

Supporting Information

for

Transition-metal-free synthesis of arylboronates via thermal generation of aryl radicals from triarylbismuthines in air

Yuki Yamamoto, Yuki Konakazawa, Kohsuke Fujiwara and Akiya Ogawa

Beilstein J. Org. Chem. 2024, 20, 2577–2584. doi:10.3762/bjoc.20.216

Investigation of the boron residue in the crude mixture by ¹¹B NMR measurement, characterization data of the compounds, and copies of ¹H NMR and ¹³C{¹H} NMR spectra

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

CONTENTS

Investigation of the boron residue in the crude mixture by ¹¹ B NMR measurement	page S2
Characterization data of the arylboronates 3	S3–S5
Copies of ¹ H NMR and ¹³ C NMR spectra of the arylboronates 3	S6–S13

Investigation of the boron residue in the crude mixture by ¹¹B NMR measurement

The reaction was carried out under the optimal condition (entry 2 in Scheme 2). The reaction mixture was then analyzed by ¹¹B NMR measurement in CDCl₃ using BF₃•Et₂O as the internal standard (δ = 0.0 ppm).

The peaks of bispinacolatodiboron **2** ($\delta_B = 30.5 \text{ ppm}$)^[1] and the product **3a** ($\delta_B = 30.9 \text{ ppm}$)^[2] were overlapped in the ¹¹B NMR spectra. In addition, two other peaks were observed that could be attributed as pinB–O–Bpin ($\delta_B = 21.2 \text{ ppm}$)^[1] and pinB–OH ($\delta_B = 22.3 \text{ ppm}$)^[3], respectively. Therefore, we estimated that some of **2** might be decomposed under the reaction conditions.

Characterization data of the arylboronates 3

4,4,5,5-Tetramethyl-2-phenyl-1,3,2-dioxaborolane (3a)^[2]

Light yellow solid, 22.6 mg, 53% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.81 (d, *J* = 7.8 Hz, 2H), 7.46–7.44 (m, 1H), 7.38–7.35 (m, 2H), 1.35 (s, 12H); ¹³C NMR (126 MHz, CDCl₃): δ 134.8, 131.3, 127.8, 83.8, 24.9. The ¹³C signal bound to boron could not be observed due to quadrupolar relaxation.

4,4,5,5-Tetramethyl-2-(o-tolyl)-1,3,2-dioxaborolane (3b)^[4]

Colorless solid, 28.2 mg, 62% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.77–7.75 (m, 1H), 7.33–7.30 (m, 1H), 7.17–7.14 (m, 2H), 2.54 (s, 3H), 1.34 (s, 12H) ¹³C NMR (126 MHz, CDCl₃): δ 144.9, 135.9, 130.8, 129.8, 124.7, 83.4, 24.9, 22.2. The ¹³C signal bound to boron could not be observed due to quadrupolar relaxation.

4,4,5,5-tetramethyl-2-(m-tolyl)-1,3,2-dioxaborolane (3c)^[4]

Colorless oil, 10.8 mg, 24% yield; 1H NMR (500 MHz, CDCl₃): δ 7.64 (s, 1H), 7.62–7.60 (m, 1H), 7.28–7.26 (m, 2H), 2.35 (s, 3H), 1.35 (s, 12H); ¹³C NMR (126 MHz, CDCl₃): δ 137.2, 135.4, 132.1, 131.8, 127.7, 83.7, 24.9, 21.3. The ¹³C signal bound to boron could not be observed due to quadrupolar relaxation.

4,4,5,5-Tetramethyl-2-(p-tolyl)-1,3,2-dioxaborolane (3d)^[5]

Light brown oil, 22.6 mg, 49% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.70 (d, J = 7.9 Hz, 2H), 7.19 (d, J = 7.6 Hz, 2H), 2.37 (s, 3H), 1.34 (s, 12H); ¹³C NMR (126 MHz, CDCl₃): δ 141.4, 134.8, 128.5, 83.6, 24.9, 21.8. The ¹³C signal bound to boron could not be observed due to

quadrupolar relaxation.

