{^{1}H\}NMR, IR, and HRMS)$ were identical to the known compound. ⁹

2-((4-(Trifluoromethyl)phenyl)ethynyl)benzaldehyde (1q)

 CF_3

65% yield; white solid; hexane/EtOAc = 25:1 to 10:1 All spectroscopic data for 1q (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) were identical to the known compound.⁸

2-(o-Tolylethynyl)benzaldehyde (1r)

76% yield; yellow solid; hexane/EtOAc = 25:1 to 5:1; $R_f = 0.33$ (hexane/EtOAc = 15/1) ; Mp: 42.1-42.5 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.68 (s, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.28 (m, 2H), 7.21 (t, J = 7.6 Hz, 1H), 2.54 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.6, 140.3, 135.6, 133.8, 133.3, 132.1, 129.6, 129.1, 128.5, 127.2, 127.1, 125.7, 122.1, 95.3, 88.7, 20.9; IR (neat): 3064,

2921, 2839, 2745, 2212, 1868, 1698, 1593, 1490, 1265, 1193, 795, 760 cm⁻¹; HRMS (APCI) *m/z*: [M + H]⁺ Calcd for C₁₆H₁₃O 221.0961; Found 221.0961.

3. Typical procedures for the flow photochemical reaction General procedure

To a dried two-neck flask were added AgNTf₂ (9.7 mg, 5 mol %) and (4-CF₃C₆H₄)₃P (5.9 mg, 2.5 mol%). Then, 1,2-dichloroethane (4.6 mL), benzyltrimethylsilane (**2a**, 690 μ L, 5 mmol), and TFA (190 μ L, 2.5 mmol) were added to the mixture. The resulting mixture was filled into syringe B. On the other hand, the solution of *ortho*-carbonyl alkynylbenzene derivative **1** (0.5 mmol) in 1,2-dichloroethane (5.4 mL) was filled into syringe A. Each syringe was set into a syringe pump and the flow rate of each syringe pump was set to half the flow rate in the reactor. This was due to achieve the indicated flow rate in the reactor. A light source (blue LED: $\lambda_{max} = 450$ nm) was placed at the top of the flow reactor. Before starting the flow reaction, the flow reactor was filled with 1,2-dichloroethane solvent and then the flow reaction started under light irradiation. The solution discharged from the flow reactor was immediately quenched with NaHCO₃ solution (see Figures S1 and S2). After pumping the solution in the syringe, all the remaining solution was discharged, the collected mixture was separated from the aqueous layer, the aqueous layer was extracted with dichloromethane, and the combined organic layers were concentrated under reduced pressure. The residual crude product **3**.

Figure S1. Flow system with premixing zone.

Figure S2. Photo of flow system with premixing zone.

4. Screening of reaction conditions

Since it is necessary to perform a π -Lewis acidic metal-catalyzed cyclization prior to the photoreaction, a method of separating the substrate, catalyst, and reagents into two syringes and mixing them before light irradiation was adopted. As shown in Table S1, several combinations were examined and the yield of **3a** was slightly lower when substrate **1a** and the silver catalyst were filled in the same syringe (entries 4 and 5) compared to the case where the substrate **1a** and the silver catalyst were filled in different syringes (entries 1–3). From these results, we decided to divide the substrate **1a** into syringe A and the others, i.e., the silver catalyst, phosphine ligand, **2a**, and TFA into syringe B, as shown in entry 1.

Table S1. Searching for the suitable combination of 1a, 2a, silver catalyst, phosphine ligand, and TFA when splitting into two syringes.

^aDetermined by ¹H NMR analysis using 1,1,2,2-tetrabromoethane as an internal standard.

Entry	AgNTf ₂	(CF ₃ C ₆ H ₄) ₃ P	Temp.	Conc.	Flow rate	Premixing	3 a	Rec. 1a	Table 1
	(X mol %)	(Y mol %)	(°C)	(Z, M)	R (mL/h)	zone (mL)	(%) ^a	(%) ^a	entry
1	10	20	50	0.1	3	none	42	0	entry 1
2	10	20	25	0.1	3	none	35	22	entry 2
3	10	5	25	0.1	3	none	53	1	entry 3
4	10	5	25	0.1	6	none	53	0	
5	10	5	25	0.1	24	none	53	0	entry 4
6	10	5	25	0.05	24	none	55	5	
7	5	2.5	25	0.1	24	none	26	14	entry 6
8	10	5	25	0.1	24	0.7	52	9	entry 5
9	10	5	25	0.1	6	0.7	52	1	
10	10	5	25	0.1	2	0.7	42	0	
11	5	2.5	25	0.1	24	0.7	49	0	entry 7
12	5	2.5	25	0.05	24	0.7	61	0	entry 8
13	2	1	25	0.05	24	0.7	28	28	entry 9
14	5	2.5	25	0.05	12	0.7	67	1	
15	5	2.5	25	0.05	6	0.7	57	2	
16 ^b	5	2.5	25	0.05	24	0.7	77	0	entry 10
17°	5	2.5	25	0.05	24	0.7	75	0	
18 ^b	5	2.5	25	0.05	24	none	62	3	
19 ^b	5	2.5	25	0.05	24	1.1	73	0	
20 ^b	5	2.5	25	0.05	24	2.2	67	0	
21 ^b	5	2.5	25	0.05	96	1.1	36	0	

^aYield was determined by NMR analysis using 1,1,2,2-tetrabromoethane as an internal standard. ^bThe reaction was conducted on 0.5 mmol scale. ^cThe reaction was conducted on 1.0 mmol scale.

Table S3. Screening of reaction conditions in the reaction of 1b (*p*-OMe substrate).

1b 0.5 mmol

Syringe A: R/2 mL/h (**1b** in 1,2-DCE) Syringe B: R/2 mL/h (the others in 1,2-DCE)

Entry	Entry T (°C) Flow rate		Premixing zone	Premixing time (min)	Irradiation time (min)	3b (%) ^a	Table 2 entry
1	25	24 mL/h	0.7 mL	1.7	2.5	14	entry 1
2	25	48 mL/h	1.4 mL	1.7	1.3	12	
3	25	96 mL/h	1.4 mL	0.8	0.6	23	
4	0	24 mL/h	0.7 mL	1.7	2.5	19	
5	0	12 mL/h	0.7 mL	3.3	5	16	
6	25	12 mL/h	0.7 mL	3.3	5	27	
7	50	12 mL/h	0.7 mL	3.3	5	28	
8	25	12 mL/h	1.1 mL	5.5	5	37	
9	25	24 mL/h	2.2 mL	5.5	2.5	20	
10	25	12 mL/h	2.2 mL	11	5	42	
11	25	6 mL/h	1.1 mL	11	10	54	entry 2
12	25	3 mL/h	1.1 mL	22	20	44	
13	25	12 mL/h	4.4 mL	22	5	40	

^a Determined by ¹H NMR analysis using 1,1,2,2-tetrabromoethane as an internal standard. Substrate **1b** was completely consumed in all cases.

Entry	$T_1(^{\circ}C)$	T_2 (°C)	Flow rate	Premixing zone	Premixing time (min)	Irradiation time (min)	3m ^a	1m ^a	4m ^a	5 ^a	Table 3 entry
1	rt	25	24 mL/h	10 m (2.2 mL)	1.7	2.5	7%	29%	0%	4%	entry 1
2	rt	25	24 mL/h	10 m (2.2 mL)	5.5	2.5	10%	23%	11%	2%	
3	rt	25	12 mL/h	5 m (1.1 mL)	5.5	5	5%	14%	0%	5%	
4	rt	5	12 mL/h	5 m (1.1 mL)	5.5	5	4%	19%	4%	6%	
5	50	25	24 mL/h	10 m (2.2 mL)	5.5	2.5	17%	0%	62%	0%	
6	35	25	24 mL/h	10 m (2.2 mL)	5.5	2.5	14%	0%	46%	1%	
7	50	25	6 mL/h	2.5 m (0.5 mL)	5.5	10	19%	0%	2%	7%	entry 2

^a Determined by ¹H NMR analysis using 1,1,2,2-tetrabromoethane as an internal standard.

