

Supporting Information

for

Synthesis of extended fluorinated tripeptides based on the tetrahydropyridazine scaffold

Thierry Milcent, Pascal Retailleau, Benoit Crousse and Sandrine Ongeri

Beilstein J. Org. Chem. 2024, 20, 3174–3181. doi:10.3762/bjoc.20.262

Experimental procedures, product characterization, X-ray analysis and copies of NMR spectra

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Experimental section

1) General experimental methods

All experiments dealing with air- and moisture-sensitive compounds were conducted under an atmosphere of dry argon. The solvents, dry solvents and reagents were purchased from commercial sources and used without further purification. TLC was performed on silica gel, 60F-250 (0.26 mm thickness) plates. The plates were visualized with UV light (254 nm) or with a 3.5% solution of phosphomolybdic acid in ethanol or with a solution of KMnO₄ in water. Flash chromatography (FC) was performed on Merck 60 silica gel (230–400 mesh). Melting points were determined on a Büchi melting point apparatus. NMR spectra were measured on an Ultrafield Avance 300 (¹H, 300 MHz; ¹³C, 75 MHz) and Bruker AMX 200 (¹H, 200 MHz; ¹⁹F, 188 MHz) spectrometer. Unless otherwise stated, NMR data were obtained under ambient temperature conditions and CDCl₃, CD₃OD, or DMSO-*d*₆ were used as solvent. Chemical shifts δ are in ppm, and the following abbreviations are used: singlet (s), doublet (d), doublet doublet (dd), triplet (t), q (quartet), quintuplet (quint), sextuplet (sx), septuplet (sp), multiplet (m) and broad singlet (brs). High-resolution mass spectra were recorded on a MicrotofQ Bruker Daltonics.

2) General procedure:

General procedure [A]: synthesis of fluorinated hydrazones

The carbazate (1 equiv), and *p*-toluenesulfonic acid (0.05 equiv) are added to a solution of the fluorinated acetaldehyde ethyl hemiacetal (1.1 equiv) in toluene (0.1 M) in a round-bottomed flask. The reaction mixture is refluxed with a Dean–Stark apparatus to remove the water and the reaction is followed by ¹⁹F NMR until disappearance of the starting material. Then, the solvent is removed under reduced pressure. The crude product is used directly in the next steps without further purification.

General procedure [B]: allylation reaction

The methyl or ethyl 2-(bromomethyl)acrylate (1.2 equiv) is added to a solution of hydrazone **3** (1 equiv) in tetrahydrofuran (5 mL/2 mmol). Then, an aqueous solution of saturated NH₄Cl (5 mL/2 mmol), and lastly zinc (1.2 equiv) are added to the reaction mixture. The mixture is stirred at room temperature until completion (19 F NMR or TLC), then diluted with water (5 mL) and extracted with diethyl ether (3 × 5 mL). The organic layer is washed with an aqueous solution of saturated NH₄Cl (5 mL), dried with MgSO₄, filtered and concentrated under vacuum. The residue is purified by flash chromatography (eluent: cyclohexane/ethyl acetate, ratio: 9:1–7:3).

General procedure [C]: oxidation of hydrazides

To a solution of the allylated compound **5** (1 equiv) in CH_2CI_2 (5 mL) at 0 °C, I_2 or NBS (1.1 equiv) is added and lastly K_2CO_3 (1.1 equiv). The mixture is stirred at room temperature until completion. Then, the reaction mixture is diluted with 5 mL of CH_2CI_2 , washed with 5 mL of an aqueous saturated solution of $Na_2S_2O_3$ (only for the reaction with I_2), an aqueous saturated solution of NH_4CI (2 x 5 mL), dried over Na_2SO_4 , then filtered and concentrated under vacuum. If necessary, the residue is purified by flash chromatography (eluent: cyclohexane/ethyl acetate, ratio : 9:1–7:3).

General procedure [D]: cyclization procedure

Hydrazone **6** (1 equiv) is added to anhydrous DMF (6 mL/1 mmol) followed by K_2CO_3 (0.1 equiv). The reaction mixture is stirred overnight at room temperature. Once finished, it is diluted with water (5 mL) and extracted with diethyl ether (3 × 15 mL) for **7a**–**d** and ethyl acetate (3 × 15 mL) for **7e**,**f**. The organic layer is washed with an aqueous solution of saturated NH₄Cl (10 mL), dried with Na₂SO₄, filtered and concentrated under vacuum.

General procedure [E]: saponification and amino acid coupling procedure

To a solution of the ester **7** (1 equiv) in THF (1 mL/0.2 mmol of ester), is added an aqueous solution of LiOH·H₂O (2.5 equiv in 1 mL/0.2 mmol of ester) at 0 °C. The reaction mixture is stirred at 0 °C until completion (0.5–2 h, followed by TLC), then diluted with AcOEt (5 mL) and carefully acidified at 0 °C by an aqueous solution of HCl 0.1 N at 0 °C. The two layers are separated and the aqueous layer is extracted again with AcOEt (3 × 5mL). The organic phases are combined, washed with an aqueous solution of saturated NaCl (5 mL), dried over MgSO₄, filtered, and then evaporated to dryness. The corresponding acid is directly used without further purification in the next step. To a solution of the acid (1 equiv), EDC HCl (1.2 equiv), HOBt (1.2 equiv) and L-Val-OMe·HCl (1.2 equiv) in dry DMF (1 mL/0.2 mmol), was added DIPEA (2.2 equiv) at 0 °C. The reaction mixture is stirred at room temperature overnight, then diluted with AcOEt (10 mL), washed with water (2 × 3 mL), 10% NaHCO₃ aqueous solution (3 mL), 10% citric acid aqueous solution (3 mL) and saturated aqueous solution of NH₄CI (3 mL). The organic phase is dried over anhydrous MgSO₄, filtered and concentrated under vacuum. Purification of the residue by silica gel column chromatography using cyclohexane/ethyl acetate ratio 7:3–5:5) as the eluent furnishes the tripeptide products.

3) Compounds characterization:

a) Hydrazones 3a-f:

tert-Butyl (E)-2-(2,2,2-trifluoroethylidene)hydrazine-1-carboxylate (3a)

The product **3a** is obtained following the general procedure (A) as a white powder (2.17 g, 93%).

$$\begin{array}{c} F_3C & \bigcirc \\ N & \bigcirc \\ N & \bigcirc \\ H & \bigcirc \\ O & \\ \end{array} \end{array} \\ \begin{array}{c} \text{Chemical Formula: } C_7H_{11}F_3N_2O_2 \\ \text{Exact Mass: } 212,0773 \\ \end{array}$$

<u>¹H NMR</u> (200 MHz, CDCl₃): δ = 9.05 (brs, 1H, NH), 7.64 (m, 1H, CH), 1.48 (s, 9H, (CH₃)₃)

¹⁹**F NMR** (188 MHz, CDCl₃): δ = - 67.8 (d, ${}^{3}J_{H,F}$ = 3.0 Hz, 3F)

 $\frac{^{13}C \text{ NMR }}{(75 \text{MHz}, \text{CDCl}_3): \delta} = 152.9 \text{ (CO)}, 131.7 \text{ (q}, ^2J_{C,F} = 39 \text{ Hz}, \text{CH}), 120.4 \text{ (q}, ^1J_{C,F} = 271 \text{ Hz}, \text{CF}_3), 82.8 \text{ (Cq)}, 28.1 \text{ (CH}_3) = 152.9 \text{ (CO)}, 131.7 \text{ (q}, ^2J_{C,F} = 39 \text{ Hz}, \text{CH}), 120.4 \text{ (q}, ^1J_{C,F} = 271 \text{ Hz}, \text{CF}_3), 82.8 \text{ (Cq)}, 28.1 \text{ (CH}_3) = 152.9 \text{ (CO)}, 131.7 \text{ (q}, ^2J_{C,F} = 39 \text{ Hz}, \text{CH}), 120.4 \text{ (q}, ^1J_{C,F} = 271 \text{ Hz}, \text{CF}_3), 82.8 \text{ (Cq)}, 28.1 \text{ (CH}_3) = 152.9 \text{ (CO)}, 131.7 \text{ (q}, ^2J_{C,F} = 39 \text{ Hz}, \text{CH}), 120.4 \text{ (q}, ^1J_{C,F} = 271 \text{ Hz}, \text{CF}_3), 82.8 \text{ (Cq)}, 28.1 \text{ (CH}_3) = 152.9 \text{ (CO)}, 131.7 \text{ (q}, ^2J_{C,F} = 39 \text{ Hz}, \text{CH}), 120.4 \text{ (q}, ^1J_{C,F} = 271 \text{ Hz}, \text{CF}_3), 82.8 \text{ (Cq)}, 28.1 \text{ (CH}_3) = 152.9 \text{ (CO)}, 131.7 \text{ (q}, ^2J_{C,F} = 39 \text{ Hz}, \text{CH}), 120.4 \text{ (q}, ^1J_{C,F} = 271 \text{ Hz}, \text{CF}_3), 82.8 \text{ (Cq)}, 28.1 \text{ (CH}_3) = 152.9 \text{ (CO)}, 131.7 \text{ (q}, ^2J_{C,F} = 39 \text{ Hz}, \text{CH}), 120.4 \text{ (q}, ^1J_{C,F} = 271 \text{ Hz}, \text{CF}_3), 82.8 \text{ (Cq)}, 28.1 \text{ (CH}_3) = 152.9 \text{ (CO)}, 131.7 \text{ (q}, ^2J_{C,F} = 39 \text{ Hz}, \text{CH}), 120.4 \text{ (q}, ^1J_{C,F} = 271 \text{ Hz}, \text{CF}_3), 82.8 \text{ (Cq)}, 28.1 \text{ (CH}_3) = 152.9 \text{ (CO)}, 131.7 \text{ (q}, ^2J_{C,F} = 39 \text{ Hz}, \text{CH}), 120.4 \text{ (q}, ^1J_{C,F} = 271 \text{ Hz}, \text{CF}_3), 82.8 \text{ (Cq)}, 28.1 \text{ (CH}_3) = 152.9 \text{ (CO)}, 131.7 \text{ (q}, ^2J_{C,F} = 39 \text{ Hz}, \text{CH}), 120.4 \text{ (q}, ^1J_{C,F} = 271 \text{ Hz}, \text{CF}_3), 82.8 \text{ (Cq)}, 120.4 \text{ (q}, ^1J_{C,F} = 271 \text{ Hz}, \text{CF}_3), 82.8 \text{ (Cq)}, 120.4 \text{ (q}, ^1J_{C,F} = 271 \text{ Hz}, \text{CF}_3), 82.8 \text{ (Cq)}, 120.4 \text{ (q}, ^1J_{C,F} = 271 \text{ Hz}, 120.4 \text{ (q}$

<u>HRMS (ESI+TOF)</u> m/z $C_7H_{11}F_3N_2O_2$ [M+Na]⁺ calc. 235,0665, found 235.0672

Melting point: 117°C

S3

Benzyl (E)-2-(2,2,2-trifluoroethylidene)hydrazine-1-carboxylate (3b)

The product **3b** is obtained following the general procedure (A) as a white lightly yellow powder (2.91 g, 98%).

 $\frac{^{1}\text{H NMR}}{^{(200 \text{ MHz}, \text{ CDCI}_3): \delta} = 8.99 \text{ (brs, 1H, NH), 7.59 (m, 1H, CH), 7.35 (m, 5H, Haro), 5.22 (s, 2H, CH_2).}$

<u>19F NMR</u> (188 MHz, CDCl₃): δ = -67.8 (brs, 3F).

