

Supporting Information

for

Synthesis and antimycotic activity of new derivatives of imidazo[1,2-*a*]pyrimidines

Dmitriy Yu. Vandyshev, Daria A. Mangusheva, Khidmet S. Shikhaliev, Kirill A. Scherbakov, Oleg N. Burov, Alexander D. Zagrebaev, Tatiana N. Khmelevskaya, Alexey S. Trenin and Fedor I. Zubkov

Beilstein J. Org. Chem. 2024, 20, 2806–2817. doi:10.3762/bjoc.20.236

General reaction procedures, compound characterization data, copies of NMR and mass spectra for all new products

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (<u>https://creativecommons.org/</u> <u>licenses/by/4.0</u>). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents

1.	General information	.S2
2.	Analytical data of products	.S4
3.	NMR and mass spectra of products	S13

1. General information

The purity of the synthesized compounds was monitored by TLC on silica gel 60 F₂₅₄ plates (Merck) using chloroform, ethyl acetate, methanol or mixtures thereof as eluents. Chromatograms were developed by UV irradiation (254 and 365 nm), by treatment with iodine vapor or by heating the plate. Melting temperatures were determined using a Stuart SMP 30.

¹H, ¹³C and ¹⁹F NMR spectra were recorded on JNM-ECA 600 or Bruker Avance Neo 700 spectrometers (on 600 and 700 MHz for ¹H; 151 and 176 MHz for ¹³C; 564 and 659 MHz for ¹⁹F) using residual solvent signals (7.26/77.0 ppm for ¹H/¹³C CDCl₃ and 2.50/39.5 ppm for DMSO- d_6). CFCl₃ was used as an internal standard for ¹⁹F NMR [1]. Where necessary, assignments of ¹H and ¹³C signals were made with the aid of COSY, NOESY, HSQC and HMBC 2D NMR spectra.

HPLC analysis was performed on an Agilent 1260 Infinity liquid chromatograph equipped with a UV detector coupled to an Agilent 6230 TOF LC/MS detector (electrospray ionization, capillary voltage 4 kV, fragment voltage 191 V, skimmer voltage 65 V, positive ion detection, Poroshell 120 EC-C18 column, 4.6 m × 150 mm, particle size 2.7 μ m, mobile phase - H₂O (40–0%), MeCN (60–100%), linear gradient elution 5 min, flow rate 0.4 mL/min, column temperature 40 °C, sample volume 1.5 μ L. Quantum chemical calculations were performed on molecules in the gas phase using density functional theory with the 6-31G^{**} basis set and the B3LYP functional including the three-parameter Beck exchange functional and the Lee-Yan-Parr correlation functional [2].

The structure of A. fumigatus CYP51 (PDB ID: 4UYM [3]) in complex with the antifungal drug voriconazole was used as a target for molecular docking. Compounds **4a-e** and **5a-e** were generated as *R*- and *S*-isomers in the molecular editor package SYBYL and

S2

minimized using Gasteiger-Hückel charges. Docking was performed into the preminimized structure of CYP51 with non-protein atoms removed except for haem. Vina Autodock software was used for docking.

The docking poses obtained were selected based on the position of the heterocyclic nitrogen atom relative to the haem iron atom. Those compounds that showed a hypothetical possibility of forming a coordination bond with the haem iron were marked as potentially active.

The interaction fingerprints (IFP) between voriconazole and selected compounds with protein were calculated using the Python library ProLif [4]. In view of the inability of docking to account for coordination bonds due to the required significant overlap of van der Waals radii of atoms, the distance cut-off for the formation of the 'metal-acceptor' interaction type was increased from the ProLif default of 2.8 Å to 3.5 Å. To assess the similarity of chemical structures between voriconazole and selected compounds, Tanimoto coefficients were calculated based on MACCS descriptors (Tanimoto MACCS). To assess the similarity of ligand-protein interactions, Tanimoto coefficients were calculated for interaction fingerprints (Tanimoto IFP). Tanimoto coefficients were calculated using the RDKit library.