5. Analytical data of products 3

1-Benzyl-1-methyl-3-phenyl-1*H*-isochromene (3a)

134.5₉, 131.1, 130.6, 128.6, 128.2, 127.7, 127.5, 126.3₁, 126.2₆, 125.0, 124.1, 123.7, 100.1, 80.8, 44.9, 24.4; IR (neat): 3061, 3028, 2980, 2922, 1723, 1698, 1495, 1452, 1272, 1235, 1089, 761, 700 cm⁻¹; HRMS (FD) *m*/*z*: [M]⁺ Calcd for C₂₃H₂₀O 312.1509; Found 312.1513.

1-Benzyl-3-(4-methoxyphenyl)-1-methyl-1*H*-isochromene (**3b**)

54% yield; White foam; $R_f = 0.57$ (Hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.65 (dd, J = 6.9, 2.1 Hz, 2H), 7.21-7.18 (m, 4H), 7.10-7.07 (m, 2H), 6.96 (dd, J = 7.6, 1.7 Hz, 2H), 6.92-6.90 (m, 3H), 6.36 (s, 1H), 3.85 (s, 3H), 3.22 (d, J = 13.4 Hz, 1H), 3.08 (d, J = 13.4 Hz, 1H), 1.70 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 160.1, 150.4, 136.6, 134.4,

131.1, 130.9, 127.6, 127.5, 127.2, 126.5, 126.2, 125.9, 123.8, 123.6, 113.6, 98.5, 80.7, 55.3, 44.7, 24.3; IR (neat): 3061, 3026, 2934, 2835, 1509, 1248, 1173, 1055, 1028, 932, 833, 700 cm⁻¹; HRMS (FD) *m*/*z*: [M]⁺ Calcd for C₂₄H₂₂O₂ 342.1614; Found 342.1619.

1-Benzyl-1-methyl-3-(*p*-tolyl)-1*H*-isochromene (**3c**)

76% yield; Colorless oil; $R_f = 0.53$ (Hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, J = 8.2 Hz, 2H), 7.23-7.16 (m, 6H), 7.10-7.07 (m, 2H), 6.96 (d, J = 6.9 Hz, 2H), 6.90 (d, J = 7.6 Hz, 1H), 6.42 (s, 1H), 3.22 (d, J = 13.8 Hz, 1H), 3.10 (d, J = 13.8 Hz, 1H), 2.38 (s, 3H), 1.70 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 150.7, 138.6, 136.6, 134.6, 131.8, 131.1,

130.8, 128.9, 127.6, 127.5, 126.2, 126.1, 125.0, 124.0, 123.7, 99.3, 80.7, 44.8, 24.4, 21.3; IR (neat): 3061, 3027, 2981, 2919, 1452, 1273, 1082, 1057, 803, 748, 699 cm⁻¹; HRMS (FD) *m/z*: [M]⁺ Calcd for C₂₄H₂₂O 326.1665; Found 326.1670.

1-Benzyl-3-(4-bromophenyl)-1-methyl-1*H*-isochromene (**3d**)

57% yield; White foam; $R_f = 0.63$ (Hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 8.6 Hz, 2H), 7.24-7.16 (m, 4H), 7.15-7.10 (m, 2H), 6.95-6.93 (m, 3H), 6.45 (s, 1H), 3.21 (d, J = 13.8 Hz, 1H), 3.05 (d, J = 13.8 Hz, 1H), 1.70 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 149.5, 136.3, 134.7, 133.5, 131.3, 131.0, 130.3, 127.8, 127.6, 126.7,

126.5, 126.3, 124.3, 123.7, 122.6, 100.5, 80.9, 45.0, 24.4; IR (neat): 3062, 3026, 2983, 1629, 1486, 1451, 1398, 1054, 1005, 805, 746, 700 cm⁻¹; HRMS (FD) *m/z*: [M]⁺ Calcd for C₂₃H₁₉BrO 390.0614; Found 390.0618.

1-Benzyl-1-methyl-3-(4-(trifluoromethyl)phenyl)-1*H*-isochromene (**3e**)

77% yield; Colorless oil; $R_f = 0.57$ (Hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.6 Hz, 2H), 7.24 (td, J = 7.7, 1.4 Hz, 1H), 7.22-7.12 (m, 5H), 6.96 (d, J = 7.6 Hz, 1H), 6.94 (d, J = 6.9 Hz, 2H), 6.53 (s, 1H), 3.22 (d, J = 13.8 Hz, 1H), 3.08 (d, J = 13.8 Hz, 1H), 1.72 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 149.0, 138.0, 136.3, 134.9, 131.0, 130.1 (q, $J_{C-F} = 31.8$ Hz), 130.0, 127.8, 127.6, 127.1, 126.4,

125.2 (q, $J_{C-F} = 4.3 \text{ Hz}$), 125.1 (q, $J_{C-F} = 271.5 \text{ Hz}$) 125.0, 124.6, 123.7, 101.9, 81.1, 45.1, 24.5; IR (neat): 3063, 3028, 2983, 1733, 1615, 1453, 1411, 1321, 1164, 1110, 1014, 851, 807, 750, 700 cm⁻¹; HRMS (FD) m/z: [M]⁺ Calcd for C₂₄H₁₉F₃O 380.1383; Found 380.1387.

1-Benzyl-3-(3-methoxyphenyl)-1-methyl-1*H*-isochromene (3f)

39% yield; Colorless oil; $R_f = 0.57$ (Hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.33 (dt, J = 7.8, 1.3 Hz, 1H), 7.29 (t, J = 7.9 Hz, 1H), 7.24-7.17 (m, 5H), 7.12-7.10 (m, 2H), 6.99-6.97 (m, 2H), 6.92 (d, J = 7.9 Hz, 1H), 6.89 (m, 1H), 6.46 (s, 1H), 3.82 (s, 3H), 3.23 (d, J = 13.4 Hz, 1H), 3.11 (d, J = 13.4 Hz, 1H), 1.69 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 159.6, 150.3, 136.5, 136.1, 134.8, 131.1, 130.6, 129.1, 127.7, 127.6, 126.4, 126.3, 124.2, 123.6, 117.5, 114.4, 110.3, 100.4, 80.8, 55.3, 44.8, 24.4; IR (neat): 3064,3030, 2937, 2834,

1748,1670,1647, 1630, 1604, 1542, 1508, 1489, 1452, 1429, 1322, 1229, 1171, 1061, 784, 719, 671, 658 cm⁻¹; HRMS (APCI) *m*/*z*: [M + H]⁺ Calcd for C₂₄H₂₃O 343.1693; Found 343.1693.

1-Benzyl-1-methyl-3-(*m*-tolyl)-1*H*-isochromene (**3g**)

75% yield; Colorless oil; $R_f = 0.49$ (Hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.53 (d, J = 7.6 Hz, 1H), 7.52 (s, 1H), 7.27 (t, J = 7.6 Hz, 1H), 7.23-7.15 (m, 5H), 7.12-7.09 (m, 2H), 6.97 (d, J = 6.5 Hz, 2H), 6.91 (d, J = 7.6 Hz, 1H), 6.46 (s, 1H), 3.22 (d, J = 13.8 Hz, 1H), 3.11 (d, J = 13.8 Hz, 1H), 2.38 (s, 3H), 1.71 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 150.6, 137.8, 136.6, 134.7, 134.5, 131.1, 130.7, 129.4, 128.1, 127.7, 127.5, 126.3, 126.2, 125.7, 124.1, 123.7, 122.2, 100.0, 80.7, 44.8, 24.4, 21.5; IR (neat): 3058, 3026, 2998,

2988, 2938, 2910, 1600, 1485, 1454, 1080, 1061, 1032, 808, 782, 767, 748, 716, 700, 691 cm⁻¹; HRMS (FD) *m/z*: [M]⁺ Calcd for C₂₄H₂₂O 326.1665; Found 326.1670.