 $\frac{^{13}$ C NMR (75MHz, CDCl₃): δ= 153.0 (CO), 135.0 (Caro), 132.7 (q, $^{2}J_{C,F}$ = 41 Hz, CH), 128.8, 128.7, 128.4 (CHaro), 119.0 (q, $^{1}J_{C,F}$ = 270 Hz, CF₃), 68.2 (CH₂).

 $\underline{\text{HRMS (ESI+TOF)}} \text{ m/z } C_{10}H_9F_3N_2O_2 \text{ [M+Na]^+ calc. 269,0508, found 269,0533}$

Melting point: 125°C

S5

tert-Butyl (E)-2-(2,2-difluoroethylidene)hydrazine-1-carboxylate (3c)

The product **3c** is obtained following the general procedure (A) as a white powder (1.67g, 92%).

Chemical Formula: C₇H₁₂F₂N₂O₂ Exact Mass: 194,0867

 $\frac{1 \text{H NMR}}{1.50} (200 \text{ MHz}, \text{CDCI}_3): \delta = 8.43 \text{ (s, 1H, NH)}, 7.35-7.32 \text{ (m, 1H, CH)}, 6.14 \text{ (dt, 1H, } {}^2J_{H,F} = 54 \text{ Hz}, {}^3J_{H,H} = 6 \text{ Hz}, \text{ CF}_2\text{H}), 1.50 \text{ (s, 9H, (CH}_3)_3).$

¹⁹F NMR (188 MHz, CDCl₃): δ = - 116.1 (dd, 2F, ²J_{H,F} = 54 Hz, ³J_{H,F} = 2.5 Hz)

 $\frac{^{13}C \text{ NMR}}{(CH_3)}$ (75 MHz, CDCl₃): δ = 153.6 (CO), 136.3 (t, $^2J_{C,F}$ = 34 Hz, CH), 113.3 (t, $^1J_{C,F}$ = 233 Hz, CF₂H), 82.7 (Cq), 28.1 (CH₃).

HRMS (ESI+TOF) m/z $C_7H_{12}N_2O_2F_2$ [M+Na]⁺ calc. 217.0667, found 217.0765.

Melting point: 138°C

Benzyl (E)-2-(2,2-difluoroethylidene)hydrazine-1-carboxylate (3d)

The product 3d is obtained following the general procedure (A) as a white powder (2.68 g, 99%).

 $\frac{^{1}\text{H NMR}}{^{3}J_{\mathcal{H},\mathcal{H}}=6}$ (200 MHz, CDCl₃): δ = 8.84 (s, 1H, NH), 7.37 (m, 5H, Haro), 7.33-7.25 (m, 1H, CH), 6.15 (dt, 1H, $^{2}J_{\mathcal{H},\mathcal{F}}=54$ Hz, $^{3}J_{\mathcal{H},\mathcal{H}}=6$ Hz, CF₂H), 5.24 (s, 2H, CH₂).

¹⁹**F NMR** (188 MHz, CDCl₃): δ = - 116.3 (dd, ²J_{H,F}= 54 Hz, ³J_{H,F}= 1.9 Hz, 2F)

 $\frac{^{13}C \text{ NMR}}{(t, {^{7}J_{C,F}} = 234 \text{ Hz}, \text{ CDCI}_3): \delta = 153.2 \text{ (CO)}, 137.7 \text{ (t, } {^{2}J_{C,F}} = 33 \text{ Hz}, \text{ CH}), 135.1 \text{ (Caro)}, 128.7, 128.4, 127.2 \text{ (CHaro)}, 112.9 \text{ (t, } {^{7}J_{C,F}} = 234 \text{ Hz}, \text{ CF}_2\text{H}), 68.1 \text{ (CH}_2).$

 $\underline{\text{HRMS (ESI+TOF)}} \text{ m/z } C_{10}H_{10}F_2N_2O_2 \text{ [M+Na]}^+ \text{ calc. 251.0501, found 251.0578.}$

Melting point: 152°C

Benzyl (S)-(1-hydrazineyl-1-oxo-3-phenylpropan-2-yl)carbamate

To a solution of L-Z-PheOH (2 g, 1 equiv), BocNHNH₂ (0.87 g, 1 equiv), EDC-HCI (1.39 g, 1.1 equiv), HOBt (1.11 g, 1.1 equiv) in dry CH₂Cl₂ (15 mL), is added diisopropylethylamine (1.70 g, 2 equiv) at 0 °C. The reaction mixture is stirred overnight at room temperature, then diluted with 15 mL of CH₂Cl₂ and washed with NaHCO₃ 10% aqueous solution, citric acid 10% aqueous solution and NaCl saturated aqueous solution. The organic layer is dried over MgSO₄, filtered and evaporated to dryness. Then, the residue (2.90 g, 1 equiv) is diluted in the minimum of CH₂Cl₂ and a solution of HCl 4 N in dioxane (11 mL, 5.5 equiv) is added at 0 °C and stirred at room temperature until disappearance of the starting material (followed by TLC). After evaporation of the solvent, the residue is suspended in CH₂Cl₂ (20 mL) and basified with an aqueous saturated solution of Na₂CO₃. After separation of the organic layer, the aqueous layer is extracted again with CH₂Cl₂ (2 × 15 mL). The three organic layers are combined and dried over MgSO₄, filtered and evaporated to dryness. The Z-t-phenylalanine hydrazide is obtained as a white powder (2.35 g, 85% overall yield).

1<u>H NMR</u> (300 MHz, DMSO-d₆): δ = 9.20 (s, 1H, NH), 7.48 (d, ${}^{3}J_{H,H}$ = 8.7 Hz, 1H, NHCbz), 7.33-7.24 (m, 10H, Haro), 4.94 (s, 2H, CH₂Cbz), 4.19 (ddd, ${}^{3}J_{H,H}$ = 8.7 Hz, ${}^{3}J_{H,H}$ = 4.6 Hz, ${}^{3}J_{H,H}$ = 10.2 Hz, 1H, CH), 2.93 (dd, ${}^{3}J_{H,H}$ = 4.6 Hz, ${}^{2}J_{H,H}$ = 13.7 Hz, 1H, CH₂Ph), 2.77 (dd, ${}^{3}J_{H,H}$ = 10.3 Hz, ${}^{2}J_{H,H}$ = 13.7 Hz, 1H, CH₂Ph).

 $\frac{1^{3}C \text{ NMR}}{126.2}$ (75 MHz, DMSO-d₆): δ = 170.6 (CO), 155.7 (COBn), 138.0, 137.0 (Caro), 129.1, 128.2, 128.0, 127.6, 127.4, 126.2 (CHaro), 65.2 (CH₂Cbz), 54.9 (CH), 37.7 (CH₂Ph).

HRMS (ESI+TOF) m/z C₁₇H₁₉N₃O₃ [M+H]⁺ calc. 314.1499, found 314.1503.

Melting point: 155°C

Benzyl (S,E)-(1-oxo-3-phenyl-1-(2-(2,2,2-trifluoroethylidene)hydrazineyl)propan-2-yl)carbamate (3e)

The product **3e** is obtained following the general procedure (A) as a mixture of two conformers (ratio: 51/49), (0.745 g, 91%).

Conformer 1:

 $\frac{^{1}\text{H NMR}}{^{7.39-7.28}} (300 \text{ MHz}, \text{DMSO-d}_6): \delta = 12.19 \text{ (s, 1H, NH)}, 7.97 \text{ (d, } {}^{3}J_{\text{H,H}} = 3.45 \text{ , 1H, NHCbz}), 7.87 \text{ (d, } {}^{3}J_{\text{H,H}} = 7.89 \text{ Hz}, 1\text{H, CH}), 7.39-7.28 \text{ (m, 10H, Haro)}, 5.02 \text{ (s, 2H, CH}_2\text{Cbz}), 4.35 \text{ (m, 1H, CH)}, 3.10-2.75 \text{ (m, 2H, CH}_2\text{Ph}).$

¹⁹**F** NMR (188 MHz, DMSO-d₆): δ = - 66.2 (d, ³*J*_{*H,F*} = 2.55 Hz, 3F).

 $\frac{^{13}$ C NMR (75 MHz, DMSO-d₆): δ = 169.5 (CO), 156.0 (COCbz), 137.8, 136.8 (Caro), 134.1 (q, $^{2}J_{C,F}$ = 38 Hz, CH-CF₃), 129.2, 128.9, 128.3, 128.1, 127.6, 126.5, 125.5 (CHaro), 120.3 (q, $^{1}J_{C,F}$ = 266 Hz, CF₃), 65.4 (CH₂Cbz), 55.6 (CH), 36.7, (CH₂Ph).

Conformer 2:

<u>**1**H NMR</u> (300 MHz, DMSO-d₆): δ = 11.99 (s, 1H, NH), 7.79 (d, ${}^{3}J_{H,H}$ =8.19 Hz, 1H, NHCbz), 7.59 (d, ${}^{3}J_{H,H}$ = 3.57 Hz, 1H, CH), 7.39-7.28 (m, 10H, Haro), 5.02 (s, 2H, CH₂Cbz), 4.96 (m, 1H, CH), 3.10-2.75 (m, 2H, CH₂Ph).

¹⁹**F NMR** (188 MHz, DMSO-d₆): δ = -66.3 (d, 3F, ³*J*_{*H,F*} = 2.60 Hz, 3F).

 $\frac{{}^{13}\text{C NMR}}{129.2}$ (75 MHz, DMSO-d₆): δ = 169.5 (CO), 156.0 (COCbz), 137.4, 136.8 (Caro), 129.9 (q, ${}^{2}J_{C,F}$ = 38 Hz, CH-CF₃), 129.2, 128.9, 128.3, 128.1, 127.6, 126.5, 125.5 (CHaro), 120.1 (q, ${}^{1}J_{C,F}$ = 266 Hz, CF₃), 65.3 (CH₂Cbz), 53.5 (CH), 36.2 (CH₂Ph).

HRMS (ESI+TOF) m/z C₁₉H₁₈F₃N₃O₃ [M+Na]⁺ calc. 416.1192, found 416.1187.

Melting point: 176°C

2D 1H-1H NOESY experiments of 3e

Benzyl (S,E)-(1-oxo-3-phenyl-1-(2-(2,2-difluoroethylidene)hydrazineyl)propan-2-yl)carbamate (3f)

The product 3f is obtained following the general procedure (A) as a mixture of two conformers (ratio: 51/49) (1.15 g, 96%).

Conformer 1:

 $\frac{^{1}\text{H NMR}}{^{7.38-7.26}}$ (200 MHz, DMSO-d₆): δ = 11.91 (s, 1H, NH), 7.80 (d, $^{3}J_{H,H}$ =7.9 Hz, 1H, NHCbz), 7.72 (d, $^{3}J_{H,H}$ = 4.7 Hz, 1H, CH), 7.38-7.26 (m, 10H, Haro), 6.44 (td, $^{2}J_{H,F}$ = 81 Hz, $^{3}J_{H,H}$ = 4.9 Hz, 1H, CF₂H), 4.99 (s, 2H, CH₂Cbz), 4.29 (m, 1H, CH), 3.05-2.74 (m, 2H, CH₂Ph).