 $\label{eq:2-(4-Methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane~(3e)^{[4]}$

Colorless oil, 25.6 mg, 52% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.75 (d, *J* = 8.7 Hz, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 3.82 (s, 3H), 1.33 (s, 12H); ¹³C NMR (126 MHz, CDCl₃): δ 162.1, 136.5,

113.3, 83.6, 55.1, 24.9. The ¹³C signal bound to boron could not be observed due to quadrupolar relaxation.

2-(4-(Dimethoxymethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3f)^[5]

Colorless oil, 20.6 mg, 35% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.82 (d, *J* = 8.1 Hz, 2H), 7.45 (d, *J* = 7.9 Hz, 2H), 5.42 (s, 1H), 3.31 (s, 6H), 1.35 (s, 12H); ¹³C NMR (126 MHz, CDCl₃): δ 140.9, 134.7, 126.1, 102.9, 83.8, 52.6, 24.9. The ¹³C signal bound to boron could not be observed due to quadrupolar relaxation.

2-(4-Chlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3g)^[4]

Colorless oil, 22.5 mg, 45% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.73 (d, *J* = 8.3Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 1.34 (s, 12H); ¹³C NMR (126 MHz, CDCl₃): δ 137.5, 136.1, 128.1, 84.0,

24.9. The ¹³C signal bound to boron could not be observed due to quadrupolar relaxation.

2-Mesityl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (31)^[2]

Colorless oil, 31.7 mg, 61% yield; ¹H NMR (500 MHz, CDCl₃): δ 6.77 (s, 2H), 2.36 (s, 6H), 2.24 (s, 3H), 1.37 (s, 12H); ¹³C NMR (126 MHz, CDCl₃): δ 142.1, 138.9, 127.5, 83.5, 25.0, 22.2, 21.3. The ¹³C signal bound to boron could not be observed due to quadrupolar relaxation.

The isolation of arylboronates 3c, 3i, and 3j with sufficient isolated yields was somewhat difficult due to strong adsorption or decomposition on silica gel. The characterization of the arylboronates was determined from previously reported spectra.^[2, 4, 6]

References

- De Smet, G.; Bai, X.; Mensch, C.; Sergeyev, S.; Evano, G.; Maes, B. U. W. Angew. Chem. Int. Ed. 2022, 61, e202201751.
- [2] Tan, X.; Wang, X.; Hua Li, Z.; Wang, H. J. Am. Chem. Soc. 2022, 144, 23286–23291.
- [3] Ji, P.; Sawano, T.; Lin, Z.; Urban, A.; Boures, D.; Lin, W. J. Am. Chem. Soc. 2016, 138, 14860–14863.
- [4] Zhang, J.; Wei, R.; Ren, C.; Liu, L. L.; Wu, L. J. Am. Chem. Soc. 2023, 145, 15619–15629.
- [5] Clary, J. W.; J. Rettenmaier, T. J.; Snelling, R.; Bryks, W.; Banwell, J.; Wipke, W. T.; Singaram, B. J. Org. Chem. 2011, 76, 9602–9610.
- [6] Li, D.; Wei, L.; Xiong, W.; Jiang, H.; Qi, C. J. Org. Chem. 2023, 88, 5231-5237.

Copies of ¹H NMR and ¹³C NMR spectra of the arylboronates 3

Figure S1. ¹H and ¹³C{¹H} NMR spectra of compound 3a

Figure S2. ¹H and ¹³C{¹H} NMR spectra of compound 3b

Figure S3. ¹H and ¹³C{¹H} NMR spectra of compound 3c

Figure S4. ¹H and ¹³C{¹H} NMR spectra of compound 3d

100

0 [ppm]

50

200

150

Figure S5. ¹H and ¹³C{¹H} NMR spectra of compound 3e

Figure S6. ¹H and ¹³C{¹H} NMR spectra of compound 3f

Figure S7. ¹H and ¹³C{¹H} NMR spectra of compound 3g

Figure S8. ¹H and ¹³C{¹H} NMR spectra of compound 3l