1-Benzyl-3-(3-bromophenyl)-1-methyl-1*H*-isochromene (**3h**)

68% yield; Yellow oil; $R_f = 0.57$ (Hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.83 (t, J = 1.9 Hz, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.45 (m, 1H), 7.25-7.17 (m, 5H), 7.15-7.11 (m, 2H), 6.96-6.93 (m, 3H), 6.46 (s, 1H), 3.21 (d, J = 13.7 Hz, 1H), 3.08 (d, J = 13.7 Hz, 1H), 1.71 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 149.0, 136.7, 136.3, 134.8, 131.4, 131.0, 130.2, 129.7, 128.0, 127.8, 127.6, 126.8, 126.4, 124.4, 123.7, 123.4, 122.6, 101.1, 81.0, 45.0, 24.4; IR (neat): 3062, 3027, 2981, 2917, 1557, 1485, 1474, 1452, 1240, 1079, 1058, 1031,

781, 746, 700, 685 cm⁻¹; HRMS (FD) *m/z*: [M]⁺ Calcd for C₂₃H₁₉BrO 390.0614; Found 390.0618.

1-Benzyl-1-methyl-3-(3-(trifluoromethyl)phenyl)-1*H*-isochromene (3i)

65% yield; Colorless oil; R_f = 0.56 (Hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.92 (s, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.25-7.14 (m, 6H), 6.98-6.96 (m, 3H), 6.53 (s, 1H), 3.25 (d, J = 13.7 Hz, 1H), 3.07 (d, J = 13.7 Hz, 1H), 1.72 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 149.0, 136.2, 135.4, 135.0, 131.0, 130.7 (q, J_{C-F} = 31.8 Hz), 130.0, 128.6, 127.9, 127.8, 127.6, 127.0, 126.4, 125.0 (q, J_{C-F} = 4.3 Hz), 124.5, 124.1

(q, $J_{C-F} = 271.7 \text{ Hz}$), 123.7, 121.8 (q, $J_{C-F} = 4.3 \text{ Hz}$), 101.2, 81.1, 45.1, 24.4; IR (neat): 3064, 3028, 2984, 1487, 1450, 1333, 1164, 1121, 1072, 748, 722, 694 cm⁻¹; HRMS (FD) m/z: [M]⁺ Calcd for C₂₄H₁₉F₃O 380.1384; Found 380.1387.

1-Benzyl-1-methyl-3-(*o*-tolyl)-1*H*-isochromene (**3j**)

76% yield; Colorless oil; R_f = 0.53 (Hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.47-7.45 (m, 1H), 7.25-7.19 (m, 4H), 7.17-7.11 (m, 3H), 7.06-7.03 (m, 2H), 6.88-6.86 (m, 2H), 6.76 (d, J = 7.6 Hz, 1H), 5.95 (s, 1H), 3.40 (d, J = 13.4 Hz, 1H), 3.15 (d, J = 13.4 Hz, 1H), 2.46 (s, 3H), 1.71 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 152.8, 136.7, 136.4, 135.5, 133.2, 130.9, 130.8, 130.8, 128.7, 128.4,

127.7, 127.5, 126.2, 126.0, 125.6, 124.1, 123.7, 103.8, 81.5, 45.1, 25.0, 21.1; IR (neat): 3060, 3023, 2979, 2926, 1720, 1701,1633,1601, 1486, 1453, 1341, 1249, 1158, 1118, 1056, 1034, 759, 723 cm⁻¹; HRMS (APCI) *m*/*z*: [M + H]⁺ Calcd for C₂₄H₂₃O 327.1743; Found 327.1743.

1-Benzyl-6-fluoro-1-methyl-3-phenyl-1*H*-isochromene (3k)

79% yield; White foam; $R_f = 0.56$ (Hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.72-7.71 (m, 2H), 7.40-7.36 (m, 3H), 7.20-7.16 (m, 3H), 6.92 (d, J = 6.5 Hz, 2H), 6.81-6.75 (m, 3H), 6.39 (s, 1H), 3.18-3.13 (m, 2H), 1.71 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 162.4 (d, $J_{C-F} = 244.3$ Hz), 151.8, 136.3, 134.2, 132.9 (d, $J_{C-F} = 8.6$ Hz), 131.0, 130.0, 129.0, 128.3, 127.6, 126.4, 125.5

(d, $J_{C-F} = 8.6 \text{ Hz}$), 125.2, 112.5 (d, $J_{C-F} = 21.7 \text{ Hz}$), 110.4 (d, $J_{C-F} = 21.7 \text{ Hz}$), 99.4, 81.0, 44.9, 24.7; IR (neat): 3086, 3061, 3030, 2983, 2937, 1726, 1633, 1607, 1582, 1491, 1450, 1344, 1227, 1146, 1059, 964, 863, 760 cm⁻¹; HRMS (APCI) m/z: [M + H]⁺ Calcd for C₂₃H₂₀FO 331.1493; Found 331.1493.

1-Benzyl-7-fluoro-1-methyl-3-phenyl-1*H*-isochromene (3l)

75% yield; White foam; $R_f = 0.56$ (Hexane/EtOAc = 10/1);¹H NMR (600 MHz, CDCl₃) δ 7.70 (m, 2H), 7.39-7.34 (m, 3H), 7.21-7.17 (m, 3H), 7.07 (dd, J = 8.2, 5.8 Hz, 1H), 6.96-6.91 (m, 3H), 6.63 (dd, J = 9.5, 2.6 Hz, 1H), 6.44 (s, 1H), 3.19 (d, J = 13.7 Hz, 1H), 3.10 (d, J = 13.7 Hz, 1H), 1.69 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 161.2 (d, $J_{C-F} = 244.3$ Hz), 149.8, 136.7 (d, J_{C-F} = 244.3 Hz), 149.8 (d, J_{C-F} =

7.2 Hz), 136.1, 134.4, 131.0, 128.7, 128.2, 127.7, 126.9 (d, $J_{C-F} = 3.0$ Hz), 126.5, 125.5 (d, $J_{C-F} = 8.6$ Hz), 124.9, 114.4 (d, $J_{C-F} = 21.7$ Hz), 111.3 (d, $J_{C-F} = 24.6$ Hz), 99.2, 80.5, 44.6, 24.3; IR (neat): 3086, 3061, 3030, 2984, 2937, 1948, 1879, 1633, 1607, 1583, 1496, 1449, 1346, 1271, 1061, 829, 761 cm⁻¹; HRMS (APCI) m/z: [M + H]⁺ Calcd for C₂₃H₂₀FO 331.1493; Found 331.1493.

1-Benzyl-1,3-diphenyl-1*H*-isochromene (**3m**)

19% yield; White solid; $R_f = 0.63$ (Hexane/EtOAc = 15/1); Mp: 155.4-156.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (dt, J = 6.8, 1.5 Hz, 2H), 7.50 (dd, J = 7.4, 1.5 Hz, 1H), 7.38-7.35 (m, 2H), 7.34-7.26 (m, 4H), 7.19-7.11 (m, 6H), 7.10-7.06 (m, 4H), 6.37 (s, 1H), 3.76 (d, J = 14.1 Hz, 1H), 3.69 (d, J = 14.1 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 151.0, 143.0, 136.2, 134.2, 133.1, 131.5, 131.3, 128.6, 128.3, 128.0, 127.5, 127.4, 127.2, 126.3, 126.2,

126.2, 124.8, 124.6, 101.1, 83.9, 46.6; IR (neat): 3061, 3029, 2923, 2851, 1735, 1653, 1633, 1066, 1495, 1454, 1346, 1065, 1027, 794, 764 cm⁻¹; HRMS (APCI) *m*/*z*: [M + H]⁺ Calcd for C₂₈H₂₃O 375.1743; Found 375.1744.

1-Benzyl-3-phenyl-1*H*-isochromene (**3n**)

72% yield; White solid; $R_f = 0.63$ (Hexane/EtOAc = 15/1); Mp: 103.9-104.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.60-7.58 (m, 2H), 7.34-7.27 (m, 6H), 7.24 (m, 2H), 7.17-7.11 (m, 4H), 6.91-6.89 (m, 1H), 6.49 (s, 1H), 5.52 (dd, J = 9.0, 5.2Hz, 1H), 3.31 (dd, J = 13.8, 9.0 Hz, 1H), 3.05 (dd, J = 13.8, 5.2 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 151.0, 137.5, 134.3, 130.8, 130.8, 129.8, 128.7, 128.2, 128.1, 126.4, 126.2, 125.1, 124.3, 124.0, 100.2, 79.1, 40.5; IR (neat): 3062, 3028,

2922, 2850, 1630, 1604, 1569, 1495, 1454, 1375, 1280, 1064, 1030, 795, 765 cm⁻¹; HRMS (APCI) m/z: [M + H]⁺ Calcd for C₂₂H₁₉O 299.1430; Found 299.1430.