References

 Rosenau, C.P.; Jelier, B.J.; Gossert, A.D.; Togni, A. Angew. Chem. Int. Ed. 2018, 57, 9528–9533. https://doi.org/10.1002/anie.201802620

2. Becke, A.D. *Phys. Rev. A. Gen. Phys.* **1988**, *38*, 3098–3100. https://doi.org/10.1103/physreva.38.3098.

3. Hargrove, T.Y.; Wawrzak, Z.; Lamb, D.C.; Guengerich, F.P.; Lepesheva, G.I. *J. Biol. Chem.* **2015**, *290*, 23916–23934. https://doi.org/10.1074/jbc.M115.677310.

4. Bouysset, C.; Fiorucci, S. *J. Cheminform.* **2021**, *13*, 72. https://doi.org/10.1186/s13321-021-00548-6

S3

2. Analytical data of products

7-Oxo-N-phenyl-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidine-5carboxamide (4a).

Yield 89%. White powdery compound. M.p. 253–255 °C. ¹H NMR (700 MHz, DMSO-*d*₆) δ , ppm: 11.03 (1H, br.s, H-8), 10.42 (1H, s, CONHAr), 7.55 (2H, d, ³*J* = 8.0 Hz, H_{Ar}), 7.33 (2H, t, ³*J* = 7.7 Hz, H_{Ar}), 7.10 (1H, t, ³*J* = 7.4 Hz, H_{Ar}), 6.96 (1H, d, ³*J* = 1.6 Hz, H-3), 6.67 (1H, d, ³*J* = 1.6 Hz, H-2), 5.06 (1H, dd, ³*J*_{5,6A} = 2.8, ³*J*_{5,6B} = 7.5 Hz, H-5), 3.25 (1H, dd, ²*J*_{6A,6B} = 16.6, ³*J*_{5,6B} = 7.5 Hz, H_B-6), 2.75 (1H, dd, ²*J*_{6A,6B} = 16.6, ³*J*_{5,6A} = 2.8 Hz, H_A-6). ¹³C NMR (176 MHz, DMSO-*d*₆) δ , ppm: 167.6 (CONHAr), 166.7 (C-7), 143.3 (C-8a), 138.8 (C-1'), 129.4 (2C, C-3' and C-5'), 126.1 (C-2), 124.4 (C-4'), 119.8 (2C, C-2' and C-6'), 115.6 (C-3), 54.3 (C-5), 34.3 (C-6) ppm. HRMS (ESI) calculated for C₁₃H₁₂N₄O₂ [M + H]⁺: 257.1034, found 257.1031.

N-(4-Isopropylphenyl)-7-oxo-5,6,7,8-tetrahydroimidazo[1,2-

a]pyrimidine-5-carboxamide (4b).

HN O O N NH Yield 84%. White powdery compound. M.p. 271–273 °C. ¹H NMR (700 MHz, DMSO-*d*₆) δ , ppm: 11.02 (1H, br.s, H-8), 10.35 (1H, s, CONHAr), 7.48 (2H, dd, ⁴*J* = 2.4, ³*J* = 8.0 Hz, H_{Ar}), 7.19 (1H, dd, ⁴*J* = 2.4, ³*J* = 7.8 Hz, H_{Ar}), 6.95 (1H, d, ³*J* = 1.5 Hz, H-3), 6.67 (1H, d, ³*J* = 1.5 Hz, H-2), 5.04 (1H, dd, ³*J*_{5.6A} = 2.8, ³*J*_{5.6B} = 7.5 Hz, H-5), 3.23 (1H, dd, ²*J*_{6A,6B} = 16.6, ³*J*_{5.6B} = 7.5 Hz, H_B-6), 2.84 (1H, hept, ³*J* = 6.9 Hz, CH-*i*Pr), 2.73 (1H, dd, ²*J*_{6A,6B} = 16.6, ³*J*_{5.6A} = 2.8 Hz, H_A-6), 1.17 (6H, d, ³*J* = 6.9 Hz, CH₃). ¹³C NMR (176 MHz, DMSO-*d*₆) δ , ppm: 167.3 (CONHAr), 166.7 (C-7), 144.6 (C-1'), 143.3 (C-8a), 136.5 (C-4'), 127.1 (2C, C-3'and C-