¹⁹**F NMR** (188 MHz, DMSO-d₆): δ = -116.59 (dd, ²*J*_{*H,F*} = 54 Hz, ³*J*_{*H,F*} = 2.7 Hz, 2F)

¹³C NMR (75 MHz, DMSO-d₆): δ = 169.0 (CO), 155.9 (COCbz), 140.1 (t, ${}^{2}J_{C,F}$ = 31 Hz, CH-CF₂H), 137.8, 136.9 (Caro), 129.1, 128.2, 128.1, 127.7, 127.5, 126.4 (CHaro), 113.3 (t, ${}^{1}J_{C,F}$ = 233 Hz, CF₂H), 65.4 (CH₂Cbz), 55.5 (CH), 36.9, 36.3 (CH₂Ph).

Conformer 2:

 $\frac{1 \text{H NMR}}{\text{CH}}$ (200 MHz, DMSO-d₆): δ = 11.67 (s, 1H, NH), 7.68 (d, ${}^{3}J_{H,H}$ = 9.1 Hz, 1H, NHCbz), 7.42 (d, ${}^{3}J_{H,H}$ = 4.4 Hz, 1H, CH), 7.38-7.26 (m, 10H, Haro), 6.51 (td, ${}^{2}J_{H,F}$ = 54 Hz, ${}^{3}J_{H,H}$ = 5 Hz, 1H, CF₂H), 4.99 (s, 2H, CH₂Cbz), 4.93 (m, 1 H, CH), 3.05-2.74 (m, 2H, CH₂Ph)

¹⁹**F NMR** (188 MHz, DMSO-d₆): δ = -116.61 (dd, ²*J*_{*H,F*} = 81 Hz, ³*J*_{*H,F*} = 3.6 Hz, 2F)

¹³C NMR (75 MHz, DMSO-d₆): δ = 169.0 (CO), 155.9 (COCbz), 137.4, 136.8 (Caro), 136.3 (t, ${}^{2}J_{C,F}$ = 31 Hz, CHCF₂H), 129.1, 128.2, 128.1, 127.7, 127.5, 126.4 (CHaro), 112.9 (t, ${}^{1}J_{C,F}$ = 233 Hz, CF₂H), 65.3 (CH₂Cbz), 53.3 (CH), 36.3 (CH₂Ph).

<u>**HRMS (ESI+TOF)**</u> m/z $C_{19}H_{19}F_2N_3O_3$ [M+Na]⁺ calc. 398.1286, found 398.1281.

Melting point: 193°C

2D ¹H-¹H NOESY experiment of 3f

b) Allylated compounds 5a-f:

tert-Butyl 2-(1,1,1-trifluoro-4-(methoxycarbonyl)pent-4-en-2-yl)hydrazine-1-carboxylate (5a)

The product **5a** is obtained following the general procedure (**B**) as a yellow oil (0.531g, 73%).

1<u>H NMR</u> (200 MHz, CDCl₃): δ = 6.37 (s, 1H, =CH₂), 6.21 (brs, 1H, NHBoc), 5.81 (s, 1H, =CH₂), 4.22 (brs, 1H, NH), 3.79 (s, 3H, OCH₃), 3.55-3.79 (m, 1H, CH), 2.76 (dd, ${}^{3}J_{H,H}$ = 3.5 Hz, ${}^{1}J_{H,H}$ = 14.6 Hz, 1H, CH₂), 2.46 (dd, ${}^{3}J_{H,H}$ = 9,0 Hz, ${}^{1}J_{H,H}$ = 14.6 Hz, 1H, CH₂), 1,42 (s, 9H, (CH₃)₃).

¹⁹**F NMR** (188 MHz, CDCl₃): δ = -75.4 (brs, 3F)

¹³C NMR (75 MHz, CDCl₃): δ = 166.7 (CO), 156.0 (COCbz), 135.1 (=Cq), 128.9 (=CH₂), 125.8 (q, ^{*1*}*J*_{*H*,*H*} = 282 Hz, CF₃), 80.6 (Cq), 60.3 (q, ^{*2*}*J*_{*H*,*H*} = 27 Hz, CH-CF₃), 51.8 (OCH₃), 29.8 (CH₂), 28.0 (CH₃).

HRMS (ESI+TOF) m/z C12H19F3N2O4 [M+Na]+ calc. 335.1189, found. 335.1156

Benzyl 2-(1,1,1-trifluoro-4-(methoxycarbonyl)pent-4-en-2-yl)hydrazine-1-carboxylate (5b)

The product **5b** is obtained following the general procedure (**B**) as a yellow oil (0.633 g, 81%).

1<u>H NMR</u> (200 MHz, CDCl₃): δ = 7.33 (m, 5H, Haro), 6.59 (brs, 1H, NH), 6.38 (s, 1H, =CH₂), 5.80 (s, 1H, =CH₂), 5.11 (s, 2H, CH₂Cbz), 3.97 (m, 1H, NH), 3.79 (s, 3H, OCH₃), 3.66 (m, 1H, CHCF₃), 2.77 (dd, ³*J*_{*H*,*H*} = 3.0 Hz, ³*J*_{*H*,*H*} = 14.4 Hz, 1H, CH₂), 2.49 (dd, ³*J*_{*H*,*H*} = 4.2 Hz, ³*J*_{*H*,*H*} = 14.5 Hz, 1H, CH₂).

¹⁹**F NMR** (188 MHz, CDCl₃): δ = - 75.49 (d, ${}^{3}J_{H,H}$ = 6.6 Hz, 3F)

 $\frac{^{13}\text{C NMR}}{^{125.9} (q, \, ^{1}J_{H,H} = 279 \text{ Hz}, \text{ CP}_3); \delta = 167.0 \text{ (CO)}, 156.8 \text{ (COCbz)}, 135.9 \text{ (=Cq)}, 135.2 \text{ (Caro)}, 129.3, 128.5, 128.1 \text{ (CHaro)}, 125.9 \text{ (q}, \, ^{1}J_{H,H} = 279 \text{ Hz}, \text{ CF}_3), 120.3 \text{ (=CH}_2), 67.3 \text{ (CH}_2\text{Cbz)}, 60.7 \text{ (q}, \, ^{2}J_{H,H} = 26.9 \text{ Hz}, \text{ CHCF}_3), 52.2 \text{ (CH}_3), 29.8 \text{ (CH}_2).$

<u>HRMS (ESI+TOF)</u> m/z $C_{15}H_{17}F_3N_2O_4$ [M+Na]⁺ calc. 369.1033, found. 369.1123

tert-Butyl -2-(1,1-difluoro-4-(methoxycarbonyl)pent-4-en-2-yl)hydrazine-1-carboxylate (5c)

The product **5c** is obtained following the general procedure (**B**) as a yellow oil (0.669g, 88%).

 $\frac{^{1}\text{H NMR}}{^{5}\text{H NMR}} (200 \text{ MHz, CDCI}_3): \delta = 6.30 \text{ (s, 1H, =CH}_2), 6.29 \text{ (s, 1H, NHBoc)}, 5.77 \text{ (s, 1H, =CH}_2), 5.76 \text{ (td, } {}^{3}J_{H,H} = 3.9 \text{ Hz}, {}^{2}J_{H,F} = 55.7 \text{ Hz}, 1\text{H}, \text{CF}_2\text{H}), 3.94 \text{ (brs, 1H, NH)}, 3.76 \text{ (s, 3H, OCH}_3), 3.35 \text{ (m, 1H, CHCF}_2\text{H}), 2.69 \text{ (dd, } {}^{3}J_{H,H} = 8.7 \text{ Hz}, {}^{2}J_{H,H} = 14.5 \text{ Hz}, 1\text{H}, \text{CH}_2), 1.42 \text{ (m, 9H, (CH}_3)_3).$

 $\frac{^{19}\text{F NMR}}{^{19}\text{F}}$ (188 MHz, CDCl₃): δ = - 126.4 (dd, $^{2}J_{F,F}$ = 288 Hz, $^{2}J_{H,F}$ = 54 Hz, 1F), -128.7 (dd, $^{2}J_{F,F}$ = 288 Hz, $^{2}J_{H,F}$ = 54 Hz, 1F).

1³C NMR (75 MHz, CDCl₃): δ = 167.1 (CO), 156.4 (COBoc), 135.9 (=Cq), 128.2 (=CH₂), 116.2 (t, ^{*1*}*J*_{C,F} = 243 Hz, CHF₂), 80.6 (Cq), 60.4 (t, ²*J*_{C,F} = 21 Hz, CH-CHF₂), 51.9 (OCH₃), 28.9 (CH₂), 28.1 ((CH₃)₃).

HRMS (ESI+TOF) m/z C12H20F2N2O4 [M+Na]+ calc. 317.1283, found. 317.1266

Benzyl -2-(1,1-difluoro-4-(methoxycarbonyl)pent-4-en-2-yl)hydrazine-1-carboxylate (5d)

The product 5d is obtained following the general procedure (B) as a yellow oil (0.566 g, 79%).

 $\frac{1 \text{H NMR}}{1000} (200 \text{ MHz}, \text{CDCI}_3): \delta = 7.35 \text{ (m, 5H, Haro)}, 6.47 \text{ (s, 1H, NHCbz)}, 6.34 \text{ (s, 1H, =CH}_2), 5.79 \text{ (s, 1H, =CH}_2), 5.75 \text{ (dt, } ^3J_{H,H} = 3.9 \text{ Hz}, ^2J_{H,F} = 55.7 \text{ Hz}, 1\text{H}, \text{CF}_2\text{H}), 5.13 \text{ (s, 2H, CH}_2\text{Ph}), 3.78 \text{ (s, 3H, OCH}_3), 3.39 \text{ (m, 2H, NH and CH)}, 2.71 \text{ (dd, } ^3J_{H,H} = 3.9 \text{ Hz}, ^2J_{H,H} = 14.7 \text{ Hz}, 1\text{H}, \text{CH}_2), 2.43 \text{ (dd, } ^3J_{H,H} = 9.0 \text{ Hz}, ^2J_{H,H} = 14.5 \text{ Hz}, 1\text{H}, \text{CH}_2).$

 $\frac{^{19}\text{F NMR}}{^{2}J_{H,F}} (188 \text{ MHz, CDCI}_3): \delta = -126.4 \text{ (ddd, } ^{2}J_{F,F} = 290 \text{ Hz}, \, ^{2}J_{H,F} = 58 \text{ Hz}, \, ^{3}J_{H,F} = 7 \text{ Hz}, \, 1\text{F}), \, -128.3 \text{ (ddd, } ^{2}J_{F,F} = 288 \text{ Hz}, \, ^{2}J_{H,F} = 56 \text{ Hz}, \, ^{3}J_{H,F} = 12 \text{ Hz}, \, 1\text{F}).$

 $\frac{^{13}C \text{ NMR}}{(=CH_2), 116.2 \text{ (t, } ^{1}J_{C,F} = 242 \text{ Hz}, \text{ CF}_2\text{H}), 67.1 \text{ (CO}_{\text{Cbz}}), 135.8 \text{ (=C)}, 128.5 \text{ (Caro)}, 128.4, 128.1, 128.0 \text{ (CHaro)}, 125.4 \text{ (=CH}_2), 116.2 \text{ (t, } ^{1}J_{C,F} = 242 \text{ Hz}, \text{ CF}_2\text{H}), 67.1 \text{ (CH}_2\text{Cbz}), 60.5 \text{ (t, } ^{2}J_{C,F} = 20 \text{ Hz}, \text{ CHCF}_2\text{H}), 52.0 \text{ (OCH}_3), 29.0 \text{ (CH}_2).$

 $\underline{\text{HRMS (ESI+TOF)}} \text{ m/z } C_{15}H_{18}F_2N_2O_4 \text{ [M+Na]}^+ \text{ calc. 351.1127, found. 351.1114}$

S25

Methyl 4-(2-(((benzyloxy)carbonyl)-L-phenylalanyl)hydrazineyl)-5,5,5-trifluoro-2-methylenepentanoate (5e)

The product **5e** is obtained following the general procedure (**B**) as a yellow oil (0.580 g, 66%) as a mixture of two diastereoisomers (ratio: 52/48).