1-Benzyl-3-(*p*-tolyl)-1*H*-isochromene (**30**)

82% yield; White solid; $R_f = 0.56$ (Hexane/EtOAc = 15/1); Mp: 122.2-123.2 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.48 (d, J = 7.9 Hz, 2H), 7.30-7.22 (m, 4H), 7.17-7.09 (m, 6H), 6.89 (d, J = 7.9 Hz, 1H), 6.44 (s, 1H), 5.49 (dd, J = 9.1, 5.3 Hz, 1H), 3.30 (dd, J = 14.0, 9.1 Hz, 1H), 3.04 (dd, J = 14.0, 5.3 Hz, 1H), 2.36 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 151.2, 138.7,

137.6, 131.5, 130.9, 130.8, 129.8, 128.9, 128.2, 128.0, 126.4, 126.0, 125.1, 124.2, 123.8, 99.4, 79.1, 40.4, 21.3; IR (neat): 3064, 3029, 2945, 2917, 1626, 1604, 1510, 1488, 1454, 1375, 1275, 1183, 1064, 800, 751 cm⁻¹; HRMS (APCI) *m*/*z*: [M + H]⁺ Calcd for C₂₃H₂₁O 313.1587; Found 313.1587.

1-Benzyl-3-(4-bromophenyl)-1*H*-isochromene (**3p**)

75% yield; White solid; $R_f = 0.67$ (Hexane/EtOAc = 15/1); Mp: 92.4-93.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.45-7.39 (m, 4H), 7.29-7.23 (m, 4H), 7.18-7.12 (m, 4H), 6.93 (t, J = 7.9 Hz, 1H), 6.46 (s, 1H), 5.50 (dd, J = dd, 9.3, 5.2 Hz, 1H), 3.27 (dd, J = 14.1, 9.3 Hz, 1H), 3.01 (dd, J = 14.1, 5.2 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 149.9, 137.3, 133.2, 131.3, 130.9,

130.4, 129.7, 128.2, 128.1, 126.6, 126.6, 126.5, 124.2, 124.1, 122.7, 100.6, 79.1, 40.5; IR (neat): 3060, 3028, 2945, 2916, 1726, 1627, 1602, 1587, 1560, 1488, 1454, 1401, 1270, 1179, 1070, 1008, 795, 752 cm⁻¹; HRMS (APCI) *m/z*: [M + H]⁺ Calcd for C₂₂H₁₈BrO 377.0536; Found 377.0536.

1-Benzyl-3-(4-(trifluoromethyl)phenyl)-1*H*-isochromene (**3q**)

63% yield; White solid; $R_f = 0.49$ (Hexane/EtOAc = 15/1) ; Mp:97.0-97.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.6 Hz, 2H), 7.30-7.25 (m, 4H), 7.19-7.14 (m, 4H), 6.95 (d, J = 7.6 Hz, 1H), 6.56 (s, 1H), 5.54 (dd, J = 9.3, 5.0 Hz, 1H), 3.28 (dd, J = 13.8, 9.3 Hz, 1H), 3.04 (dd, J = 13.8, 5.0 Hz, 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ

149.5, 137.7, 137.3, 131.0, 130.1₂, 130.1₀ (q, $J_{C-F} = 32.6$ Hz), 129.9, 129.7, 128.3, 128.2, 127.0, 126.5, 125.1, 124.4, 124.3, 124.1 (q, $J_{C-F} = 272.1$ Hz), 102.1, 79.2, 40.6; IR (neat): 3068, 3029, 2946, 2915, 1616, 1487, 1455, 1414, 1325, 1167, 1125, 1112, 1069, 1014, 853, 795, 752 cm⁻¹; HRMS (APCI) m/z: [M + H]⁺ Calcd for C₂₃H₁₈F₃O 367.1304; Found 367.1304.

1-Benzyl-3-(*o*-tolyl)-1*H*-isochromene (**3r**)

73% yield; White solid; $R_f = 0.40$ (Hexane/EtOAc = 15/1); Mp: 83.0- 84.5 °C ; ¹H NMR (600 MHz, CDCl₃) δ 7.38 (d, J = 7.2 Hz, 1H), 7.26-7.22 (m, 5H), 7.18-7.13 (m, 4H), 7.09 (dd, J = 12.7, 7.6 Hz, 2H), 6.82 (d, J = 7.6 Hz, 1H), 6.01 (s, 1H), 5.49-5.44 (m, 1H), 3.36-3.31 (m, 2H), 2.28 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 153.9, 137.5, 136.7, 135.1, 131.2, 130.7, 129.9, 129.7, 128.9,

128.6, 128.2, 128.0, 126.4, 126.1, 125.5, 124.2, 123.6, 104.4, 79.0, 39.9, 20.8. IR (neat): 3063, 3029, 2959, 2871, 1729, 1630, 1604, 1542, 1488, 1455, 1375, 1270, 1119, 1063, 795, 762 cm⁻¹; HRMS (APCI) *m/z*: [M + H]⁺ Calcd for C₂₃H₂₁O 313.1587; Found 313.1587.

1-Methyl-3-phenyl-1-(4-(trifluoromethyl)benzyl)-1*H*-isochromene (3s)

50% yield; White foam; $R_f = 0.66$ (Hexane/EtOAc = 5/1); ¹H NMR (600 MHz, CDCl₃) δ 7.70-7.68 (m, 2H), 7.42-7.34 (m, 5H), 7.25-7.23 (m, 1H), 7.14-7.11 (m, 2H), 7.06 (d, J = 7.9 Hz, 2H), 6.93 (d, J = 7.2 Hz, 1H), 6.46 (s, 1H), 3.29 (d, J = 13.4 Hz, 1H), 3.16 (d, J = 13.4 Hz, 1H), 1.71 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 150.4, 140.7, 134.4, 134.1, 131.3, 130.6, 128.8, 128.6 (q, $J_{C-F} = 30.0$ Hz), 128.3, 128.0, 126.5, 124.9, 124.5

 $(q, J_{C-F} = 4.4 \text{ Hz}), 124.34 (q, J_{C-F} = 270.0 \text{ Hz}), 124.33, 123.6, 100.2, 80.6, 44.8, 24.6; IR (neat): 3069, 3032, 2925, 2854, 1712, 1613, 1493, 1442, 1325, 1274, 1164, 1122, 1066, 1019, 849,793 cm⁻¹; HRMS (FD)$ *m/z*: [M + H]⁺ Calcd for C₂₄H₂₀F₃O 381.1461; Found 381.1461.

1-(4-Methoxybenzyl)-1-methyl-3-phenyl-1*H*-isochromene (3t)

78% yield; White foam; $R_f = 0.60$ (Hexane/EtOAc = 5/1); ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, J = 7.9 Hz, 2H), 7.39-7.34 (m, 3H), 7.22 (t, J = 7.4 Hz, 1H), 7.10 (t, J = 7.2 Hz, 2H), 6.88 (m, 3H), 6.71 (d, J = 8.2 Hz, 2H), 6.46 (s, 1H), 3.77 (s, 3H), 3.15 (d, J = 13.7 Hz, 1H), 3.06 (d, J = 13.7 Hz, 1H), 1.69 (s, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 158.1, 150.5, 134.7, 134.6, 132.0, 130.6, 128.6, 128.6, 128.2, 127.6, 126.3, 125.0,

124.1, 123.8, 113.0, 100.0, 80.9, 55.2, 43.9, 24.4; IR (neat): 3064, 3032, 2953, 2834, 1730, 1716, 1699, 1685, 1651, 1631, 1558, 1541, 1508, 1457, 1247, 795, 669, 656 cm⁻¹; HRMS (FD) m/z: [M + H]⁺ Calcd for C₂₄H₂₃O 343.1693; Found 343.1693.