5'), 126.1 (C-2), 119.9 (2C, C-2'and C-6'), 115.5 (C-3), 54.3 (C-5), 34.4 (C-6), 33.3 (CH-*i*Pr), 24.38 (CH₃) ppm. HRMS (ESI) calculated for C₁₆H₁₈N₄O₂ [M + H]⁺: 299.1503, found 299.1503.

N-(3-Chloro-2-methylphenyl)-7-oxo-5,6,7,8-tetrahydroimidazo[1,2a]pyrimidine-5-carboxamide (4c).

Yield 86%. White powdery compound. M.p. 278–280 °C. ¹H NMR (700 MHz, DMSO-*d*₆) δ , ppm: 11.03 (1H, br.s, H-8), 10.05 (1H, s, CONHAr), 7.33 (1H, dd, ³*J* = 8.0, ⁴*J* = 1.3 Hz, H_{Ar}), 7.30 (1H, dd, ³*J* = 8.0, ⁴*J* = 1.3 Hz, H_{Ar}), 7.30 (1H, dd, ³*J* = 8.0, ⁴*J* = 1.3 Hz, H_{Ar}), 7.22 (1H, t, ³*J* = 8.0 Hz, H_{Ar}), 6.99 (1H, d, ³*J* = 1.6 Hz, H-3), 6.69 (1H, d, ³*J* = 1.6 Hz, H-2), 5.16 (1H, dd, ³*J*_{5,6A} = 2.8, ³*J*_{5,6B} = 7.5 Hz, H-5), 3.27 (1H, dd, ²*J*_{6A,6B} = 16.6, ³*J*_{5,6B} = 7.5 Hz, H_B-6), 2.79 (1H, dd, ²*J*_{6A,6B} = 16.6, ³*J*_{5,6A} = 2.8 Hz, H_A-6), 2.19 (6H, s, CH₃). ¹³C NMR (176 MHz, DMSO-*d*₆) δ , ppm: 168.0 (CONHAr), 166.7 (C-7), 143.3 (C-8a), 137.3 (C-1'), 134.3 (C-3'), 131.1 (C-5'), 127.5 (C-4'), 127.2 (C-2'), 126.2 (C-2), 125.0 (C-6'), 115.5 (C-3), 54.8 (C-5), 34.4 (C-6), 15.4 (CH₃) ppm. HRMS (ESI) calculated for C₁₄H₁₃ClN₄O₂ [M + H]⁺: 305.0800, found 305.0800.

N-(2,5-Dichlorophenyl)-7-oxo-5,6,7,8-tetrahydroimidazo[1,2a]pyrimidine-5-carboxamide **(4d)**.

Yield 83%. White powdery compound. M.p. 248–250 °C. ¹H NMR (700 MHz, DMSO-*d*₆) δ , ppm: 10.98 (1H, br.s, H-8), 10.09 (1H, s, CONHAr), 7.73 (1H, d, ⁴*J* = 2.4 Hz, H_{Ar}), 7.49 (1H, d, ³*J* = 8.6 Hz, H_{Ar}), 7.23 (1H, dd, ⁴*J* = 2.4, ³*J* = 8.6 Hz, H_{Ar}), 6.90 (1H, d, ³*J* = 1.1 Hz, H-3), 6.60 (1H, d, ³*J* = 1.1 Hz, H-2), 5.19 (1H, dd, ³*J*_{5,6A} = 2.6, ³*J*_{5,6B} = 7.5 Hz, H-5), 3.17 (1H, dd, ²*J*_{6A,6B} = 16.6, ³*J*_{5,6B} = 7.5 Hz, H_B-6), 2.72 (1H, dd, ²*J*_{6A,6B} = 16.6, ³*J*_{5,6A} = 2.8 Hz, H_A-6). ¹³C NMR (176 MHz, DMSO-*d*₆) δ , ppm:

168.5 (CONHAr), 166.6 (C-7), 143.3 (C-8a), 135.7 (C-1'), 132.1 (C-5'), 131.5 (C-3'), 127.1 (C-4'), 126.2 (C-2), 125.7 (C-6'), 125.6 (C-2'), 115.6 (C-3), 53.7 (C-5), 34.3 (C-6) ppm. HRMS (ESI) calculated for $C_{13}H_{10}Cl_2N_4O_2$ [M + H]⁺: 325.0254, found 325.0254.

N-(2-Methyl-5-nitrophenyl)-7-oxo-5,6,7,8-tetrahydroimidazo[1,2a]pyrimidine-5-carboxamide **(4e)**.

Yield 82%. Pale yellow powdery compound. M.p. $275-277^{\circ}$ C. ¹H NMR (700 MHz, DMSO-*d*₆) δ , ppm: 11.09 (1H, br.s, H-8), 10.08 (1H, s, CONHAr), 8.40 (1H, d, ⁴*J* = 2.5 Hz, H_{Ar}), 7.98 (1H, dd, ³*J* = 8.5, ⁴*J* = 2.6 Hz, H_{Ar}), 7.53 (1H, d, ³*J* = 8.5 Hz, H_{Ar}), 7.01 (1H, d, ³*J* = 1.5 Hz, H-3), 6.70 (1H, d, ³*J* = 1.5 Hz, H-2), 5.25 (1H, dd, ³*J*_{5,6A} = 2.8, ³*J*_{5,6B} = 7.5 Hz, H-5), 3.30 (1H, dd, ²*J*_{6A,6B} = 16.6, ³*J*_{5,6B} = 7.5 Hz, HB-6), 2.84 (1H, dd, ²*J*_{6A,6B} = 16.6, ³*J*_{5,6A} = 2.6 Hz, HA-6), 2.35 (3H, s, CH₃). ¹³C NMR (176 MHz, DMSO-*d*₆) δ , ppm: 168.5 (CONHAr), 166.7 (C-7), 146.1 (C-5'), 143.3 (C-8a), 140.0 (C-1'), 136.8 (C-2'), 132.1 (C-3'), 126.2 (C-2), 120.5 (C-4'), 119.1 (C-6'), 115.6 (C-3), 53.9 (C-5), 34.3 (C-6), 18.5 (CH₃) ppm. HRMS (ESI) calculated for C₁₄H₁₃N₅O₄ [M + H]⁺: 316.1041, found 316.1041.

N-Benzyl-7-oxo-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidine-5carboxamide (**4f**).

HN

0-

NO₂

Yield 84%. Pale pink powdery compound. M.p. 237–239 °C. ¹H NMR (700 MHz, DMSO-*d*₆) δ , ppm: 10.99 (1H, s, H-8), 8.82 (1H, t, ³*J* = 5.8 Hz, CONHAlk), 7.33 (2H, t, ³*J* = 7.6 Hz, H_{Ar}), 7.28–7.22 (3H, m, H_{Ar}), 6.88 (1H, d, ³*J* = 1.5 Hz, H-3), 6.66 (1H, d, ³*J* = 1.5 Hz, H-2), 4.93 (1H, dd, ³*J*_{5,6A} = 2.9, ³*J*_{5,6B} = 7.4 Hz, H-5), 4.30 (2H, d, ³*J* = 5.6 Hz, H-1'), 3.14 (1H, dd, ²*J*_{6A,6B} = 16.5, ³*J*_{5,6B} = 7.4 Hz, H_B-6), 2.66 (1H, dd, ²*J*_{6A,6B} = 16.5, ${}^{3}J_{5,6A} = 2.9$ Hz, H_A-6). 13 C NMR (176 MHz, DMSO-*d*₆) δ , ppm: 168.9 (CONHAlk), 166.8 (C-7), 143.2 (C-8a), 139.1 (C-1"), 128.9 (2C, C-3" and C-5"), 127.7 (2C, C-2" and C-6"), 127.5 (C-4"), 126.0 (C-2), 115.4 (C-3), 53.6 (C-5), 42.8 (C-1'), 34.3 (C-6). HRMS (ESI) calculated for C₁₄H₁₄N₄O₂ [M + H]⁺: 271.1190, found 271.1191.