¹<u>H NMR</u> (200 MHz, CDCl₃): δ = 7.89 (brs, 1H, NHCO), 7.25-7.02 (m, 10H, Haro), 6.29 and 6.28 (brs, 1H, =CH₂), 5.68 and 5.66 (brs, 1H, =CH₂), 5.46 (d, ${}^{3}J_{H,H}$ = 8.1 Hz, 0.5H, NHCbz), 5.33 (d, ${}^{3}J_{H,H}$ = 8.36 Hz, 0.5 H, NHCbz), 4.94 (s, 2H, CH₂Cbz), 4.68 (d, ${}^{3}J_{H,H}$ = 6.16 Hz, 0.5 H, NHN), 4.60 (d, ${}^{3}J_{H,H}$ = 6.16 Hz, 0.5 H, NHN), 4.32 (q, ${}^{3}J_{H,H}$ = 5.2 Hz, 1 H, CHα), 3.71 and 3.69 (2s, 3H, OCH₃), 3.42-3.38 (m, 0.5H, CH), 3.18-3.14 (m, 0.5H, CH), 2.92 (m, 2H, CH₂Ph), 2.60 (td, ${}^{2}J_{H,H}$ = 14.4 Hz, ${}^{3}J_{H,H}$ = 3.7 Hz, 1H, CH₂), 2.32 (dd, ${}^{2}J_{H,H}$ = 14.8 Hz, ${}^{3}J_{H,H}$ = 10.6 Hz, 1H, CH₂).

¹⁹**F NMR** (188 MHz, CDCl₃): δ = -75.2 (d, ³*J*_{*H,F*} = 6.96 Hz, 3F), -75.7 (d, ³*J*_{*H,F*} = 6.63 Hz, 3F).

¹³C NMR (75 MHz, CDCl₃): δ = 170.7 (CONH), 167.1 and 166.9 (COCbz), 155.9 (CO), 136.0 and 135.8 (=C), 135.1 and 134.9 (Caro), 129.4, 129.2, 128.7, 128.5, 128.3, 128.2, 128.0, 127.9, 127.1 (CHaro), 126.2 and 125.7 (=CH₂), 125.8 (q, ¹*J*_{C,F} = 281Hz, CF₃), 125.7 (q, ¹*J*_{C,F} = 280 Hz, CF₃), 67.2 and 67.1 (CH₂Cbz), 60.7 (q, ²*J*_{H,F} = 27 Hz, CHCF₃), 54.7 and 54.5 (CHα), 52.2 (OCH₃), 38.7 and 38.3 (CH₂Ph), 29.8 and 29.8 (CH₂).

<u>HRMS (ESI+TOF)</u> m/z $C_{24}H_{26}F_2N_3O_5$ [M+H]⁺ calc. 494.1898, found. 494.1905

Methyl 4-(2-(((benzyloxy)carbonyl)-L-phenylalanyl)hydrazineyl)-5,5-difluoro-2-methylenepentanoate (5f)

The product **5f** is obtained following the general procedure (**B**) as a yellow oil (1.07 g, 75%) as a mixture of two diastereoisomers (ratio: 51/49).

¹<u>H NMR</u> (200 MHz, CDCl₃): δ = 7.76 (brs, 1H, NHCO), 7.28-7.07 (m, 10H, Haro), 6.23 (d, ${}^{3}J_{H,H}$ = 4.5 Hz, 1H, =CH₂), 5.65 (brs, 1H, =CH₂), 5.48 (td, ${}^{2}J_{H,F}$ = 55.7Hz, ${}^{3}J_{H,H}$ = 4.3 Hz, 0.5H, CF₂H), 5.39 (d, ${}^{3}J_{H,H}$ = 7.6 Hz, 1H, NHCbz), 5.34 (d, ${}^{3}J_{H,H}$ = 7.7 Hz, 1H, NHCbz), 5.21 (td, ${}^{2}J_{H,F}$ = 56.0 Hz, ${}^{3}J_{H,H}$ = 4.1 Hz, 0.5H, CF₂H), 4.97 (s, 2H, CH₂Cbz), 4.66 (sl, 1H, NHN), 4.30 (q, ${}^{3}J_{H,H}$ = 7.7 Hz, 1H, CHα), 3.68 and 3.67 (2s, 3H, OCH₃), 3.09 (m, 1H, CH), 2.97 and 2.95 (2d, ${}^{3}J_{H,H}$ = 6.6 Hz and ${}^{3}J_{H,H}$ = 7.2 Hz, 2H, CH₂Ph), 2.48 (dd, ${}^{2}J_{H,H}$ = 14.9 Hz, ${}^{3}J_{H,H}$ = 3.9 Hz, 1H, CH₂), 2.22 (dd, ${}^{2}J_{H,H}$ = 14.7 Hz, ${}^{3}J_{H,H}$ = 9.5 Hz, 1H, CH₂)

 $\frac{^{19}\text{F NMR}}{^{12}\text{H}_{,F}} (188 \text{ MHz, CDCI}_3): \delta = -125.9 \text{ (ddd, } {}^{2}J_{F,F} = 287 \text{ Hz}, \, {}^{2}J_{H,F} = 55 \text{ Hz}, \, {}^{3}J_{H,F} = 10.1 \text{ Hz}, \, 1\text{F}), \, -126.1 \text{ (ddd, } {}^{2}J_{F,F} = 286 \text{ Hz}, \, {}^{2}J_{H,F} = 55 \text{ Hz}, \, {}^{3}J_{H,F} = 11.5 \text{ Hz}, \, 1\text{F}), \, -128.9 \text{ (ddd, } {}^{2}J_{F,F} = 287 \text{ Hz}, \, {}^{2}J_{H,F} = 55 \text{ Hz}, \, {}^{3}J_{H,F} = 11.5 \text{ Hz}, \, 1\text{F}), \, -128.9 \text{ (ddd, } {}^{2}J_{F,F} = 286 \text{ Hz}, \, {}^{2}J_{H,F} = 55 \text{ Hz}, \, {}^{3}J_{H,F} = 12.4 \text{ Hz}, \, 1\text{F}).$

¹³C NMR (75 MHz, CDCl₃): δ = 170.5 and 170.4 (CONH), 167.5 and 167.3 (COCbz), 155.9 (CO), 136.0 and 135.8 (=C), 129.2, 128.8, 128.7, 128.2, 128.0 (CHaro), 127.2 (=CH₂), 116.1 (t, ¹J_{C,F} = 244 Hz, CF₂H), 116.0 (t, ¹J_{C,F} = 244 Hz, CF₂H), 67.2 and 67.1 (CH₂Cbz), 60.8 (t, ²J_{C,F} = 21 Hz, CHCF₂H), 54.9 (CHα), 52.2 (OCH₃), 38.6 and 38.3 (CH₂Ph), 28.9 and 28.8 (CH₂).

<u>HRMS (ESI+TOF)</u> m/z $C_{24}H_{28}F_2N_3O_5$ [M+H]⁺ calc. 476.1997, found. 476.2000

S29

c) Hydrazones 6a-f

tert-Butyl (E)-2-(1,1,1-trifluoro-4-(methoxycarbonyl)pent-4-en-2-ylidene)hydrazine-1-carboxylate (6a)

The product **6a** is obtained following the general procedure (**C**) as a slightly yellow oil (0.347 g, 80% (I₂) / 77%(NBS))

 $\frac{^{1}\text{H NMR}}{^{2}\text{H , CH}_{2}}$ (200 MHz, CDCl₃): δ = 9.39 (s, 1H, NHBoc), 6.41 (s, 1H, =CH₂), 5.86 (s, 1H, =CH₂), 3.84 (s, 3H, OCH₃), 3.37 (s, 2H, CH₂), 1.53 (s, 9H, (CH₃)₃).

 $\frac{19F \text{ NMR}}{188 \text{ MHz}}$ (188 MHz, CDCl₃): $\delta = -68.69 \text{ (s, 3F)}$

 $\frac{{}^{13}\textbf{C} \text{ NMR}}{(q, {}^{1}J_{C,F} = 274 \text{ Hz}, \text{ CDCl}_3): \delta = 167.6 \text{ (COBoc)}, 152.0 \text{ (CO)}, 136.3 \text{ (q}, {}^{2}J_{C,F} = 34 \text{ Hz}, \text{ C=N)}, 132.1 \text{ (=C)}, 130.1 \text{ (=CH}_2), 120.9 \text{ (q}, {}^{1}J_{C,F} = 274 \text{ Hz}, \text{ CF}_3), 82.2 \text{ (Cq)}, 52.8 \text{ (OCH}_3), 28.0 \text{ (CH}_2), 27.6 \text{ (CH}_3).$

 $\underline{\text{HRMS (ESI+TOF)}} \text{ m/z } C_{12}H_{17}F_3N_2O_4 \text{ [M+Na]}^+ \text{ calc. 333.1038, found. 333.1152}$

Benzyl (E)-2-(1,1,1-trifluoro-4-(methoxycarbonyl)pent-4-en-2-ylidene)hydrazine-1-carboxylate (6b)

The product **6b** is obtained following the general procedure (**C**) as a slightly yellow oil (0.470 g, 80% (I₂)/82% (NBS))

 $\frac{^{1}\text{H NMR}}{(s, 2H, CH_2Cbz)}$ (200 MHz, CDCl₃): δ 9.89 (brs, 1H, NH), 7.41-7.38 (m, 5H, Haro), 6.42 (s, 1H, =CH₂), 5.89 (s, 1H, =CH₂), 5.29 (s, 2H, CH₂Cbz), 3.82 (s, 3H, OCH₃), 3.39 (s, 2H, CH₂).

<u>¹⁹F NMR</u> (188 MHz, CDCl₃): δ = - 68.59 (s, 3F)

 $\frac{{}^{13}\text{C NMR}}{(\text{Caro}), 128.5, 128.3, 128.2} (\text{CHaro}), 120.8 (q, {}^{1}J_{C,F} = 274 \text{ Hz}, \text{CF}_3), 67.8 (\text{CH}_2\text{Cbz}), 52.9 (\text{OCH}_3), 27.8 (\text{CH}_2).$

<u>HRMS (ESI+TOF)</u> m/z $C_{15}H_{15}F_3N_2O_4$ [M+Na]⁺ calc. 367.0882, found. 367.0841

tert-Butyl (E)-2-(1,1-difluoro-4-(methoxycarbonyl)pent-4-en-2-ylidene)hydrazine-1-carboxylate (6c)

The product 6c is obtained following the general procedure (C) as a yellow solid (0.346 g, 69% (I₂)/73% (NBS))

 $\frac{^{1}\text{H NMR}}{^{=}\text{CH}_{2}}$ (200 MHz, CDCl₃): δ = 9.34 (s, 1H, NHBoc), 6.40 (s, 1H, =CH₂), 6.20 (t, $^{2}J_{H,F}$ = 54 Hz, 1H, CF₂H), 5.88 (s, 1H, =CH₂), 3.84 (s, 3H, OCH₃), 3.37 (s, 2H, CH₂), 1.54 (m, 9H, (CH₃)₃).