6. Catalytic cycles of the sequential transformation and theoretical studies

Catalytic cycles of the sequential transformation

As shown in Figure S3, the reported reaction is composed of three catalytic cycles, namely, catalytic cycles I and II and a photoredox cycle of the photocatalyst, 2-benzopyrylium cation. Catalytic cycle I generates 2-benzopyrylium cations **A** in situ from *ortho*-carbonyl alkynylbenzene derivatives **1** through the activation of alkyne moiety of **1** by π -Lewis acidic metal catalyst ([M]X: AgNTf₂ or Cu(NTf₂)₂) followed by the intramolecular cyclization and the proto-demetalation by trifluoroacetic acid (TFA). In catalytic cycle II, photo-excitation of generated **A** under light irradiation facilitates the single-electron transfer (SET) from benzyltrimethylsilane derivatives **2** as a donor molecule, resulting in the formation of radical cations **B**. Further desilylation from generated radical cations **B** affords nucleophilic arylmethyl radicals **C** which undergo addition reaction with 2-benzopyrylium intermediates **A**, giving radical cations **E**. Further reduction of radical cations **E** by SET from radical intermediates **D**, a reduced form of the photocatalyst, gives rise to corresponding 1*H*-isochromene derivatives **3**, which completes the photoredox cycle with the regeneration of cations **A**. The most distinctive feature of this sequential transformation is that the in situ-generated 2-benzopyrylium cations **A** are used not only as the electrophilic substrate but also as the photoredox catalyst.

Figure S3. Plausible catalytic cycles

Theoretical studies of the sequential transformation

DFT calculation was conducted to determine the actual reaction pathway in the carbon–carbon bondformation step. All calculations were performed with the Gaussian 16 package (Revision B.01). Geometries were optimized and characterized using frequency calculations at the UM06-2X/6-31G(d,p) level. Gibbs free energies in the solution phase were calculated using single-point energy calculations at the UM06-2X/6-311+G(d,p) level according to the SMD solvation model (dichloroethane: $\varepsilon = 10.125$) for the optimized structures.

First, we considered the radical addition pathway, of which mechanism was proposed in our previous paper.¹⁰ As shown in Figure S4, the energy profile for the radical addition of benzyl radical **C** to 2-benzopyrylium intermediate **A** was identified. The radical addition pathway exhibits an energy barrier of **TS-1** ($\Delta G^{\neq} = +10.4$ kcal/mol). On the other hand, as shown in Figure S5, the energy profile for the radical coupling of radical **D**, generated by a single electron reduction of 2-benzopyrylium, with benzyl radical **C** exhibited the energy barrier of **TS-2** ($\Delta G^{\neq} = +30.6$ kcal/mol) which is much larger than that of **TS-1** ($\Delta G^{\neq} = +10.4$ kcal/mol). These results strongly suggest that the radical addition (Figure S4) is plausible for the present reaction and the radical coupling (Figure S5) is unfavorable. In addition, the addition of benzyl radical **C** to 2-benzopyrylium intermediate **A** through **TS-1** generates benzylated radical cation **E** (Figure S4). As shown in Figure S6, SET from radical **D** to radical cation **E** gives product **3a** along with the generation of 2-benzopyrylium **A**. The process is exergonic by 37.8 kcal/mol and therefore thermodynamically favorable. From the above theoretical studies, we proposed a mechanism for the present radical addition pathway (Figures S3 and S4).

Figure S4. Radical addition pathway

Figure S5. Radical coupling pathway

Figure S6. Electron transfer process

Cartesian coordinates

MUM062X/6-31g(d,p) E(UM062X) = -692.249135 hartree Zero-point Energy Correction = 0.246496 hartree Thermal Correction to Energy = 0.259762 hartree Thermal correction to Enthalpy = 0.260706 hartree Thermal correction to Gibbs Free Energy = 0.205908 hartree Sum of electronic and Zero-point Energies = -692.002639 hartree Sum of electronic and thermal Energies = -691.989373 hartree Sum of electronic and thermal Enthalpies = -691.988429 hartree Sum of electronic and thermal Free Energies = -692.043227 hartree SMD(dichloroethane)/UM062X/6-311+g(d,p) E(UM062X) = -692.482580 hartree

Gibbs Free Energy in dichloroethane = -692.276672 hartree The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	6	0	0.275079	-1.152061	-0.096002		
2	6	0	1.671383	-0.918174	-0.071426		
3	6	0	-0.601271	-0.110987	-0.002292		
4	6	0	2.620682	-1.961602	-0.161263		
5	6	0	2.138855	0.427582	0.037051		
6	6	0	3.961686	-1.667049	-0.136306		
7	1	0	2.276817	-2.986668	-0.247302		
8	6	0	3.535815	0.705292	0.059989		
9	6	0	4.425954	-0.328888	-0.024380		
10	1	0	3.883787	1.729000	0.143591		
11	1	0	4.687192	-2.471067	-0.203468		
12	1	0	5.492045	-0.134286	-0.007743		
13	1	0	-0.105633	-2.159254	-0.212107		
14	8	0	-0.097149	1.152760	0.092033		
15	6	0	1.183441	1.445043	0.109624		
16	6	0	-2.061247	-0.158393	-0.000889		
17	6	0	-2.716275	-1.350899	0.336712		
18	6	0	-2.809656	0.976060	-0.343027		
19	6	0	-4.102407	-1.407736	0.320228		
20	1	0	-2.148830	-2.224246	0.641501		
21	6	0	-4.196067	0.909587	-0.358248		
22	1	0	-2.308286	1.899951	-0.608801		
23	6	0	-4.843334	-0.279860	-0.029350		
24	1	0	-4.606086	-2.329040	0.590056		
25	1	0	-4.772977	1.786168	-0.630622		
26	1	0	-5.926834	-0.327136	-0.040792		
27	6	0	1.464313	2.903135	0.213066		
28	1	0	2.058860	3.109421	1.107425		
29	1	0	2.035659	3.239509	-0.656793		
30	1	0	0.529768	3.459277	0.267887		

С

UM062X/6-31g(d,p)

E(UM062X) = -270.788424 hartree

E(UMO62X) = -270.788424 hartree Zero-point Energy Correction = 0.115638 hartree Thermal Correction to Energy = 0.121302 hartree Thermal correction to Enthalpy = 0.122246 hartree Thermal correction to Gibbs Free Energy = 0.085981 hartree Sum of electronic and Zero-point Energies = -270.672786 hartree Sum of electronic and thermal Energies = -270.667122 hartree Sum of electronic and thermal Enthalpies = -270.666178 hartree Sum of electronic and thermal Enthalpies = -270.702443 hartree Sum of electronic and thermal Free Energies = -270.702443 hartree SMD(dichloroethane)/UM062X/6-311+g(d,p) E(UM062X) = -270.862174 hartree Gibbs Free Energy in dichloroethane = -270.776193 hartree The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coordinates (Angstroms)					
Number	Number	Туре	Х	Y	Z			
1	6	0	1.834112	0.000000	-0.000010			
2	6	0	1.131214	1.207826	-0.000005			
3	6	0	-0.252233	1.213017	0.000003			
4	6	0	-0.987558	0.000000	0.000005			
5	6	0	-0.252233	-1.213017	0.000000			
6	6	0	1.131214	-1.207826	-0.000008			
7	1	0	2.918811	0.000000	-0.000016			
8	1	0	1.672824	2.148491	-0.000006			
9	1	0	-0.795455	2.153811	0.000007			
10	1	0	-0.795455	-2.153811	0.000002			
11	1	0	1.672824	-2.148491	-0.000012			
12	6	0	-2.398224	0.000000	0.000013			
13	1	0	-2.955650	0.928245	0.000017			
14	1	0	-2.955650	-0.928245	0.000015			

D

UM062X/6-31g(d,p)