7-Oxo-N-phenethyl-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidine-5carboxamide (**4g**).

Yield 75%. Pale pink powdery compound. M.p. 232–234 °C. ¹H NMR (700 MHz, DMSO-*d*₆) δ , ppm: 10.96 (1H, s, H-8), 8.38 (1H, t, ³*J* = 5.6 Hz, CONHAlk), 7.30 (2H, t, ³*J* = 7.6 Hz, Har), 7.24–7.14 (3H, m, Har), 6.75 (1H, d, ³*J* = 1.6 Hz, H-3), 6.64 (1H, d, ³*J* = 1.6 Hz, H-2), 4.80 (1H, dd, ³*J*_{5,6A} = 3.3, ³*J*_{5,6B} = 7.4 Hz, H-5), 3.39–3.23 (2H, m, H-2'), 3.05 (1H, dd, ²*J*_{6A,6B} = 16.5, ³*J*_{5,6B} = 7.4 Hz, He-6), 2.71 (2H, t, ³*J* = 7.2 Hz, H-1'), 2.56 (1H, dd, ²*J*_{6A,6B} = 16.5, ³*J*_{5,6A} = 3.3 Hz, Ha-6). ¹³C NMR (176 MHz, DMSO-*d*₆) δ , ppm: 168.7 (CONHAlk), 166.8 (C-7), 143.1 (C-8a), 139.6 (C-1''), 129.2 (2C, C-3'' and C-5''), 128.8 (2C, C-2'' and C-6''), 126.7 (C-4''), 125.9 (C-2), 115.3 (C-3), 53.5 (C-5), 40.8 (C-1'), 35.2 (C-2'), 34.3 (C-6). HRMS (ESI) calculated for C₁₅H₁₆N₄O₂ [M + H]⁺: 285.1347, found 285.1344.

N-(4-Methoxyphenethyl)-7-oxo-5,6,7,8-tetrahydroimidazo[1,2-

a]pyrimidine-5-carboxamide (**4h)**.

HN

Yield 89%. Pale pink powdery compound. M.p. 249–251 °C. ¹H NMR (700 MHz, DMSO-*d*₆) δ , ppm: 10.95 (1H, s, H-8), 8.34 (1H, t, ³*J* = 5.7 Hz, CONHAlk), 7.11 – 7.09 (2H, m, H_{Ar}), 6.87–6.84 (2H, m, H_{Ar}), 6.75 (1H, d, ³*J* = 1.5 Hz, H-3), 6.64 (1H, d, ³*J* = 1.5 Hz, H-2), 4.80 (1H, dd, ³*J*_{5,6A} = 3.2, ³*J*_{5,6B} = 7.4 Hz, H-5), 3.73 (3H, s, OCH₃), 3.30–3.21 (2H, m, H-2'), 3.06 (1H, dd, ${}^{2}J_{6A,6B}$ = 16.5, ${}^{3}J_{5,6B}$ = 7.4 Hz, H_B-6), 2.64 (2H, t, ${}^{3}J$ = 7.1 Hz, H-1'), 2.56 (1H, dd, ${}^{2}J_{6A,6B}$ = 16.5, ${}^{3}J_{5,6A}$ = 3.2 Hz, H_A-6). 13 C NMR (176 MHz, DMSO-*d*₆) δ , ppm: 168.6 (CONHAlk), 166.8 (C-7), 158.2 (C-4"), 143.1 (C-8a), 131.4 (C-1"), 130.1 (2C, C-2" and C-6"), 125.9 (C-2), 115.4 (C-3), 114.3 (2C, C-3" and C-5"), 55.5 (CH₃), 53.5 (C-5), 41.0 (C-1'), 34.4 (C-2"), 34.3 (C-6). HRMS (ESI) calculated for C₁₆H₁₈N₄O₃ [M + H]⁺: 315.1453, found 315.1451.