<u>¹⁹F NMR</u> (188 MHz, CDCl₃): δ = - 116.4 (d, ²*J*_{*H,F*} = 54 Hz, 2F)

 $\frac{^{13}\textbf{C} \text{ NMR}}{(t, {}^{7}J_{C,F} = 23 \text{ Hz}, \text{ CDCI}_3): \delta = 167.9 \text{ (COBoc)}, 152.4 \text{ (CO)}, 142.0 \text{ (t}, {}^{2}J_{C,F} = 29 \text{ Hz}, \text{ C=N)}, 132.7 \text{ (=C)}, 130.2 \text{ (=CH}_2), 115.5 \text{ (t}, {}^{7}J_{C,F} = 238 \text{ Hz}, \text{ CF}_2\text{H}), 81.9 \text{ (Cq)}, 52.7 \text{ (OCH}_3), 28.1 \text{ (CH}_2), 25.9 \text{ (CH}_3).$

<u>HRMS (ESI+TOF)</u> m/z $C_{12}H_{18}F_2N_2O_4$ [M+Na]⁺ calc. 315.1132, found. 315.1154

Benzyl (E)-2-(1,1-difluoro-4-(methoxycarbonyl)pent-4-en-2-ylidene)hydrazine-1-carboxylate (6d)

The product **6d** is obtained following the general procedure (**C**) as a yellow oil (0.222 g, 78% $(I_2)/76\%$ (NBS))

$$\begin{array}{c|c} HF_2C & CO_2Me \\ & & \\ N & \\ N & \\ NHCbz \end{array} \\ \begin{array}{c} CO_2Me \\ Chemical Formula: C_{15}H_{16}F_2N_2O_4 \\ Exact Mass: 326,1078 \end{array}$$

 $\frac{^{1}\text{H NMR}}{^{1}\text{H, CF}_{2}\text{H}}$ (200 MHz, CDCl₃): δ = 9.86 (s, 1H, NHCbz), 7.40-7.37 (m, 5H, Haro), 6.39 (s, 1H, =CH₂), 6.19 (t, $^{2}J_{H,F}$ = 54 Hz, 1H, CF₂H), 5.92 (s, 1H, =CH₂), 5.27 (s, 2H, CH₂Cbz), 3.80 (s, 3H, OCH₃), 3.36 (s, 2H, CH₂).

<u>¹⁹F NMR</u> (188 MHz, CDCl₃): δ = - 116.4 (d, ²J_{H,F} = 54 Hz, 2F)

 $\frac{{}^{13}\text{C NMR}}{(\text{Caro}), 128.5, 128.3, 128.2 (\text{CHaro}), 115.3 (t, {}^{1}J_{C,F} = 238 \text{ Hz}, \text{CF}_2\text{H}), 67.6 (\text{CH}_2\text{Cbz}), 52.8 (\text{OCH}_3), 26.1 (\text{CH}_2), 130.7 (\text{Caro}), 128.5, 128.3, 128.2 (\text{CHaro}), 115.3 (t, {}^{1}J_{C,F} = 238 \text{ Hz}, \text{CF}_2\text{H}), 67.6 (\text{CH}_2\text{Cbz}), 52.8 (\text{OCH}_3), 26.1 (\text{CH}_2).$

HRMS (ESI+TOF) m/z C₁₅H₁₆F₂N₂O₄ [M+Na]⁺ calc. 349.0976, found. 349.0957

Methyl (E)-4-(2-(((benzyloxy)carbonyl)-L-phenylalanyl)hydrazineylidene)-5,5,5-trifluoro-2-methylenepentanoate (6e)

The product **6e** is obtained following the general procedure (**C**) as a mixture of two conformers (ratio 77/23) as a yellow oil (0.667 g, 75%).

Chemical Formula: $C_{24}H_{24}F_3N_3O_5$ Exact Mass: 491,1668

¹<u>H NMR</u> (200 MHz, CDCl₃): δ = 10.62 and 10.12 (2brs, 0.2 and 0.8H, NHN), 7.23-7.08 (m, 10H, Haro), 6.26 (s, 1H, =CH₂), 5.75 and 5.48 (2s, 0.2 and 0.8H, NHCbz), 5.58 (d, ${}^{3}J_{H,H}$ = 7.6 Hz, 1H, =CH₂), 5.33 (d, ${}^{3}J_{H,H}$ = 6.6 Hz, 1H, CHα), 4.98 (s, 2H, CH₂Cbz), 3.71 and 3.69 (s, 3H, OCH₃), 3.21 (d, ${}^{3}J_{H,H}$ = 6.6 Hz, 2H, CH₂), 3.03 (dd, ${}^{1}J_{H,H}$ = 13.7 Hz, ${}^{3}J_{H,H}$ = 5.15 Hz, 1H, CH₂Ph), 2.87 (dd, ${}^{1}J_{H,H}$ = 13.2 Hz, ${}^{3}J_{H,H}$ = 7.96 Hz, 1H, CH₂Ph).

¹⁹**F NMR** (188 MHz, CDCl₃): δ = -68.7(s, 3F), -69.3(s, 3F).

¹³C NMR (75 MHz, CDCl₃): δ = 175.1 (CONH), 167.0 (COCbz), 156.15 and 155.7 (CO), 138.2 (q, ²*J*_{C,F} = 36 Hz, C=N), 136.4 and 135.9 (=C), 131.6 (=CH₂), 129.5 (Caro), 129.1, 128.7, 128.5, 128.4, 128.1, 127.9, 127.0 (CHaro), 120.6 (q, ¹*J*_{C,F} = 278 Hz, CF₃), 67.1 and 66.8 (CH₂Cbz), 55.6 (CHα), 52.9 and 52.7 (OCH₃), 39.3 and 38.7 (CH₂Ph), 28.0 and 27.6 (CH₂).

HRMS (ESI+TOF) m/z C24H24F2N3O5 [M+H]+ calc. 492.1741, found. 492.1748

Methyl (E)-4-(2-(((benzyloxy)carbonyl)-L-phenylalanyl)hydrazineylidene)-5,5-difluoro-2-methylenepentanoate (6f)

The product **6f** is obtained following the general procedure (**C**) as a mixture of two conformers (ratio 52/48) a yellow oil (0.566 g, 69%).

¹<u>H NMR</u> (200 MHz, CDCl₃): δ = 10.63 and 10.06 (2s, 0.4 and 0.5H, NHN), 7.23-7.06 (m, 10H, Haro), 6.23 (d, ³*J*_{*H*,*H*} = 11.28 Hz, 1H, =CH₂), 6.11 (t, ²*J*_{*H*,*F*} = 54 Hz, 0.5H, CF₂H), 5.91 (t, ²*J*_{*H*,*F*} = 54 Hz, 0.5H, CF₂H), 5.78 (s, 0.5H, NHCbz), 5.61 (d, ³*J*_{*H*,*H*} = 8.52 Hz, 0.5H, NHCbz), 5.53 (s, 1H, =CH₂), 5.33 (m, 0.6H, CHα), 4.99 (s, 2H), 4.52 (m, 0.4H, CHα), 3.67 (s, 3H, OCH₃), 3.15 (d, ²*J*_{*H*,*H*} = 12.2 Hz, 2H, CH₂), 3.05 (d, ³*J*_{*H*,*H*} = 6.81 Hz, 1H, CH₂Ph), 2.96 (d, ³*J*_{*H*,*H*} = 7.11 Hz, 1H, CH₂Ph).

 $\frac{{}^{19}\text{F NMR}}{(188 \text{ MHz, CDCl}_3): \delta = -116.63 \text{ (d, } {}^2\text{J}_{\text{H,F}} = 54 \text{ Hz, } 2\text{F}), -116.59 \text{ (d, } {}^2\text{J}_{\text{H,F}} = 54 \text{ Hz, } 2\text{F}).}$

¹³C NMR (75 MHz, CDCl₃): δ = 174.2 (CONH), 168.7 and 167.5 (COCbz), 155.7 (CO), 146.9 (t, ²*J*_{C,F} = 29.6 Hz, C=N), 143.3 (t, ²*J*_{C,F} = 29.1 Hz, C=N), 136.4 and 136.0 (=C), 131.1 and 129.4 (=CH₂), 129.2 and 129.0 (Caro), 128.7, 128.5, 128.3, 128.2, 128.1, 128.0, 127.0 (CHaro), 115.2 (t, ¹*J*_{C,F} = 239.4 Hz, CF₂H), 114.7 (t, ¹*J*_{C,F} = 239.4 Hz, CF₂H), 67.1 and 66.8 (CH₂Cbz), 55.6 (CHα), 53.0 and 52.7 (OCH₃), 39.1 and 38.8 (CH₂Ph), 26.3 and 26.1 (CH₂).

HRMS (ESI+TOF) m/z C24H25F2N3O5 [M+Na]+ calc. 496.1654, found. 496.1662

d) <u>Tetrahydropyridazines 7a-f</u>

1-(tert-Butyl) 5-methyl 3-(trifluoromethyl)-3,4-dihydropyridazine-1,5(2H)-dicarboxylate (7a)

The product **7a** is obtained following the general procedure **D** as a yellow oil (0.186 g, 63%).

Chemical Formula: $C_{12}H_{17}F_3N_2O_4$ Exact Mass: 310,1140

 $\frac{1 \text{H NMR}}{13 \text{ Hz}, {}^{3}J_{H,H} = 9 \text{ Hz}, 1\text{H}, \text{CH}_{2}\text{NBoc}, 2.92-2.84 \text{ (m, 1H, CHCO}_{2}\text{Me}), 2.57-2.54 \text{ (m, 2H, CH}_{2}), 1.50 \text{ (s, 9H, (CH}_{3}), 3.50 \text{ (dd, }^{2}J_{H,H} = 1.3 \text{ Hz}, {}^{3}J_{H,H} = 9 \text{ Hz}, 1\text{ H}, \text{CH}_{2}\text{NBoc}), 2.92-2.84 \text{ (m, 1H, CHCO}_{2}\text{Me}), 2.57-2.54 \text{ (m, 2H, CH}_{2}), 1.50 \text{ (s, 9H, (CH}_{3}), 3.50 \text{ (dd, }^{2}J_{H,H} = 1.3 \text{ Hz}, {}^{3}J_{H,H} = 1.3$

¹⁹**F NMR** (188 MHz, CDCl₃): δ = -71.10 (s, 3F).