E (UMO62X) = -692.440925 hartree Zero-point Energy Correction = 0.243583 hartree

Thermal Correction to Energy = 0.257277 hartree Thermal correction to Enthalpy = 0.258221 hartree Thermal correction to Gibbs Free Energy = 0.201341 hartree Sum of electronic and Zero-point Energies = -692.183648 hartree Sum of electronic and thermal Enthalpies = -692.183704 hartree Sum of electronic and thermal Free Energies= -692.239584 hartree SMD(dichloroethane)/UM062X/6-311+g(d,p) GUMOGIN) = -692.622321 hartree Gibbs Free Energy in dichloroethane = -692.420980 hartree The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	6	6 0 0		-1.120418	-0.079036		
2	6	0	1.688747	-0.918772	-0.065115		
3	6	0	-0.593197	-0.080531	0.016335		
4	6	0	2.607768	-1.959056	-0.151710		
5	6	0	2.144695	0.434165	0.033513		
6	6	0	3.977899	-1.704335	-0.141186		
7	1	0	2.240307	-2.978902	-0.227951		
8	6	0	3.545938	0.673613	0.039080		
9	6	0	4.433241	-0.382350	-0.045579		
10	1	0	3.914837	1.691635	0.108165		
11	1	0	4.686093	-2.522423	-0.207842		
12	1	0	5.500219	-0.181914	-0.039549		
13	1	0	-0.139793	-2.122109	-0.191973		
14	8	0	-0.141987	1.207511	0.108420		
15	6	0	1.207946	1.466383	0.113922		
16	6	0	-2.064431	-0.157096	0.008463		
17	6	0	-2.723653	-1.345523	0.346071		
18	6	0	-2.824935	0.964778	-0.340156		
19	6	0	-4.110004	-1.416119	0.310899		
20	1	0	-2.149637	-2.210545	0.661821		
21	6	0	-4.213124	0.890507	-0.370883		
22	1	0	-2.319034	1.889702	-0.591414		
23	6	0	-4.860748	-0.298941	-0.050008		
24	1	0	-4.607081	-2.342680	0.579015		
25	1	0	-4.790720	1.766394	-0.648138		
26	1	0	-5.944135	-0.354376	-0.072427		
27	6	0	1.518603	2.920246	0.214583		
28	1	0	2.165276	3.133352	1.073146		
29	1	0	2.032253	3.289740	-0.681054		
30	1	0	0.591986	3. 482741	0.335680		

Int-A

INT-A UM062X/6-31g(d, p) E(UM062X) = -963.058270 hartree Zero-point Energy Correction = 0.363392 hartree Thermal Correction to Energy = 0.383945 hartree Thermal correction to Enthalpy = $0.\,384889$ hartree Thermal correction to Gibbs Free Energy = $0.\,312237$ hartree Thermal correction to Gibbs Free Energy = 0.312237 hartree Sum of electronic and Zero-point Energies = -962.694878 hartree Sum of electronic and thermal Energies = -962.674324 hartree Sum of electronic and thermal Free Energies = -962.746033 hartree Sum (dichoroethane)/UM062X/6-311+g(d,p) E(UM062X) = -963.357675 hartree Gibbs Free Energy in dichloroethane = -963.045438 hartree The archer of Larcience formations = -963.045438 hartree

The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	6	0	-1.014316	1. 479834	-0.231631		
2	6	0	0.335332	1.642572	0.177107		
3	6	0	-1.770387	0.464439	0.270506		
4	6	0	1.156883	2.688450	-0.295237		
5	6	0	0.887491	0.692467	1.085042		
6	6	0	2.464498	2.770037	0.122710		
7	1	0	0.744705	3.419902	-0.982200		
8	6	0	2.246511	0.788720	1.489357		
9	6	0	3.016867	1.816237	1.013656		
10	1	0	2.666271	0.051146	2.163938		
11	1	0	3.091971	3.577709	-0.240157		
12	1	0	4.055917	1.900123	1.310467		
13	1	0	-1.448242	2.152953	-0.961073		
14	8	0	-1.199467	-0.404007	1.152478		
15	6	0	0.062298	-0.351433	1.520844		
16	6	0	-3.166637	0.150626	-0.031817		
17	6	0	-4.020869	1.156855	-0.501302		
18	6	0	-3.648590	-1.154991	0.128628		
19	6	0	-5.338339	0.855164	-0.816762		
20	1	0	-3.667576	2.179214	-0.590369		
21	6	0	-4.967840	-1.448402	-0.189861		
22	1	0	-2.988775	-1.936824	0.489124		
23	6	0	-5.812430	-0.446645	-0.663955		
24	1	0	-5.999352	1.637985	-1.171303		
25	1	0	-5.337258	-2.460852	-0.071261		
26	1	0	-6.842890	-0.679135	-0.909834		
27	6	0	0.469360	-1.438363	2.449195		

28	1	0	1.383898	-1.909873	2.077074
29	1	0	0.678161	-1.027647	3.442167
30	1	0	-0.324142	-2.180199	2.529149
31	6	0	4.525197	-0.550855	-1.101858
32	6	0	3.499699	0.043854	-1.843783
33	6	0	2.208822	-0.449511	-1.772714
34	6	0	1.902818	-1.572191	-0.960111
35	6	0	2.960661	-2.162110	-0.218776
36	6	0	4.247634	-1.655278	-0.290823
37	1	0	5.537732	-0.167574	-1.168675
38	1	0	3.717892	0.892660	-2.484205
39	1	0	1.414263	0.007529	-2.357017
40	1	0	2.755255	-3.046378	0.380096
41	1	0	5.046687	-2.129986	0.269086
42	6	0	0.582973	-2.062400	-0.868305
43	1	0	-0.211746	-1.637428	-1.472418
44	1	0	0.357143	-2.953729	-0.293069

TS-1

UM062X/6-31g(d,p) E(UM062X) = -963.054559 hartree Zero-point Energy Correction = 0.364381 hartree Thermal Correction to Energy = 0.383836 hartree Thermal correction to Enthalpy = 0.384780 hartree Thermal correction to Gibbs Free Energy = 0.314630 hartree Sum of electronic and thermal Energies = -962.690179 hartree Sum of electronic and thermal Energies = -962.660779 hartree Sum of electronic and thermal Enthalpies = -962.669779 hartree Sum of electronic and thermal Free Energies = -962.739929 hartree Sum of electronic and thermal free Energies= -962. (39929 I SMD (dichloroethane)/UM062X/6-311+g(d,p) E(UM062X) = -963.350958 hartree Gibbs Free Energy in dichloroethane = -963.036328 hartree The number of Imaginary frequencies = 1

Center	Atomic	Atomic	ic Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	6	0	-1.306997	1. 525091	-0.383439		
2	6	0	0.024374	1.891389	-0.019985		
3	6	0	-1.889484	0.414928	0.144253		
4	6	0	0.631823	3.082824	-0.461475		
5	6	0	0.759790	1.010859	0.818634		
6	6	0	1.918453	3.386406	-0.067754		
7	1	0	0.073206	3.758058	-1.101273		
8	6	0	2.082431	1.330360	1.196170		
9	6	0	2.645517	2.511319	0.765670		
10	1	0	2.650168	0.651358	1.823126		
11	1	0	2.379170	4. 309795	-0.402148		
12	1	0	3.656357	2.767774	1.061922		
13	1	0	-1.870195	2. 142827	-1.072127		
14	8	0	-1.100049	-0.384973	0.978485		
15	6	0	0.143141	-0.217501	1.194594		
10	6	0	-3.257716	-0.061244	-0.071110		
17	6	0	-3 578711	-1 408546	-0.497079		
10	6	0	-5 541500	0.275942	-0.725405		
20	1	0	-4 024658	1 884812	-0.620586		
21	6	0	-4 872875	-1 856794	-0.091706		
22	1	0	-2.814350	-2.101916	0.470960		
23	6	0	-5.854166	-0.968322	-0.525784		
24	1	0	-6.308114	1.071091	-1.047668		
25	1	0	-5.116076	-2.901637	0.066082		
26	1	0	-6.864457	-1.321115	-0.702464		
27	6	0	0.666769	-1.126899	2.257838		
28	1	0	1.714483	-1.374281	2.079589		
29	1	0	0.585417	-0.628712	3.229969		
30	1	0	0.075730	-2.042848	2.287346		
31	6	0	4.990355	-1.298806	-0.771452		
32	6	0	4.239869	-0.300643	-1.398558		
33	6	0	2.856890	-0.353026	-1.367805		
34	6	0	2.193001	-1.419854	-0.714772		
35	6	0	2.972800	-2. 419218	-0.081164		
36	6	0	4.354470	-2.356236	-0.112089		
37	1	0	6.073958	-1.256825	-0.800093		
38	1	0	4.741208	0. 313228	-1.910874		
39 40	1	0	2.200190	-2 242719	1.040373		
40	1	0	4.471700	-3.248718	0.411020		
41	6	0	0 777818	-1 454156	-0 650796		
43	1	0	0.191203	-0. 801884	-1.293111		
44	1	0 0	0.276675	-2 339849	-0 270669		
* *	*		0.2.0010	2.000010	0.2.0000		