N-Methyl-7-oxo-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidine-5-

carboxamide (**4i)**.

Yield 70%. Pale pink powdery compound. M.p. 218–220 °C. ¹H NMR (700 MHz, DMSO-*d*₆) δ , ppm: 10.95 (1H, s, H-8), 8.41 (1H, t, ³*J* = 4.6 Hz, CONHAlk), 6.82 (1H, d, ³*J* = 1.6 Hz, H-3), 6.62 (1H, d, ³*J* = 1.6 Hz, H-2), 4.85 (1H, dd, ³*J*_{5,6A} = 3.1, ³*J*_{5,6B} = 7.4 Hz, H-5), 3.04 (1H, dd, ²*J*_{6A,6B} = 16.8, ³*J*_{5,6B} = 7.8 Hz, H_B-6), 2.63–2.55 (4H, m, CH₃ and H_A-6). ¹³C NMR (176 MHz, DMSO-*d*₆) δ , ppm: 169.3 (CONHCH₃), 167.1 (C-7), 143.5 (C-8a), 125.9 (C-2), 115.3 (C-3), 53.5 (C-5), 34.3 (C-6), 26.1 (CH₃). HRMS (ESI) calculated for C₈H₁₀N₄O₂ [M + H]⁺: 195.0877, found 195.0878.

N-Phenyl-2-(7-oxo-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidin-6-yl)acetamide (*5a*).

Yield 92%. White powdery compound. M.p. 242–244 °C. ¹H NMR (700 MHz, DMSO-*d*₆) δ , ppm: 11.09 (1H, br.s, H-8), 10.07 (1H, s, CONHAr), 7.59 (2H, d, ³*J* = 7.6 Hz, H_{Ar}), 7.30 (2H, t, ³*J* = 7.7 Hz, H_{Ar}), 7.04 (1H, t, ³*J* = 7.4 Hz, H_{Ar}), 6.91 (1H, d, ³*J* = 1.4 Hz, H-3), 6.65 (1H, d, ³*J* = 1.2 Hz, H-2), 4.28 (1H, dd, ³*J*_{5A,6} = 6.9, ²*J*_{5A,5B} = 12.4 Hz, H_A-5), 3.92 (1H, t, ³*J*_{5B,6} = ²*J*_{5A,5B} = 12.3 Hz, H_B-5), 3.19–3.26 (1H, m, H-6), 2.91 (1H, dd,

² $J_{2'A,2'B} = 16.2$, ³ $J_{2'A,6} = 4.5$ Hz, H_A-2'), 2.55 (1H, dd, ² $J_{2'A,2'B} = 16.2$, ³ $J_{2'B,6} = 7.9$ Hz, H_B-2'). ¹³C NMR (176 MHz, DMSO-*d*₆) δ, ppm: 169.5 (<u>C</u>ONHAr), 169.4 (C-7), 142.6 (C-8a), 139.6 (C-1'), 129.1 (2C, C-3' and C-5'), 125.5 (C-2), 123.6 (C-4'), 119.5 (2C, C-2' and C-6'), 116.0 (C-3), 44.1 (C-5), 37.0 (C-6), 34.5 (C-2'') ppm. HRMS (ESI) calculated for C₁₄H₁₄N₄O₂ [M + H]⁺: 271.1190, found 271.1191.

N-(4-Bromophenyl)-2-(7-oxo-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidin-6-yl)acetamide **(5b)**.