 $\frac{{}^{13}\text{C NMR}}{82.1 (Cq)}, 51.6 (OCH_3); \delta = 170.4 (COBoc), 151.0 (CO), 135.0 (d, {}^{2}J_{C,F} = 34 \text{ Hz}, \text{ C=N}), 118.0 (q, {}^{1}J_{C,F} = 271 \text{ Hz}, \text{ CF}_3), 82.1 (Cq), 51.6 (OCH_3), 41.6 (CH_2NBoc), 32.6 (CH), 27.1 (CH_3), 21.6 (CH_2).$

HRMS (ESI+TOF) m/z C₁₂H₁₇F₃N₂O₄ [M+Na]⁺ calc. 333.1038, found. 333.1086

1-Benzyl 5-methyl 3-(trifluoromethyl)-5,6-dihydropyridazine-1,5(4H)-dicarboxylate (7b)

The product **7b** is obtained following the general procedure **D** as a yellow oil (0.396 g, 94%)

Chemical Formula: C₁₅H₁₅F₃N₂O₄ Exact Mass: 344,0984

 $\frac{1 \text{H NMR}}{1 \text{CH}_2 \text{Cbz}}$ (200 MHz, CDCl₃): δ = 7.42-7.31 (m, 5H, Haro), 5.32 (d, ²*J*_{*H*,*H*} = 12 Hz, 1H, CH₂Cbz), 5.27 (d, ²*J*_{*H*,*H*} = 12 Hz, 1H, CH₂Cbz), 4.22 (dd, ²*J*_{*H*,*H*} = 13 Hz, ³*J*_{*H*,*H*} = 4.0 Hz, 1H, CH₂NCbz), 3.73 (s, 3H, OCH₃), 3.62 (dd, ²*J*_{*H*,*H*} = 13 Hz, ³*J*_{*H*,*H*} = 9 Hz, 1H, CH₂NCbz), 2.95 (m, 1H, CH), 2.62 (d, ³*J*_{*H*,*H*} = 7.3 Hz, 2H, CH₂).

<u>19F NMR</u> (188 MHz, CDCl₃): δ = - 71.12 (s, 3F)

 $\frac{{}^{13}\text{C NMR}}{{}^{128.1}}$ (75 MHz, CDCl₃): δ = 171.1 (COCbz), 153.4 (CO), 137.3 (q, ${}^{2}J_{C,F}$ = 35 Hz, C=N), 135.6 (Caro), 128.6, 128.4, 128.1 (CHaro), 118 (q, ${}^{1}J_{C,F}$ = 271 Hz, CF₃), 68.7 (CH₂Cbz), 52.6 (OCH₃), 42.8 (CH₂NBoc), 33.4 (CH), 22.6 (CH₂).

HRMS (ESI+TOF) m/z C15H15F3N2O4 [M+Na]+ calc. 367.0882, found. 367.0841

1-(tert-Butyl) 5-methyl 3-(difluoromethyl)-3,4-dihydropyridazine-1,5(2H)-dicarboxylate (7c)

The product **7c** is obtained following the general procedure **D** as an orange oil (0.286 g, 83%)

Chemical Formula: $C_{12}H_{18}F_2N_2O_4$ Exact Mass: 292,1235

<u>H NMR</u> (200 MHz, CDCl₃): δ= 6.04 (t, ²*J*_{*H*,*F*} = 54 Hz, 1H, CF₂H), 4.13 (ddd, ²*J*_{*H*,*H*} = 13 Hz, ²*J*_{*H*,*H*} = 2 Hz, ³*J*_{*H*,*H*} = 7 Hz, 1H, CH₂NBoc), 3.69 (s, 3H, OCH₃), 3.44 (dd, ²*J*_{*H*,*H*} = 12 Hz, ³*J*_{*H*,*H*} = 7Hz, 1H, CH₂NBoc), 2.81 (m, 1H, CH), 2.58 (dd, ²*J*_{*H*,*H*} = 18 Hz, ³*J*_{*H*,*H*} = 6 Hz, 1H, CH₂), 2.45 (dd, ²*J*_{*H*,*H*} = 18 Hz, ³*J*_{*H*,*H*} = 9 Hz, 1H, CH₂), 1.47 (m, 9H, (CH₃)₃).

 $\frac{^{19}\text{F NMR}}{^{17}\text{F}}$ (188 MHz, CDCl₃): δ = -117.5 (dd, $^{2}J_{F,F}$ = 317 Hz, $^{2}J_{H,F}$ = 54 Hz, 1F), - 120.3 (dd, $^{2}J_{F,F}$ = 317 Hz, $^{2}J_{H,F}$ = 54 Hz, 1F)

 $\frac{{}^{13}\text{C NMR}}{82.5 (Cq)}, 52.2 (OCH_3); \delta = 171.4 (COBoc), 151.9 (CO), 142.0 (t, {}^{2}J_{C,F} = 31 \text{ Hz}, \text{C=N}), 114.2 (t, {}^{1}J_{C,F} = 236 \text{ Hz}, \text{CF}_2\text{H}), 82.5 (Cq), 52.2 (OCH_3), 42.7 (CH_2\text{NBoc}), 33.3 (CH), 27.8 (CH_3), 20.6 (CH_2).$

HRMS (ESI+TOF) m/z C12H18F2N2O4 [M+Na]+ calc. 315.1132, found. 315.1165

1-Benzyl 5-methyl 3-(difluoromethyl)-5,6-dihydropyridazine-1,5(4H)-dicarboxylate (7d)

The product 7d is obtained following the general procedure D an orange oil (0.135 g, 79%)

Chemical Formula: C₁₅H₁₆F₂N₂O₄ Exact Mass: 326,1078

<u>H NMR</u> (200 MHz, CDCl₃): δ = 7.38-7.33 (m, 5H, Haro)), 6.11 (t, ${}^{2}J_{H,F}$ = 54 Hz, 1H, CF₂H), 5.27 (s, 2H, CH₂Cbz), 4.23 (dd, ${}^{2}J_{H,H}$ = 12 Hz, ${}^{3}J_{H,H}$ = 4 Hz, 1H, CH₂NCbz), 3.72 (s, 3H, OCH₃), 3.60 (dd, ${}^{2}J_{H,H}$ = 12 Hz, ${}^{3}J_{H,H}$ = 9 Hz, 1H, CH₂NCbz), 2.60 (m, 1H, CH), 2.87 (m, 2H, CH₂),

 $\frac{^{19}\text{F NMR}}{^{19}\text{F}}$ (188 MHz, CDCl₃): δ = -118.0 (dd, $^{2}J_{H,F}$ = 54 Hz, $^{2}J_{F,F}$ = 318 Hz, 1F), -120.5 (dd, $^{2}J_{H,F}$ = 54 Hz, $^{2}J_{F,F}$ = 318 Hz, 1F).

 $\frac{{}^{13}\text{C NMR}}{127.3} (75 \text{ MHz}, \text{CDCI}_3): \delta = 170.5 \text{ (COCbz)}, 152.6 \text{ (CO)}, 142.4 \text{ (t, }^2J_{C,F} = 30 \text{ Hz}, \text{ C=N)}, 134.6 \text{ (Caro)}, 127.6, 124.4, 127.3 \text{ (CHaro)}, 113.2 \text{ (t, }^1J_{C,F} = 237 \text{ Hz}, \text{CF}_2\text{H}), 67.6 \text{ (CH}_2\text{Cbz)}, 51.5 \text{ (OCH}_3), 42.1 \text{ (CH}_2\text{NCbz)}, 32.4 \text{ (CH)}, 20.0 \text{ (CH}_2\text{)}.$

HRMS (ESI+TOF) m/z C15H16F2N2O4 [M+Na]+ calc. 349.0976, found. 349.0942

Methyl 2-(((benzyloxy)carbonyl)-L-phenylalanyl)-6-(trifluoromethyl)-2,3,4,5-tetrahydropyridazine-4-carboxylate (7e)

The product **7e** is obtained following the general procedure **D** as a yellow oil (0.480g, 78%).

Chemical Formula: C₂₄H₂₄F₃N₃O₅ Exact Mass: 491,1668

<u>Methyl (S)-2-(((benzyloxy)carbonyl)-L-phenylalanyl)-6-(trifluoromethyl)-2,3,4,5-tetrahydropyridazine-4-carboxylate (7e)</u>

 $\frac{{}^{1}\text{H NMR}}{{}^{3}J_{H,H}=8.2}$ (200 MHz, CDCl₃): δ = 7.23-7.02 (m, 10H, H_{aro}), 5.48 (m, 2H, NHCbz and CH α), 4.98 (s, 2H, CH₂Cbz), 4.24 (d, ${}^{3}J_{H,H}=8.2$ Hz, 1H, CH₂N), 3.66 (s, 3H, OCH₃), 3.27 (t, ${}^{3}J_{H,H}=6.4$ Hz, 1H, CH₂N), 2.91 (s, 2H, CH₂Ph), 2.49 (m, 1H, CH), 2.44 (m, 2H, CH₂).

¹⁹**F NMR** (188 MHz, CDCl₃): δ = -71.26 (s, 3F).

¹³C NMR (75 MHz, CDCl₃): δ = 172.8 (CON), 170.9 (COCbz), 155.6 (CO), 137.6 (q, ${}^{2}J_{C,F}$ = 36.7 Hz, C=N), 136.4 and 136.0 (Caro), 129.4, 128.5, 128.4, 128.1, 126.9 (CHaro), 119.9 (q, ${}^{7}J_{C,F}$ = 274 Hz, CF₃), 66.9 (CH₂Cbz), 52.8 (OCH₃), 52.7(CHα), 40.3 (CH₂N), 39.7 (CH), 32.8 (CH₂Ph), 22.8 (CH₂).

 $\underline{\text{HRMS (ESI+TOF)}} \text{ m/z } C_{24}H_{24}F_3N_3O_5 \text{ [M+H]}^+ \text{ calc.} 492.1740\text{, found } 492.1753.$

<u>Methyl (*R*)-2-(((benzyloxy)carbonyl)-L-phenylalanyl)-6-(trifluoromethyl)-2,3,4,5-tetrahydropyridazine-4-carboxylate (7e')</u>

 $\frac{^{1}\text{H NMR}}{^{(200 \text{ MHz, CDCl}_3): \delta}} = 7.23 - 7.02 \text{ (m, 10H, Haro), 5.40-5.39 (m, 2H, NHCbz and CHa), 4.95 (s, 2H, CH_2Cbz), 4.12 (dd, <math>^{2}J_{H,H} = 13.6 \text{ Hz}, {}^{3}J_{H,H} = 3.1 \text{ Hz}$ 1H, CH₂N), 3.66 (s, 3H, OCH₃), 3.51 (dd, $^{2}J_{H,H} = 13.4 \text{ Hz}, {}^{3}J_{H,H} = 8.6 \text{ Hz}$, 1H, CH₂N), 3.01 (dd, $^{2}J_{H,H} = 13.6 \text{ Hz}, {}^{3}J_{H,H} = 4.0 \text{ Hz}, 1\text{ H}, \text{ CH}_2\text{Ph})$, 2.87 (m, 1H, CH), 2.76 (dd, $^{2}J_{H,H} = 13.7 \text{ Hz}, {}^{3}J_{H,H} = 7.1 \text{ Hz}, 1\text{ H}, \text{ CH}_2\text{Ph})$, 2.53 (m, 2H, CH₂).

<u>¹⁹F NMR</u> (188 MHz, CDCl₃): δ = -71.24 (s, 3F).

 $\frac{^{13}$ C NMR (75 MHz, CDCl₃): δ = 172.8 (CON), 171.1 (COCbz), 155.7 (CO), 137.5 (q, $^{2}J_{C,F}$ = 35.8 Hz, C=N), 129.4 (Caro), 129.3 (Caro), 128.5, 128.4, 128.1, 128.0, 127.0 (CHaro), 120.1 (q, $^{1}J_{C,F}$ = 274 Hz, CF₃), 66.8 (CH₂Cbz), 53.0 (OCH₃), 52.7 (CH_α), 40.4 (CH₂N), 38.7 (CH), 32.7 (CH₂Ph), 22.7 (CH₂).