R	
UM062X/6-31g(d,	p)

E(UM062X) = -963.088013 hartree

Zero-point Energy Correction = 0.368010 hartree Thermal Correction to Energy = 0.387201 hartree

Thermal correction to Energy = 0.387201 martree Thermal correction to Enthalpy = 0.388145 hartree Thermal correction to Gibbs Free Energy = 0.318483 hartree Sum of electronic and Zero-point Energies = -962,720003 hartree Sum of electronic and thermal Energies = -962,700811 hartree

Sum of	electronic	and	thermal	Entha	alpies =	-962.6	99867 ha	artree
Sum of	electronic	and	thermal	Free	Energies	s= -962.	769530	hartree
ann / 11	1.1 .1) /***	100011/0		(1)			

Sum (dichloroethane) (MMC2X/6-311+g(d, p) E(UMO62X) = -963.384267 hartree Gibbs Free Energy in dichloroethane = -963.065784 hartree

The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-1.369477	1.491367	-0.399080
2	6	0	-0.073735	1.912146	-0.041720
3	6	0	-1.883120	0.275670	0.084534
4	6	0	0.376467	3.224565	-0.338142
5	6	0	0.773132	1.010929	0.662791
6	6	0	1.625638	3.633235	0.073618
7	1	0	-0.282812	3.899180	-0.875314
8	6	0	2.026627	1.439509	1.066536
9	6	0	2.447029	2.742101	0.780708
10	1	0	2.700750	0.763970	1.581092
11	1	0	1.973871	4.636570	-0.142675
12	1	0	3.431510	3.062936	1.104128
13	1	0	-2.000554	2.131345	-1.001904
14	8	0	-1.121556	-0.536923	0.775188
15	6	0	0.337511	-0.423136	0.811991
16	6	0	-3.256520	-0.162581	-0.096601
17	6	0	-4.249267	0.727306	-0.548208
18	6	0	-3.596773	-1.497944	0.189185
19	6	0	-5.550282	0.283706	-0.719121
20	1	0	-4.018965	1.769235	-0.739540
21	6	0	-4.899142	-1.933426	0.010251
22	1	0	-2.830951	-2.181132	0.536869
23	6	0	-5.875581	-1.045334	-0.444456
24	1	0	-6.314810	0.972275	-1.060007
25	1	0	-5.157904	-2.964703	0.221485
26	1	0	-6.895078	-1.389462	-0.582836
27	6	0	0.722453	-1.044160	2.145472
28	1	0	1.805691	-1.150143	2.214027
29	1	0	0.367271	-0.427833	2.973348
30	1	0	0.276147	-2.038171	2.221777
31	6	0	5.107620	-1.388310	-0.796755
32	6	0	4.370063	-0.418171	-1.471603
33	6	0	2.984659	-0.387757	-1.348980
34	6	0	2.319490	-1.326171	-0.554214
35	6	0	3.068022	-2.303576	0.107865
36	6	0	4.454723	-2.333029	-0.008854
37	1	0	6.187552	-1.415656	-0.894576
38	1	0	4.873341	0.309222	-2.099710
39	1	0	2.410430	0.368991	-1.879369
40	1	0	2.560359	-3.055774	0.706825
41	1	0	5.023378	-3.100445	0.505239
42	6	0	0.822073	-1.272380	-0.402832
43	1	0	0.364423	-0.845831	-1.303160
44	1	0	0.409149	-2.276547	-0.261503

Int-B

UM062X/6-31g(d,p) E(UM062X) = -963.243848 hartree
$$\begin{split} & E\left(UM062X\right) = -963.243848 \; hartree \\ & Zero-point Energy Correction = 0.360352 \; hartree \\ & Thermal Correction to Energy = 0.381341 \; hartree \\ & Thermal correction to Enthalpy = 0.382285 \; hartree \\ & Thermal correction to Gibbs Free Energy = 0.307994 \; hartree \\ & Sum of electronic and Zero-point Energies = -962.882496 \; hartree \\ & Sum of electronic and thermal Energies = -962.862507 \; hartree \\ & Sum of electronic and thermal Energies = -962.862507 \; hartree \\ & Sum of electronic and thermal Free Energies = -962.862562 \; hartree \\ & Sum of electronic and thermal Free Energies = -962.862564 \; hartree \\ & Sum of electronic and thermal Free Energies = -962.86354 \; hartree \\ & Sum (dichorecthane)/UM062X/6-311+g(d,p) \\ & E\left(UM062X\right) = -963.496209 \; hartree \\ & Gibbs Free Energy in dichloroethane = -963.188215 \; hartree \\ & The number of Imaginary frequencies = 0 \\ \hline \end{array}$$

Center	Atomic	Atomic	dinates (Ang	ngstroms)	
Number	Number	Туре	Х	Y	Z
1	6	0	-0.536736	1.560770	-0.354911
2	6	0	0.863288	1.714590	-0.034258
3	6	0	-1.318268	0.707553	0.335544
4	6	0	1.704215	2.589378	-0.714614
5	6	0	1.383536	0.877063	1.004499
6	6	0	3.058374	2.670657	-0.397639
7	1	0	1.287697	3.208415	-1.505158
8	6	0	2.765374	0.987736	1.321979
9	6	0	3.574390	1.865380	0.627615
10	1	0	3.184410	0.376960	2.114119
11	1	0	3.705461	3.356770	-0.932656
12	1	0	4.627753	1.931705	0.882858
13	1	0	-0.959420	2.119788	-1.181811
14	8	0	-0.817646	-0.050687	1.355278
15	6	0	0.527069	-0.024616	1.640085
16	6	0	-2.749413	0.450007	0.099855
17	6	0	-3.541894	1.363472	-0.606405
18	6	0	-3.337239	-0.725861	0.581961

19	6	0	-4.882570	1.093750	-0.847698
20	1	0	-3.113407	2.300091	-0.947928
21	6	0	-4.681112	-0.990182	0.340766
22	1	0	-2.727479	-1.427965	1.139259
23	6	0	-5.457575	-0.085545	-0.377535
24	1	0	-5.484483	1.812661	-1.393953
25	1	0	-5.122819	-1.907635	0.716163
26	1	0	-6.506354	-0.292449	-0.563459
27	6	0	0.888364	-1.023850	2.681169
28	1	0	1.917278	-1.364935	2.547241
29	1	0	0.781634	-0.629520	3.699566
30	1	0	0.227951	-1.890839	2.585990
31	6	0	3.476663	-1.197290	-1.226902
32	6	0	2.462044	-0.614935	-1.988330
33	6	0	1.148739	-1.026687	-1.837032
34	6	0	0.802672	-2.038464	-0.906738
35	6	0	1.853159	-2.626564	-0.154971
36	6	0	3.162041	-2.207484	-0.311905
37	1	0	4.501564	-0.858915	-1.335741
38	1	0	2.700219	0.179310	-2.688589
39	1	0	0.357610	-0.559768	-2.417361
40	1	0	1.610784	-3.410279	0.558454
41	1	0	3.949061	-2.665754	0.279616
42	6	0	-0.540923	-2.432823	-0.722815
43	1	0	-1.340577	-1.978209	-1.295101
44	1	0	-0.800926	-3.210277	-0.014043

TS-2

TS-2 UM062X/6-31g(d,p) E(UM062X) = -963.205091 hartree Zero-point Energy Correction = 0.360291 hartree Thermal correction to Entergy = 0.380122 hartree Thermal correction to Enthalpy = 0.381066 hartree Thermal correction to Enthalpy = 0.381066 hartree Sum of electronic and Zero-point Energies = -962.824970 hartree Sum of electronic and thermal Energies = -962.824970 hartree Sum of electronic and thermal Enthalpies = -962.824025 hartree Sum of electronic and thermal Finte Energies = -962.824025 hartree Sum of electronic and thermal Finte Energies = -962.895226 hartree Sum (dichloroethane)/UM062X/6-311+g(d,p)