Yield 86%. Pale yellow powdery compound. M.p. 263–265 °C. ¹H NMR (700 MHz, DMSO-*d*₆) δ , ppm: 11.07 (1H, br.s, H-8), 10.21 (1H, s, CONHAr), 7.57 (2H, dd, ³*J* = 8.9, ⁴*J* = 0.8, Har), 7.48 (2H, dd, ³*J* = 8.9, ⁴*J* = 1.1, Har), 6.90 (1H, d, ³*J* = 1.5 Hz, H-3), 6.65 (1H, d, ³*J* = 1.5 Hz, H-2), 4.28 (1H, dd, ³*J*_{5A,6} = 7.6, ²*J*_{5A,5B} = 12.5 Hz, Ha-5), 3.92 (1H, t, ³*J*_{5B,6}= ²*J*_{5A,5B} = 12.1 Hz, H_B-5), 3.19–3.25 (1H, m, H-6), 2.91 (1H, dd, ²*J*_{2'A,2'B} = 16.1, ³*J*_{2'A,6} = 4.8 Hz, Ha-2'), 2.55 (1H, dd, ²*J*_{2'A,2'B} = 16.1, ³*J*_{2'B,6} = 7.7 Hz, H_B-2'). ¹³C NMR (176 MHz, DMSO-*d*₆) δ , ppm: 169.7 (<u>C</u>ONHAr), 169.4 (C-7), 142.6 (C-8a), 139.0 (C-1'), 132.0 (2C, C-3' and C-5'), 125.5 (C-2), 121.4 (2C, C-2' and C-6'), 116.0 (C-3), 115.1 (C-4'), 44.0 (C-5), 37.9 (C-6), 34.5 (C-2'') ppm. HRMS (ESI) calculated for C₁₄H₁₃BrN₄O₂ [M + H]⁺: 349.0295, found 349.0294.

N-(4-Fluorophenyl)-2-(7-oxo-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidin-6-yl)acetamide (5c).

Yield 83%. White powdery compound. M.p. 238–240 °C. ¹H NMR (700 MHz, DMSO-*d*₆) δ , ppm: 11.07 (1H, br.s, H-8), 10.13 (1H, s, CONHAr), 7.58–7.64 (2H, m, H_{Ar}), 7.14 (2H, td, ³*J* = 9.0, ⁴*J* = 2.1, H_{Ar}), 6.90 (1H, d, ³*J* = 1.5 Hz, H-3), 6.65 (1H, d, ³*J* = 1.5 Hz, H-2), 4.28 (1H, dd, ³*J*_{5A,6} =

Br

 7.0, ${}^{2}J_{5A,5B} = 12.4$ Hz, Ha-5), 3.92 (1H, t, ${}^{3}J_{5B,6} = {}^{2}J_{5A,5B} = 12.1$ Hz, H_B-5), 3.19–3.25 (1H, m, H-6), 2.91 (1H, dd, ${}^{2}J_{2'A,2'B} = 16.0$, ${}^{3}J_{2'A,6} = 4.7$ Hz, Ha-2'), 2.55 (1H, dd, ${}^{2}J_{2'A,2'B} = 16.1$, ${}^{3}J_{2'B,6} = 7.8$ Hz, H_B-2'). 13 C NMR (176 MHz, DMSO-*d*₆) δ , ppm: 169.5 (<u>C</u>ONHAr), 169.3 (C-7), 159.0 and 157.7 (C-F), 142.6 (C-8a), 136.0 (C-1'), 125.5 (C-2), 121.2 (2C, C-2' and C-6'), 116.0 (C-3), 115.8 and 115.7 (C-3' and C-5'), 44.0 (C-5), 37.0 (C-6), 34.4 (C-2'') ppm. 19 F NMR (659 MHz, DMSO-*d*₆) δ , ppm: -119.55. HRMS (ESI) calculated for C₁₄H₁₃FN₄O₂ [M + H]⁺: 289.1096, found 289.1096.

N-(4-Chlorophenyl)-2-(7-oxo-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidin-6-yl)acetamide **(5d)**.