HRMS (ESI+TOF) m/z $C_{24}H_{24}F_3N_3O_5$ [M+H]⁺ calc.492.1740, found 492.1732.

Methyl 2-(((benzyloxy)carbonyl)-L-phenylalanyl)-6-(difluoromethyl)-2,3,4,5-tetrahydropyridazine-4-carboxylate (7f)

The product **7f** is obtained following the general procedure **D** as a yellow oil (0.646 g, 65%).

Chemical Formula: $C_{24}H_{25}F_2N_3O_5$ Exact Mass: 473,1762

<u>Methyl (S)-2-(((benzyloxy)carbonyl)-L-phenylalanyl)-6-(difluoromethyl)-2,3,4,5-tetrahydropyridazine-4-carboxylate (7f)</u>

¹<u>H NMR</u> (300 MHz, CDCl₃): δ= 7.24-7.02 (m, 10H, Haro), 5.83 (t, ${}^{2}J_{H,F}$ = 54.8 Hz, 1H, CF₂H), 5.57 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 1H, NHCbz), 5.49 (q, ${}^{3}J_{H,H}$ = 7.3 Hz, 1H, CHα), 5.00 (s, 2H, CH₂Cbz), 4.29 (d, ${}^{2}J_{H,H}$ = 14.3 Hz, 1H, CHN), 3.65 (s, 3H, OCH₃), 3.16 (d, ${}^{2}J_{H,H}$ = 11.1 Hz, 1H, CHN), 2.98 (dd, ${}^{2}J_{H,H}$ = 13.3 Hz, ${}^{3}J_{H,H}$ = 5.9 Hz, 1H, CH₂Ph), 2.85 (dd, ${}^{2}J_{H,H}$ = 12.9 Hz, ${}^{3}J_{H,H}$ = 7.4 Hz, 1H, CH₂Ph), 2.49-2.31 (m, 3H, CH and CH₂).

 $\frac{^{19}F \text{ NMR}}{^{19}F \text{ NMR}} (188 \text{ MHz, CDCl}_3): \delta = -118.0 \text{ (dd, } {}^{2}J_{F,F} = 319 \text{ Hz}, {}^{2}J_{H,F} = 54.6 \text{ Hz 1F}), -120.7 \text{ (dd, } {}^{2}J_{F,F} = 319 \text{ Hz}, {}^{2}J_{H,F} = 55.2 \text{ Hz} \text{ Hz}, 160.0 \text{ Hz} \text{ Hz}, 170.0 \text{ Hz} \text{ Hz}, 180.0 \text{ Hz} \text{ Hz$

¹³C NMR (75 MHz, CDCl₃): δ = 171.4 (CON), 170.2 (COCbz), 154.6 (CO), 142.6 (t, ²*J*_{C,*F*} = 31.1 Hz, C=N), 135.1, 128.4 (Caro), 127.5, 127.3, 127.1, 127.0, 125.6 (CHaro), 112.6 (t, ¹*J*_{C,*F*} = 238 Hz, CF₂H), 65.8 (CH₂Cbz), 51.6 (CHα), 51.2 (OCH₃), 39.5 (CH₂N), 39.0 (CH), 31.9 (CH₂Ph), 20.2 (CH₂).

HRMS (ESI+TOF) m/z C₂₄H₂₄F₃N₃O₅ [M+H]⁺ calc. 474.1834, found 474.1854.

Methyl (*R*)-2-(((benzyloxy)carbonyl)-L-phenylalanyl)-6-(difluoromethyl)-2,3,4,5-tetrahydropyridazine-4-carboxylate (7f')

¹<u>H NMR</u> (300 MHz, CDCl₃): δ= 7.24-6.99 (m, 10H, Haro), 5.88 (t, ${}^{2}J_{H,F}$ = 54.8 Hz, 1H, CF₂H), 5.45 (brs, 2H, NHCbz and CHα), 4.98 (s, 2H, CH₂Cbz), 4.13 (dd, ${}^{2}J_{H,H}$ = 13.4 Hz, ${}^{3}J_{H,H}$ = 3.3 Hz, 1H, CH₂N), 3.66 (s, 3H, OCH₃), 3.47 (dd, ${}^{2}J_{H,H}$ = 13.4 Hz, ${}^{3}J_{H,H}$ = 8.8 Hz, 1H, CH₂N), 2.95 (m, 1H, CH₂Ph), 2.86 (d, ${}^{3}J_{H,H}$ = 5.9 Hz, 1H, CH₂Ph), 2.79 (m, 1H, CH), 2.55 (dd, ${}^{2}J_{H,H}$ = 18.6Hz, ${}^{3}J_{H,H}$ = 5.3 Hz, 1H, CH₂), 2.43 (dd, ${}^{2}J_{H,H}$ = 18.4 Hz, ${}^{3}J_{H,H}$ = 8.1 Hz, 1H, CH₂).

 $\frac{^{19}F \text{ NMR}}{^{19}F \text{ NMR}} (188 \text{ MHz}, \text{ CDCl}_3): \delta = -118.2 \text{ (dd, } ^{2}J_{F,F} = 319 \text{ Hz}, ^{2}J_{H,F} = 54.1 \text{ Hz } 1\text{F}), -120.2 \text{ (dd, } ^{2}J_{F,F} = 319 \text{ Hz}, ^{2}J_{H,F} = 54.3 \text{ Hz} \text{ Hz}, ^{2}I_{H,F} = 54.3 \text{$

 $\frac{{}^{13}\textbf{C} \text{ NMR}}{(75 \text{ MHz, CDCl}_3): \delta} = 172.5 \text{ (CON), } 171.4 \text{ (COCbz), } 155.7 \text{ (CO), } 143.4 \text{ (t, } {}^{2}J_{C,F} = 31.2 \text{ Hz, C=N), } 136.1, 129.3 \text{ (Caro), } 128.5, 128.4, 128.1, 128.0, 127.0 \text{ (CHaro), } 113.7 \text{ (t, } {}^{1}J_{C,F} = 238 \text{ Hz, CF}_2\text{H}), 66.9 \text{ (CH}_2\text{Cbz), } 52.6 \text{ (CH}\alpha), 52.5 \text{ (OCH}_3), 40.7 \text{ (CH}_2\text{N), } 39.1 \text{ (CH), } 32.7 \text{ (CH}_2\text{Ph), } 21.1 \text{ (CH}_2\text{).}$

HRMS (ESI+TOF) m/z C₂₄H₂₅F₅N₃O₅ [M+H]⁺ calc. 474.1834, found 474.1838.

e) Tripeptides 8e, 8e', 8f and 8f':

Methyl ((S)-2-(((benzyloxy)carbonyl)-L-phenylalanyl)-6-(trifluoromethyl)-2,3,4,5-tetrahydropyridazine-4-carbonyl)-L-valinate (8e)

The product **8e** is obtained following the general procedure **E** as a white foam (160 mg, 65%).

<u>H NMR</u> (300 MHz, CDCl₃): δ= 7.30-7.12 (m,10H, Haro), 6.46 (m, 1H, NHVal), 5.60-5.53 (m, 2H, NHPhe and CHαPhe), 5.0 (m, 2H, CH₂Cbz), 4.56 (dd, ${}^{3}J_{H,H} = 8.4$ Hz, ${}^{3}J_{H,H} = 4.9$ Hz, 1H, CHαVal), 4.43 (d, ${}^{2}J_{H,H} = 12.7$ Hz, 1H, CH2N), 3.74 (s, 3H, OCH₃), 3.19 (t, ${}^{2}J_{H,H} = 11.9$ H, 1H, CH₂N), 3.06 - 2.85 (m, 2H, CH₂Ph), 2.60 (m, 1H, CH₂), 2.48 (m, 1H, CH₂), 2.38 (m, 1H, CH), 2.16 (s, ${}^{3}J_{H,H} = 6.8$ Hz, 1H, CHiPr), 0.93 (d, ${}^{3}J_{H,H} = 6.8$ Hz, 3H, CH₃), 0.91 (d, ${}^{3}J_{H,H} = 6.8$ Hz, 3H, CH₃).

<u>¹⁹**F** NMR</u> (188 MHz, CDCl₃): δ = -71.1 (s, 3F).

 $\frac{^{13}$ C NMR (75 MHz, CDCl₃): δ = 172.9 (CON), 172.3 (CONH), 170.1 (COCbz), 155.7 (CO), 138.4 (q, $^{2}J_{C,F}$ = 35 Hz, C=N), 136.3, 129.5 (Caro), 128.5, 128.4, 128.1, 126.9 (CHaro), 120.1 (q, $^{1}J_{C,F}$ = 274 Hz, CF₃), 67.0 (CH₂Cbz), 57.5 (CHαVal), 53.0 (CHαPhe), 52.5 (OCH₃), 41.0 (CH₂N), 39.7 (CH₂Ph), 34.0 (CH), 31.3 (CHiPr), 23.7 (CH₂), 19.0, 18.0 (CH₃iPr).

<u>HRMS (ESI+TOF)</u> m/z $C_{29}H_{33}F_3N_4O_6$ [M+H]⁺ calc.591.2425, found 591.2430.

2D ¹H-¹H COSY experiments of compound 8e:

2D ¹⁹F-¹H NOESY experiments of compound 8e

Methyl ((R)-2-(((benzyloxy)carbonyl)-L-phenylalanyl)-6-(trifluoromethyl)-2,3,4,5-tetrahydropyridazine-4-carbonyl)-L-valinate (8e')

The product **8e'** is obtained following the general procedure **E** as a white foam (115 mg, 61%).

<u>H NMR</u> (300 MHz, CDCl₃): δ= 7.27-7.06 (m,10H, Haro), 6.71 (d, ${}^{2}J_{H,H} = 8.7$ Hz, 1H, NHVal), 5.54 (d, ${}^{2}J_{H,H} = 8.5$ Hz, 1H, NHCbz), 5.41 (td, ${}^{3}J_{H,H} = 8.6$ Hz, ${}^{3}J_{H,H} = 5.0$ Hz, 1H, CHαPhe), 4.96 (d, ${}^{2}J_{H,H} = 11.6$ H, 1H, CH₂Cbz), 4.92 (d, ${}^{2}J_{H,H} = 11.9$ H, 1H, CH₂Cbz), 4.51 (dd, ${}^{3}J_{H,H} = 8.8$ Hz, ${}^{3}J_{H,H} = 5.0$ Hz, 1H, CHαVal), 4.38 (d, ${}^{2}J_{H,H} = 13.2$ Hz, 1H, CH₂N), 3.67 (s, 3H, OCH₃), 3.20 (m, 1H, CH₂N), 3.03 (dd, ${}^{2}J_{H,H} = 13.3$ Hz, ${}^{3}J_{H,H} = 3.8$ Hz, 1H, CH₂Ph), 2.73 (dd, ${}^{2}J_{H,H} = 13.3$ Hz, ${}^{3}J_{H,H} = 8.5$ Hz, 1H, CH₂Ph), 2.66-2.29 (m, 3H, CH and CH₂), 2.08 (st, ${}^{3}J_{H,H} = 6.5$ Hz, 1H, CHiPr), 0.85 (d, ${}^{3}J_{H,H} = 6.5$ Hz, 3H, CH₃iPr), 0.81 (d, ${}^{3}J_{H,H} = 6.5$ Hz, 3H, CH₃iPr).