Sum of electronic and thermal free Energies= -962.895226 I SMD(dichloroethane)/UM062X/6-311+g(d,p) E(UM062X) = -963.458304 hartree Gibbs Free Energy in dichloroethane = -963.148439 hartree The number of Imaginary frequencies = 1

Center	Atomic	Atomic	Coor	Coordinates (Angstr	
Number	Number	Туре	Х	Y	Z
1	6	0	-1.249773	1.573223	-0.340784
2	6	0	0.038550	1.913929	0.006686
3	6	0	-1.879385	0.422433	0.181566
4	6	0	0.703859	3.101787	-0.463038
5	6	0	0.780627	1.020109	0.889142
6	6	0	1.966487	3.396791	-0.061641
7	1	0	0.163177	3.762773	-1.134862
8	6	0	2.108105	1.365017	1.274181
9	6	0	2.682425	2.522707	0.835652
10	1	0	2.663754	0.697327	1.925458
11	1	0	2.450880	4.301511	-0.414597
12	1	0	3.687921	2.784639	1.145085
13	1	0	-1.808175	2.206376	-1.020714
14	8	0	-1.145021	-0.400218	1.009210
15	6	0	0.197017	-0.216089	1.189585
16	6	0	-3.217523	-0.032032	-0.062589
17	6	0	-4.133885	0.738835	-0.815569
18	6	0	-3.667878	-1.271352	0.448736
19	6	0	-5.421030	0.285313	-1.048839
20	1	0	-3.837475	1.704291	-1.211330
21	6	0	-4.959762	-1.711195	0.207939
22	1	0	-2.988101	-1.879442	1.033652
23	6	0	-5.850035	-0.943177	-0.542675
24	1	0	-6.102210	0.899498	-1.629911
25	1	0	-5.277800	-2.668019	0.611133
26	1	0	-6.860014	-1.292278	-0.727413
27	6	0	0.728698	-1.154043	2.233361
28	1	0	1.784148	-1.371094	2.057792
29	1	0	0.618417	-0.711635	3.228295
30	1	0	0.166011	-2.088720	2.204846
31	6	0	4.922660	-1.428570	-0.857263
32	6	0	4.208682	-0.333957	-1.343972

33	6	0	2.822824	-0.318771	-1.280116
34	6	0	2.115260	-1.409424	-0.731410
35	6	0	2.855774	-2.503514	-0.233907
36	6	0	4.240217	-2.512763	-0.300247
37	1	0	6.006470	-1.437864	-0.908549
38	1	0	4.736535	0.514555	-1.767286
39	1	0	2.265245	0.543408	-1.639068
40	1	0	2.322182	-3.348572	0.194053
41	1	0	4.794113	-3.365741	0.078524
42	6	0	0.689574	-1.360459	-0.611203
43	1	0	0.131011	-0.660001	-1.227216
44	1	0	0.155141	-2.258048	-0.313142

3a UM062X/6-31g(d,p)

UM062X/6-31g(d, p) E(UM062X) = -963.340849 hartree Zero-point Energy Correction = 0.368054 hartree Thermal Correction to Energy = 0.386997 hartree Thermal correction to Enthalpy = 0.387942 hartree Thermal correction to Gibbs Free Energy = 0.319823 hartree Sum of electronic and Zero-point Energies = -962.972796 hartree Sum of electronic and thermal Enthalpies = -962.953852 hartree Sum of electronic and thermal Enthalpies = -962.952908 hartree Sum of electronic and thermal Free Energies = -963.021027 hartree Sum (dichloroethane)/UM062X/6-311+g(d, p) E(UM062X) = -963.590130 hartree Gibbs Free Energy in dichloroethane = -963.270307 hartree The number of Imaginary frequencies = 0

Center Atomi	c Atomic	Coo	Coordinates (Angstroms)		
Number Numbe	r Type	Х	Y	Z	
1	6 0	-1.282739	1. 459615	-0.531918	
2	6 0	0.037057	1.934190	-0.142461	
3	6 0	-1.825165	0.406355	0.108779	
4	6 0	0.522820	3. 189838	-0.521422	
5	6 0	0.824482	1.110246	0.681685	
6	6 0	1.765657	3.628420	-0.078942	
7	1 0	-0.088413	3.824246	-1.157336	
8	6 0	2.059739	1.563961	1.132485	
9	6 0	2.532383	2.820203	0.756191	
10	1 0	2.677402	0.926043	1.756722	
11	1 0	2.133474	4.603860	-0.380885	
12	1 0	3.502993	3.157860	1.103681	
13	1 0	-1.847226	1.990449	-1.288518	
14	8 0	-1.122818	-0.294714	1.039463	
15	6 0	0.317076	-0.298121	0.934396	
16	6 0	-3.196183	-0.103592	-0.081942	
17	6 0	-4.208783	0.715816	-0.595091	
18	6 0	-3.497496	-1.428811	0.249802	
19	6 0	-5.486860	0.211442	-0.797516	
20	1 0	-3.998311	1.758055	-0.812219	
21	6 0	-4.779527	-1.929418	0.050468	
22	1 0	-2.715570	-2.056819	0.661425	
23	6 0	-5.776468	-1.113847	-0.477435	
24	1 0	-6.263718	0.857718	-1.193074	
25	1 0	-5.000174	-2.960543	0.307207	
26	1 0	-6.777053	-1.504742	-0.631084	
27	6 0	0.785707	-0.886424	2.255661	
28	1 0	1.861639	-1.069517	2.242919	
29	1 0	0.543910	-0.208616	3.077048	
30	1 0	0.275251	-1.838697	2.422083	
31	6 0	4.915594	-1.645660	-0.907145	
32	6 0	4.222153	-0.576655	-1.469742	
33	6 0	2.851348	-0.449148	-1.269395	
34	6 0	2.150841	-1.385142	-0.501750	
35	6 0	2.857682	-2.455222	0.053450	
36	6 0	4.229373	-2.586985	-0.145074	
37	1 0	5.984380	-1.746950	-1.066057	
38	1 0	4.749453	0.159831	-2.067713	
39	1 0	2.313846	0.390657	-1.703241	
40	1 0	2.322385	-3.194676	0.644557	
41	1 0	4.760251	-3.427089	0.291444	
42	6 0	0.672466	-1.227978	-0.257308	
43	1 0	0.185868	-0.820023	-1.149720	
44	1 0	0.215214	-2.201836	-0.047584	

7. References

- 1 N. Chernyak, S. I. Gorelsky, V. Gevorgyan, Angew. Chem. Int. Ed. 2011, 50, 2342-2345.
- 2 K. Saito, Y. Kajiwara, T. Akiyama, Angew. Chem. Int. Ed. 2013, 52, 13284–13288.
- 3 J. Sedelmeier, S. V. Ley, H. Lange, I. R. Baxendale. Eur. J. Org. Chem. 2009, 4412–4420.
- 4 M. -E. Domaradzki, Y. Long, Z. She, X. Liu, G. Zhang, Y. Chen, J. Org. Chem. 2015, 80, 11360-11368.
- 5 M. Terada, F. Li, Y, Toda, Angew. Chem. Int. Ed. 2014, 53, 235-239.
- 6 N. Asao, K. Sato, Org. Lett. 2006, 8, 5361-5363.
- 7 S. Bhunia, K.-C. Wang, R.-S. Liu, Angew. Chem. Int. Ed. 2008, 47, 5063-5066.
- 8 P. -C. Too, S. Chiba, Chem. Commun., 2012, 48, 7634-7636.
- 9 N. Nardangeli, N. Topolovčan, R. Simionescu, T. Hudlický, Eur. J. Org. Chem. 2020, 227-233.
- 10 M. Terada, R. Yazaki, R. Obayashi, Z. Iwasaki, S. Umemiya, J. Kikuchi, *Chem. Sci.* 2024, 15, 6115–6121.