Yield 87%. White powdery compound. M.p. 239–241 °C. ¹H NMR (700 MHz, DMSO-*d*₆) δ , ppm: 11.09 (1H, br.s, H-8), 10.42 (1H, s, CONHAr), 7.64 (2H, dt, ³*J* = 8.8, ⁴*J* = 3.1 Hz, H_{Ar}), 7.36 (2H, dt, ³*J* = 8.8, ⁴*J* = 1.9 Hz, H_{Ar}), 6.90 (1H, d, ³*J* = 1.4 Hz, H-3), 6.65 (1H, d, ³*J* = 1.4 Hz, H-2), 4.27 (1H, dd, ³*J*_{5A,6} = 7.2, ²*J*_{5A,5B} = 12.3 Hz, H_A-5), 3.91 (1H, t, ³*J*_{5B,6} = ²*J*_{5A,5B} = 12.3 Hz, H_B-5), 3.19–3.25 (1H, m, H-6), 2.91 (1H, dd, ²*J*_{2'A,2'B} = 16.2, ³*J*_{2'A,6} = 4.8 Hz, H_A-2'), 2.56 (1H, dd, ²*J*_{2'A,2'B} = 16.2, ³*J*_{2'B,6} = 7.9 Hz, H_B-2'). ¹³C NMR (176 MHz, DMSO-*d*₆) δ , ppm: 169.7 (<u>C</u>ONHAr), 169.5 (C-7), 142.6 (C-8a), 138.6 (C-1'), 129.0 (2C, C-3' and C-5'), 127.0 (C-4'), 125.5 (C-2), 121.1 (2C, C-2' and C-6'), 116.0 (C-3), 44.0 (C-5), 37.0 (C-6), 34.5 (C-2'') ppm. HRMS (ESI) calculated for C₁₄H₁₃ClN₄O₂ [M + H]⁺: 305.0800, found 305.0801.

CI

N-(4-Ethylphenyl)-2-(7-oxo-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidin-6-yl)acetamide **(5e)**.

Yield 88%. White powdery compound. M.p. 215–217 °C. ¹H NMR (700 MHz, DMSO-*d*s) δ , ppm: 11.11 (1H, br.s, H-8), 10.09 (1H, s, CONHAr), 7.50 (2H, dd, ⁴*J* = 1.2 Hz, ³*J* = 8.6 Hz, H_{Ar}), 7.12 (2H, dd, ⁴*J* = 1.2 Hz, ³*J* = 8.6 Hz, H_{Ar}), 6.90 (1H, d, ³*J* = 1.4 Hz, H-3), 6.65 (1H, d, ³*J* = 1.1 Hz, H-2), 4.27 (1H, dd, ³*J*_{5A,6} = 6.9, ²*J*_{5A,5B} = 12.4 Hz, H_A-5), 3.91 (1H, t, ³*J*_{5B,6} = ²*J*_{5A,5B} = 12.2 Hz, H_B-5), 3.19–3.24 (1H, m, H-6), 2.91 (1H, dd, ²*J*_{2'A,2'B} = 16.0, ³*J*_{2'A,6} = 4.5 Hz, H_A-2'), 2.52–2.57 (3H, m, H_B-2' and CH₂CH₃), 1.15 (3H, t, ³*J* = 7.6 Hz, CH₂CH₃). ¹³C NMR (176 MHz, DMSO-*d*s) δ , ppm: 169.5 (<u>C</u>ONHAr), 169.2 (C-7), 142.7 (C-8a), 138.9 (C-4'), 137.4 (C-1'), 128.3 (2C, C-3' and C-5'), 125.5 (C-2), 119.6 (2C, C-2' and C-6'), 116.0 (C-3), 44.1 (C-5), 37.0 (C-6), 34.4 (C-2''), 28.1 (CH₂), 16.2 (CH₃) ppm. HRMS (ESI) calculated for C₁₆H₁₈N₄O₂ [M + H]⁺: 299.1507, found 299.1509.

3. NMR and mass spectra of products

S25