¹⁹**F NMR** (188 MHz, CDCl₃): δ = -71.2 (s, 3F).

 $\frac{1^{3}$ C NMR (75 MHz, CDCl₃): δ = 173.2 (CON), 172.5 (CONH), 170.1 (COCbz), 155.8 (CO), 138.9 (q, ²*J*_{C,F} = 36 Hz, C=N), 136.3, 136.1 (Caro), 129.4, 129.3, 128.5, 128.0, 127.8, 127.0 (CHaro), 120.1 (q, ¹*J*_{C,F} = 274 Hz, CF₃), 66.8 (CH₂Cbz), 57.3 (CHαVal), 53.23 (CHαPhe), 52.4 (OCH₃), 41.4 (CH₂N), 38.5 (CH₂Ph), 33.8 (CH), 31.3 (CHiPr), 22.9 (CH₂), 19.0 (CH₃iPr), 17.8 (CH₃iPr).

HRMS (ESI+TOF) m/z $C_{29}H_{33}F_3N_4O_6$ [M+H]⁺ calc.591.2425, found 591.2429.

0

Ø

2D ¹H-¹H COSY experiments of 8e'

1 MM

NA MAL

ppm

0

1

2

- 3

ļ

8

Methyl ((S)-2-(((benzyloxy)carbonyl)-L-phenylalanyl)-6-(difluoromethyl)-2,3,4,5-tetrahydropyridazine-4-carbonyl)-L-valinate (8f)

The product 8f is obtained following the general procedure E as a white foam (69 mg, 52%).

¹<u>H NMR</u> (300 MHz, CDCl₃): δ= 7.23-7.02 (m,10H, Haro), 6.33 (d, ${}^{3}J_{H,H}$ = 8.4 Hz, 1H, NHVal), 5.87 (t, ${}^{2}J_{H,F}$ = 54.8 Hz, 1H, CF₂H), 5.59 (d, ${}^{3}J_{H,H}$ = 9.9 Hz, 1H, NHCbz), 5.49 (q, ${}^{3}J_{H,H}$ = 6.9 Hz, 1H, CHαPhe), 4.99 (s, 2H, CH₂Cbz), 4.48 (dd, ${}^{3}J_{H,H}$ = 4.9 Hz, ${}^{3}J_{H,H}$ = 8.6 Hz, 1H, CHαVal), 4.33 (dd, ${}^{2}J_{H,H}$ = 13.2 Hz, ${}^{3}J_{H,H}$ = 2.8 Hz, 1H, CH₂N), 3.66 (s, 3H, OCH₃), 3.10 (t, ${}^{2}J_{H,H}$ = 11.7 H, 1H, CH₂N), 3.02 - 2.80 (m, 2H, CH₂Ph), 2.42 (brs, 2H, CH₂), 2.26 (m, 1H, CH), 2.10 (st, ${}^{3}J_{H,H}$ = 6.5 Hz, 1H, CHiPr), 0.85 (d, ${}^{3}J_{H,H}$ = 6.5 Hz, 3H, CH₃ipr), 0.83 (d, ${}^{3}J_{H,H}$ = 6.5 Hz, 3H, CH₃ipr).

 $\frac{{}^{19}\text{F}\text{ NMR}}{\text{Hz}} (188 \text{ MHz}, \text{CDCl}_3): \delta = -117.4 \text{ (dd, } {}^2\text{J}_{\text{H,F}} = 55.1 \text{ Hz}, \, {}^2\text{J}_{\text{F,F}} = 319.7 \text{ Hz}, \, 1\text{F}), \, -120.9 \text{ (dd, } {}^2\text{J}_{\text{H,F}} = 54.9 \text{ Hz}, \, {}^2\text{J}_{\text{F,F}} = 319.8 \text{ Hz}, \, 1\text{F}).$

 $\frac{^{13}$ C NMR (75 MHz, CDCl₃): δ = 171.5 (CON), 171.3 (COCbz), 169.4 (CONH), 154.6 (CO), 143.2 (q, ${}^{2}J_{C,F}$ = 30.7 Hz, C=N), 135.3 (Caro), 128.4, 127.5, 127.3, 127.1, 127.0, 126.0 (CHaro), 112.7 (q, ${}^{1}J_{C,F}$ = 238 Hz, CF₂H), 65.8 (CH₂Cbz), 56.3 (CHαVal), 51.4 (CHαPhe), 51.3 (OCH₃), 40.1 (CH₂N), 38.9 (CH₂Ph), 33.1(CH), 30.2 (CHiPr), 21.1 (CH₂), 17.9 (CH₃iPr), 16.9 (CH₃iPr).

<u>HRMS (ESI+TOF)</u> m/z $C_{29}H_{33}F_3N_4O_6$ [M+Na]⁺ calc. 595.2338, found 595.2350.

2D ¹H-¹H COSY Experiments of compound 8f:

2D ¹⁹F-¹H NOESY experiments of compound 8f

Methyl ((*R*)-2-(((benzyloxy)carbonyl)-L-phenylalanyl)-6-(difluoromethyl)-2,3,4,5-tetrahydropyridazine-4-carbonyl)-L-valinate (8f')

The product **8f**' is obtained following the general procedure **E** as a white foam (53 mg, 44%).

¹<u>H NMR</u> (300 MHz, CDCl₃): δ= 7.24-7.01 (m,10H, Haro), 6.43 (d, ${}^{3}J_{H,H}$ = 8.6 Hz, 1H, NHVal), 5.87 (t, ${}^{2}J_{H,F}$ = 54.8 Hz, 1H, CF₂H), 5.50 (t, ${}^{3}J_{H,H}$ = 7.8 Hz, 1H, NHPhe), 5.44 (d, ${}^{3}J_{H,H}$ = 6.8 Hz, 1H, CHαPhe), 4.99 (d, ${}^{2}J_{H,H}$ = 12.2 Hz, 1H, CH₂Cbz), 4.93 (d, ${}^{2}J_{H,H}$ = 12.3 Hz, 1H, CH₂Cbz), 4.51 (dd, ${}^{3}J_{H,H}$ = 4.96 Hz, ${}^{3}J_{H,H}$ = 8.8 Hz, 1H, CHαVal), 4.36 (d, ${}^{2}J_{H,H}$ = 13.2 Hz, 1H, CH₂N), 3.67 (s, 3H, OCH₃), 3.18 (t, ${}^{2}J_{H,H}$ = 11.2 H, 1H, CH₂N), 2.97 (dd, ${}^{2}J_{H,H}$ = 13.5 Hz, ${}^{3}J_{H,H}$ = 5.6 Hz, 1H, CH₂Ph), 2.83 (dd, ${}^{2}J_{H,H}$ = 13.4 Hz, ${}^{3}J_{H,H}$ = 6.7 Hz, 1H, CH₂Ph), 2.53 (m, 1H, CH), 2.45 (d, ${}^{3}J_{H,H}$ = 6.0 Hz, 2H, CH₂), 2.06 (dst, ${}^{3}J_{H,H}$ = 8.8 Hz, 3H, CH₃iPr), 0.82 (d, ${}^{3}J_{H,H}$ = 6.9 Hz, 3H, CH₃iPr).

 $\frac{^{19}\text{F NMR}}{^{Hz}} (188 \text{ MHz}, \text{CDCl}_3): \delta = -117.7 \text{ (dd, } ^2J_{H,F} = 56.4 \text{ Hz}, \, ^2J_{F,F} = 318.9 \text{ Hz}, \, 1\text{F}), -120.6 \text{ (dd, } ^2J_{H,F} = 54.6 \text{ Hz}, \, ^2J_{F,F} = 318.6 \text{ Hz}, \, 1\text{F}).$

¹³C NMR (75 MHz, CDCl₃): δ = 172.7 (CON), 172.4 (COCbz), 170.4 (CONH), 155.7 (CO), 144.5 (q, ${}^{2}J_{C,F}$ = 30.8 Hz, C=N), 136.9, 136.15 (Caro), 129.4, 128.5, 128.4, 128.1, 127.9, 127.0 (CHaro), 113.6 (q, ${}^{1}J_{C,F}$ = 238.2 Hz, CF₂H), 66.8 (CH₂Cbz), 57.2 (ChαVal), 52.6 (CHαPhe), 52.3 (OCH₃), 41.6 (CH₂N), 39.0 (CH₂Ph), 34.0 (CHiPr), 31.3 (CH), 21.4 (CH₂), 18.9 (CH₃iPr), 17.8 (CH₃iPr).

HRMS (ESI+TOF) m/z C29H33F3N4O6Na [M+Na]⁺ calc. 595.2338, found 595.2350.

2D ¹H-¹H COSY experiments of compound 8f'
f) X-ray analysis of 8f:

 $\begin{array}{c} CF_{2}H\\ \\ CbzHN \xrightarrow{(S)} O \\ O \\ \end{array} \begin{array}{c} CF_{2}H\\ N \\ (S) \\ O \\ O \\ O \\ \end{array} \begin{array}{c} CF_{2}H\\ N \\ (S) \\ O \\ \vdots \\ O \\ O \\ \end{array} \begin{array}{c} CF_{2}H\\ N \\ (S) \\ O \\ \vdots \\ O \\ \end{array} \begin{array}{c} CF_{2}H\\ N \\ (S) \\ O \\ \vdots \\ O \\ \end{array} \begin{array}{c} CF_{2}H\\ N \\ (S) \\ O \\ \vdots \\ O \\ \end{array} \end{array}$

Chemical Formula: C₂₉H₃₄F₂N₄O₆ Exact Mass: 572,2446

C-C = 0.0035 A	Wavelength=0.71073	
a=15.8351(12) alpha=90	b=5.0455(4) beta=94.756(7)	c=17.8221(13) gamma=90
173 K		
Calculated 1419.01(19) P 21 P 2vb	Reported 1419.01(1 P 21 P 2vb	9)
C29 H34 F2 N4 O6 C29 H34 F2 N4 O6 572.60	C29 H34 F C29 H34 F C29 H34 F 572.60	2 N4 06 2 N4 06
1.340 2 0.103	1.340 2 0.103	
604.0 604.33	604.0	
21,6,24 7645[4238] 0.996,0.998 0.977	21,6,24 6500 0.756,1.0	00
	C-C = 0.0035 A a=15.8351(12) alpha=90 173 K Calculated 1419.01(19) P 21 P 2yb C29 H34 F2 N4 06 C29 H34 F2 N4 06 572.60 1.340 2 0.103 604.0 604.33 21,6,24 7645[4238] 0.996,0.998 0.977	C-C = 0.0035 A Wavelength a=15.8351(12) b=5.0455(4) alpha=90 beta=94.756(7) 173 K Calculated Reported 1419.01(19) P 21 P 21 P 2yb P 2yb C29 H34 F2 N4 06 C29 H34 F C29 H34 F2 N4 06 C29 H34 F 572.60 572.60 1.340 1.340 2 2 2 0.103 0.103 604.0 604.0 604.33 21,6,24 21,6,24 7645[4238] 6500 0.996,0.998 0.756,1.0

Correction method= # Reported T Limits: Tmin=0.756 Tmax=1.000 AbsCorr = GAUSSIAN

Data completeness= 1.53/0.85 Theta(max)= 29.183

R(reflections) = 0.0435(5145)

S = 1.069

Npar= 541

wR2(reflections) = 0.1079(6500)

g) <u>¹H NMR spectra comparison of 7f,f' and 7e,e' for configuration assignment.</u>

